narodni
N U dlozisté
1 L Sedé
6 literatury

A Probabilistic Nonequivalence Test for Syntactic (1,+k)-branching Programs

Savicky, Petr
1998

Dostupny z http://www.nusl.cz/ntk/nusl-33769

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 05.05.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33769
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A probabilistic nonequivalence test for syntactic
(1, +k)-branching programs

Petr Savicky

Technical report No. 754

15. ¢ervence 1998

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+4202) 6884244 fax: (+4202) 8585789
e-mail: uivt@uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A probabilistic nonequivalence test for syntactic
(1, +k)-branching programs

Petr Savicky!

Technical report No. 754
15. cervence 1998

Abstract

We present a satisfiability test and a probabilistic nonequivalence test for syntactic

k
(1, +k)-branching programs. The satisfiability test works in time at most O((4%”) sd),

where s and d are the size and depth of the input branching program. The probabilistic

k
nonequivalence test works in time O((m%) sdlog®n). The result has consequences

also for parity syntactic (1, 4k)-branching programs.

Keywords
branching programs, satisfiability test, equivalence test

Institute of Computer Science, Academy of Sciences of Czech Republic, Pod vodarenskou vézi 2,
182 07 Praha 8, Czech Republic, savickyQuivt.cas.cz

1 Introduction

A nondeterministic branching program (or shortly bp) for representing a Boolean func-
tion f(x1,22,...,2,) is an acyclic directed graph with one source and two sinks labeled
by 0 and 1. We distinguish two kinds of nonsink nodes. A nondeterministic node has
an arbitrary number of outgoing edges without label. A testing node has two outgoing
edges labeled by z; and z; for some : = 1,2,....n. For an assignment aq,as,...,a,
of the variables, we have f(aq,as,...,a,) = 1 if and only if there is a path from the
source to the 1-sink such that all the literals on the edges from the path are satisfied
by the assignment.

If we do not explicitly call a bp nondeterministic, we assume that it is deterministic,
i.e. we assume that it does not contain nondeterministic nodes.

By an occurrence of a variable, we mean an occurrence of any literal containing
the variable. If every path in the bp from the source to a sink contains at most one
occurrence of each variable, then the bp is called a read-once bp or 1-bp for short. The
syntactic (1,4k)-bp are bp’s satisfying the following restriction. For every path from
the source to a sink there is a set of at most k variables such that only these at most
k variables have more than one occurrence in the path.

The complexity of a function in a given type of bp’s is the minimum number of
nodes in a bp of the given type representing the function. It is known that even
(1,+1)-bp’s are strictly more powerfull than 1-bp’s. Namely, there are functions with
exponential complexity for 1-bp, but having polynomial syntactic (1,41)-bp’s. An
example of such a function may be found in [4]. Another example, with complexity at
least 2"=°") for 1-bp’s may be found in [7]. Moreover, for every k < %nl/Z/ log n there
are functions with a polynomial syntactic (1, 4+k)-bp, but having only exponential size
syntactic (1,4(k—1))-bp’s, see [8], [10]. Analogous result for nonsyntactic (1, +k)-bp’s
may be found in [7].

Let us point out that there are a few more results on lower bounds for nonsyntactic
(1,+k)-bp’s, see [5], [6], [11].

A 1-bp or even nondeterministic 1-bp is satisfiable, if and only if there is at least one
path from the source to the 1-sink in it. There are simple efficient algorithms testing
this. Moreover, by a result of Blum, Chandra and Wegman, see [1], it is possible
to test nonequivalence of two (deterministic) 1-bp by a polynomial time probabilistic
algorithm with one-sided error, namely, if the bp’s are equivalent, then the algorithm
gives always the correct answer.

In the present paper we demonstrate a satisfiability test and a probabilistic
nonequivalence test for (1,+k)-bp’s. If the size of the input bp is s and its depth

is d, then the satisfiability test works in time O((%)k sd). If both input bp’s have

size at most s and depth at most d, then the probabilistic nonequivalence test works

k
in time O((m%) sdlog®n) and has the same error probability as the algorithm from

[1]. Moreover, we present a consistency test for (1, +k)-bp, i.e. an algorithm that tests

L . . . s \ KL
if an input bp is or is not a syntactic (1, +k)-bp in time O((ki s).

