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Abstract

In this report we suggest a modification of preconditioned algorithms for the quadratic
programming problem which arises from the discretization of contact problem. This
approach takes fully the advantage the property of corresponding projection so that
this projection itself is not affected by the preconditioning matrix. The performance of
the proposed method is shown on three geomechanical models, the behaviour of which
can be used in further simulations of high level radioactive waste repositories. Firstly,
the mathematical-geodynamical model of Himalaya is analysed, as it may give the
initial information for other models, i.e. service line tunnels for hydroelectric power
stations situated in rock massifs with active deep faults and the model of open pit
cooper mine.
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1 Introduction

We show the behaviour of some preconditioners on geodynamical models which can be
simulated as contact elasticity problems. To ensure the unique solution for models, the
boundary conditions and external loads have to be imposed properly. Some conditions
concerning this requirement are given in Section 2. In Section 3, a solution algorithm
is mentioned. The stress is laid on the preconditioning aspects. Section 4 presents
the numerical results. The description of models, statistics, pictures and graphs are
shown. The creation and convergence properties of a preconditioning matrix are quite
surprising on contrary to the initial expectations.

2 Problem definition

Let © and 0 denote the region and the boundary of the region, respectively. We

s
suppose that the region consists of S bodies, Q = |J QF. Let
k=1

=T, ul,uT"url,,1<k<I<S.

E ok I E ok I .
Let vy = vin;, v, = v;in; vy = v, v, = vit;, where n; are the components of unit

outward normal to I'*, n;; = 0. We introduce the set of virtual displacements by

V{veH'Q)Pv=uy onl,, v,=0 only}, (2.1)
where uy € [H*(Q)]?, and the set of all admissible displacements by
K={veV|vh—vl <0 onlI*}. (2.2)

For simplicity we assume ug = 0 on I',. The transformation v. = w + ug is used for
the general case. Let the potential energy functional be of the following form

L(v) = Lo(v)+j(v), (2.3)
where |
Lo(v) = §A(V,V) — L(v), (2.4)
A, v) = /Q Ciitmes; (W) epmn (V) dx | (2.5)
L(V) :/QFZ'UZ'dX—I-/F Pﬂ)ids, (26)
j(v):/rklgkqvf—vﬂds and (2.7)

Fe [LX(QP, P e [LXT,)], g € [L=(TE)].



We suppose that there exists a constant ¢y > 0 such that
Cijkm (T )€ij€km > Co€ij€i; (2.8)
is valid for all sym. matrices ¢;; and almost everywhere in ). Furthermore, let
R={veV|31<I<Seiv)=0o0nQ }. (2.9)
We solve the problem: find u € K such that
Lu) < L(v) VveK. (2.10)
The necessary condition for the solution of (2.10) is given in the following theorem.

THEOREM 2.1. Let the solution (2.10) exist. Then —L(z)+ j(z) >0V z € KNR.
Proof: see e.g. [11]. O

The next theorem [5] gives a sufficient condition for (2.10).

THEOREM 2.2. Let —L(z) 4+ j(z) >0 Vz & KNR—{0}. Then there exists a
solution u of (2.10). If @ is another solution of (2.10), then u — 4 € R.

The last theorem shows the condition which ensures the uniqueness of the solution.
THEOREM 2.3. Let |L(z)| > j(z) Vz € VNR—{0}. Then there exists at most one
solution of (2.10).

Proof: We suppose that two solutions uy, uy exist. Then we can write

A(uj,up —uy) — L(ug —uy) + j(uy) — j(uy)
A(ug,uy —ug) — L(uy —uy) + j(uy) — j(uz)

0, (2.11)
(2.12)

AVARAY

From (2.11) and (2.12) it follows A(u; — uz,uy —uz) < 0 therefore using (2.8),
u; —uy € R. Let uz = uy + z for some z € R. From the equality

EO(UQ — Z) = ﬁo(ul) = ﬁo(ul + Z) (213)
and from the convexity of j(v), we deduce
dzeVNR: |Lz)<j(z), (2.14)

which is the contradiction to the assumption. O

3 Algorithms

3.1 Solution strategy

In the discrete form, the problem (2.10) leads to the problem :
Find z € K,  such that

flz) < fly) Vye Ky (3.1)
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where

fly) =1y Cy —yTd + sup (yTGTp),
Hi|S

K;={yc RV|Ay <0}.

