narodni
N U dlozisté
1 L Sedé
6 literatury

Globally Convergent Variable Metric Method for Convex Nonsmooth Unconstrained
Minimization

LuksSan, Ladislav

1998

Dostupny z http://www.nusl.cz/ntk/nusl-33767

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 01.10.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33767
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Globally convergent variable metric method for
convex nonsmooth unconstrained minimization

L. Luksan, J. Vlcek

Technical report No. 741

May 1998

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+4202) 6884244 fax: (+4202) 8585789
e-mail: luksan@uivt.cas.cz, vlcek@uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Globally convergent variable metric method for
convex nonsmooth unconstrained minimization

L. Luksan, J. Vlcek!

Technical report No. 741
May 1998

Abstract

A special variable metric method is given for finding minima of convex functions that
are not necessarily differentiable. Time consuming quadratic programming subprob-
lems need not be solved. Global convergence of the method is established. Some

encouraging numerical experience is reported.

Keywords
Nonsmooth minimization, convex minimization, numerical methods, variable metric
methods, global convergence

!This work was supported by the grant No. 201/96/0918 given by the Czech Republic Grant Agency

1 Introduction

This paper is devoted to seeking a minimum of a convex continuous function f :
RN — R. We assume that for each y € RY we can compute the value f(y) and
an arbitrary subgradient ¢(y), i.e. one element of the subdifferential df(y) (called
generalized gradient in Clarke 1983). Since f is assumed to be convex, then for all y
except in a set of zero (Lebesgue) measure, f is differentiable at y.

The most sophisticated globally convergent methods for nonsmooth convex opti-
mization are various modifications of bundle methods (see e.g. Kiwiel 1985, Mékela
and Neittaanmaki 1992, Schramm and Zowe 1992, Lemaréchal and Sagastizabal 1997,
Luksan and Vlcek 1998). Instead of the singleton fr = f(xx), gr € 0f(x), the bundle
{(f,gj)|j € Ji} is used in the k-th iteration, k > 1, where ff = f(y/) + (zp —)T g,
¢ €0f(y?), T C{l,...k}, x1,..., 7, are iterates and y', ... y" are trial points. The
piecewise linear function

Felw) = max{f(y') + (z — ") ¢’} = max{f(ex) + (v —2)'¢’ = B}, (L1)
where 4 4
87 = flar) = fF = flaw) = f) + (0 =) gf, € Tns (1.2)

are non-negative (since f is convex) linearization errors, is constructed and the direction
vector

dF = arzlgegn{fk(xk +d) + %dTBkd} (1.3)

is determined (the additional quadratic term in (1.3) has a similar significance as in
the trust region approach). Minimization subproblem (1.3) can be replaced by the
quadratic programming subproblem

(€)= g min, {30 Bid + €} subjectto — g+ d'g' <& G €T (1)
The most popular proximal bundle methods are based on the choice By = uil where
i, k> 1 are weighting coefficients. These methods require only O(N) operations for
solving a system with the matrix By so that they are very efficient measured by the
computational time. Another possibility is to use aggregate Hessian matrices. The
resulting bundle-Newton method, see Luksan and Vlcek 1998, reduces significantly
the number of iterations and function evaluations, but it requires O(N?) operations
for solving a system with the matrix Byx. A natural idea is to generate matrices By,
k > 1, by using variable metric (VM) updates, but it leads to methods, which does not
overcome efficiency of proximal bundle methods (see e.g. Lemaréchal 1982). The most
promising results are presented in Lemaréchal and Sagastizabal 1997, where reversal
quasi-Newton updates together with a special curvilinear search procedure are used.
The resulting algorithm requires O(N?) operations for solving a system with the matrix
By. Nevertheless, time consuming quadratic programming subproblems have to be
solved.

The development of our VM method was motivated by an observation that standard
VM methods are relatively robust and efficient even in the nonsmooth case (see e.g.

Lemaréchal 1982 and also our experiments in Table 2). Their advantage consists in
a fact that the time consuming quadratic programming subproblem (1.4) need not be
solved. Although standard VM methods require more function evaluations than bundle
methods, the total computational time is frequently less.

On the other hand, no global convergence is proved for standard VM methods, ap-
plied to nonsmooth problems, and possible failures or inaccurate results can sometimes
appear in practical computations. Our main purpose was to obtain a VM method
that does not require solution to the quadratic programming subproblem (1.4), but is
globally convergent applied to a convex nonsmooth function. For this purpose, ideas
which are essential for bundle methods were used. The basic difference compared with
standard VM methods consists in the utilization of null steps that serve for obtaining
a sufficient information about a convex nondifferentiable function. In this connection,
a line search, typical for standard VM methods, has been replaced by a simple step
selection, which is either accepted (descent step) or not (null step). The VM update
is carried out in both cases, whenever conditions for positive definiteness are satisfied.
To prove global convergence, additional features of bundle methods, namely simple
aggregation of subgradients and application of linearization errors have to be utilized.
These principles guarantee convergence of aggregate subgradients to zero and allow us
to use a suitable termination criterion. To improve robustness and efficiency of the
method, the stepsize selection based on the polyhedral approximation of the objective
function and a suitable matrix scaling are finally added.

