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Abstract

Dempster—Shafer theory is an interesting and useful mathematical tool for uncertainty
quantification and processing. From one point of view it can be seen as an alternative
apparatus to probability theory and mathematical statistics based on this probability
calculus, as D.—S. theory can be developed in a way quite independent of probability
theory, beginning with a collection of more or less intuitive demands which an uncer-
tainty degree calculus should meet. On the other side, however, D.—S. theory can be
developed also as a particular sophisticated application of probability theory, using the
notion of non—numerical, in particular, set—valued random variables (random sets) and
their numerical characteristics. This later aspect enables to generalize D.—S. theory
beyond its classical scopes using appropriately the apparatus of probability theory and
measure theory.

This report is the first part of a surveyal work cumulating, and presenting in a sys-
tematic way, some former author’s ideas and achievements dealing with applications of
probability theory and mathematical statistics when defining, developing, and gener-
alizing various parts of D.—S. theory. The more detailed contents of this report can be
understood from the list of the titles of the particular chapters presented just below.

Keywords
Dempster—Shafer theory, probability theory, belief function, random variable, random
set
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8 Belief Functions Induced by Partial Generalized
Compatibility Relations

A common feature of the following three chapters consists in their aim to go beyond the
framework of the already classical mathematical model for Dempster—Shafer theory, as
explained and analyzed till now, in at least the three following directions:

(i) to weaken the demands imposed to the notion of compatibility relation as the
basic relation binding the empirical data being at the user’s (observer’s) disposal with
the hypothetical internal states of the system under investigation (this chapter);

(ii) to abandon the assumption that the state space S is finite and to extend the
definition of degrees of beliefs to at least some subsets of an infinite space S (the next
chapter);

(iii) to replace the probabilistic measures used in our definitions of basic probability
assignments and belief functions by more general set functions, e.g., by measures or
signed measures, in order to generalize the notion of basic probability assignment and
belief function so that an operation inverse to the Dempster combination rule were
definable if not totally, so at least for a large class of generalized basic probability
assignments (Chapter 10).

Let S and E be nonempty, but not necessarily finite sets, let p : S x £ — {0,1}
be a compatibility relation. This relation can be easily extended to a total relation

p* i P(S)xP(E)— {0,1}, setting for each T'C S and F' C F such that T #£ 0, I #£ 0,
p* (T, F)=max{p(s,2):s €T,z € F}, (8.1)

and setting p*(T,0) = p*(0,F) = 0 for each T" C S and each F' C E. Obviously,
p*({s}, {x}) = p(s,x) for each s € S and « € E. Hence, p*(T,F) = 1 iff there are
s € T and x € F such that p(s,x) = 1. If the actual state sy of the system is defined
by the value of a random variable o, taking a fixed probability space (€, A, P) into a
measurable space (5, S) generated by a nonempty o-field of subsets of .5, if the observed



empirical value z is defined by the value of a random variable X taking (€, A, P) into

(E,&), where £ is a nonempty o-field of subsets of E, and if the compatibility relation
p:SxFE—{0,1} is defined by

ps,x)=1 iff (8.2)
{fwe:iow)=stN{we: X(w)=2a} #£0,
then

p (T, F)y=1 iff (8.3)

(FseT)FeelF)({we:ow)=s}N{weN: X(w)=a} #£0)

iff

(UseT{w €EN:o(w)= 5}) N (UQUGF{w €N X(w) = :1;}) £

iff

{weQ:ow)eTtN{weN: X(w) e '} £0.

The extension of p to p* defined by (8.1) and (8.3) agrees with our intuition im-
posed above on the notion of compatibility between states and empirical values. Or,
p*(T, F') = 0 should mean that if the observed value is in F', then the laws and rules
governing the system and its environment as a whole are such that the membership of
the actual state sg in 1" is impossible. In a more subjective way taken, knowing that
the observed empirical value is in F', but not knowing anything more about it, we are
able to prove that sg cannot be in T'. From both these interpretations it follows imme-
diately, that in such a case each state s € T' must be incompatible with each = € F,
so that p(s,x) = 0 for each s € T, « € F, and (8.1) follows. The reasoning verifying
the inverse implication, i.e., that p(s,x) = 0 for all s € T" and = € F should imply
p (T, F) = 0, is not so persuasive and immediate, and is charged with a great por-
tion of Platonistic idealization, but we shall accept it as a useful simplification for our
further considerations and computations. In more detail, the case that p*(T, F) = 0
but p(s,z) = 1 for some s € T and some & € F evidently contradicts the intuition
behind and the relation (8.3), but the case when p*(T, F') = 1 and p(s,x) = 0 for all
s € T'and all @ € F', even if also contradicts (8.3), admits an interesting interpretation.
Or, consider the case when, in order to arrive at the conclusion that §) = 7" C S and
F = {2} C F are incompatible, we have to prove, within an appropriate deductive
formalism, that p(s,2) = 0 holds for each s € T in particular. If T is infinite, this
cannot be sequentially done by a finite proof, so that we cannot arrive at the conclusion
that p*(T,{x}) = 0 and we must accept that p*(7,{x}) = 1. The same situation oc-
curs also for finite sets T supposing that only proofs not longer than a given threshold
value are accepted as proofs, because of perhaps various reasons of mathematical as
well as extra-mathematical nature. So, it may be also worth considering more general
extensions of p to P(S5) x P(F), namely, the mappings p** : P(S) x P(F) — {0,1}
such that

p (T, F) > max{p(s,z):s €T,z € F} (8.4)

holds for each § £T C S, 0 # F C E, with p™(T,0) = p**(0, ') = 0 as above.



Definition 8.1. Given a (total) compatibility relation p on S x E, the relation p* on
P(S) x P(F), uniquely defined by (8.1), is called the (total) generalized compatibility
relation induced (on P(S) x P(FE)) by p, and each relation p** on P(S) x P(F) sat-
isfying (8.4) is called a quasi-compatibility relation induced (on P(S) x P(E) by p).
A partial generalized compatibility relation (partial quasi-compatibility relation, resp.)
on P(S)xP(FE)is a mapping p° defined on a subset Dom(p°) C P(S)xP(FE), taking its
values in {0, 1} and such that there exists a total generalized compatibility relation p*
(quasi-compatibility relation p*, resp.) on P(S) x P(E) such that p° is the restriction
of p* (of p**, resp.) to Dom(p"), in symbols, p° = p* | Dom(p°) (p° = p** | Dom(p°),
resp.). O

Evidently, not every partial or total mapping p° : P(S) x P(E) — {0,1} is a
partial generalized compatibility relation or a partial quasi-compatibility relation on
P(S) x P(E). As a counter-example let us consider any mapping p° such that, for
some Ty C Ty C S and for some Fy C Fy C E, {(T1, Fy), (T2, F3)} C Dom(p°) and
p°(Ty, Fy) > p°(Ty, F3) holds. Let us investigate, first of all, under which conditions
a (partial) mapping p° : P(S) x P(F) — {0,1} is a partial generalized compatibility
relation and when the corresponding total generalized compatibility relation is defined
unambiguously. Consequently, we shall focus our attention to the cases when a partial
generalized compatibility relation is the only knowledge about the investigated system
and its environment being at hand. Then, we shall try to deduce, or at least to
approximate, the original compatibility relation on S x F and to use this approximation
in order to obtain reasonable approximations of the belief and plausibility functions
defined by the original compatibility relation.

Given a partial mapping p° : P(S) x P(E) — {0,1} with the domain Dom(p*) C
P(S) x P(E), we set for each s € S, © € F,

s, ) = min{pO(T,F) (T, F) € Dom(p®),s€T,x ¢ F}, (8.5)

if there exists (T, F') € Dom(p°) such that s € T'and @ € F, p(s,z) = 1 otherwise. We
also set, foreach T'C S, FF C E,

p (T, F)=max{p(s,z):s €T,z € F} (8.6)

with the conventions for 7' = § or /' = ) as in (8.1). In other words, p* is a total

mapping which takes P(5) x P(E) into {0, 1}, defined by 7* = (p)*.

Theorem 8.1. Let p°: P(S)x P(E) — {0,1} be a partial mapping with the domain
Dom(p?), let p and p* be defined by (8.5) and (8.6).

(i) For each (T, F') € Dom(p") the inequality p*(T, F') < p°(T, F') holds.

(ii) Let p° be such that
(a) for each (T, F') € Dom(p°) such that p°(T, F') = 0 and each (T}, ) € P(S) x P(E)
such that Ty € T and Fy C F hold, (Ty, Fy) € Dom(p°) and p°(T}, Fy) = 0 hold as

well,

(b) for each nonempty parametric set A and for each {(T\, F)\) : A € A} C Dom(p"),
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if (Uxea oy Urea FA) € Dom(p?) holds, then p® (Uyea Th, Unea ) = max{p®(T\, F'\) :
A € A}. Then p* = p°(T, F) for each (T, F) € Dom(p").

(iii) If p° = p* for a compatibility relation p : S x £ — {0,1}, then p = 7, i.e.,
p(s,2) = p(s,z) for each s € S, © € F. O

Proof. Let Dom(p°) = 0. Then the equality p° = p* on Dom(p°) holds trivially. Let
p°(T, F) = 1 for each (T, F') € Dom(p°) # (0. Then p(s,z) = 1 for each s € S and
x € K, hence p*(T, F) =1 for each T' C S and each F' C E, and the equality between
p? and p* on Dom(p") again immediately follows. So, let there exist (T, F') € Dom(p")
such that p°(7, F') = 0. Relation (8.5) yields then, for each s € T and x € F, that

s, ) = min{pO(Tl,Fl) (T, F1) € Dom(p°), s €Ty, z € Fl} <p(T,F)=0. (8.7)
Consequently, by (8.6),
p (T, F)=max{p(s,z):s €S,z €'} =0, (8.8)

so that the inequality p*(T, F') < p°T, F') for each (T, F) € Dom(p°) immediately
follows and (i) is proved.