If the input bp is nondeterministic, then the satisfiability test may be done in time

k
O((%) 57). Moreover, if the input bp is deterministic, then it is possible to compute

the number of satistying assignments of the function represented by the input bp in

time O((m%)k sd).

It appears that in the above results it is indeed necessary to work with syntactic
(1,+k)-bp’s. In the nonsyntactic case, where the restriction to the number of occur-
rences of variables is applied only to consistent computation paths, even for (1,41)-bp
the satisfiability and nonconsistency tests are NP-complete, see [9].

The results have consequences also for parity syntactic (1, +k)-bp’s, i.e. for non-
deterministic (1,4k)-bp’s that accept an input if and only if there is an odd number
of paths from the source to the 1-sink consistent with the input. In this case, testing
nonequivalence of two bp’s may be reduced to testing satisfiability of one bp, since

we can easily combine two bp’s by parity. We present a probabilistic algorithm for

satisfiability, which works in time O((m%) s?), where we omit logarithmic factors.

Let us point out that in the case of parity nondeterminism, computing the number
of satisfying assignments is #P complete even for parity OBDDs and hence also for
1-bp.

The presented algorithms are more efficient than the exhaustive search, whenever

k= o(n).

2 The satisfiability test

In this section, we consider a promise version of the satisfiability test, i.e. an algorithm
that yields a correct answer if it is guaranteed that the input bp is indeed a syntactic
(1,+k)-bp. Using some parts of the satisfiability test, it is also possible to obtain a
guarantee that the result is indeed correct without any assumptions. However, this
leads to a class of bp that is slightly larger than syntactic (1,4k)-bp. Hence, in the
next section, we demonstrate an algorithm testing if an input bp is or is not a syntactic
(1, +k)-bp.

Assume, we are given a nondeterministic syntactic (1, +k)-bp @ for a function of n
variables. Let E denotes its set of edges. If not stated otherwise, a path in () means
a path from the source to the 1-sink. Let I be a set of indices of variables. For every
path in @), let its [-restriction be the set of literals appearing in the path that contain
variables with indices from 1. For every set I, there are 4/ possible I-restrictions, since
for every variable x;, ¢ € I, there are four possible contributions to the [-restriction,
namely 0, {z;}, {7}, {z;, ;}.

Let us call the [-restriction containing both z; and z; for all ¢ € [the full I-
restriction. Let Nj be the number of path in) such that their [-restriction is full. In
particular, Ny is the set of all paths in Q).

Consider a path in). Let J be the set of indices of all variables that occur in the
path both positively and negatively. Then the path contributes to N if and only if
I C J. Using this and the inclusion-exclusion principle, we obtain the following.

Lemma 2.1 The number of all consistent paths in () is

> (=D!INg

<k

Note that () is satisfiable if and only if there is at least one consistent path in ().
Hence, in order to test satisfiability of (), it is sufficient to calculate the numbers Ny
for 1] < k.

In order to evaluate N, we consider for every node v and every possible [-restriction
« the number N7 (v), which is the number of paths from v to the 1-sink that have the
I-restriction . The number N{(v) with v equal to the source and « equal to the
full [-restriction is equal to Nj. The numbers N7 (v) satisfy the following recurrence
relations that allow to evaluate them by induction in a bottom up order.

If v is the 0-sink, then N7 (v) = 0 for every [-restriction a.
If v is the 1-sink, then N?(v) =1 and N§¢(v) = 0 for every a # (.

It v tests a variable z;, ¢ € I and vy resp. vy is the 0-successor resp. 1-successor of v,
then
o B B
Ni(w)= > N(w)+ Y. Ni(w)
B B

pu{zit=c pu{zit=c

If v tests a variable x; and ¢ € [or v is a nondeterministic node, then
Ni)= > Ni(u).
(vu)eE

Let us prove the first identity. Consider the set of paths from v to the 1-sink having
the [-restriction a. The number of these paths is the left hand side of the identity. We
describe, how to partition this set of paths in order to get subsets corresponding to the
summands in the right hand side.