The paper is organized as follows. Section 2 is devoted to a description of a new VM
method for convex nonsmooth minimization. Section 3 contains the global convergence
theory. In Section 4, we give more details concerning implementation of the method and
in Section 5 we describe numerical experiments confirming its computational efficiency.

2 Derivation of the method

The algorithm given below generates a sequence {3132, C RY of iterates that should
converge to a global minimizer of the convex function f : RY — R. Besides these
basic Points, the ‘algori‘thm also calculates trial points yr = Tk yfﬂ = xp + t;d?,
7 > 1 in the k-th iteration, where tf € [tmin, tmaz) 18 an appropriately chosen stepsize,
df = —Hff]f is a direction vector, f]f is an aggregate subgradient and H;“ represents a
VM approximation of the aggregate inverse Hessian matrix. If the descent condition
f(yf_l_l) < f(:z;k)—clt?wf is satisfied, where ¢; € (0,1/2) is fixed and —wf < 0 represents
the desirable amount of descent, then x4, = yf_l_l (descent step). Otherwise, null steps
are utilized, which do not have influence on the sequence of basic points, but accumulate
an information about the minimized function. The aggregation is very simple: having
the basic subgradient g, € Jf(xy), the trial subgradient gf_l_l € 8f(yf+1) and the
current aggregate subgradient f]f, we set

~k k kE k k ~k
Jiv1 = Ajage + A5 2050 1 Ajsd; s (2.1)

where)\fZ > 0, ¢ € {1,2,3} are appropriately chosen scalars. These scalars can be
easily determined by minimization of a simple quadratic function, which depends on

a convex combination of this three subgradients and two modified linearization errors
(see below and Step 6 of Algorithm 1). This approach retains global convergence,
but eliminates solution of the rather complicated quadratic programming subproblem
(1.4), which appears in standard bundle methods. Note that the global convergence
is assured also in the simpler case when)‘;?,1 =0, i.e. f]f_l_l is a convex combination of
only two subgradients gf_l_l and f]f However, this simplification slightly deteriorates
robustness of the method, e.g. increases sensitivity to the stepsize determination after
the null steps (see Section 4). Moreover, the situation when g,{d?_l_l > 0 occurred in
numerical experiments, was much more frequent in the simplified case.

Note furthermore that the problem to minimize the function (2.6) in the Step 6 of
Algorithm 1 is the dual to the following primal problem

mzré%ize{%dT(Hf)_ld + max[d? gy, _O‘§+1 + dTgf_I_l, —o?? + de]f]} . (2.2)
In analogy with bundle methods, the value ozf_l_l should be the linearization error
f(:z;k)—f(y;?_l_l)+t§(d§)Tgf+1 (see (1.2)). Unfortunately, it leads to theoretical difficulties
when the stepsize t? is greater than 1. Therefore we divide the linearization error by
th (see (2.5)).

The matrices H;“ are generated using usual VM updates. After null steps, the sym-
metric rank one (SR1) update (see Fletcher 1987) is used, since it preserves bound-
edness of generated matrices as required in the global convergence theory. Because
this boundedness is not necessary after descent steps, the standard BFGS update (see
Fletcher 1987) appears to be more suitable.

Even if the stepsize selection is not relevant for proving global convergence, efficiency
of the algorithm is very sensitive on its realization. In fact, a bundle containing trial
points and corresponding function values and subgradients is required for efficient
stepsize selection. Nevertheless, the stepsize selection does not require time consuming
operations. We discuss details in Section 4. To test whether the computed stepsize
is too small, the bundle parameter 3? (see Section 4) and the scaling parameter v is
determined and if v is too large after descent steps, the inverse Hessian matrix is scaled
and the BFGS update is not performed, which does not have an influence on the global
convergence but improves efficiency of the method.

Because the proof of global convergence requires boundedness of the matrices
(Hf)_l, the correction gil, or > 0, is added to H;C if needed. In descent steps, if
subgradients are identical in consecutive iterations, we extrapolate doubling the step-
size if possible to quicker exit such region.

Now we are in a position to describe the method in detail. We shall state the
following basic algorithm.

Algorithm 1.

Data: A lower and upper bound for descent steps ., € (0,1) and #,,4, > 1, respectively,
a descent parameter ¢; € (0,1/2), a final accuracy tolerance £ > 0, correction
parameters p € (0,1) and L > 1 and a matrix scaling bound o > 1.