Let the conditions of (ii) holds, let (T, F') € Dom(p°®) be such that p*(T, F') = 0.
So, by (8.6), max{p(s,z):s €T, x € F'} =0, consequently, (8.5) yields that

min {pO(Tl,Fl) : (T, Fy) € Dom(p°), s € Ty, = € Fl} =0 (8.9)

holds for each s € T, a € F. Hence, for each pair (s,2) € T X F there exists
(Tis,2y> Flowy) € Dom(p°) such that s € Ty, .y, @ € Fiypy, and p (T<M>, F<571,>) =0. Us-
ing the axiom of choice, let us choose just one such <T<57x>, F<M>> for each (s,z) € T X F.
Set, for each (s,x) € T x F, T<0571,> =T N T, F<957$> = I'N F, ), then s € T<0571,>

and = € F<057$> hold for each s € T, « € F, moreover U, »erxr T<0571,> = T and

U(s,x)ETxFF(Os,x) = F. By (ii) (a) <T(2‘,x>7 F<Os,x>> € Dom(p°®) and p° (T<Os,x>7 F(i,@) =0
hold for each s € T', x € F, so that, by (ii) (b)

0 0 0
<U(s,x>€T><FT<5795>7 U(s,x)ETXFF<57$>> € DOI’H(/) ) (810)

and

0 0 0 0 _
P <U<s,x>eTxFT<w>v U(s,x)eTxFF@v@) =p(1,F) = (8.11)
= maX{pO (T<Os,l’>7 F<057x>) . <37 $> & T X F} = 0

Consequently, p*(T, F') = 0 implies p°(T, F') = 0 what, combined with (i), yields that
(T, F) = p°(T, F) for each (T, F') € Dom(p"). So, (ii) is proved.

Let p° = p* for a compatibility relation p : S x E — {0,1}, so that p°(T, F) =
max{p(s,z):s €T,z € F} foreach T C S and each FF C E. If Ty C T and F; C F,



then, obviously, p°(Ty, F1) < p°(T, F) so that p°(T, F) > p°({s}, {«}) holds for each
s € T and each € F'. Consequently,

pls,x) = min{p"(T.F):s €T, x € F} = p°({s}, {z}) = p"({s}, {x}) =(8.12)
= max{p(s1,z1): 51 € {s}, 1 € {x}} = p(s, )

holds for each s € T and each x € F', so that (iii) is proved. The proof of Theorem 8.1
is completed. a

Theorem 8.2. Let p° : P(S) x P(E) — {0,1} be a partial mapping with the do-
main Dom(p®) such that p°(Ty, Fy) > p°(Ty, Fz) holds for each {(T4, Fy), (T2, F3)} C
Dom(p®) such that 7y D Ty and Fy D F, let s € S and @ € E be such that
({s}, {z}) € Dom(p"), let p be defined by (8.5). Then p(s,z) = p°({s}, {z}). O

Proof. By (8.5)
p(s, ) = min{p"(1, F): (I, F) € Dom(p°), s € T, w € I'} < p°({s}, {x}), (8.13)

as ({s}, {z}) € Dom(p®), s € {s}, and x € {x}. However, p°(T, F) > p°({s}, {z})
holds for each (T, F') € Dom(p°) such that s € T" and = € F due to the conditions
of Theorem 8.2. Hence, p(s,z) > p°({s}, {z}) immediately follows and the proof is
completed. a

Theorem 8.3. Let p°: P(S) x P(E) — {0,1} be a partial generalized compatibility
relation such that p° = p* | Dom(p?) for a compatibility relation p on S x F, let p be
defined by p® using (8.5). Then p(s,z) > p(s,x) holds for each s € S and each z € E.
O

Proof. An easy calculation yields that

p(s,x) = min{p”(I,F): (I, F) € Dom(p°), s € T, 2w € F'} > (8.14)
min{p"(T.F):seT C S, e € FCE} =
p"({s}, {z}) = p(s, 2),

as the inequality p*(T, F') > p*({s}, {x}) obviously holds for each T'C S and F' C
such that s € T"and z € F. a

Y

As can be easily proved, the inequality in the assertion of Theorem 8.3 cannot be,
in general, replaced by equality. Or, let f : ' — S be a total function such that
p(s,x) =1iff s = f(x), p(s,2) =0 otherwise. So,

p*(S,E) = max {p(s,x): s € 5, v € B} =max{p(f(x), z):x € E} =1. (8.15)
Consequently, for each s € S and each x € E, if Dom(p®) = {(S, E)}, then
p(s,x) = min{p(T,F): (T, F) € Dom(p°), s € T,z € F} = (8.16)
= p(S,E)=p"(S,E) =1,
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so that p(s,x) > p(s,x) holds for each s € S, € F such that s # f(x).

Before focusing our attention on a more detailed investigation of partial generalized
compatibility relations we take as worth saying explicitly, that compatibility relations
on P(S) x P(E) can be defined not only by extending compatibility relations defined
on S x E to P(S) x P(E) by (8.1), but also directly, taking Sy = P(5) instead of S
and Fy = P(F) instead of E in the general definition of compatibility relation. Such
a compatibility relation p® : So x Eg — {0,1} cannot be, in general, defined by an
extension of a compatibility relation defined on S x E, or as a fragment of such an
extension, if p° is partial, as it is possible that p®(T, F) = 0, but p°(Ty, Fy) = 1 for
some Ty C T C S, Fy C F CE. So, such a compatibility relation on P(S) x P(F)
can be taken as a relation between a metasystem the states of which are sets of states
of the original system, and an enriched observation space the elements of which are
sets of original empirical values. A more detailed mathematical investigation and
possible interpretations of such meta-systems, meta-observations and corresponding
compatibility relations would be interesting and perhaps useful, but it would exceed the
intended scope and extent of this chapter and will be postponed till another occasion.

In order to simplify our further reasonings by avoiding technical difficulties we shall
suppose, till the end of this chapter and unless stated otherwise, that both the spaces S
and F are finite. As above, we shall suppose that the empirical values (values from F)
being at the subject’s disposal are of random character and can be described, quantified
and processed by the tools of the classical (Kolmogorov axiomatic) probability theory.
In the way described above we arrive at the notion of belief function and plausibility
function induced by a compatibility relation p: S x F — {0,1}.

Let p° : P(S) x P(E) be a partial mapping, let p be defined by (8.5). Then we set
belo(T) = bel;(T) for each T C S. A compatibility relation p defined on S x FE is
called consistent, if for each © € F there exists s € S such that p(s,z) = 1.

Theorem 8.4. Let the notations and conditions of Theorem 8.3 hold, let p be con-

sistent. Then bel;(1) < bel,(T') and pl(T) > pl (T) hold for each T' C S. O

Proof. By Theorem 8.3, 5(s,x) > p(s, ) holds for each s € S, € E, so that
Us(x)={se S:p(s,z) =1} D{s € S:p(s,x) =1} =Uy(x). (8.17)

Hence, Uz(x) # 0 holds for each v € E, belz(T) = P({w € Q: Ux(X(w)) CT}),
moreover, Uz X(w)) D U,(X(w)) is valid for each w € Q. Consequently, for each
T CS,if Us(X(w)) CT, then U,(X(w)) C T. In other terms,

{weN:Ux(X(w) cT}C{weQ:U,(X(w)) CT}, (8.18)
and this inclusion immediately yields that

belz(T) = PH{weQ:Uz(X(w))CT}) < (8.19)
< PHwe: Uy (X (w)) CT}) = bel,(T).

The dual inequality for plausibility functions is obvious so that the assertion is proved.
O



It is perhaps worth stating explicitly that if the basic compatibility relation p is not
consistent, then the inequality (8.19) need not hold, as the following example illustrates.

Let S = {s1,89,83}, let £ = {x1, 22,23}, let p(a;) = P{w € Q: X(w) = 21}) =1/3
for each 2 = 1,2,3. Let the compatibility relation p on S x E be defined as follows:
p(s1,21) =1, p(si,x3) =1 for each i = 1,2,3, p(s;,2;) =0 otherwise. Hence, p is not
consistent, as there is no state s; compatible with the empirical value z5. Recalling
that U,(x;) = {s € S : p(s,x;) = 1} we obtain easily that U,(x1) = {s1}, U,(a2) =
0, Uy(xz) = {s1,82,83} = 5. Setting To = {51,582} C 5, Fo = {x1,22} C F, an easy
calculation yields that

bel,(Ty) = P({w € Q:U,(X(w)) C Tol/{we Q:U,(X(w))#0)) = (8.20)

PweQ:0#U,(X(w)) CTo}) _ > we B, 02U, (z)cTy P(T) _
PlweQ:0#£U,(X(w))}) Y orel, 02U, (x) P(T)

ple) —1/3 1

plr) + ples)  1/3+1/3 2

For the generalized compatibility relation p* induced by p we obtain that

p*(To, o) = max {p(s,x) : s € Ty, v € Fo} > p(s1, 1) = 1, (8.21)
as s; € Ty and x, € Fy. Moreover,
p*(T, {x5}) = max{p(s,2): s € T, v € {a3}} =1 (8.22)
for each T, § # T C S, and
p*({ss}, {x1}) = plss, 21) = 0 = p(s3, 22) = p"({s3}, {w2}). (8.23)
Let p° = p* | Dom(p°), where
Dom(p°®) = {(To, Fo), {{ss}, {e1}), ({sa}, {a2h) P U {(T {as}) : 0 # T C S} (8.:24)
We obtain easily that for both i = 1,2, j =1,2
plsiej) = min{p"(T,F): (I,F) € Dom(p°), s; € T, x; € '} = (8.25)
= pTo, 1) = p*(To, Fo) = 1,

as (Ty, Fo) is the only pair (T, F') in Dom(p°) such that s; € T and z; € F hold
simultaneously for ¢ = 1 or 2 and 7 = 1 or 2. Moreover, for ¢ = 1,2, 3,

plsias) = min{pO(T,F) (T, F) € Dom(p®), s; €T, x3 € F} = (8.26)
= min{pO(T, {x3}) 8 € T} =min {p*(T,{xs3}): s, € T} =1,
and
pss, ) = min{pO(T,F) (T, F) € Dom(p®), s3 €T, x; € F} = (8.27)
= p"({ss}, {w}) = p"({ss}, {e1}) = pls3,21) = 0,
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as well as

Ps3,x9) = min{pO(T,F) (T, F) € Dom(p®), s3 €T, x5 € F} = (8.28)
= p"({ss}, {22}) = p"({s3}, {22}) = p(s3,22) = 0.