For each of the two successors of v consider the subset of paths going through
the selected successor. In each of these two sets classify the path according to the
I-restriction of the subpath starting in vy or v;. Note that, if such a subpath has
I-restriction 3 and if the skipped edge from v has label z; resp. z;, then g U {z;} = «
resp. U {z;} = a. Hence, the summands in the right hand side are exactly the sizes
of the blocks of the above described partition.

In order to prove the second identity, we partition the set of paths only according
to the successor of v which the path goes through. In this case, the [-restrictions of
the subpaths are the same as the [-restrictions of the whole paths.

Theorem 2.2 Let a syntactic (1,+k)-bp Q) be given. The number of consistent path

den

k
3) sd), if the diagram is deterministic and in time

in Q) is computable in time O((

k
O((%) s3) if it is nondeterministic.

Proof: The numbers Nj(v) have to be evaluated for all s nodes in the diagram and

all I-restrictions for all subsets I of indices of]yariables of size at most k. The number

of these subsets is at most 3%, (?) < (%) . For each of them, we have at most
k

4% [-restrictions. Hence, the algorithm performs at most O((%) s) additions in the

den

k
-) 32) in the nondeterministic case.

deterministic case and at most O((

3

Each of the evaluated numbers is bounded from above by the total number of paths
in Q. If Q) is deterministic, then the total number of paths is at most 2¢. Hence, in each
step, we perform addition of numbers with binary representation of length at most d.
This implies the required bound. If the diagram is nondeterministic, the total number
of paths is at most 2° and the length of the numbers is at most s. This implies the
bound in the nondeterministic case. O

Clearly, in order to get a correct answer of the algorithm, it is sufficient if Ny =0
for all sets I of size k 4 1, since then N; = 0 also for all larger sets I. In order to test
this, it is sufficient to run the above algorithm up to sets of size k + 1 instead of k.
Clearly, the corresponding time bound may be also obtained by replacing k& by £ 4+ 1.

By a simple analysis of this guaranteed version of the algorithm we obtain that it
works correctly exactly for those bp’s such that every inconsistent path from the source
to the 1-sink contains at most & variables with both positive and negative occurrence.
This class of bp’s is slightly larger than syntactic (1,4k)-bp’s.

3 Testing the (1,+k)-property

In order to test, if an input (nondeterministic) bp is a (1,+k)-bp, we will need a
different classification of paths than in the previous section.

Let I be a set of indices of variables. Then, we assign to every path its [-count.
We use Greek letters with a prime to denote [-counts. A [-count is a mapping o’ :
I — {0,1,2} such that for all ¢ € I &/(¢) = min(2, s;) where s; is the total number of
both positive and negative occurrences of x; in the path.

Let I be a set of indices of variables and let o' be an I-count. Then, by Tf/(v)
we denote the truth value of the statement that there is at least one path from v to a
sink, which has the I-count o'. For Tf“/(v), we design similar recurrence relations as
for N¢(v) from the previous section. The relations are as follows.

If v is a sink, then T§(v) = true, where ¢(7) = 0 for all i € I, and T{'(v) = false for
all nonzero [-counts «’'.

Let o' be an [-count of a path. Consider a prolongation of the path by one edge
labeled by x; resp. ;. If ¢ € I, then the prolonged path has the same [-count as the
original path. If « € I, then the [-count of the prolonged path is uniquely determined
by o’ and the label of the new edge. For simplicity of notation, we denote the I-count
of the prolongation as o + 7.

Let vg resp. vy be the 0-successor of v resp. 1-successor of v. Let the variable tested
in v be ;. Then, we have the following relations for 7% (v).

It 2 € I, then
=V (1] (wo) VT (1)
ﬁ/
Bl 4i=ao

If ¢ ¢ I or if v is a nondeterministic node, then
') =V 1),

(vu)eE

The proot of these relations can be done by appropriate splitting of the set of paths
corresponding to the left hand side of each of the identities, similar to that used in the
previous section.