The global stiffness matrix C' is of the type N x N, block diagonal. Every block of it
is sparse, symmetric, positive semidefinite matrix and corresponds to just one body of
the model. In the coercive case C' is positive definite, in the semi-coercive case [6, 11],
it is positive semidefinite. The constraint matrix A is of the type M x N, M < N; we
assume its rows to be linearly independent. The friction matrix G is of type P x N.

THEOREM 3.1.1. Let 27d <0 Vz € Ker C — {0}, Az < 0. Then there exists a
solution of the problem (3.1). If & is another solution of (3.1), then & = « + =z for
some z € Ker C.

Proof: see [5]. O

Since the functional f(y) is nondifferentiable, it is convenient to transform the
problem (3.1) to a saddle point problem. By these means, the problem is in certain
sense “linearized”. Two saddle point formulations are available. We will use the first
one in this report only. The latter can lead to more optimal method in certain cases
[9, 10], however, it is not very robust.

Let us define
L={pec RV ||w|<1,i=1,..., P}

and

fly.p) = 39" Cy —yTd+y" G
Then we consider the problem:

Find (z,)) € K3 x L such that

Pl p) < fla,X) < fy,A) V(y,p) € Kax L. (3.2)
The Uzawa algorithm [3, 4, 8] is used for (3.2).

3.2 The Preconditioning

The minimization part of the Uzawa algorithm is the most expensive step. We use,
similarly to [1, 7], the Preconditioned Conjugate Projected Gradient Method for solv-
ing this part. We assume the form W = EET, C = W + R, F lower triangular, for
the preconditioning matrix W. A Diagonal, SOR and incomplete factorization pre-
conditioning matrices are used. Although in essence our models do not seem to be
very different, an interesting behaviour occurs in the incomplete factorization. For the
first model, the incomplete factorization is not successfull, even not the version with
the diagonal modification [7]. We have to use a similar idea to [2] before calculating
corresponding square roots to overcome this problem. Moreover, the factorization is
successfull for the third model which is created, unlike the first one, as (weakly) semi-
coercive. The problem of the efficient calculation of projected gradient is solved in
previous report [7]. We mention the final version of the algorithm only.



SUBROUTINE PCG —2(J',x, ET, )
r? = ' { from previous iteration }

gO == (] — PJ/)E_I(]— PJ/)TO

UO = —(]— PJ/)E_Tgo

for k=0,1,...

of = (g",g")/(v*, CvP)
k= min — @)
M (a;,0%)
IF (@ <o®) THEN
r = ¥ +akok
f'=r*¥4+aCv* { and return }
KELSE
o S Y
Rl = ¢k aFCuF
gk+1 = (] — PJ/)E_I(] — PJ/)Tk-H
BEFL = (gh+L gk 1) /(gF | gF)
vk-l—l — _(] o PJ/)E—Tgk-l—l _I_ ﬂk-l_lvk
ENDIF

e}

Comparing with original algorithms [7], we have to calculate the projection three
times during one iteration. This projection is, however, much simpler to calculate than
the projection appearing in those versions. It is obvious, that the version PC'G — 2 is
much more efficient concerning time aspect.

4 Results

Three models are analyzed in this section: The Subduction of Himalaya Plate, the Giri
Hydroelectric Project (service line tunnels for hydroelectric power stations) and the
model of cooper mine. The location of the last two models is determined by vertex 98
(Fig. 4.1) in the first model. The resulting displacement in this vertex within certain
time interval (we use b years) may serve as the boundary condition for the tunnel
and mine models. We use the Digital Visual Fortran 5.0 compiler for Windows95/NT
platform.