So,
Us(zy) ={s € 5 :p(s,x) =1} = {s1,52} (8.29)

by (8.25) and (8.27), analogously, by (8.25) and (8.28), we obtain that
Uﬁ(l’g) = {81782}. (830)

Finally, (8.26) yields that
Uﬁ(l’g) = {81782783} = S (831)

So, Uz(x) # 0 for all z € E, and an easy calculation yields that

belo(Ty) = P({w e Q:Ux(X(w)) CTo} [ {weQ: Ux(X(w)) #0}) = (8.32)
= P{eeQ: U3(X(w)) CTo}) = erE,Up(x)CTO plz) =
= pla1) +plxa) =1/341/3 =2/3 > 1/2 = belz(Ty)

by (8.20). Hence, the inequality (8.19) does not hold.

As the example just presented shows, if the basic compatibility relation p on S x F
is not consistent, then its behaviour and the properties of the corresponding belief
functions are rather counter-intuitive. Namely, having at our disposal only a partial
knowledge about the compatibility relation p, i.e. the knowledge encoded by a frag-
ment of the induced generalized compatibility relation, we can arrive at higher values
of the belief function for some subsets of S. This fact follows from a more general
paradoxal property of belief functions according to which enriching the database by
new items which are inconsistent with the former ones can augment the degree of belief
for some sets of states. It is just this strange property which, together with the tech-
nical difficulties involved by the apparatus of conditional probabilities, makes a great
portion of specialists dealing with the D.—S. theory to consider just the case of con-
sistent compatibility relations. Another solution may be, to abandon the assumption
of closed world, i.e., to admit that there are also some possible internal states of the
system not contained in S, and to take the case when the data are inconsistent as the
indication that the actual state of the system is beyond the set S. At the formalized
mathematical level this approach leads to the case of non-normalized belief functions
when the inequality bel,(S) < 1 can hold.

The next assertion generalizes Theorem 8.4 in the sense that two partial generalized
compatibility relations induced by the same compatibility relation on S x E and with
domains ordered by set-theoretic inclusion as far as the corresponding belief functions
are concerned.



Theorem 8.5. Let p', p? : P(S) x P(E) — {0,1} be two partial generalized com-
patibility relations such that p’ = p* | Dom(p') for both i = 1,2, and for a consistent
compatibility relation p on S x FE, let Dom(p') C Dom(p*) C P(S) x P(E) hold. Let

7'(s,x) = min {pi(T,F) (T, F) € Dom(p'),s €T,z € F} (8.33)

for both 7 = 1,2, and for all s € S, x € E for which this value is defined, let p'(s,z) = 1
otherwise. Then the inequalities bel(T') < bel»(T') and plx(T') < pl»(T') hold for
each T'C S. O

Proof. Foreach (I',F), T C S, F C E,if (T,F) € Dom(p'), then (T, ') € Dom(p*)
and, moreover, p'(T, F) = p*(T, F) = p*(T, F), as both p' and p? result from restric-
tions of the same generalized compatibility relation p* to various domains. Hence, for
each s € S and z € E such that p'(s, ) is defined by (8.33) we obtain that

p'(s,2) = min{p(I,F):(T.F) € Dom(p'), s€ T2 € F} >  (8.34)
> min{pz(T,F) (T, F) € Dom(p*),s €T, x € F} =

= p°(s,2).
If p'(s,z) is not defined by (8.33), then p'(s,z) = 1 and the inequality p'(s,z) >
p%(s,x) holds trivially. Setting, for both ¢ = 1,2 and for each z € E,

Usi(z) ={s €S :p'(s,2) =1}, (8.35)
we obtain easily that for each # € E, U (x) D UZ(x), and both these sets are nonempty
(both of them contain U,(s,z) # (), as the relation p is supposed to be consistent).
As in the proof of Theorem 8.4 we obtain that the inclusion Un (X(w)) D Uxr(X(w))
holds for each w € €, consequently, for each T' C S,

{we:Up(X(w) cT}c{weQ:Up(X(w) C T}, (8.36)
what immediately yields that

bela(T) = P({weQ:Un(X(w)CT}) (8.37)
< P({weQ:Up(X(w) CT}) = beln(T).

The dual inequality for the plausibility functions follows trivially, so that the assertion
is proved.

As follows from Theorems 8.4 and 8.5, belief function bels, defined by fragments of
the generalized compatibility relation induced by an original compatibility relation p,
is a lower approximation of the original belief function bel,. This approximation can
be improved, i.e., bel, can be approximated more closely, if the fragments being at
our disposal are enriched by a new part. Consequently, when using the original belief
function bel, in decision rules according to which the hypothesis that the actual state of
the system isin T' C S is accepted, if bel,(T') > « holds for some threshold value « close
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enough to one, this decision rule can be replaced, conserving the pessimistic worst —
case principle typical for the D.—S. theory way of reasoning, by a more severe rule which
accepts the same hypothesis when belz(T) > « holds. On the other hand, knowing
that the last inequality holds, we do not need to compute the value bel,(T'), what may
be much more time and space consuming, to be able to decide that bel,(T') > « holds.
At least the two following ways of further development are worth considering:

(i) to apply our reasonings to particular partial generalized compatibility relations,
e.g. to those generated by appropriate equivalence relations on the spaces S and F,
to arrive at more detailed results than those introduced above, and

(ii) to compute the time and/or space computational complexity savings achieved
when replacing bel, by bel; in decision rules like that one mentioned above.

It can happen, because of many reasons of practical nature, that the investigator
is not able to distinguish two or more states of the system (two or more empirical
values, resp.) from each other. E.g., when states of the system are numerical real-
valued parameters, they can be processes only within a limited number of decimal digits
and the same may hold true for the observed values of real-valued random variables.
Here we shall limit ourselves to the most simple case when the indistinguishable states
or empirical values are just the equivalence classes generated by certain equivalence
relations on the corresponding sets. Hence, ~s (=g, resp.) is supposed to be an
equivalence relation on S (on E, resp.), and for each s € S (x € E, resp.) [s]x. ([]xp,
resp.) denotes the class of equivalence in S/ g (in £/ ~g, resp.) such that s € [s]x,
(v € [¢]ny, resp.). The relations ~g and ~g are fixed in what follows, so that the indices
/g an ~p are omitted, if it is clear from the context to which set the element between
[ ] belongs. For T" C S (F C E, resp.) we set [T]ns = User(®] ([Flag = Userle],
resp.) with the same convention adopted concerning the indices as in the case of
single elements. In the rest of this chapter we shall discuss the case when the only
information about relations between states and observations is given in the form of a
compatibility relation between classes of states and classes of empirical values. I.e.,
p? takes S|y, X Flx, into {0,1} and p° is supposed to be defined by an unknown
compatibility relation p : S x £ — {0,1} by the relation

P°([s], [z]) = max{p(si,21):5 ~g 8,71 ”px} = (8.38)
= max{p(s1,21): 81 € [s], v1 € [x]}.

This relation is obviously the restriction of p* induced by p and defined by (8.1) to
the domain Dom(p®) = {([s], [x]) : s € S, x € E}. In order to simplify our further
reasonings we shall suppose that the underlying basic compatibility relation p is con-
sistent in the sense that for each @ € E there exists s € S such that p(s,2) = 1, so that
U(x) = Uy(z) # 0 for all z € E. Let us also define, for each T C S (for each F' C FE,
resp.), (T) = U{[s] : [s] C T} ((F) = U{[z] : [x] C F} resp.), so that (T) C T C [T]
and (F) C F' C [F] hold for each T'C S and F' C F.
Setting, for each s € 5, x € E,

p(s, ) =min{p°([t], [y) 1t € S,y € B, s € [t], v € ]}, (8.39)
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we obtain immediately that p(s,x) = p([s], []), as [s] ([#], resp.) is the only class
in S|xg (in Eyy, resp.) containing s (x, resp.). Given T' C S, « € E, and YV C

g

Slas, setting T° = {[s] : [s] C T} C S|x, for each T C S (notice the difference
between T° and (T')), supposing that S is finite and considering the random variable

X: (A P)— (E &) as above, we can define
) {s € S:p(s,x)=1}, (8.40)
) = PHoeQ: U (X(w)CT}),

Us(e) = {s€S:p(sa) =11,
) = PHoeQ:UxX(w)CT}),
) = {[s)€ Slee i p”
) = PHweQ:Upyp

(s, []) =1}
[X (w >]>cY}>

Theorem 8.6. Let S be finite, let S = P(P(9)),let p: Sx E — {0,1} be consistent.
Then for each T' C S the following relations hold:

(
(

belo(T) = bel o(T) < bel, (T). (8.41)