Theorem 3.1 The test if an input branching program is or is not a (1,+k)-bp can be
. . 3en kt1
done in time O(() s).

)
Proof: In order to test the required property, it is sufficient to verify that for every I,
|I| = k + 1 and every o such that o/(i) = 2 for all 7 € I, T¢'(v,) is false, where v, is
the source. In order to do this, we have to evaluate Tlﬁ/(vs) for all possible subsets [
of size k + 1 and for all possible I-counts 3’. Clearly, this requires at most the number
of steps claimed in the theorem. O

4 The probabilistic nonequivalence test

Every Boolean function is expressible by a polynomial over the real numbers. Using
2

identities 7 = x;, the polynomial can be made multilinear. Moreover, if we have n
variables then we have exactly 2" multilinear monomials and also the dimension of
the linear span over the real numbers of all Boolean functions is 27. It follows that
every function in the linear span of the Boolean functions is expressible by a unique
multilinear polynomial. The same holds also for any other field instead of the real
numbers.

The probabilistic nonequivalence test for read-once decision diagrams from [1] is

based on the following lemma.

Lemma 4.1 Let g(x1,22,...,2,) be a nonzero multilinear polynomial over a field F
and let M C F be a finite set. Let a; be independent random variables with the
uniform distribution on M. Then, the probability that g(ay,dz,...,a,) # 0 is at least

(1=pn)"

In view of this lemma, the only thing which is needed to perform the probabilistic
nonequivalence test is to have an efficient way to evaluate for general inputs the unique
multilinear polynomials corresponding to the two Boolean functions, which we like to
compare. Then, we apply the above lemma to the difference of the two polynomials
with, say, |M| = 2n.

If we have a read-once branching program representing a Boolean function, then, as

shown in [1], we can efficiently evaluate the unique multilinear polynomial correspond-
ing to the function for general inputs. The main step of our generalized equivalence

test is a procedure that evaluates the unique multilinear polynomial for a function rep-
resented by a (1, +k)-bp. Using the procedure described in the next section to evaluate
the polynomials for random assignments from the set M = {i, %, ..., 1}, we obtain

Theorem 4.2 There is a probabilistic nonequivalence test with one-sided error for

k
(1, +k)-bp, which works in time O((m%) sdlog®n). If the input diagrams are in-

equivalent, then the algorithm makes an error with probability at most %

If g(x1,22,...,2,) is a multilinear polynomial corresponding to a Boolean function
f, then g(%, %, ey %) is the probability that a random assignment yields the value 1

in f. Hence, the procedure from the next section may also be used to compute the
number of satisfying assignmets for a (1, +k)-bp.

Theorem 4.3 The number of satisfying assignments of a syntactic (1,4+k)-bp of size

s and depth d can be computed deterministically in time O((m%)k sd).

5 Evaluating the multilinear polynomial

Assume, we are given a deterministic syntactic (1, +k)-decision diagram) computing
a Boolean function f. By a monomial corresponding to a path, we mean the product
of all literals contained in the path. Repetitions are denoted using exponents, i.e. the
monomial z27; means that the path contains z; two times and z; once. The symbol z;
is considered as a formal symbol denoting 1 — x;.

For every node v in the diagram, consider the polynomial consisting of monomials
corresponding to all paths from v to the 1-sink and call it g(v). It is easy to evaluate
this polynomial for a general input by a simple induction in e.g. bottom up order, since
g(v) = 2;9(v1)+2:9(vo), if x; is the variable tested in v and vy resp. vg is the 1-successor
resp. O-successor of v. If vy is the source, then g(v,) coincides with f on the Boolean
inputs. However, since the diagram may contain paths with several occurrences of
some variable, the polynomial obtained in this way neednot be multilinear.

In order to evaluate the unique multilinear polynomial corresponding to the func-
tion, we associate several polynomials to () in such a way that
(i) the polynomials may be efficiently evaluated for general inputs;

(ii) an appropriate combination of these polynomials is equal to the unique multilinear
polynomial corresponding to the function computed by ().