Step 0:

Step 1:

Step 2:

Step 3:
Step 4:

Step 5:

Step 6:

Step 7:

Initiation. Choose the starting point z; € RY, compute f(z1), g1 € df(x1),
choose positive definite matrix Hy (e.g. Hy = I) and set the scaling parameter
value v = 1 and the correction value p; = p. Initialize the extrapolation and
matrix scaling indicators 15 = 15 = 0, the function evaluations counter for matrix
scaling ng = 0 and the iteration counter £ = 1.

Start of iteration loop. Set §F = g% = g, &¥ = of =0, yF = 2 and HF = H,.
For this iteration, initialize the corrections and updating indicators i = 1y = 0,
the corrections counter ne = 0 and the index variable for null steps j = 1.

~ k(2T ik sk 4 oxk <k SBI2 g
Corrections. Set w? = (g5)" Hig; + 247, If w07 < 0¢|g7|* or ic =iy = 1, then set
wh =0t + op|gh)?, HF = HI + o (2.3)

and nc=n¢ + 1, otherwise set wf = Lbf and H;“ = f{]k If ng > L then set 1o =1.
Stopping criterion. If wf < ¢, then stop () is an approximate minimizer).

Trial point determination. If :p = 0, then set d? = —Hff]f and determine
t? € [timin, tmaz] and the bundle parameter for matrix scaling 3? > 0, otherwise
set tf = Qt;? and i = 0. Set yf_l_l = ap —I—tfdf, ns = ng+ 1 and compute f(yf_l_l),
9i € 0f(yFy). If ¥ < o then set v = (2y + min[o, max][1, s%]])/3.
Descent step. 1f

Flyfan) = flan) < —artjw], (2:4)

_ .k N _ 1k gk x _ xk 5~k Y
then set LTh+1 = Y115 Gk+1 = G415 by = tjv dk - djv O = &y, gk = g, W = Wy,

H, = Hf, ok+1 = omin[1/|gx|, |gx|]/(k + 1), otherwise go to Step 6. If gri1 = g
and tf < tmax/2, then set iy = 1, k = £+ 1 and go to Step 1, otherwise go to
Step 8.

Null step. Set

O‘f+1 = (f(l'k) - f(yf-l—l))/tf + (df)Tgﬁ-l (2-5)
and determine multipliers)\fZ > 0,1 € {1,2,3},)‘;?,1 +)\;?72 +)\?73 = 1, which
minimize the function

(M, Az As) = (MW g + X Whgh L+ MWEGE? + 2[hak + Asdf), (2.6)
where ij = (Hf)l/z. Set

~k k k k kE ~k ~k k k kE ~k
Jiv1 = Ajagk + A5 2050 1 Ajsd; Qi = Ajpo + Ajsa). (2.7)

SR1 update. Let uf = gf_l_l — g and vf = H]kuf — tfd?. It

~ENT

(gj) v; <0 (2.8)
and, in case of i¢ = 1, furthermore

onldt [P < U(G5) "o (W) ol and Nop < [of?/(uh)ToF, (2.9)

then set 7y = 1 and
Hf_l_l = ij — vf(vf)T/(uf)va, (2.10)
otherwise set iy = 0 and Hf—l—l = Hf. Set j =5+ 1 and go to Step 2.
Step 8: Matriz scaling. 1f v > 1 then set is = ig+ 1. If v > /o and ng > 3 and is > 1,
then set ng = 0,15 =0, Hyyy = vHy, v = /7, k =k +1 and go to Step 1.
Step 9: BFGS update. If gr11 = g and t? < tnar/2, then set i1y = 1, k = k41 and go to
Step 1, otherwise set ur = gry1 — gr. If dLug > |di|107°, then set

(2.11)

uIHouy\ dpdt Hiourpdt + dp(Hypup)E
Hk+1:Hk‘|‘(tk‘|‘kkk)kk Uy k(Hyuy)

u;{dk u;{dk B u;{dk ’
otherwise set Hyyy = Hy, k =k 4+ 1 and go to Step 1.

A few comments on the algorithm are in order.

The condition (2.8) (or (df)Tuf > t?(d?)T(Hf)_ldﬁ), which implies that (uf)va >0
by Lemma 1, assures positive definiteness of the matrix obtained by the SR1 update
(see e.g. Fletcher 1987). Similarly, the condition d} u; > 0 assures positive definiteness
of the matrix obtained by the BFGS update (dfwu; > 0 holds whenever f is convex).
Therefore, all matrices Hy,]:]]k, H;C generated by Algorithm 1 are positive definite.

Correction parameters gpi; are chosen in such a way to be small for both small
and large values of gz. The corrections (2.3) are used automatically, after every SR1
update, only if the condition Lbf < gk|§f|2 has been satisfied at least L times. In this
way we have a possibility to eliminate the use of conditions (2.9) (which restrict the
use of the SR1 update) at the beginning of the iterative process, where the SR1 update
may have a significant influence on the rate of convergence.

The minimization of the quadratic function (2.6) and the determination of the
stepsize tf and the bundle parameter for matrix scaling 3? in Step 4 will be discussed
in Section 4.