Proof. As s =g s and # ~g « hold for each s € S, » € E, (8.38) and (8.40) yield
that p(s,x) > p(s,x) for all s € S, « € E. Hence, Uz(X(w)) D U,(X(w)) for all
w € Q, so that the inequality belz(1') < bel,(T) immediately follows. If s; ~g s
and s; € Uj(x), then 1 = p(s1,2) = p°([s1], []) = p°([s2], [x]) = p(sa, ), so that
sy € U(x). Hence, Us(x) = Usev,()ls] = [Up(®)]. Tf 21 = 23 and s € U,(x1), then
1 = p(s,xy) = p°s], [x1]) = p°([s], [x2]) = P(s,x2), so that s € Ux(xz) as well,
hence, Uz(xy) = Uz(xy). For any sets A C T C S the inclusion [A] C 7 holds
iff [A] C (T') hold. Consequently, Uz(x) C T holds iff [Uz(x)] C (I') holds. For each
s €S, [s] ClU(x)] M p(s,x) = LI p°([s], [«]) = 1 il [s] € U, ([z]), so that Uz(z) C T
holds iff Uy ([z]) C T° = {[s] : [s] C (T')}. Hence, {w € O : U(X(w))CT}:{wEQ:
[U;(X(w))] (I} ={w e Q:Up([z]) C T°} and the equality belz(T) = bel,o(T°)

immediately follows. a

The inequality in (8.41) yields that bels, which can be obtained from p°, is a lower
approximation of bel,, hence, if we accept the hypothesis that the actual state sg
of a system is in 7" supposing that belz(T') > 1 — «a for some fixed threshold value
a > 0 holds, we can accept the same hypothesis if bel, (1) > 1 — a holds without
computing bel,(T') as we know that the last condition of acceptance is at least as strict
as the original one. On the other side, the equality in (8.41) yields that the value
bel5T) can be computed much more easily than the value bel,(T'). Let S be finite,
let cardS = n, let p be consistent, let m(A) = P{w € Q : U,(X(w)) = A}) for
each A C S, let T C S. Then bel,(T) = ¥ 4c7 m(A) can be computed using 2¢#rd7
applications of the operation of addition.If the equivalence relation g is such that
card(S|x,) = n/K for some K > 1, if cardT® = (cardT)/K, and if m°(A°) = P({w €
Q: Up([X(w)]) = A°}) for each A° C S|x., then bel,o(T9) = 3 qoc0 m°(A) can be
computed by 2¢ardTo = o(cardD)/K — 9(1/K)cardl’ oherations of addition. The strong law
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of large numbers (cf. [31], e.g.) yields that the relative frequence of such A’s, A C 9,
for which (cardA/cardS) — (1/2) < ¢ holds, tends to 1, with cardS increasing, for each
e > 0, so that a subset T" C S such that card? = n/2 (for n even) can be seen as a
“typical” subset of S. For such T'C S

(8.42)

o(1/K)cardl o(1/K)\ /2 1
gcardl B =~ 9(n/2) 1—(1/K))’

so that the reduction of computational complexity is obvious.
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9 Belief Functions over Infinite State Spaces

In order to make the following considerations more transparent, let us recall the basic
idea of our definition of belief function (Def. 4.2) in the terms of set-valued (gener-
alized) random variables and their probabilistic numerical characteristics (generalized
quantiles). Let S be a nonempty set, let S C P(P(S)) be a nonempty o-field of sys-
tems of subsets of S, let (Q, A, P) be a fixed abstract probability space. Let (F,&)
be a measurable space over the nonempty space E of possible empirical values, let
X : (A P) — (E &) be arandom variable, let p: S x £ — {0,1} be a compatibility
relation, let U, x(z) = {s € S : p(s,2) = 1} for each x € I. Then the value bel; y(A)
is defined by

bel; x(A)=P({weQ:0#U,x(X(w)) C A}) (9.1)

for each A C S for which this probability is defined. In other terms we can say: let
U, x(X(-)) be a set-valued (generalized) random variable, i.e. measurable mapping,
which takes the probability space (€, A, P) into a measurable space (P(5), ). Then
the (non-normalized) degree of belief bel ((A) is defined by (9.1) for each A C S such
that P(A) € S holds. If, moreover, {0} € S and P({w € Q: U, x(w) =0}) < 1 hold,
the (normalized) degree of belief bel, x(A) is defined by the conditional probability

bel,x(A)=P({weN:U,x(w) C A} [{weQ:U,x(w)#0}). (9.2)

Even if we already mentioned a more general level of this definition, if compared
with the combinatoric one, as it enables to define degrees of belief for at least some
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subsets of infinite basic space, till now we have rather limited ourselves to the case
when S is finite with the aim to translate into the probabilistic framework the notions
defined and the results achieved by the classical model of D.—S. theory developed over
finite state spaces S and using the combinatoric computational rules. Crossing the
borderlines of this classical finitistic model we have to realize, first of all, that if the
set S is infinite, its power-set P(S) is uncountable. Hence, given a mapping m =
P(S) — (0,1), we are not able to define, in general, the probability distribution (basic
probability assignment) on P(P(S)) or on a nontrivial o-field S C P(P(.S)) containing
also systems of subsets of S of the kind P(T') for infinite subsets T" of S. Remember,
e.g., the Borel probability measure on the unit interval (0,1) of real numbers when
the measure of this interval is one, even if (0,1) = U,e(o,1y{*} is an uncountable union
of disjoint sets (singletons), each of them possessing the zero measure. Hence, the
combinatoric definition of belief function cannot be extended to the case of infinite
spaces S.

When discussing the problem of measurability of the mapping U, x : @ — P(5),
and the resulting problem of (non)definability of the value bel} (7') for some T' C S,
the two extremal cases are perhaps worth being mentioned eXphCltly Its = {0, 77(5)}
is the minimal (the most rough) o-field of systems of subsets of 5, then every mapping
U,x : @ — P(S5) is measurable no matter which the probability space (2, A, P) may
be, but in this case only bel’ (5) can be defined (its value being obviously 1). Let
us recall that the empty set §§ occurring in the definition S = {0, P(S5)} above, is the
empty subset of P(S5), not of S, so that neither bel, x (#) need not be defined for the
empty subset of 5.

The reader not familiar with the foundations of measure theory and probability
theory may perhaps ask, why not to simplify our model by considering only probability
space (2, A, P) with A = P(Q) and set-valued random variables U taking their values
in the complete measurable space (P(.5), P(P(5))). Under these conditions, P(T') € S
holds for each T' C S (such T is called S-regular) and bel] (T) is defined. The
reason for our not accepting these simplifications is that in such a case the scale of
probability measures P and random variables U being at our disposal would be rather
narrow. Consider, e.g., @ = (0,1) together with two probability measures, P; and
Py, defined on certain subsets of 2. Namely, let Qo = {wi,wq,...} be a countable
subset of Q, let P; : @ — (0,1) be such a mapping that 22, Pi(w;) = 1. P; defines a
probability measure on P({p), setting simply Pi(A) = 3, c4 Pi(w;) for each A C Q.
This definition can be immediately extended to each A C Q setting P (A) = 0 for
A C Q—Q, i.e., setting Pi(A) = Pi(ANQ) for each A C Q. Hence, P; can be
unambiguously extended to a probability measure on P(€).

Let P, be defined on the class of semi-open subintervals of (0, 1) in such a way that
Px({a,b)) = b— a for each such subinterval. This probability measure can be extended
to the class L. C P((0, 1)) of Lebesgue sets (sets measurable in the Lebesgue sense), and
it is a well-known fact that L # P((0, 1)) so that there exists a set D C (0,1) which is
not measurable in the Lebesgue sense (the axiom of choice plays a key role when proving
the existence of such a set). On the other hand, the probability measure P> plays an
important role in probability theory as it enables to formalize the notion of equiprobable

random sample from the uncountable set (0,1). Let (Q, A, P) = ((0,1), L, P) be the
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probability space over (0, 1) just defined, let S = (0,1), let U : Q@ — P(S) be defined
by U(w) = {w}. Then, for D C (0,1), D not measurable in the Lebesgue sense,

beli;(D) = P,({weQ:U(w)CD}) =P ({weQ:{w}CD})= (9.3)
= P{we:weD})=P(D),

and the last value is not defined, so that bel}; cannot be extended to whole P(5).

Besides these theoretical restrictions there may be also many practical reasons for
which we cannot consider all subsets of S when defining belief functions. E.g., we
are not able to distinguish two values of the set-valued random variable U, if they
are, in a sense, close enough to each other, or when such a distinguishing is too time,
space, or other expenses consuming. All these cases can be theoretically reflected
when considering a relatively poor o-field S in P(P(S5)). The non-negligible remaining
portion of idealization in this approach consists in our assumption that this class of
subsets of P(9) is still a o-field.

A special case of our approach to definitions of belief functions over infinite sets
S is presented and investigated by J. Kohlas ([21]), when the support € of the basic
probability space is supposed to be finite and the o-field A is identified with P(£2). A
generalization to infinite countable sets ) is immediate and will be considered in our
explanation. The probability measure on (€, P(2)) is uniquely defined by a mapping
P :Q — (0,1) such that 3 cq P(w) = 1. Under these simplifying conditions each
mapping U : (Q, P(), P) — (P(S), P(P(S))) is obviously measurable, hence, is a
random variable. For each such a mapping U there exists a finite or countable system

Ao(U) of subsets of S such that
AUy ={ACS:{we:Uw)= A} £0}. (9.4)
So,

Ploe:UW) =4} =3, P =P (U71(4)) = 0, (9.5)
if A e Ay, and P(UT'(A)) = P(B) =0, if A € P(S) — Ay, hence, P looks like the
degenerated probability measure on (0, 1) defined above. Consequently, for each T' C S

bell;(T) = P{weQ:U(w)eP(T)—{0}}) = (9.6)
_ -1
- Z@;ﬁAcT,Aer P (U (A))

is defined,

_ 2ogact.aes P (UT(A))
Yozacs, aca, P (UT1(A))

is defined, if there exists A C S, A € Ag—{0}, such that P(U~'(A)) > 0 holds, and the

relations are analogous to those for the case when S'is finite. Hence, the Kohlas” model

be]U(T)

(9.7)

outlines the domain when the combinatoric definitions of belief functions are immedi-
ately extendable to infinite sets S, so that some algorithms or other implementation
results can be directly applied to this wider class of situations.