The polynomials will be sums of monomials corresponding to specific subsets of
paths. These subsets are defined in terms of the number of occurrences of variables.
In order to describe the subsets, we introduce the following notion.

Let I be a set of indices of variables. Then, we assign to every path its I-type. It
is a monomial over the variables with index from I defined as follows. It is a product
of contributions of the variables with index in /. The contribution of z; is one of the
monomials {1, z;, 2% z;, % x;7;} chosen as follows. If the path contains both x; and
x;, then the contribution of z; to the I-type is z;x;. Otherwise, the contribution is the
largest of the listed monomials which is contained in the path.

By an I-type, we mean any monomial that can be an I-type of a path. For every
set I of indices of the variables, there are 6/l possible I-types. We use Greek letters
with double prime to denote [-types.

Let K be a set of indices of variables. A K-type 4" will be called full, if the
contribution to 4" of every variable with index from K belongs to {z?, z%, x;z;}. For
a full K-type 4", let W?(H denote the set of paths in @) such that their K-type is v”
and all variables with index not in K have at most one occurrence in the path. In
particular, if ¢ denotes the empty type (formally equal to 1), then Wy denotes the set

of path in () that are read-once. Note that the collection of sets W?(H forms a partition
of the set of all paths in Q).

It K is a set of indices of variables, then a A-eliminated monomial corresponding
to a path is the product of all literals in the path except those, which contain variables
with index from K.

Let WI}” denote the sum of K-eliminated monomials corresponding to the paths in
WIZ” Moreover, let Z denote the multilinear polynomial corresponding to the function
computed by). A K-type v will be called consistent, if it does not contain x;x; for
any variable.

Lemma 5.1 We have

1
— ¥ . =
N SO I L e
IKISE i g full, cons. e K e K
K-type 1’? e~ i’? e~

2

where 2 € " resp. ¥ € 4" means that the contribution of x; to ~" is x? resp. 3.

Proof: Every consistent path belongs to exactly one of the sets W?(H for a full consistent
K-type 4”. Since we work with a (1, +k)-bp, it suffices to consider |K| < k. Moreover,
by multiplying a monomial from WI}” by x; or z; for all ¢ € K according to the
type ~”, we obtain the multilinear monomial corresponding to the same path. For
every Boolean input there is at most one path in () consistent with the input. Recall
that we consider only paths from the source to the 1-sink. Clearly, such a consistent
path exists if and only if the value of the function for the given input is 1. This
implies that the polynomial determined by the formula in the lemma coincides with
the Boolean function computed by) on all Boolean inputs. Since the formula in the
lemma determines a multilinear polynomial, it is equal to Z. O

The criterion of including a monomial into lern depends on the number of occur-
rences of the variables in the monomial, including variables with index outside K. In
order to compute WI}”, we define some other polynomials, where the criterion of in-
cluding a monomial will depend only on occurrences of variables from some set of size
at most k.

Let K C I and let 4" be a full K-type. Then, let V?}}’W” be the set of all path in

such that their I-type is a full I-type and their K-type is ”. Moreover, let V"
yp yp yp “ > 1K

denote the sum of K-eliminated monomials corresponding to the paths in V?}jﬂ".

Lemma 5.2 We have
1 - full, 1
Wi = 3 (=DMl
IDK
|7|<k

Proof: Let 4" be a full K-type. Consider a path in () having this K-type v". Let J
be the set of variables having repeated occurrences in the path. Clearly, J 2 K and
|J] < k. Note that the considered path contributes to Vlf}}?”/ ifandonlyif K C I C J.
Hence, if J # K, then the contributions of the path to the right hand side of the
identity in the lemma cancel. O

Note that the criterion for including a monomial into Vlf}}?”” depends only on the
I-type of the monomial. In order to describe an efficient way of evaluating these
polynomials, we express them using one more set of polynomials.