The conditions for matrix scaling in Step 8 and corresponding relations were estab-
lished empirically.

3 Global convergence of the method

In this section, we prove global convergence of Algorithm 1 under the assumption that
the function f : RN — R is convex and the level set {x € RM|f(z) < f(z1)} is
bounded. For this purpose, we will assume that the final accuracy tolerance ¢ is set to
zZ€ero.

Lemma 1. Let the function f : RN — R be conver. Assume that at least j > 1 null
steps are generated in the k-th iteration of Algorithm 1. Then

— by () gl > e, by 20, a0 (3.1)

If in addition the condition (2.8) holds, then (uf)va > 0.

Proof. Since f is convex and gf_l_l € af(yf+1), we can write f(xg) — f(yf_l_l) +
tf(df)Tgf_l_l > 0, thus ozf_l_l > 0 by (2.5). The inequality o?f > 0 follows from (2.7) by
induction. Using (2.5) and the fact that inequality (2.4) does not hold in a null step,
we obtain

—Oé§+1 + (dk)Tng = (f(y§+1) - f(l'k))/tf > _clwf‘
If ()Tvk < 0 then g] # 0 and (dk) (df)Tuf + (gf)va = —tf(df)Tf]f =

J
T k k
tj() H g] > 0 by positive definiteness of HZ. The last inequality implies that

uf 7E 0, Which yields (uf)TH]kuf > 0. Using the Cauchy inequality, we obtain

kro kT, k T rrk. k72 Tppk ki kT 7k, k
tj[(dj) uj]2 = [() Hiu] () Hig (j) Hjuj =
T k k T ppk, ki pin\T . k
= (u j) H]‘ j[_ j(j) j] (u j) Hjuj[(dj) uj]v
which gives (uf)Tof = (uf) HFub — t5(d5)Tuk > 0. 0

Lemma 2. Let at least j — 1 > 0 null steps be generated in the k-th iteration of
Algorithm 1. Then the numbers)\f’] >0,2=1,...,7, exist satisfying

J , J ,
=DM (ghal), oA =1 (3.2)

Proof. The proof will proceed by induction. If j = 1 then we set)\k’l . Let
n€{l,...,7—1} and let (3.2) hold for j replaced by n. Define Aprtl —)\k 1 —I—)\k Abm
APt —)\7’273)\?” for 2 < <mn,)\i’ff'l =)\7’272. It is clear that A¥" ! > 0 for all i < n—l—l
and

n+1 n
3=t (A) a1

Using the relations (2.7), we obtain in view of af =0, ¢¥ = g4

n+1

(5754-175‘7]24-1) =)‘k (9170‘1) +)\n 2(9n+17 n-I—l + Z)‘k)‘kn gz 7O‘f) = Z)\f,n-l—l(gf’af).
=1

O

Lemma 3. Let the function f be convex and the quantities f]f, &f, 7 > 1 be generated
in the k-th iteration of Algorithm 1. Then

F(2) 2 flar) + (2 = 21) "3} — tnand] (3.3)
for all z € RN,

Proof. Lemma 2 implies that the numbers)\f’j >0,2=1,...,7, exist such that
(3.2) holds. Since g¥ € df(y¥), we can write

F2) = Fl) + (05 (2 —yl) = flae) + (z —2p) gl — 12 jaf

for an arbitrary z € R and all i = 1,...,7 (¢ can be chosen arbitrarily, since af = 0).
Using Lemma 2, we obtain

J] J] J) J ,
Fz) = ONf(2) 2 N flan) + (2 = w) T 3N~ tas 3N of =
=1 =1 =1 =1
= f(xk) + (Z - xk)Tgf - tmax&f-

Lemma 4. Let the function f be convex. If Algorithm 1 terminates due to wf =0,
then the point xy is a global minimizer of f.

Proof. It follows from wf = 0 that f]f =0, d? = 0 and Lemma 3 implies that
f(2) > f(zg) for all z € RY. O

From now on we assume that Algorithm 1 does not terminate, i.e. that wf > 0 for
all generated indices k and j.

Lemma 5. Let vectors p, ¢ and numbers w >0, « >0, 3 >0, M >0, ¢ € (0,1/2)
satisfy the conditions w = |p|* +2a, B+ plq < cw and max||p|,|q|,\/a] < M. Let
Q) = g+ (1 — \ppf? + 2003 + (1~ Nal, b= (1 - 2¢)/(4M). Then

min{Q(\)|A € [0,1]} < w — w?b’.

Proof. We obtain after straightforward manipulations

Q)

p]> +2a + 2A\[pTq — |p|* + B —a] + X}[p— ¢|* <
w+ 2\[cw — B — [p|*/2+ B — o] + N(|p| + 1¢])* <

<
< w4 2Me—1/2)w + 4N M? = w — M1 — 2c)w + 4* M*.