A o-field § C P(P(9)) is called Dempster—Shafer complete (DS-complete), if every
T C Sis S-regular, i.e., if P(T) € S holds for each T' C S, so that bel x (1) can be
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defined for each T' C S supposing that U, x : (Q, A, P) — (P(S5), S) is a set-valued
random variable. If S is DS-complete, then for each ) # S; C P(S)

Y

MNies, PIA) =P (M4es, () €. (9.9)

The following property of DS-complete o-fields is perhaps less trivial.

Theorem 9.1. Let S C P(P(95)) be a DS-complete o-field, let S; C P(S) be such
that card(S;) < Vg and card(A) < N, for each A € §;. Then &; € S. O

Proof. Being a o-field, S is closed with respect to finite or countable unions so that
the only we have to prove is that {A} € S holds for each finite or countable A C S. Let
A be such a subset of S. For each i =1,2,..., the system P(A)N(P(S)—P(A—{x;}))
contains, if x; € A, just those subsets of A which are not subsets of A — {z;}, i.e., just
those subsets of A which contain x;. By induction, the system

P(A) NV, (P(S) = P(A = {a:})), (9.9)
if A= {xy,2q,...,2,} is finite, or the system
P(A) N, (P(S) = P(A = {a:})), (9.10)

if A= {ay,2,,...} is infinite countable, contains just those subsets of A which contain
all the elements x1,29,...,2, or xy,x,,... However, there is just one subset of A
possessing this property, namely the set A itself, so that (9.9) or (9.10) defines just the
singleton {A}. As P(A) € § and P(A — {x;)} € S hold for each z; € S, the system of
sets defined by (9.9) or (9.10) is also in S. The assertion is proved. O

Till now, we have taken profit of the apparatus of the measure and probability
theory in order to arrive at general enough definition of belief functions over infinite
sets. In what follows, we shall try to overcross some restrictions, involved by this
approach, using the ideas of inner measure and outer measure (cf. [15]) in order to
generalize belief functions also to the subsets of S which are not S-regular. In order
to simplify our reasonings we shall still suppose, in the sequel, that the empty subset

0 of S is S-regular, i.e., that P(0) = {0} € S, and that
PlweQ:U(w)eP0)})=P({wve:Uw)=10}) <1 (9.11)

holds, here and below U(w) abbreviates U, x (X (w)) supposing that p and X are fixed in
the given context. For each of the two functions, bel, x (1T') = bel(U,S) (T') (in order to
introduce U and § as explicit parameters, and the corresponding plausibility function
pl(U,8)(T)=1—=bel(U,S) (S —T), the four alternative ways of generalizations will
be considered). We shall investigate only the case of normalized belief functions, the
modifications for the non-normalized case can be easily obtained.
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Definition 9.1. Let (2, A, P) be a probability space, let (P(S5), &) be a measurable
space over a nonempty set S, let U be a set-valued (generalized) random variable
defined on (Q, 4, P) and taking its values in (P(95), S), let bely(T) and pl;(T) be
defined, for each S-regular T' C S and S-regular S —T C S by

bely(T) = PHweQ:U(w) CT}H/{w e :Uw#£D0)}), (9.12)
ply(T) = 1—=bely(S—T). (9.13)

Set, for each T' C 5,
bel, (U,8)(T) = sup{P{weQ:U(w)e€ B}/ (9.14)
{weQ:Uw)#£0}):BeS,BCP(T)—{0}}

bel" (U, S)(T) = inf{P({w e Q:U(w)<c B}/ (9.15)
{fweN:Uw)#£0}):BeS,BOP(T)—{0}},

bel, (U, S)(T) = sup{bely(R): RCT}, (9.16)
belt*(U,8)(T) = inf{bely(R): T C R C S}, (9.17)
pLU,S)(T) = 1—=>beli(U,S)(S-1T) (9.18)

foreach = ,, *, ., *7. O

As can be easily observed, all the eight functions introduced above are defined
for each T' C S5, as the set ¢ of real numbers to which the sup or inf operation is
applied, is nonempty in all cases. For (9.14) we take B = ()* (the empty subset of
P(S) which is always in & and which should not be confused with the empty subset
0 of S or with the nonempty subset {0} of P(S5)), so that P({w € Q : U(w) €
0} /{w € Q : Ulw) # 0}) = 0is in ¢, for (9.15) we take B = P(S) € S, so that
PHw € Q: U(w) € P(S)}/{w € Q: U(w) #£ 0}) = 1is in ¢, for (9.16) the set ¢
contains bely(0) = 0 and for (9.17) ¢ contains bel;(S) = 1. For all the variants of
plausibility functions an analogous consideration obviously holds as well.

The following assertion proves that all the four generalizations of belief and plau-
sibility functions agree with their original variants bely; and pl;;, supposing that this
original variant is defined.

Theorem 9.2. For each T' C S,

bely 4 (U,8)(T) < bel (U, S)(T), (9.19)
Pl (U, 8)(T) = pL (U, S)(T), (9.20)
bel™ (U, 8) (T) > bel™ (U, S)(T), (9.21)
pI™(U,8)(T) < pIt(U,8)(T) (9.22)



If T is S-regular, then

beloy (U, S)(T) = bel (U,8)(T) = bel*(U,S)(T) = (9.23)
bel*+(U,S) (T') = bely(T),

if S —1T is S-regular, then

Pl (U.S)(T) = pl (U.8)(T)=pI"(U,S)(T) = (9.24)

= pI™(U.8)(T) = ply(T). O

Proof. To abbreviate our notation, we shall omit the parameters U and S in functions
defined by (9.14)—(9.18), if no misunderstating menaces. Let T C S, let op = {B :
BeS,BCPT)—{0}},let R C T be such that bely(R) = P({w € Q : U(w) €
P(R)—{0}}/{w € Q: U(w) # 0}) is defined. Then P(R)—{0} € S and R C T implies
that P(R) — {0} C P(T) — {0}, hence, P(T) — {0} € or. It follows immediately that

bel,(T) = sup{P{w e Q:U(w) e P(R)—{0}}/ (9.25)
{weQ:Uw)£0}):RCT} <
< sup{P{w e Q:U(w) e B}{w e Q:U(w) #0}): B € or}

= bel (T).

The inequality pl, (7') < pl, (T) follows immediately from (9.18) and (9.27). (9.21)
and (9.22) can be proved in an analogous way, replacing dually sup by inf, C by D,
and < by >.

Let T be S-regular, so that P(T') € § and P(T) — {l}} € S. Probability measure
is monotonous with respect to the set inclusion, so that By, B, € S, By C B,, yields
that

PHwe:U(w) e Bi}/{weQ:U(w) £0}) < (9.26)
< PHwe:Uw) € By} {w e Q: U(w) £ 0})
holds. Consequently, for each B € 7,
PlweQ:U(w)eB}/{we:Uw)#£01}) < (9.27)

< Plwe:Uw)e P(T)—{0}}/{we Q:U(w) #£ 0}) = bely(T),
so that, as P(T) — {0} € 7 holds,

bel (T) = sup{P{weQ:U(w)eB}/{weQ:U(w)#£0}):B € er}=9.28)
= be]U(T)

In a similar way:

P{weQ:U(w)eP(R)—{0}}/{we Q:U(w)

# 0}
PHweQ:U(w)eP(T)—{0}}/{w e Q: U(w) £ 0}
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for each S-regular R C T' C 5, so that

bel, . (T) = sup{bely(R): RCT C S, Ris S-regular} = (9.31)
= be]U(T)
The proof for bel™(T") and bel**(T') is the same up to the dual replacements introduced

above. Applying (9.23) to the subset S —T C 5, (9.24) trivially follows. The assertion
is proved. a

In what follows, we shall state and prove some inequalities expressing super-additivity
or sub-additivity of various generalizations of belief and plausibility functions. The de-
gree in which these inequalities agree with the inequalities holding for the original
belief and plausibility functions, supposing that the latest ones are defined, will serve
as an argument when choosing which among the generalizations in question is the most
favourable one. Namely, in the next theorem we shall investigate the “lower” or “inner”
generalizations bel,, bel, ., pl , and pl___.

Theorem 9.3. For each T}, Ty, C S, Ty N Ty = (), the inequality
bel (U,8) (T1) + bel (U, S) (T3) < bel(U,S) (11 U T3) (9.32)
holds. If, moreover, T, Ty and Ty U T are S-regular, then the inequality
bely(T1) + bely(Tz) < bely(Ty U Ty) (9.33)
holds. For each T3, 15 C S the inequalities

pLy(U,S)(1y) + pl (U, S) (13)
pli (U, S) (Th) + pl (U, S) (13)

pl (U, S) (T, U Ty), (9.34)

>
> pl,, (U,8) (T, UTy) (9.35)

hold. If, moreover, S — T} and S — T are S-regular, then the inequality
ply(Th) + ply(T2) = ply(T1 U Ty) (9.36)

holds. O

Proof. Parameters U, S are omitted as in the proof of Theorem 9.2; to abbreviate our
notation more substantially we shall denote by P? the conditional probability measure
defined by P and by the condition {w € Q : U(w) # 0}. Hence, we shall write P?(A)
instead of P(A/{w € Q:U(w) # 0}) for each A C Q, A € A.