Let o” be any I-type and let v be a node of (). Then, let V}“”(v) denote the set of
those paths in () from v to the 1-sink that have the I-type equal to o”. Let, moreover,
K C I. Then, let Vf“[/‘/(v) be the sum of the K-eliminated monomials corresponding to
all paths in V" (v).

Let K C I and let 4" be a full K-type. Clearly, if vy is the source, then

full,~"
Vik” = 2 Vik(v), (5.1)
o' is full
OZ// 2 ,y//

where o” O +” means that the contribution of variables with index in K to " is the
same as their contribution to ~”.

In order to finish the proof, we demonstrate the recurrence relations which allow to
evaluate the last set of polynomials. Recall that the diagram is deterministic.

If v is the 0-sink, then ‘/Ia};(v) = 0 for all o”. If v is the l-sink, then Vi (v) = 1,
where € is the empty type, and Vf};(v) = 0 for all nonempty I-types o”.

Let " be an I-type of a path. Consider a prolongation of the path by one edge
labeled by x; resp. z;. If ¢ € I, then the prolonged path has the same [-type as the
original path. If ¢ € I, then the I-type of the prolonged path is uniquely determined by
o’ and the label of the new edge. For simplicity, we denote the type of the prolongation
as o"x; resp. o”z;, although the exponents in the product may be larger than in the
resulting I-type.

Let vg resp. vy be the 0-successor of v resp. 1-successor of v. Let the variable tested
in v be z;. Then, we have the following relations for ‘/Ia};(v)

It € K, then

Vi)=Y Vi) + Y Viklo).
ﬁ// ﬁ//

ﬁ//i,i — OZ// ﬁ//xi — OZ//

If e e I\ K, then

Vi)=Y Viwoz+ Y V(o)
ﬁ” ﬁ”

ﬁ//i,i — OZ// ﬁ//l,i — OZ//

If ¢ ¢ I, then
Vik(v) = Vig(wo)z: + Vig (o).
The proot of these relations can be done again by appropriate splitting of the set of
paths corresponding to the left hand side of each of the identities.
If we are given a general (possibly nonboolean) input, then the same relations hold
for the values of the polynomials in the given input. Using this, we can efficiently
evaluate all the needed polynomials.

Theorem 5.3 Let g(x1,22,...,2,) be the multilinear polynomial corresponding to the
Boolean function computed by a syntactic (1,4+k)-bp Q. Assume that aq,as,...,a,
is an assignment of the variables, where a; for all ¢ = 1,2,...,n are rational num-
bers with the same denominator and with the bit-length of both the numerator and
the denominator at most t. Then, the value g(ay,as,...,a,) is computable in time
O((m%)ksdtz).

Proof: In the recurrence relations, we have to work with all possible I-types «”,
although, the resulting value is needed only for full types «”. Hence, for every set

I, we have to consider all 6/l types and there are 2/l possible subsets K. Since we

k
consider only sets [with |I| < &, we have at most (12%) possible tripples I, K, o” to

be considered. For each of these tripples and for all nodes v in the diagram, we have
to calculate Vf};(v) Note that in the recurrence relations determining this number,
we have that in each sum there are at most 2 3"’s satisfying the requirement.

In order to finish the proof, we have to estimate the number of bit operations in the
calculation. Since for every path we multiply at most d numbers and there are at most
2¢ paths, all the numbers we work with have both the numerator and denominator of
size at most O(td). In each step, we multiply a number satisfying this by a; or 1 —a; for
some ¢ = 1,2,...,n. Using the assumption on the numbers a;, we obtain the required
time bound. O

6 Parity nondeterminism

The probabilistic nonequivalence test of [1] was modified to work for parity OBDDs in
[3]. In fact, it works even for parity 1-bp’s. The test is performed by selecting a random
assignment of the variables by arbitrary values from GF(27), where m = [log2n].
Then, we evaluate the two unique multilinear polynomials corresponding to the two
diagrams for the selected assignment. Using Lemma 4.1 one can prove that if the
diagrams are inequivalent, then the values of the two polynomials differ with probability
at least %

Assume, we are given a nondeterministic syntactic (1,4k)-bp with the parity ac-
ceptance mode. For every path in the diagram, consider the monomial over G'F'(2)
defined as follows. If the path is inconsistent, then the monomial is zero. If the path
is consistent, then the monomial contains exactly one occurrence of every literal oc-
curring in the path. It is easy to see that the obtained polynomial is multilinear and
that it coincides with the computed Boolean function on the Boolean inputs. Hence,
it is exactly the unique multilinear polynomial corresponding to the function. The
method of classification of path used in the previous section allows us to evaluate this
polynomial. This yields the following theorem.