The last expression reaches its minimum for A = w(1—2¢)/(8M?) < (|p|*+2a)/(8M?) <
(M? +2M?)/(8M?) = 3/8 < 1, thus we have

min{Q(\)|A € [0,1]} < Q(A) < w — 2w?*b? + w?h? = w — w?b*. 0

Lemma 6. Let the number of null steps be infinite in the k-th iteration of Algorithm 1.
Then an index jo > 1 exists such that

wf+1 < (gf-l—l)TH]kgf{—l + 25‘?4-17 TT(Hf+1) < TT(Hf) (3-4)
for all 3 > jo.

Proof. If ng < L for all 7 > 1, then we can take the index of the null step in which
ne changed last as jo (or jo = 1 if ng =0 for all j > 1). To see this, let j > jo. Then
wh | = 1wk and HY | = HF . If the SR1 update is not used then (3.4) holds with
equalities, otherwise Lemma 1 implies that (uf)va > 0, which together with (2.10)

gives (3.4).

It n¢ < L does not hold for all j > 1 then we set jo equal to the index of the null
step in which ¢¢ = 1 occurred first. Then the matrix H]ko — oxl is positive definite,
since ijo is positive definite and H]’?O = H;, + or1 by the definition of jo > 1. We can
easily prove by induction that all matrices H;C — oI, J > jo are positive definite. (If
the SR1 update is used then 1 = 1y = 1 and therefore Hf+1 — HE Tt orl, otherwise
the matrix Hf—l—l — ol = H;“ — o1 is positive definite and the more so is the matrix
H]k-l—l — Qk])

Assume that j > jo. If the SR1 update is not used then 1y = 0 and Hk—l—l = Hk thus

J

]+1 > gk|g]+1| since the matrix Hk — ox 1 is positive definite. Therefore wf_l_l = wf_l_l,

H]k H]k | = H]k and (3.4) holds with equalities. If the SR1 update is used, then
all conditions (2.8)-(2.9) are satisfied and i¢ = iy = 1, therefore the corrections (2.3)
(with j replaced by j + 1) are realized. Using (2.10), we can write

wf+1 = (gfﬂ)THff]fﬂ + 25‘?4-1 + Qk|£~lf+1|2 - [(gfﬂ)TUﬂz/(uf)va
and the first part of (3.4) follows from the first part of (2.9). Furthermore, (2.10)

implies

Tr(HJkH) Tr(Hf) + ox N — |vf|2/(u§)%k

j
and the second part of (3.4) follows from the second part of (2.9). O

Lemma 7. Let the function [be convex and the number of null steps be infinite in
the k-th iteration of Algorithm 1. Then the point xy. is a global minimizer of f.

Proof. Since
(gfﬂ)THff’fﬂ + 20~‘f+1 = ‘P()‘fla)\fza)\f:a) <(0,0,1) =w

by (2 6), the Lernrna 6 implies that wk_l_1 < wk for j > jo and therefore the sequences

{whyoe,, {Wkgtiez,, {ah}°2, are bounded. Moreover Lemma 6 assures boundedness
of the sequences { HF}°2,, {Wk 22,, which together Wlth |d¥| = |HFgh| < HW’“!HW’“ *,
j > 1, yields boundedness of {dk . Since tk < timaz, J > 1, the sequence {y] °, 18

also bounded and the local boundedness of af (see Kiwiel 1985) implies boundedness
of {gF}°2, and {WFg? 1°2,. Denote

M = sup{|ijgf+1|, |W]k§f|7 \/ ON‘? |] > j0}7 b= (1 - 201)/(4M) (35)

and assume first that wf > 0 > 0 for all j > jo. Since

3
rnin{c,o()\l,)\z,)\gﬂ)\i >0,i=1,2,3, Y \ = 1} < min{e(0, A, 1 — X)|X € [0,1]},
=1

we can use (3.4), Lemma 1 and Lemma 5 with p = ijf]f, q = ngf_l_l, w = wf,

_ =~k _ .k _ :
a=aj, f=aj,, c=c toobtain

wf+1 = (§]+1)THk9]+1 + 25‘?4-1 < wf - (wfb)Z < wf — (8b)*

for j > 70 and thus, for sufficiently large j, we have a contradiction with the assumption
wf > 6. Therefore wf — 0 as j — oo, which together with wf = (f]f)TH]kf]f + 2&? and
positive definiteness of all matrices H;C gives d? — 0asj — oo. Since 0 < gk|§f|2 < wf
(see (2.3) and correction conditions in Step 2) and g > 0, we can write f]f — 0 as
j — oo. Using Lemma 3 and letting j — oo, we obtain f(z) > f(x) for all z € RY.
O

Theorem 1. Let the function f : RN — R be convex and suppose that the sequence
{21} is bounded (e.g. when the level set {x € RN|f(x) < f(x1)} is bounded). If
Algorithm 1 terminates in the k-th iteration, then the point xy. is a global minimizer of
f. Otherwise, i.e. when the number of iterations is infinite, then every cluster point
of {xi} is a global minimizer of f.