Let Ty, Ty C S, Ty N Ty = 0, set, for both 7 = 1,2

pr={P{weQ:Uw)eB}):BeS BCPT)-{I}}, (9.37)

so that bely(T;) = supy; for both ¢« = 1,2. As we have already proved, ¢; # 0, i =
1,2, and we can choose a1 € 1, as € wy. Hence, there exist By, By € S such

that B; C P(T;) — {0} and P’({w € Q : U(w) € B;}) = a; for i = 1,2. But,
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P(R1) NP(Ry) = P(Ry N Ry) for each Ry, Ry C S, so that Ty N1y = ) implies that
P(T\AT,) = P(T)NP(Ty) = P(B) = {0}, consequently, (P(Ty)—{0})n(P(Ls)—{0)) =
0* (let us recall that §* denotes the empty subset of P(S) or: in P(P(S))). So, B; C S
and B; C P(T;) — {0}, i = 1,2, yields that By U By C S and By U By = 0%, hence,

PPUweQ:Uw) eBUByY) = (9.38)
= Pl{oeQ:UWw) eB )+ P {weQ:UWw) e By)) =as+a.
So, setting
pa={P'({weQ:Uw) eBY):BeS, BCPTUT) - {}}, (9.39)

we obtain immediately, that bely (Ty U Ty) = sup s, and a1 + a2 € ¢3. For each ¢ >0
there are a; > sup ; — (£/2), a; € ¢;, ¢ = 1,2, so that ay + ay > (sup 1 +supp2) — ¢
and ay + a3 € 3. Consequently,

bel(Ty U Ty) = sup @3 > sup 1 + sup g = bel(T1) + bely (1), (9.40)

and (9.32) is proved. If, moreover, Ty, Ty, and Ty U Ty are S-regular, then, due to
Theorem 9.2, bel, (T;) = bely(T1), ¢ = 1,2, and bel (11 UT,) = bely (11 UTy), so that
(9.32) immediately follows.

For the case of plausibility functions, let us begin with the case when pl;; is defined.
Let Ry, Ry be any S-regular subsets of 5. Then R; N Ry is S-regular as well, as
P(R;) € S, ¢+ = 1,2, implies that P(R; N Ry) = P(R1) N P(R2) € S. Then, P(Ry) —
P(RiNRy), P(R2)—P(R1N Rz), and P(R1N Ry) are mutually disjoint subsets of P(.5)
and P(R; N Ry) C P(R;) holds for both ¢ = 1,2, so that

1>P' ({weQ:Uw)
+P ({we: Uw)
+P"({we Q: U(w)
= PPUwoeQ:Uw) ePR)})—P ({weQ:Uw) e P(RNRyY}) +
+PP{weQ:Uw) e P(R)Y) =P’ ({w e Q:U(w) € P(Ry N Ry)}) +
+P"({weQ:Uw) e P(RiNRy)}) =
= bely(Ry) + bely(Rz) — bely(R1 N Ry).

P(R1)—P(RiNR)})+ (9.41)
P(Ry) — P(RiN Ry)})+
P(R1)NP(R2)}) =

€
€
€
(

w

For T; = S — R;, © = 1,2, we obtain that

bely (S — Ty) + bely (S —Ty) — bely((S —Ty) N (S = 1Ty)) = (9.42)
== belU(S — Tl) + belU(S — TQ) — belU((S — (Tl U TQ)) S 1,
consequently,
belU(S — Tl) + belU(S — TQ) -2 S belU((S — T1 U TQ)) — 1, (943)

(1 = bely(S —T1)) + (1 — bely(S —Ty)) > 1 — bely (S — (Th UTy)), (9.44)
so that (9.18) implies that

ply(Ty) + ply(13) = ply (T U T3) (9.45)
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and (9.36) is proved.

For arbitrary Ry, Ry C S, take By € S, By C P(Ry) — {0}, and take By € S, By C
P(Ry) — {0}, then, setting Bs = By N By, we obtain immediately that B; € S and
Bs C (P(R1)NP(Ry))— {0} =P(R N Ry) — {0}. Moreover,

1>P{weQ:Uw)eBUBY) = (9.46)
= P'{weQ:U(w) e (B —Bs)U(By — Bs) UBs})
= PlUoeQ:Uw) eB ) =P ({weQ:Uw)eBs)) +
+PPweQ:UWw)eBy)) =P ({weQ:Uw) e Bs})+
—|—P®({CUEQ§U(CU)EB3}):
= PloeQ:Uw) eB)+P"{weQ:UWw)eBy)}) —
—PPweQ:Uw) eBNBy}) >
PlUoeQ:Uw)eB})+ P ({weQ:Uw) e By)) -
—sup{Pw({wEQ:U(w)EB}):BES,BCP(R1QRQ)—{®}}.

Y

Being valid for each By, By possessing the properties in question, (9.46) holds also for
the supremum value, hence,

sup {PP({w e Q:Ulw) € BY): BE S, BCP(R) — {0}} + (9.47)
+sup { P! ({w € Q: U(w) € B}): Be S, BCP(Ry) — {0}} -
—sup {P' ({w € Q: U(w) € B}): BeS, BCP(RiNRy)— {0}} =
= bel (By) + bel (Ry) — bel (1 N Ry) < 1

holds. Consequently,
bely (S — Th) + bely (S — Ty) — bel (S — (T, UTy)) < 1 (9.48)

and we obtain, analogously to (9.43) and (9.44), that
pl (Ty) + pl (T3) = pl, (T1 U T3) (9.49)

and (9.34) is proved.

Finally, for pl | the proof will be similar. Let I;, Ry C S be arbitrary, let I} C It
be such that bely(Hy) is defined, let Hy C Ry be such that bely(Hs) is defined. Then
P(H;) € S for both i = 1,2, Hi N Hy C Ry N Ry, and P(Hy N Hy) = P(Hy) NP(H>)
as well as P(Hy; N Hy) — {0} are in S. Consequently,

1> P ({weQ:Uw)eP(H)UPH,)—{0}}) = (9.50)
= P'({weQ:U(w) e P(H) —{0}}) +
+P’weQ:Uw) e P(Hy) —{0}}) —
—P’{weQ:Uw) e P(H N Hy)—{0}})>
> P'({weQ:U(w) e P(Hy) —{0}}) +
+P’weQ:Uw) e P(Hy) —{0}}) —
—sup { P’ ({w € Q: U(w) € P(H) — {0}}) : P(H) €S, H C By N Ry}
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Applying the supremum operation to the first two summands we obtain that
sup {PP({w € Q: Uw) € PUH) — {0}}): P(H) € S, H C Ry} + (9.51)
+sup { PP (fw € Q: Uw) € P(H) = {0}}) : P(H) €S, H C Ry —
—sup {P* ({w € Q: U(w) € P(H) — {0}}) : P(H) €S, H C By N Ry} =
= sup{bely(H): HC R} +sup{bely(H): H C Ry} —

—sup {bely(H): HC RiN Ry} =
== b€]++(R1) + be]_|__|_(R2) — b€1_|__|_(R1 N Rz) S 1.

In the same way as above we obtain that

pli(Th) + ply (12) = pl (Ty U T3). (9.52)
Hence, (9.35) and Theorem 9.3 as a whole are proved. O

It is perhaps worth mentioning explicitly, that an analogy of (9.32) for bel,; does
not hold. Let () # Ty, Ty C S be such that Ty N Ty, = ), let S be the minimal o-field in
P(P(S)) containing P(T1) and P(T), so that bely(Ty) and bely(T,) are defined, let
0 < bely(T;) for both : = 1,2. Then S is just the set of all finite unions of nonempty
sets from Sy (including the empty union which defines the empty set %), where

So = {anbne:a,b, ce{PD),P(S)—P), P(T1), P(S)—P(T1) (9.53)
P(Tz), P(S)—P(Tz)}.

Or, evidently, a countable union of finite unions of nonempty sets from Sy reduces
to a finite union of nonempty sets from &y, and a complement of a finite union B
of nonempty sets from Sy can be defined by the finite union of just those nonempty
elements of Sy which do not occur in the finite union B. Let us prove that it T' C
S, T'# Sissuch that T'# Ty, T # Ty, and Ty C T or Ty C T, then P(T') does not
belong to S.

Suppose that S # T D Ty, T # Ty (hence, T # Ty), as the case when T D
Ty, T # Ty is quite analogous. So, P(S) # P(T) D P(Ty), P(T) # P(11), hence, if
P(T) e S, then P(T)=P(Th)U B for B=P(T)—P(Ty) = P(T)n (P(S)—P(T1)),
so that B € §. An exhaustive examination of all sets in & proves that the only sets
in & which are proper subsets of P(5) and which contain P(T}) as their own proper
subset are P(T1) U P(Tz), P(T1) U (P(S) — P(1s)), and P(Ty) U ((P(S) — P(T1)) N
(P(S)—=P(Tz))) = (P(S)—=P(1T2)) UP(B). The equality P(T) = P(T1) UP(Tz) cannot
hold for no matter which 7" C S, as Ty, Ty € P(T') implies that Ty U Ty € P(T'), but
Ty, Ty € P(T1) U P(Tz) does not imply Ty U Ty € P(Ty) U P(T3) for Ty, Ty # (. The
equalities P(T') = P(T1) U (P(S) — P(13)) or P(T) = (P(S)— P(13)) UP(D) cannot
hold as well, as S ¢ P(T) for S # T, but S € P(S) —P(1z), as Ty # S.

Consequently, Ty and T5 are the only proper subsets of S for which, with respect
to the given S, bely is defined, so that

bel, (U, S)(Th UTy) = sup{bely(T): T C Ty UT,} = (9.54)
= max{bely(T1), bely(Ty)} < bel;(T1) + bel 4 (T3),
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as beliy(T;) > 0 holds for both i = 1,2. Hence, an analogy of (9.32) for bel,, does
not hold.