4.1 Subduction of Himalaya Plate
This model corresponds to Figures 4.1-4.10.
Material parameters: 27 regions with different material parameters.

Boundary conditions: Zero Dirichlet condition on all sides except the side 55 — 96
and the top side. Prescribed displacements on the side 96 — 55 which correspond
to the motion of the litospheric plate (0.3e4[m]) in given time interval (0.6e5
years). Contact boundaries: 98 — 17 — 14 and 55 — 17.
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Figure 4.1: Subduction of Himalaya plate - model
Discretization statistics: 487 nodes, 774 elements, 922 unknowns, 6 119 nonzero
entries in the stiffness matrix, 216 nonzero entries in the constraint matrix.

Convergence statistics: 916 iterations of the Uzawa algorithm, one CG iteration (in

CPU seconds): 4.44 (No P.), 4.51 (Diag.), 3.39 (SOR), 3.68 (ILL).

4.2 Giri Hydroelectric Project
This model corresponds to Figures 4.11-4.15.
Material parameters: 2 regions with different material parameters.

Boundary conditions: Prescribed displacements on vertical sides (8.0e—2[m/], 0.0e+
0[m]). Pressure 7.5e 4+ 6[Pa] on horizontal sides, caused by weight of the rock
cover. Contact boundaries: 14 —2 and 7 — 11.

Discretization statistics: 409 nodes, 677 elements, 738 unknowns, 4 983 nonzero
entries in the stiffness matrix, 56 nonzero entries in the constraint matrix.

Convergence statistics: 382 iterations of the Uzawa algorithm, one CG iteration (in

CPU seconds): 1.76 (No P.), 2.14 (Diag.), 1.54 (SOR), 1.42 (ILL).

4.3 Cooper Mine
This model corresponds to Figures 4.16-4.18.

Material parameters: 2 regions with different material parameters.
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Figure 4.2: Subduction of Himalaya plate - diagonal p. convergence

Boundary conditions: Prescribed displacements (8.0e — 2[m], 0.0e + 0[m]) on the
side 14 — 16. Pressure 3.34e + 4[Pa] on top sides (14 — 13 and 4 — 3). Contact
boundary: 16 — 9.

Discretization statistics: 410 nodes, 657 elements, 706 unknowns, 4 661 nonzero
entries in the stiffness matrix, 82 nonzero entries in the constraint matrix.

Convergence statistics: 4 627 iterations of the Uzawa algorithm, one CG iteration

(in CPU seconds): 1.32 (No P.), 1.64 (Diag.), 1.05 (SOR), 0.93 (ILL).
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Figure 4.3: Subduction of Himalaya plate - SOR p. convergence

Figure 4.4: Subduction of Himalaya plate - ILL p. convergence

Figure 4.5: Subduction of Himalaya plate - deformations

Figure 4.6: Subduction of Himalaya plate - deformations, detail

Figure 4.7: Subduction of Himalaya plate - horizontal stresss

Figure 4.8: Subduction of Himalaya plate - vertical stresses

Figure 4.9: Subd. of Himalaya plate - Displacements difference on contact b.

Figure 4.10: Subd. of Himalaya plate - Stresses on contact b.
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Figure 4.11: Giri Hydroelectric Project - model
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Figure 4.12: Giri Hydroelectric Project - SOR p. convergence
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Figure 4.13: Giri Hydroelectric Project - ILL p. convergence

Figure 4.14: Giri Hydroelectric Project - horizontal stresses

Figure 4.15: Giri Hydroelectric Project - vertical stresses

Figure 4.16: Cooper mine - model
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Figure 4.17: Cooper mine - SOR p. convergence
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Figure 4.18: Cooper mine - ILL p. convergence
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