Proof. The first assertion follows immediately from Lemma 4 and Lemma 7. Thus
we can restrict to the case when the number of iterations is infinite. Let be a cluster
point of {z;} and K C {1,2,...} be an infinite set such that x; L . Continuity of
f implies that f(xy) A, f(z) and therefore f(xr) | f(Z) by monotonicity of {f(xx)},
which follows from the descent condition (2.4). Using positive definiteness of H;C and
the condition (2.4), we obtain

0 <2c10y < crwp < (f(ag) — f(@r41))/tinin — 0, K >1, (3.6)

thus & — 0. Furthermore, correction conditions in Step 2 and relations (2.3), (3.6)
imply that 0 < it minor|del* < crtminwr < f(zr) — f(2441), ¥ > 1 and therefore

1lmin i olgl* < fla1) — f() < 4o0. (3.7)
k=1

Assume first that |gx| > 6 > 0 for all £ > 1. Then it follows from Step 5 of Algorithm 1
that pp > omin[1/é,6]/k, k > 1. Using (3.7), we have

) =1 = N
+00 = 6 min[1, 6% Z T < Z okldr]? < +oo,
k=1 k=1

which is the contradiction. Therefore, infinite set K C {1,2,...} such that || L)
exists. Since

f(Z) Z f(l’k) + (Z - xk)Tf]k - tmaxdk
for all z € RY and k& > 1 by Lemma 3 apd the sequence {x} is bounded, we obtain
f(2) > f(z) for all z € RY by letting k £ . O

4 Implementation

In this section we discuss some details concerning our implementation of the algorithm.
Assume that we have the current iteration xy, fr = f(xk), gx € Of(xx), kK > 1 and a
bundle v/, f(y), ¢ € df(y?), j € Tp C{1,...,k}, where y? # x4, j € T} are some of

9

trial points. Furthermore, we denote here the current aggregate subgradient by g, the
stepsize by t; and the bundle parameter for scaling by s.

After the descent step we have g, = gi, the positive definite VM approximation of
the inverse Hessian matrix is Hy and the search direction is dp = —Hyg,. We search
for the suitable stepsize ;. The significant descent in the last step encourages us to
construct the following quadratic approximation of f(xy + tdy)

Vo(t) = fu + tdige + 3Py (Hy) i = fi + (1 = 31%)di g

The bundle represents the polyhedral function (1.1) with the linearization errors ﬂ]k >0
given by (1.2). For x = x, + tdy we have the following piecewise linear approximation

of f(l‘k + tdk)
Op(t) = felay + tdy) = max{fy — B+ 1dy g’}

(1), 4(1)] within
0,2] and ¢x # 0.

To calculate t; we will minimize the convex function (1) = max[;/)g
[0, 2], since obviously 4(0) = fi and () > L/Jg(t) > fi for t €

Thus we set
i, = arg mm{;/)k(t)ﬁ € [tmm,miﬂ [tmaxv 2, D/|dk|]]})

where D is a given upper bound for distance from the point x; in one step. Note
that the possibility of stepsizes greater than 1 is useful here, because an information
about the function f, included in the matrix H}, is not sufficient for the proper stepsize
determination in the nonsmooth case.

After the null step, the unit stepsize is mostly satisfactory, as we have found from
numerical experiments. To utilize the bundle and improve robustness and efficiency of
the method, we use the aggregate subgradient g; to construct the linear approximation

WE(t) = fu + tdf gr of f(ay + tdy) and set
tp = arg min {max[;/)f(t), DED]|E € [Emin, min[l, D/|dk|]]}

The function 1%(¢) has sometimes no influence on the stepsize determination (then
obviously t; = 1). It can mean that the stepsize is too small. Thus we have intro-
duced the bundle parameter for scaling si; we define it as a minimum abscissa of an
intersection of the lines, which create 1'% (¢) and have df ¢’ > 0, with ¢} (¢) and set

sk = min{o, 85 /df (¢ — u)ldf g’ > 0,j € T}

From now on we let the notation the same as in Algorithm 1. The minimization
of the quadratic function (2.6) in Step 6, or @(A1,A2) = (A1, A2, 1 — Ay — Ag), is
not complicated. If it is not possible to compute an intersection of straight lines
0p/0N = 0, dp/0Ny = 0, convexity of ¢ implies that we can restrict to the lines
A =0, A =0and A\ + Ay = 1. As an example we give a formula for minimization
within the line Ay = 0, which we regularly apply in the first null step after any descent
step due to §F = g;. If gf_l_l +* f]f, then set

10

. = min | L (45)" (ghn — 35 + 5 — H
7 ” ” ”

(9f+1 - flf)THf(ng - flf)

otherwise set)\;?72 =0 for d? < oz?_l_l or)\;?72 =1 for &? > oz?_l_l.