As far as the approximations of belief and plausibility functions indexed by upper
crosses are concerned, we can easily prove that no of the relations (9.32),(9.34), and

(9.35) hold when bel; is replaced by bel™, pl. by pI*, and beli; by pI**. The
counter-examples can be obtained as follows.

Let 0 #£ Ty, Ty C S be such that TyNTy = B, let S; = {0*, P(0), P(S), P(S)—P(0)}
be the minimal o-field in P(P(S)) generated by P(0). Hence, setting 75 = Ty U Ty,
for each i = 1,2,3 the only sets in & containing P(7;) — P(0) = P(T;) — {0} are
P(S)—P(B) and P(S), so that, again for each i =1,2,3,

belt(U,8)(T;) = (9.55)
= inf {P’{weQ:U(w)eB}):BeS, BOPI)—{0}} =
= PP({oe: U eP(s)—{0}}) =1
so that belt(U,81) (Ty) + bel™ (U, S) (Ty) = 1+1=2> 1= belt(U,8) (T) UTy), and
an assertion analogous to (9.32) does not hold.

Let ) # Ry, Ry C S, let R= Ry N Ry, let R# Ry, R+# Ry, let S be the minimal

o-field in P(P(S)) generated by P() and P(R), hence
Sy = {07, P0), P(R), P(S) — P(B), P(S) = P(R), (9.56)
P(R) = P(0), (P(S) = P(R)) UP(D)},
as can be easily verified checking that P(5) = A € S, and AU B € S, holds for each
A, B € 82. Let

0< P {weQ:Uw) ePR) —PH})=a<1 (9.57)

hold, consequently, P(R) — P() # 0*, so that R = (). Then, for both ¢ = 1,2, the only
sets in Sy containing P(Ry) — {0} are P(S) — {0} and P(S5), so that

belt (U, Sy) (R;) = (9.58)
= inf{P{weQ:Uw)eB}):BeS, BOPR)—{0}}=
= P'{weQ:Uw)eP(S)—PO)}) =1.

However,

bel*(U,8,) (R) = bel* (U, S;) (R N Ry) = (9.59)
= inf {P({w €Q:U(w) eB}):BES, BDOPR)—{I}} =
= PP{woeQ:Uw)eP(R)—PD)}) = aq,

as P(R) = P(0) € Sy. Consequently,

b€]+(U, 82) (Rl) —|— b€]+(U, 82) (RQ) - b€]+(U, 82) (Rl N Rz) = (960)
= 14+1—-a>1.
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Using the same o-field Sy we can easily see that the only 7" C S for which bely(T) is
defined are T'=0, T = R, N Ry, and T = S. So, for both 1 = 1,2,

be]++(U, S2) (R;) = inf{bely(H): R, C H C S} = bely(5) =1, (9.61)
but

bel** (U, S,) (Ry N Ry) = (9.62)
= mf{be]U(H) . Rl N RQ C H C S}} = be]U(R) =
P'{weQ:Uw)ePR) —PO)}) = a,

so that, again,
bel ™ (U, S;) (Ry) + bel™™ (U, Sy) (Ry) — beltt(U,8,) (R N Ry) > 1 (9.63)

holds. Using the same way of reasoning and computation as above, when proving (9.34)

and (9.35), and setting R; = 5 — T} in (9.60), we obtain that

bel* (U, 83) (S — Th) + bel* (U, 82) (S — Ty) — (9.64)
—belH(U,8,) (S —Ty) N (S = Ty)) > 1,

(1 — belt(U,85) (S —T1)) + (1 — bel™ (U, 8,) (S — Ty)) <
< 1= bel™(U,8) (5 — (Ty UTy)),

hence,

pIH(U,8) (Ty) + pI* (U, 83) (Ty) < pI*(U,S2) (Ty U T). (9.65)

Replacing + by ++ in (9.64) we obtain an inequality for pI™™ analogous to (9.65), so
that neither (9.34) for pI* nor (9.35) for pI** hold.

Combining together and reconsidering the results of the last chapter we can see that
among the four alternatives how to generalize belief and plausibility functions for those
subsets of S which are not S-regular, only the function bel, conserves the property
(9.32) typical for the original belief function bely. In order to support our idea to
consider bel; and pl, as only reasonable extensions of bely and ply; to whole P(.5), we
shall investigate, in the rest of this chapter, the dependence of belief and plausibility
functions, and their generalizations defined above, on the o-field S of subsets of P(.5)
taken as discernible sets of values of the set-valued random variable U.

Theorem 9.4. Let & C Sy C P(P(9)) be two nonempty o-fields of subsets of P(.9),
let U : (Q, A, P) — (P(S5), S3) be a set-valued Sz-measurable random variable. Then,
for each T'C 5,

bel (U, 8)(T) < bely(U,S,)(T), (9.66)
bel*(U,8)(T) > bel*(U,S,)(T), (9.67)
bel (U, S)(T) < beliy(U,S)(T), (9.68)
bel™ (U, S)(T) > bel™(U,8,)(T), (9.69)
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PLUS)(T) > pl,(U.8)(T), (9.70)
pI (U, 8)(T) < pIt(U,S,)(T), (9.71)
PLp(UsS)(T) > ply,(U.8) (), (9.72)
pItH (U, 8)(T) < pItt(U,8,)(T). (9.73)
If T is Sy-regular, then

be]U751 (T) == be]U752(T), (974)

if S —1T is Sy-regular, then
plus, (T) = ply s, (T). (9.75)

Proof. As can be easily seen, if U is an Sy-measurable mapping which takes ) into
P(S), then U is also S;-measurable, moreover, §; C Sy implies that each S;-regular
subset of S is also Sy-regular. Define, for each ¢« = 1,2, the following subsets of the
unit interval (0, 1) of real numbers:

prill) = {P{weQ:Uw) e A}): A€S, ACP(T)—{0}}, (9.76)
pHT) = {P{we:Uw) e A}): AeS, ADP(T)—{0}}. (9.77)

As {0, P(S)} C & C S: holds, all the four sets are nonempty and c,o_|_71(T) C pya(T),
p1 (1) C 3 (T), so that

bel, (U, 51)(T) = sup@ya(T) Ssuppyo(T) = bel (U, ) (T),  (9.78)

bel™ (U, S))(T) = infef(T)>inf @ (T) = bel™ (U,S,) (T), (9.79)

hence, (9.66) and (9.67) hold. Similarly, set
Vi (T) = {bely(R): RCT, P(R) €S}, (9.80)
YH(T) = {bely(R): T C RC S, P(R) €S}, (9.81)

for both ¢ = 1,2. Then, again, all the four sets are nonempty, ¢4 1(T) C ¥4 2(T') and
i (T) C ¥5F (T) hold, consequently
bel (U, S1) (1) = suptya(T) < supipyo(T) = beliy (U, S2) (1), (9.82)
beltT(U,8,) (T) = inff (T) > infopF (T) = bel™ (U, S,) (T), (9.83)
so that (9.68) and (9.69) hold as well.
For j =+ or j = ++,
pLi(U,81) (1) =1 = bel(U,81) (5 —=T) < (9.84)
< 1= be]](Uv 82) (S - T) = p]j(Uv 82) (T)v
when applying (9.78) or (9.82) to the subset S — T of S, and
pl(U,S)(T) =1 — bel (U,8) (S —=T) < (9.85)
< 1- be]j(Uv 82) (S - T) = p]j(Uv 82) (T)v
applying (9.79) or (9.83) instead of (9.78) or (9.82). Hence, (9.70),(9.71),(9.72), and
(9.73) are proved. If T'is Sy-regular, it is also Sy-regular, i.e. P(T) € &1 C Sa, so that
belys, (T) = P(D({w €N:U(w) e P(T)}) = belys,(T), if S — T is S;-regular, then
obviously ply;s (T') = plyrs,(T'), hence, (9.74),(9.75), and Theorem 9.4 as a whole are
proved. a
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10 Belief and Plausibility Functions Defined by
Boolean Combinations of Set—Valued Random
Variables

As we remember, the role of one of the basic building stones in our definition of
belief and plausibility functions over infinite sets S was played by a set-valued random
variable U, defined on the abstract probability space (€, A, P) and taking its values in
a measurable space (P(S), §) over the power-set P(5) of all subsets of S. Having at
hand two or more such set-valued random variables, an immediate idea arises to define
new set-valued random variables, applying boolean set-theoretical operations to the
values of the original variables. Namely, let ¢/ be a nonempty set of random variables
defined on (2, A, P) and taking their values in (P(5), S), let U € U. We may define
set-valued mappings NU, U and S — U setting, for each w € €2,

() (w) = NMUw): U elU}, (10.1)
(U) (w) = UlU(w) - U e U},
(S=U)(w) = S—=U(w).
Consequently, for each 4y C P(5), Ay € S,
{weQ:(S-U)(w)e A} = {weQ:5-U(w) € A}, (10.2)
{we:(MU)(w) € A} = {weQ: Mg Ulw) € Ao}, (10.3)
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{weQ: (U)(w) € A} = {weQ:Upg Ulw) € Ao}, (10.4)

so that these subsets of () need not be, in general, in A, hence, NU, YU and S — U
need not be, in general, random variables over (0, A, P). For U = {U;,Us}, (U =
{U1,Us, ..., U,}, resp.) we write Uy N Uy and Uy UU, (UyNU;N---NU,, Uy UU U
U U, U, U, N2, U, resp.) instead of MU and Y.