Theorem 6.1 The satisfiability and nonequivalence test for parity syntactic (1,+k)-

k
bp of size s may be done probabilistically with one-sided error in time O((m%) s?),
where we omit logarithmic factors.

Proof: Since two parity (1, +k)-bp are equivalent if and only if their parity is unsatis-
fiable, it is sufficient to describe a satisfiability test. Using Lemma 4.1, this can done
by selecting the values of @1, x2,..., 2, at random from GF(2"), where m = [log2n]
and by evaluating the unique multilinear polynomial corresponding to the (1,+k)-
bp. For evaluating the polynomial we use the algorithm from Section 5 with a minor
modification described in the following paragraphs.

Assume, we are given a nondeterministic syntactic (1,4+k)-bp @. Let E denotes its
set of edges. In order to analyze (), we use the same definition of I-type, szr”, V%}}’w,
Vf};(v) as in Section 5. The only difference is that, now, the polynomials are over
a field of characteristic 2. It is easy to see that Lemmas 5.1, 5.2 and equation (5.1)
remain true. Moreover, the recurrence relations for Vf“[/‘/(v) remain true for all nodes
v testing a variable. We only have to include also a relation for the case that v is a
nondeterministic node. The required relation is

Vigl) = 30 Vig(u).
(vu)eE

1" k
In order to compute the numbers Vi (v), we have to perform at most O((m%) s?)

k
additions and at most O((m%) s) multiplications of numbers in GF(2™), where m =
[log2n]. O

Computing the number of satisfying assignments for a parity OBDD is #P com-
plete, since a parity OBDD can compute any polynomial over the two element field
in size at most n times the number of monomials in the polynomial. Computing the
number of assignments, for which a given cubic polynomial over the two element field
is 1 is #P complete, see [2].

10

Bibliography

[1] M. Blum, A. Chandra, M. Wegman, Equivalence of free Boolean graphs
can be decided probabilistically in polynomial time, Information Process-

ing Letters, Vol. 10, No. 2 (1980), pp. 80-82.

[2] A. Ehrenfeucht and M. Karpinski, The computational complexity of
(XOR, AND) - counting problems. Preprint TR-90-033, International
Computer Science Institute, Berkeley, 1990.

[3] J. Gergov, Ch. Meinel, Mod-2-OBDDs - a data structure that general-
izes EXOR-sum-of-products and ordered binary decision diagrams. For-

mal Methods in System Design, 8 (1996), pp. 273-282.

[4] S. Jukna, Entropy of contact circuits and lower bounds on their complex-

ity, TCS 57 (1988), pp. 113-129.

[5] S. Jukna, A. A. Razborov, Neither reading few bits twice nor reading
illegaly helps much, submitted.

[6] P. Savicky, S. Zék, A lower bound on branching programs reading some

bits twice, TCS 172 (1997), pp. 293-301.

[7] P. Savicky, S. Zak, A read-once lower bound and a (1,4k)-hierarchy, sub-
mitted.

[8] D. Sieling, New lower lower bounds and hirerarchy results for restricted

branching programs, JCSS 53:1 (1996), pp. 79-87.

[9] D. Sieling, A Separation of Syntactic and Nonsyntactic (1,4+k)-Branching
Programs, preprint.

[10] D. Sieling, I. Wegener, New lower bounds and hierarchy results for re-
stricted branching programs, WG’94, LNCS 903, pp. 359-370.

[11] S. Zé&k, A superpolynomial lower bound for (1,4+k(n))-branching pro-
grams, MFCS'95, LNCS 969, pp. 319-325.

11