Further we mention the stopping criterion. We define a descent tolerance e; > 0
and a maximum number m; > 1 of consecutive too small function value variations
and add to Step 0 an initialization of auxiliary variables ny = 0 and Ay = |fi| + 1. To
prevent an accidental termination, we modify Step 3 in the following way

Step 3°: 1f wf < ¢ and either A/ max[l, f(xg)] < 2¢4 for j =1, or wf_l <eforj>1,
then stop.

To cut off useless iterations and update Ay, we modify Step 5 in the following way

Step 57°: 1f |f(yf_|_1) — f(zg)| = 107°Ay, then set A = |f(yf_|_1) — f(xg)], otherwise set
A=A, If A/max[l,f(yf_l_l)] <¢gor f(yf_l_l) = f(xk), then set ny = ny + 1,
otherwise set ny = 0. If ny > my, then stop. If (2.4) holds, then set 1411 = yf_l_l,
Gor1 = G, b = 15, dp = db o = 0F, gr = 9w, = wh Hy = HY,
ok+1 = omin[1/[gx|, [gx|]/(k + 1) and Agp1 = A, otherwise set Agyqy = Ay and
go to Step 6. If gp11 = g and tf < tyar/2, then set ip =1, k = k+ 1 and go to
Step 1, otherwise go to Step 8.

Finally, if we use the algorithm for function f, which is not convex, it can happen
that oz?_l_l < 0 and cause so many difficulties. Thus we define oz?_l_l as absolute value of
the quantity in (2.5). Note that a nonconvex version of the method is being prepared.

5 Numerical examples

The above concept was implemented in FORTRAN 77 as VMC. In this section we
compare our results for 28 standard test problems from literature with those obtained
by a standard VM method with the update U8, controlled scaling and backward Taylor
stabilization (see Luksan 1994) and by the proximal bundle method PBL mentioned
in Luksan and Vlecek 1998. Problems 1-16 are described in Makela and Neittaanmaki
1992, problems 17-18 in Zowe 1985, problems 19-21 in Kiwiel 1989, problem 22 in
Bihain 1984, problem 23 in Facchinei and Lucidi 1993, problems 24-28 in Luksan 1986
and problem 25 also in Bandler, Srinivasan and Charalambous 1972.

In Table 1 we give optimal values of tested functions.

The parameters of the algorithm had the values ¢ = 10710, 4. = 102, ¢; = 1074,
e=5-107",e;=10"",p=2-10"% L =1, 0 = 100, J) = {max[l,k — N —2],... k},
k> 1 and my = 2 for problems 1-23 and 26-28, m; = 5 for problem 24 and m; = 3
for problem 25.

11

Nr.| N | Problem Minimum || Nr.| N | Problem | Minimum
1] 2| Rosenbrock | 0 15 | 48 | TR48 -638565.0
2| 2 | Crescent 0 16 | 50 | Goflin 0
3|1 21CB2 1.9522245 171 6 | El Attar | 0.5598131
41 21 CB3 2.0 18 | 2| Wolfe -8.0
5| 2| DEM -3.0 19 | 50 | MXHILB | 0
6] 2| QL 7.20 20 | 50 | LIHILB |0
7| 2| LQ -1.4142136 || 21 | 5 | Colvillel | -32.348679
8| 2 | Mifflinl -1.0 22 1 10 | Gill 9.7857721
9| 2| Mifflin2 -1.0 23 | 12 | Steiner2 16.703838

10 | 4 | Rosen -44.0 24| 5 | EXP 0.0001224
11 | 5| Shor 22.600162 25 | 6 | TRANSF | 0.1972906
12 1 10 | Maxquadl | -0.8414083 || 26 | 7 | Wongl 680.63006
13 | 20 | Maxq 0 27 | 10 | Wong?2 24.306209
14 | 20 | Maxl 0 28 | 20 | Wong3 133.72828

Table 1. Test problems

Our results are summarized in Table 2, in which the following notation is used. N; is
the number of iterations, Ny is the number of objective function (and also subgradient)
evaluations, F' is the objective function value at termination and D is the maximum
allowable distance in one step (see Section 4); values of D were chosen experimentally.
For better comparison, we give two time data in the last line - the first time concerns
all 28 problems, the second one (in parentheses) only 27 problems, with problem 22
removed.

As a conclusion from our limited numerical experiments we may state that

e the standard VM method is able to find a solution to almost all problems (here
it failed only once) and the computational time can be essentially less than for
proximal bundle methods;

e our method is comparable with proximal bundle methods in the number of func-
tion and subgradient evaluations, but the computational time can be significantly
less;

o although our method is designed for convex functions, it can be applied also to
some nonconvex problems.