Definition 10.1. Random variable U : (2, A4, P) — (P(95), S) is called weakly con-
sistent, if the empty subset () of S'is S-regular with respect to U and if P ({w € Q : U(w) = 0})
= 0. U 1s called strictly consistent, if

N{A:ACS {A} €S, P{weQ:U(w)=A}) >0} £, (10.5)

i.e. if there exists sqg € S such that sg € A for each A C S possessing the property
that P({w € Q : U(w) = A}) is defined and positive. Let U be a nonempty system
of random variables defined on (2, A, P) and taking their values in (P(S), S). Then
random variables in U are called mutually weakly consistent, if (} is S-regular with
respect to U, i.e.,if {w € Q: N, U(w) =0} € A, and the probability of this subset
of 1 equals 0. Random variables in U/ are called mutually strictly consistent, if

Nvew MA:AC S {A} €S, P({w e Q:U(w) = A}) > 0}] # 0, (10.6)
i.e., if there exists so € S such that sqg € A holds for each A C 5, {A} € §, possessing
the property that P({w €  : U(w) = A}) is positive for at least one U € U. O

Definition 10.2. Let U be as in Definition 10.1. Random variables in U are called
mutually statistically independent, if for each n finite, n < card U, each {Uy, U, ..., U,} €
U, and each {Bq,B,,...,B,} C S, the equality

PO fweQ:Uw)eB}) =]]_ P{weQ:Ulw) € B}) (10.7)
holds. O

In what follows, we shall investigate, how belief and plausibility functions defined by
composed set-valued random variables can be expressed through belief and plausibility
functions defined by the original set-valued random variables.

Theorem 10.1. Let 4 be a nonempty system of mutually strictly consistent and
mutually statistically independent set-valued random variables defined on (9, A, P)
and taking their values in (P(5), S), let T C S be S-regular with respect to each
U € U as well as with respect to |JUy for each finite subset Uy C U, let each such | JUy
be a random variable. Then, for each nonempty and finite Uy C U,

bel, (T) = bel (1) = [Ty, belr(T). (10.8)
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Proof. Let T C S satisfy the conditions of Theorem 10,1, let Uy = {U;,Us, ..., U, } C
U. Then

bely, (T) = be]U:;lUi(T) = (10.9)
= Ploe:0# UL Uilw) CTH{w e Q:0# UL, Uilw)}).

Here, for each U € U,
P({weQ:Upe Ulw) = 0}) < P({w € Q: Uw) = 0}) =0, (10.10)

as in the opposite case
D#£{A:ACS{A}CS, PH{weQ:Uw)=A})>0}, (10.11)

but this contradicts (10.5). Hence, the conditioning event in (10.8) possesses the prob-
ability one and can be avoided from further considerations and computations. So,

belyy(T) = P({weQ: U, Ulw) CT}) = (10.12)
= PNL{we:Ui(w)CT}),

as J_, Ui(w) C T holds iff U;(w) C T holds for each ¢ < n. Random variables in ¢ are
supposed to be mutually statistically independent, so that, taking B; = P(T') for each
¢ < n and applying Definition 10.2, we obtain that

bel oo (T) = P (Uizifw € Q: Uiw) C T}) = (10.13)
= P(ULifw e Q: Uiw) € P(1)}) =
= I, PUw € Q: Uiw) e PT)} /{w € Q: Ui(w) £ 0}) =
= I, PUweQ:0#Ui(w) C T}/ {w e Q: Uilw) £ 0}) =
= II._, belu.(T) = [, belo(T),

as T is supposed to be S-regular for each U € U and P({w € Q:U(w) £ 0}) =1
follows from (10.10). The assertion is proved. O

Unfortunately, (10.8) does not hold for the approximation bely of the belief function
bel, as the following example demonstrates.

Let ) =# Ay, Ay C S be two subsets of S such that A; # AU Ay, Ay # AjUA, #
S. Let § = {Q)*v {Q)}v {Al U A2}7 {Q)v AU A2}7 ,P(S) = {Q)v AU A2}7 ,P(S) - {Al U
Ay}, P(S)—{0}, P(S)} be asubset of P(P(S)), here §* is the empty subset of P(,5) and
() is the empty subset of S. As can be easily verified, for each By, By € S, P(S)—B; and
B1UB; are in 8, so that S is a field and, due to its finiteness, also a o-field in P(P(5)).
Let Uy, Uy be two mappings defined on the probability space (2, A, P), taking their
values in P(5) and such that U;(w) = A, for each w € Q and for both ¢ = 1, 2. Then,
foreach Be S, {weN:Uj(w)eB=0if A, € B,and {w € Q: U(w) € B} =0, if
A; ¢ B, here () denotes the empty subset of Q. As {0, Q} C A, both Uy, U, are random

variables.
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Let By, By € S. Then
P({w - Q Ul(w) - Bl, Uz(w) - BQ}) =1 (1014)
P{weQ :Ui(w) € By}) P({w € Q: Uy(w) € By})
iff Ay € By and A, € By, otherwise

P{weQ:U(w) € By, Uyw) € Ba}) =0 (10.15)
P{weQ :Ui(w) € By}) P({w € Q: Usy(w) € By},

so that the random variables Uy, U; are mutually statistically independent.

For the mapping Uy U Uy : @ — P(S) we obviously have (U; U Us) (w) = Uy(w) U
Uy(w) = A1 U A; for each w € Q, so that U; U U, is a random variable taking (€2, A, P)
into (P(5), S).

According to the definition of bel,, for both : =1, 2,

bel; (U;,S) (A1 U Ay) = (10.16)
= sup{P({w e N:Ujw)eB}/{weQ:Uw)#0})
BeS, BCPAUA)—{0}}.

As Ay U Ay # S, the only sets in S, which are subsets of P(A; U Az) — {0} are §* and
{A; U Ay}. However,

PHweQ:Uj(w)el} /[{w e : Ufw)£0})=0 (10.17)
(trivially), and

PHweQ:Uj(w)e {AUA}/ {we :Ufw)#£0}) = (10.18)
PHweN:Uj(w)=A1UA})=0

for both ¢+ =1, 2, so that
b€1_|_(U1,S) (Al U AQ) == b€1_|_(U2,S) (Al U AQ) =0. (1019)
However, again by the definition of bel,,

bel (U3 U U, §)(A1U Ag) = (10.20)
= sup{P{w eQ: (U1 Uls)(w) €B}/{weQ: (U1 UU;) (w) #0}):
BeS BCPAUAy)—{0}}.

As above, the only subsets of P(A; U Ay) — {0}, which are in S, are §* and {A; U Ay}.

Now,

PH{weQ: (U1 Ul)(w) € {A1UAy} /) {we Q: (U1 UlU,)(w) £ 0})(F0.21)
P{weQ:Uj(w)Uly(w) =AU A}) =1,

so that b€1_|_(U1 U UQ, ) (Al U AQ) =1 7£ b€1_|_(U1, S) (Al U AQ) . b€1_|_(U2,S) (Al U AQ)
Hence, (10.8) does not hold for bel,.
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An explicit and easy to process expression for bel~, can be obtained when S5
and U = {Uy,Us,...,U,} are both finite sets, S = P(P(S)), and random variables
Uy, Us, ..., U, are mutually statistically independent. Under these conditions, P({w €
Q:U(w) = A}) = PH{w € Q : Uj(w) € {A}}) is defined for each A C S and each
1 <1 < n. Moreover, for each Ay, Ay,..., A, C S5,

P{weQ:Uj(w)=A4, Ux(w) = Ay,....U,(w) =
= P{weQ:Ui(w) e {A)}, Uy(w) € {Ay},..., Up(w
= P(NL{w e Q:Uilw) e {Ai}}) =
= [I_, P{we:Uiw) € {A}}).

Set, for each T, 0 £ T C S, P*(T) C (P(S))" in such a way that

A)) = (10.22)
) € {A}n}) =

PUTY = {(Cy,Cyy...,C) :CiC S i=1,2,..,n, 0 £, C; C T, (10.23)
then, by the definition of bel and due to the fact that S and P(S5) are finite,
P{we: (N Ui) (w) € P(T) — {0}})
belyn (1) = = 10.24
N = Feeaan iy @ers oy - 1Y

Yaermy—y P {w € X (NL,) (w) = A}) _

Yaeris)—(y P ({w € Q1 (ML) (w) = A})

Z(crcnyerony iz P ({w € Q1 Us(w) = Ci}) _

..... cnyerogs) Llicy P ({w € @2 Uiw) = Ci})

> (Crrncyero(ry iz mi(Ch)

> (CrCnyepts) iy mi(C)

where m; is the basic probability assignment defined by, or related to, the random
variable U;, i.e., m;(A) = P({w € Q : U;(w) = A}) for each A C S and each 1 <

i < n. If random variables Uy, Us, ..., U, are mutually weakly consistent, then (10.24)
obviously reduces to

belye v (1) =X o e epor) 1, mi(Cy). (10.25)

Both the formulas (10.24) and (10.25) are nothing else than the well-known and
above also discussed and analyzed Dempster combination rule with the only difference

concerning the notation of the resulting belief functions. Hence, under the conditions
imposed above to random variables Uy, U,, ..., U,, the relation

be]U1 D be]U2 D---D be]Un == be]ﬂﬁ_l U; (1026)

holds. In other words said, the belief function, resulting when applying Dempster com-
bination rule to belief functions defined by statistically independent set-valued random
variables, is also defined by the intersection of the particular random variables. The
dual relation between bell J7_; U; and the dual Dempster combination rule & was inves-
tigated in Chapter 6 above or in [28]. As the conditional belief functions are defined
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as a particular case of Dempster combination rule, they can be also obtained when
applying boolean operations to set-valued random variables. Consequently, also the
intuitive interpretations of belief functions corresponding to various boolean composi-
tions of particular set-valued random variables can be identified with those considered
when analyzing the Dempster combination rule and its dual variant.
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