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Abstract

We present a satis
ability test and a probabilistic nonequivalence test for syntactic

����k�branching programs� The satis
ability test works in time at most O�
�
�en
k

�k
sd�

where s and d are the size and depth of the input branching program� The probabilistic

nonequivalence test works in time O�
�
��en
k

�k
sd log� n� The result has consequences

also for parity syntactic ����k�branching programs�
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� Introduction

A nondeterministic branching program �or shortly bp for representing a Boolean func�
tion f�x�� x�� � � � � xn is an acyclic directed graph with one source and two sinks labeled
by � and �� We distinguish two kinds of nonsink nodes� A nondeterministic node has
an arbitrary number of outgoing edges without label� A testing node has two outgoing
edges labeled by xi and �xi for some i � �� �� � � � � n� For an assignment a�� a�� � � � � an
of the variables� we have f�a�� a�� � � � � an � � if and only if there is a path from the
source to the ��sink such that all the literals on the edges from the path are satis
ed
by the assignment�

If we do not explicitly call a bp nondeterministic� we assume that it is deterministic�
i�e� we assume that it does not contain nondeterministic nodes�

By an occurrence of a variable� we mean an occurrence of any literal containing
the variable� If every path in the bp from the source to a sink contains at most one
occurrence of each variable� then the bp is called a read�once bp or ��bp for short� The
syntactic ����k�bp are bp�s satisfying the following restriction� For every path from
the source to a sink there is a set of at most k variables such that only these at most
k variables have more than one occurrence in the path�

The complexity of a function in a given type of bp�s is the minimum number of
nodes in a bp of the given type representing the function� It is known that even
������bp�s are strictly more powerfull than ��bp�s� Namely� there are functions with
exponential complexity for ��bp� but having polynomial syntactic ������bp�s� An
example of such a function may be found in ���� Another example� with complexity at
least �n�o�n� for ��bp�s may be found in ���� Moreover� for every k � �

�
n���� log n there

are functions with a polynomial syntactic ����k�bp� but having only exponential size
syntactic �����k���bp�s� see �	�� ����� Analogous result for nonsyntactic ����k�bp�s
may be found in ����

Let us point out that there are a few more results on lower bounds for nonsyntactic
����k�bp�s� see ���� ���� �����

A ��bp or even nondeterministic ��bp is satis
able� if and only if there is at least one
path from the source to the ��sink in it� There are simple e�cient algorithms testing
this� Moreover� by a result of Blum� Chandra and Wegman� see ���� it is possible
to test nonequivalence of two �deterministic ��bp by a polynomial time probabilistic
algorithm with one�sided error� namely� if the bp�s are equivalent� then the algorithm
gives always the correct answer�

In the present paper we demonstrate a satis
ability test and a probabilistic
nonequivalence test for ����k�bp�s� If the size of the input bp is s and its depth

is d� then the satis
ability test works in time O�
�
�en
k

�k
sd� If both input bp�s have

size at most s and depth at most d� then the probabilistic nonequivalence test works

in time O�
�
��en
k

�k
sd log� n and has the same error probability as the algorithm from

���� Moreover� we present a consistency test for ����k�bp� i�e� an algorithm that tests

if an input bp is or is not a syntactic ����k�bp in time O�
�

�en
k��

�k��
s�

If the input bp is nondeterministic� then the satis
ability test may be done in time

O�
�
�en
k

�k
s�� Moreover� if the input bp is deterministic� then it is possible to compute

�



the number of satisfying assignments of the function represented by the input bp in

time O�
�
��en
k

�k
sd�

It appears that in the above results it is indeed necessary to work with syntactic
����k�bp�s� In the nonsyntactic case� where the restriction to the number of occur�
rences of variables is applied only to consistent computation paths� even for ������bp
the satis
ability and nonconsistency tests are NP�complete� see ����

The results have consequences also for parity syntactic ����k�bp�s� i�e� for non�
deterministic ����k�bp�s that accept an input if and only if there is an odd number
of paths from the source to the ��sink consistent with the input� In this case� testing
nonequivalence of two bp�s may be reduced to testing satis
ability of one bp� since
we can easily combine two bp�s by parity� We present a probabilistic algorithm for

satis
ability� which works in time O�
�
��en
k

�k
s�� where we omit logarithmic factors�

Let us point out that in the case of parity nondeterminism� computing the number
of satisfying assignments is �P complete even for parity OBDDs and hence also for
��bp�

The presented algorithms are more e�cient than the exhaustive search� whenever
k � o�n�

� The satis�ability test

In this section� we consider a promise version of the satis
ability test� i�e� an algorithm
that yields a correct answer if it is guaranteed that the input bp is indeed a syntactic
����k�bp� Using some parts of the satis
ability test� it is also possible to obtain a
guarantee that the result is indeed correct without any assumptions� However� this
leads to a class of bp that is slightly larger than syntactic ����k�bp� Hence� in the
next section� we demonstrate an algorithm testing if an input bp is or is not a syntactic
����k�bp�

Assume� we are given a nondeterministic syntactic ����k�bp Q for a function of n
variables� Let E denotes its set of edges� If not stated otherwise� a path in Q means
a path from the source to the ��sink� Let I be a set of indices of variables� For every
path in Q� let its I�restriction be the set of literals appearing in the path that contain
variables with indices from I� For every set I� there are �jIj possible I�restrictions� since
for every variable xi� i � I� there are four possible contributions to the I�restriction�
namely �� fxig� f�xig� fxi� �xig�

Let us call the I�restriction containing both xi and �xi for all i � I the full I�
restriction� Let NI be the number of path in Q such that their I�restriction is full� In
particular� N� is the set of all paths in Q�

Consider a path in Q� Let J be the set of indices of all variables that occur in the
path both positively and negatively� Then the path contributes to NI if and only if
I � J � Using this and the inclusion�exclusion principle� we obtain the following�

Lemma ��� The number of all consistent paths in Q is
X
jIj�k

���jIjNI �

�



Note that Q is satis
able if and only if there is at least one consistent path in Q�
Hence� in order to test satis
ability of Q� it is su�cient to calculate the numbers NI

for jIj � k�
In order to evaluateNI � we consider for every node v and every possible I�restriction

� the number N�
I �v� which is the number of paths from v to the ��sink that have the

I�restriction �� The number N�
I �v with v equal to the source and � equal to the

full I�restriction is equal to NI � The numbers N�
I �v satisfy the following recurrence

relations that allow to evaluate them by induction in a bottom up order�
If v is the ��sink� then N�

I �v � � for every I�restriction ��
If v is the ��sink� then N�

I �v � � and N�
I �v � � for every � �� ��

If v tests a variable xi� i � I and v� resp� v� is the ��successor resp� ��successor of v�
then

N�
I �v �

X

�

��f	xig
�

N�
I �v� �

X

�

��fxig
�

N�
I �v��

If v tests a variable xi and i �� I or v is a nondeterministic node� then

N�
I �v �

X

u

�v�u��E

N�
I �u�

Let us prove the 
rst identity� Consider the set of paths from v to the ��sink having
the I�restriction �� The number of these paths is the left hand side of the identity� We
describe� how to partition this set of paths in order to get subsets corresponding to the
summands in the right hand side�

For each of the two successors of v consider the subset of paths going through
the selected successor� In each of these two sets classify the path according to the
I�restriction of the subpath starting in v� or v�� Note that� if such a subpath has
I�restriction � and if the skipped edge from v has label xi resp� �xi� then � � fxig � �
resp� � � f�xig � �� Hence� the summands in the right hand side are exactly the sizes
of the blocks of the above described partition�

In order to prove the second identity� we partition the set of paths only according
to the successor of v which the path goes through� In this case� the I�restrictions of
the subpaths are the same as the I�restrictions of the whole paths�

Theorem ��� Let a syntactic ����k�bp Q be given� The number of consistent path

in Q is computable in time O�
�
�en
k

�k
sd� if the diagram is deterministic and in time

O�
�
�en
k

�k
s� if it is nondeterministic�

Proof� The numbers N�
I �v have to be evaluated for all s nodes in the diagram and

all I�restrictions for all subsets I of indices of variables of size at most k� The number
of these subsets is at most

Pk
i
�

�
n
i

�
�
�
en
k

�k
� For each of them� we have at most

�k I�restrictions� Hence� the algorithm performs at most O�
�
�en
k

�k
s additions in the

deterministic case and at most O�
�
�en
k

�k
s� in the nondeterministic case�

�



Each of the evaluated numbers is bounded from above by the total number of paths
in Q� If Q is deterministic� then the total number of paths is at most �d� Hence� in each
step� we perform addition of numbers with binary representation of length at most d�
This implies the required bound� If the diagram is nondeterministic� the total number
of paths is at most �s and the length of the numbers is at most s� This implies the
bound in the nondeterministic case� �

Clearly� in order to get a correct answer of the algorithm� it is su�cient if NI � �
for all sets I of size k � �� since then NI � � also for all larger sets I� In order to test
this� it is su�cient to run the above algorithm up to sets of size k � � instead of k�
Clearly� the corresponding time bound may be also obtained by replacing k by k � ��

By a simple analysis of this guaranteed version of the algorithm we obtain that it
works correctly exactly for those bp�s such that every inconsistent path from the source
to the ��sink contains at most k variables with both positive and negative occurrence�
This class of bp�s is slightly larger than syntactic ����k�bp�s�

� Testing the ����k��property

In order to test� if an input �nondeterministic bp is a ����k�bp� we will need a
di�erent classi
cation of paths than in the previous section�

Let I be a set of indices of variables� Then� we assign to every path its I�count�
We use Greek letters with a prime to denote I�counts� A I�count is a mapping �� �
I � f�� �� �g such that for all i � I ���i � min��� si where si is the total number of
both positive and negative occurrences of xi in the path�

Let I be a set of indices of variables and let �� be an I�count� Then� by T ��

I �v
we denote the truth value of the statement that there is at least one path from v to a
sink� which has the I�count ��� For T ��

I �v� we design similar recurrence relations as
for N�

I �v from the previous section� The relations are as follows�
If v is a sink� then T �

I �v � true� where ��i � � for all i � I� and T ��

I �v � false for
all nonzero I�counts ���

Let �� be an I�count of a path� Consider a prolongation of the path by one edge
labeled by xi resp� �xi� If i �� I� then the prolonged path has the same I�count as the
original path� If i � I� then the I�count of the prolonged path is uniquely determined
by �� and the label of the new edge� For simplicity of notation� we denote the I�count
of the prolongation as �� � i�

Let v� resp� v� be the ��successor of v resp� ��successor of v� Let the variable tested
in v be xi� Then� we have the following relations for T ��

I �v�
If i � I� then

T ��

I �v �
�

��

�� � i 
 ��

�
T ��

I �v� 	 T ��

I �v�
�
�

�



If i �� I or if v is a nondeterministic node� then

T ��

I �v �
�

u

�v�u��E

T ��

I �u�

The proof of these relations can be done by appropriate splitting of the set of paths
corresponding to the left hand side of each of the identities� similar to that used in the
previous section�

Theorem ��� The test if an input branching program is or is not a ����k�bp can be

done in time O�
�

�en
k��

�k��
s�

Proof� In order to test the required property� it is su�cient to verify that for every I�
jIj � k � � and every �� such that ���i � � for all i � I� T ��

I �vs is false� where vs is

the source� In order to do this� we have to evaluate T ��

I �vs for all possible subsets I
of size k�� and for all possible I�counts ��� Clearly� this requires at most the number
of steps claimed in the theorem� �

� The probabilistic nonequivalence test

Every Boolean function is expressible by a polynomial over the real numbers� Using
identities x�

i � xi� the polynomial can be made multilinear� Moreover� if we have n
variables then we have exactly �n multilinear monomials and also the dimension of
the linear span over the real numbers of all Boolean functions is �n� It follows that
every function in the linear span of the Boolean functions is expressible by a unique
multilinear polynomial� The same holds also for any other 
eld instead of the real
numbers�

The probabilistic nonequivalence test for read�once decision diagrams from ��� is
based on the following lemma�

Lemma ��� Let g�x�� x�� � � � � xn be a nonzero multilinear polynomial over a �eld F
and let M � F be a �nite set� Let �ai be independent random variables with the

uniform distribution on M � Then� the probability that g��a�� �a�� � � � � �an �� � is at least�
�� �

jM j

�n
�

In view of this lemma� the only thing which is needed to perform the probabilistic
nonequivalence test is to have an e�cient way to evaluate for general inputs the unique
multilinear polynomials corresponding to the two Boolean functions� which we like to
compare� Then� we apply the above lemma to the di�erence of the two polynomials
with� say� jM j � �n�

If we have a read�once branching program representing a Boolean function� then� as
shown in ���� we can e�ciently evaluate the unique multilinear polynomial correspond�
ing to the function for general inputs� The main step of our generalized equivalence

�



test is a procedure that evaluates the unique multilinear polynomial for a function rep�
resented by a ����k�bp� Using the procedure described in the next section to evaluate
the polynomials for random assignments from the set M � f �

�n
� �
�n
� � � � � �g� we obtain

Theorem ��� There is a probabilistic nonequivalence test with one�sided error for

����k�bp� which works in time O�
�
��en
k

�k
sd log� n� If the input diagrams are in�

equivalent� then the algorithm makes an error with probability at most �
�
�

If g�x�� x�� � � � � xn is a multilinear polynomial corresponding to a Boolean function
f � then g��

�
� �
�
� � � � � �

�
 is the probability that a random assignment yields the value �

in f � Hence� the procedure from the next section may also be used to compute the
number of satisfying assignmets for a ����k�bp�

Theorem ��� The number of satisfying assignments of a syntactic ����k�bp of size

s and depth d can be computed deterministically in time O�
�
��en
k

�k
sd�

� Evaluating the multilinear polynomial

Assume� we are given a deterministic syntactic ����k�decision diagram Q computing
a Boolean function f � By a monomial corresponding to a path� we mean the product
of all literals contained in the path� Repetitions are denoted using exponents� i�e� the
monomial x�

i �xi means that the path contains xi two times and �xi once� The symbol �xi
is considered as a formal symbol denoting �� xi�

For every node v in the diagram� consider the polynomial consisting of monomials
corresponding to all paths from v to the ��sink and call it g�v� It is easy to evaluate
this polynomial for a general input by a simple induction in e�g� bottom up order� since
g�v � xig�v���xig�v�� if xi is the variable tested in v and v� resp� v� is the ��successor
resp� ��successor of v� If vs is the source� then g�vs coincides with f on the Boolean
inputs� However� since the diagram may contain paths with several occurrences of
some variable� the polynomial obtained in this way neednot be multilinear�

In order to evaluate the unique multilinear polynomial corresponding to the func�
tion� we associate several polynomials to Q in such a way that
�i the polynomials may be e�ciently evaluated for general inputs�
�ii an appropriate combination of these polynomials is equal to the unique multilinear
polynomial corresponding to the function computed by Q�

The polynomials will be sums of monomials corresponding to speci
c subsets of
paths� These subsets are de
ned in terms of the number of occurrences of variables�
In order to describe the subsets� we introduce the following notion�

Let I be a set of indices of variables� Then� we assign to every path its I�type� It
is a monomial over the variables with index from I de
ned as follows� It is a product
of contributions of the variables with index in I� The contribution of xi is one of the
monomials f�� xi� x�

i � �xi� �x
�
i � xi�xig chosen as follows� If the path contains both xi and

�xi� then the contribution of xi to the I�type is xi�xi� Otherwise� the contribution is the
largest of the listed monomials which is contained in the path�

�



By an I�type� we mean any monomial that can be an I�type of a path� For every
set I of indices of the variables� there are �jIj possible I�types� We use Greek letters
with double prime to denote I�types�

Let K be a set of indices of variables� A K�type ��� will be called full� if the
contribution to ��� of every variable with index from K belongs to fx�

i � �x
�
i � xi�xig� For

a full K�type ���� let W���

K denote the set of paths in Q such that their K�type is ���

and all variables with index not in K have at most one occurrence in the path� In
particular� if � denotes the empty type �formally equal to �� then W�

� denotes the set

of path in Q that are read�once� Note that the collection of sets W���

K forms a partition
of the set of all paths in Q�

If K is a set of indices of variables� then a K�eliminated monomial corresponding
to a path is the product of all literals in the path except those� which contain variables
with index from K�

Let W ���

K denote the sum of K�eliminated monomials corresponding to the paths in

W���

K � Moreover� let Z denote the multilinear polynomial corresponding to the function
computed by Q� A K�type ��� will be called consistent� if it does not contain xi�xi for
any variable�

Lemma ��� We have

Z �
X
jKj�k

X

��� is full� cons�

Ktype

W ���

K

�
BBBBBBB�

Y

i � K

x�
i
� ���

xi

�
CCCCCCCA

�
BBBBBBB�

Y

i �K

	x�
i
� ���

�xi

�
CCCCCCCA
�

where x�
i � ��� resp� �x�

i � ��� means that the contribution of xi to �
�� is x�

i resp� �x�
i �

Proof� Every consistent path belongs to exactly one of the setsW���

K for a full consistent
K�type ���� Since we work with a ����k�bp� it su�ces to consider jKj � k� Moreover�

by multiplying a monomial from W ���

K by xi or �xi for all i � K according to the
type ���� we obtain the multilinear monomial corresponding to the same path� For
every Boolean input there is at most one path in Q consistent with the input� Recall
that we consider only paths from the source to the ��sink� Clearly� such a consistent
path exists if and only if the value of the function for the given input is �� This
implies that the polynomial determined by the formula in the lemma coincides with
the Boolean function computed by Q on all Boolean inputs� Since the formula in the
lemma determines a multilinear polynomial� it is equal to Z� �

The criterion of including a monomial into W ���

K depends on the number of occur�
rences of the variables in the monomial� including variables with index outside K� In
order to compute W ���

K � we de
ne some other polynomials� where the criterion of in�
cluding a monomial will depend only on occurrences of variables from some set of size
at most k�

Let K � I and let ��� be a full K�type� Then� let V full����

I�K be the set of all path in

Q such that their I�type is a full I�type and their K�type is � ��� Moreover� let V full����

I�K

denote the sum of K�eliminated monomials corresponding to the paths in V full����

I�K �

�



Lemma ��� We have

W ���

K �
X

I�K

jIj�k

���jInKjV full����

I�K �

Proof� Let ��� be a full K�type� Consider a path in Q having this K�type ���� Let J
be the set of variables having repeated occurrences in the path� Clearly� J 
 K and
jJ j � k� Note that the considered path contributes to V full����

I�K if and only if K � I � J �
Hence� if J �� K� then the contributions of the path to the right hand side of the
identity in the lemma cancel� �

Note that the criterion for including a monomial into V full����

I�K depends only on the
I�type of the monomial� In order to describe an e�cient way of evaluating these
polynomials� we express them using one more set of polynomials�

Let ��� be any I�type and let v be a node of Q� Then� let V���

I �v denote the set of
those paths in Q from v to the ��sink that have the I�type equal to ���� Let� moreover�
K � I� Then� let V ���

I�K�v be the sum of the K�eliminated monomials corresponding to

all paths in V���

I �v�
Let K � I and let ��� be a full K�type� Clearly� if vs is the source� then

V full����

I�K �
X

��� is full

��� � ���

V ���

I�K�vs� ����

where ��� 
 ��� means that the contribution of variables with index in K to ��� is the
same as their contribution to ����

In order to 
nish the proof� we demonstrate the recurrence relations which allow to
evaluate the last set of polynomials� Recall that the diagram is deterministic�

If v is the ��sink� then V ���

I�K�v � � for all ���� If v is the ��sink� then V �
I�K�v � ��

where � is the empty type� and V ���

I�K�v � � for all nonempty I�types ����
Let ��� be an I�type of a path� Consider a prolongation of the path by one edge

labeled by xi resp� �xi� If i �� I� then the prolonged path has the same I�type as the
original path� If i � I� then the I�type of the prolonged path is uniquely determined by
��� and the label of the new edge� For simplicity� we denote the type of the prolongation
as ���xi resp� ����xi� although the exponents in the product may be larger than in the
resulting I�type�

Let v� resp� v� be the ��successor of v resp� ��successor of v� Let the variable tested
in v be xi� Then� we have the following relations for V ���

I�K�v�
If i � K� then

V ���

I�K�v �
X

���

���	xi 
 ���

V ���

I�K�v� �
X

���

���xi 
 ���

V ���

I�K�v��

	



If i � I nK� then

V ���

I�K�v �
X

���

���	xi 
 ���

V ���

I�K�v��xi �
X

���

���xi 
 ���

V ���

I�K�v�xi�

If i �� I� then
V ���

I�K�v � V ���

I�K�v��xi � V ���

I�K�v�xi�

The proof of these relations can be done again by appropriate splitting of the set of
paths corresponding to the left hand side of each of the identities�

If we are given a general �possibly nonboolean input� then the same relations hold
for the values of the polynomials in the given input� Using this� we can e�ciently
evaluate all the needed polynomials�

Theorem ��� Let g�x�� x�� � � � � xn be the multilinear polynomial corresponding to the

Boolean function computed by a syntactic ����k�bp Q� Assume that a�� a�� � � � � an
is an assignment of the variables� where ai for all i � �� �� � � � � n are rational num�

bers with the same denominator and with the bit�length of both the numerator and

the denominator at most t� Then� the value g�a�� a�� � � � � an is computable in time

O�
�
��en
k

�k
sdt��

Proof� In the recurrence relations� we have to work with all possible I�types ����
although� the resulting value is needed only for full types ���� Hence� for every set
I� we have to consider all �jI j types and there are �jIj possible subsets K� Since we

consider only sets I with jIj � k� we have at most
�
��en
k

�k
possible tripples I�K� ��� to

be considered� For each of these tripples and for all nodes v in the diagram� we have
to calculate V ���

I�K�v� Note that in the recurrence relations determining this number�
we have that in each sum there are at most � ����s satisfying the requirement�

In order to 
nish the proof� we have to estimate the number of bit operations in the
calculation� Since for every path we multiply at most d numbers and there are at most
�d paths� all the numbers we work with have both the numerator and denominator of
size at most O�td� In each step� we multiply a number satisfying this by ai or ��ai for
some i � �� �� � � � � n� Using the assumption on the numbers ai� we obtain the required
time bound� �

� Parity nondeterminism

The probabilistic nonequivalence test of ��� was modi
ed to work for parity OBDDs in
���� In fact� it works even for parity ��bp�s� The test is performed by selecting a random
assignment of the variables by arbitrary values from GF ��m� where m � dlog �ne�
Then� we evaluate the two unique multilinear polynomials corresponding to the two
diagrams for the selected assignment� Using Lemma ��� one can prove that if the
diagrams are inequivalent� then the values of the two polynomials di�er with probability
at least �

�
�

�



Assume� we are given a nondeterministic syntactic ����k�bp with the parity ac�
ceptance mode� For every path in the diagram� consider the monomial over GF ��
de
ned as follows� If the path is inconsistent� then the monomial is zero� If the path
is consistent� then the monomial contains exactly one occurrence of every literal oc�
curring in the path� It is easy to see that the obtained polynomial is multilinear and
that it coincides with the computed Boolean function on the Boolean inputs� Hence�
it is exactly the unique multilinear polynomial corresponding to the function� The
method of classi
cation of path used in the previous section allows us to evaluate this
polynomial� This yields the following theorem�

Theorem ��� The satis�ability and nonequivalence test for parity syntactic ����k�

bp of size s may be done probabilistically with one�sided error in time O�
�
��en
k

�k
s��

where we omit logarithmic factors�

Proof� Since two parity ����k�bp are equivalent if and only if their parity is unsatis�

able� it is su�cient to describe a satis
ability test� Using Lemma ���� this can done
by selecting the values of x�� x�� � � � � xn at random from GF ��m� where m � dlog �ne
and by evaluating the unique multilinear polynomial corresponding to the ����k�
bp� For evaluating the polynomial we use the algorithm from Section � with a minor
modi
cation described in the following paragraphs�

Assume� we are given a nondeterministic syntactic ����k�bp Q� Let E denotes its

set of edges� In order to analyze Q� we use the same de
nition of I�type� W ���

K � V full����

I�K �

V ���

I�K�v as in Section �� The only di�erence is that� now� the polynomials are over
a 
eld of characteristic �� It is easy to see that Lemmas ���� ��� and equation ����
remain true� Moreover� the recurrence relations for V ���

I�K�v remain true for all nodes
v testing a variable� We only have to include also a relation for the case that v is a
nondeterministic node� The required relation is

V ���

I�K�v �
X

u

�v�u��E

V ���

I�K�u�

In order to compute the numbers V ���

I�K�v� we have to perform at most O�
�
��en
k

�k
s�

additions and at most O�
�
��en
k

�k
s multiplications of numbers in GF ��m� where m �

dlog �ne� �

Computing the number of satisfying assignments for a parity OBDD is �P com�
plete� since a parity OBDD can compute any polynomial over the two element 
eld
in size at most n times the number of monomials in the polynomial� Computing the
number of assignments� for which a given cubic polynomial over the two element 
eld
is � is �P complete� see ����

��
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