12

Standard VM VMC PBL
Nr. NZ Nf F NZ Nf F D NZ Nf F
1 37 54 0.198E-20 36 36 0.416E-10 1 42 45 0.381E-06
2 29 61 0.174E-07 53 54 0.189E-05 1 18 20 0.462E-08
3 21 57 1.9522245 17 17 1.9522246 1 31 33 1.9522245
4 22 69 2.0000001 17 17 2.0000000 10° 14 16 2.0000000
3 36 78 -3.0000000 20 21 -3.0000000 10° 17 19 -3.0000000
6 25 71 7.2000000 21 22 7.2000001 10° 13 15 7.2000015
7 17 52 -1.4142136 7 8 -1.4142136 10° 11 12 -1.4142136
8 1 22 -0.8000000 | 163 226 -0.9999954 10 66 68 -0.9999994
9 24 89 -1.0000000 28 28 -1.0000000 1 13 15 -1.0000000
10 34 89 -44.000000 37 38 -43.999991 1 43 45 -43.999999
11 46 128 22.600162 37 38 22.600163 10° 27 29 22.600162
121 126 303 -0.8414079 87 87 -0.8413999 1 74 75 -0.8414083
13 94 173 0.460E-07 135 135 0.775E-06 10 150 151 0.167E-06
14| 136 420 0.408E-07 22 23 0 10° 39 40 0.124E-12
15| 380 992 -638564.54 | 305 306 -638561.57 10° | 245 251 -638530.48
16 | 386 984 0.294E-05 240 242 0.258E-05 10° 52 53 0.117E-11
17 74 180 0.5598152 114 115 0.5598147 1 92 93 0.5598157
18 18 36 -8.0000000 18 18 -7.9999995 1 43 46 -8.0000000
19 59 147 0.978E-06 67 75 0.134E-05 10° 19 20 0.513E-08
20 78 123 0.702E-06 68 68 0.122E-05 10 27 28 0.234E-07
21 58 191 -32.348661 64 64 -32.348595 0.1 60 62 -32.348679
22| 873 1711 9.7858074 124 124 9.7858075 10 160 162 9.7857723
23 79 186 16.703839 78 79 16.703848 1 128 143 16.703862
24 86 204 0.0001225 81 82 0.0001295 0.1 95 102 0.0001224
25 67 161 0.1972907 73 73 0.1972932 0.05| 153 157 0.1972973
26 | 121 301 680.63043 51 52 680.63026 1 100 102 680.63007
27 79 296 24.306209 96 97 24.306219 10 102 104 24.306213
28 | 140 523 133.72838 238 239 133.72841 10 184 192 133.72832
> 13146 7701 2297 2384 2018 2098

Time = 17.30 (3.29) sec

Time = 3.46 (2.55) sec

Time = 8.07 (6.40) sec

Table 2. Our test results

13

Bibliography

1]

[9]

[10]

[11]

[12]

J.W. Bandler, T.V. Srinivasan, C. Charalambous, “Minimax optimization of net-
works by grazor search,” IEEFE Trans. Microwawe Theory Tech., vol. MTT-20
(1972) 596-604.

A. Bihain, “Optimization of upper semidifferentiable functions,” Journal of Opti-
mization Theory and Applications 4 (1984) 545-568.

F.H.
Clarke, Optimization and Nonsmooth Analysis (Wiley-Interscience, New York,
1983).

F. Facchinei, S. Lucidi, “Nonmonotone Bundle-Type Scheme for Convex Nons-
mooth Minimization”, Journal of Optimization Theory and Applications 76 (1993)
241-257.

R. Fletcher, Practical Methods of Optimization (John Wiley & Sons, Chichester,
1987).

K.C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture
Notes in Mathematics 1133 (Springer-Verlag, Berlin, 1985).

K.C. Kiwiel, “An ellipsoid trust region bundle method for nonsmooth convex

minimization”, SIAM J. Control Optim. 27 (1989) 737-757.

C. Lemaréchal, “Numerical experiments in nonsmooth optimization”, in: E.A.
Nurminski (ed.), Progress in nonsmooth optimization, Proceedings CP 82.58,

ITASA, 2361 Laxenburg (Austria), 61-84.

C. Lemaréchal, C. Sagastizabal, “Variable metric bundle methods: From concep-
tual to implementable forms”, Mathematical Programming 76 (1997) 393-410.

L. Luksan: “A compact variable metric algorithm for linear minimax approxima-

tion”, Computing 36 (1986) 355-373.

L. Luksan: “Computational experience with known variable metric updates”,
Journal of Optimization Theory and Applications 83 (1994) 27-47.

L. Luksan, J. Vlcek: “A bundle-Newton method for nonsmooth unconstrained
minimization”, to appear in Mathematical Programming.

14

[13] M.M. Mékeld, P.Neittaanmiki, Nonsmooth Optimization (World Scientific Pub-
lishing Co., London, 1992).

[14] H. Schramm, J. Zowe, “A version of the bundle idea for minimizing a nonsmooth

function: conceptual idea, convergence analysis, numerical results”, SIAM J. Op-
timization 2 (1992) 121-152.

[15] J. Zowe, “Nondifferentiable Optimization”, in: Computational Mathematical Pro-
gramming (1985) 323-356.

15

