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1 Introduction to the problem

We are interested in the problem of linear elasticity in composite materials. This
problem is needed to be solved in many various domains of human activity, for example
researching of geodynamical processes in the rock massive or medicine, modelling of
fractures etc.

First of all I am going to mention some basic principles and laws of the theory of
elasticity, and formulate the general problem of elasticity in the classical and weak form.
Next I will describe the method of homogenization of Hook’s elasticity coefficients,
which are characteristic for concrete material. In practice, the material is generally
nonhomogeneous. The destination of the homogenization method is to find the so
called homogenized (trough a certain average way) coefficients for this type of material.
For a numerical solving of homogenization is used the finite element method.

Finally T will show you some types of nonhomogeneous materials and results of
homogenization.



2 Formulation of the general problem of elasticity

2.1 Definition of the domain

Let Q C R2 be a domain with a Lipschitz-continuous boundary I' = I', UT, U R. T, is
a part of the boundary where the resultant shifting U is prescribed , on the I', surface
forces Pare given and R is a set of the 0 measure which correspond to certain parts of
the boundary where a "normal” doesn’t exist, for example on the edge of figure. There
holds ', NT', =0 , I', and I'; are empty or opened in I'. The volume forces described
by function fwork inside of the domain.

We want to find the resultant shifting @, the placing of stress 7 and deformations
€ in domain 2. These quantities are joined by the next mathematical and physical
relations.

2.2 Relation for small deformations

Let us consider small deformations, a tensor of small deformations denote e;;. For this

holds
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2.3 Hook’s law

For every point = € € holds a linear relation between tensors of stress and small
deformations:

Tij = Qijkl€kL, ., = 1,2,3. (2.2)

This relation is called generalized Hook’s law. The material is characterized by Hook’s
coefficients a;;1 (2) € C (Q) - generally by functions of point € €. These coefficients
are bounded. The Lipschitz condition holds for them

m < aijklfijfkl
1€]]

where m, M > 0 and ¢; is a symmetric matrix of order 3.
From the symmetry of tensors 7;; and e;;, we obtain the next conditions for Hook’s

< M < o0,

coefficient:
Qijkl = Qjikl = Qijlk = Oflij (2.3)
In the equation (2.2) is 81 Hook’s coefficients. But from the symmetry equation

(2.3) maximum of 21 independent constants a;jx () exist characterized a general ma-
terial in point .

Definition 2.3.1 If constants a;ji (x) are independent of point x € 2, then this type
of material will be called homogeneous.

If constants a;jp (v) are independent from choice of the system of coordinates, then
this type of material will be called isotropic in point x (the material has same features
in all directions). In the opposite case material is called anisotropic.



It the figure is isotropic, then Hook’s law will be form

Tii = A(e1r + e + ess) + 2pey, 1 =1,2,3,
Tij:2,ueij7 ivj:172737 Z%]v

where g = g (x) > 0 and A = A(x) > 0 are so called Lamé’s coefficients. If the figures
are homogeneous in addition, then A and p are constants which can be described by
Young's elasticity module E and Poisson’s constant o (0 < o < £):

E 2uo Fo

2(1+0) N (1+0)(l—20)

ILL:

2.4 Classical formulation of the linear problem of elasticity

Let © be the domain described in part 2.1. Let’s assume a3 € C* (Q) Let’s have

functions f € [CY(Q)], p € [C(I,)] and U € [C (T',)]>. We want to find the vector
function v € [C? (Q)NCH(QUT,)NC(QUT,)], that satisfies

2] du
~ 5 (aijkla_xl;) = /i Vz € Q,
du
Uijkl 5 G = Pi onl';, (2.4)
u; = U; onl’,

for ¢,7,k, 0l =1,2,3.
The problem (2.4) can be formulate also by using a tensor of stress 7;; in the
following way:
_%Tij:fi \V/J?EQ,
TG = pi onl';, (2.5)
u; = U; onl’,

for ¢,y =1,2,3.

2.5 Weak solution

Let © be the domain with Lipschitz-continuous boundary and the quadratic form
a;jr () €;5e5 be positive-definite, this means that such a constant ag > 0 exists, making

ikl (:1?) €;j€k > A0EijCk]

hold. We assume that between a stress tensor and a tensor of small deformations holds
Hook’s law (2.2).

Let us define a set (space) of testing functions
V= {Lp € [WQI (Q)]S tp = OOnFu”inthesenseoftraces"} :

If we take any function v € V', multiply equation of balance in (2.5) by it and integrate
the obtained equation:

/ aTiij’dV + / fzvde =0.
al']‘
Q Q
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By using Green’s theorem we obtain
_/Tijeij (v)dV ‘I‘/Tijnjvids —I—/fividV:O.
Q r Q

According to the choice of space V', the integral over the part of boundary I';, is equal to
zero. By substituting boundary conditions, we obtain the following relation for finding
the weak solution of the problem (2.5).

The weak solution of boundary problem (2.5) is called function u € [W (Q)]S,Which
satisfy conditions

u—Uce€vV,
[ mijei; (0)dV = [ pvidS + [ fridV Vv eV,
Q 'y Q

3

where f e [L* ()] and p € [L2 ()]

Proof of the existence of the weak solution is based on Lax-Milgram’s lemma. It is
necessary to prove that the integral on the left hand side of the equation is continuous
with an elliptic form and integrals on the right hand side constitute a continuous linear
function. The proof of the solution uniqueness is based on a hypothesis of the existence
of two different solutions which satisfy equation (2.5). We can prove that the difference
between two solutions must be zero.



3 Homogenization of Hook’s coefficients

3.1 The formulation of the linear problem of elasticity for
nonhomogeneous anisotropic material
Material usually is nonhomogeneous. It is composed of a homogeneous subdomains,
in which each one is characterized by their own coeflicients of elasticity a;;5. For this
type of subdomain, coeflicients a;;i; are constant. For simplicity assume that these
homogeneous subdomain are set up periodically in the material. This kind of material
is called Y-periodic. One "period Y” contains a group of homogeneous subdomain Y;
(viz. figure). In homogeneous subdomains Y; coefficients a;;1; are constant and in the
entire domain Y, they are functions of variable x. These domains ¥ make domain €.
The material of domain 2 is given by Hook’s coefficients a1 (2) as periodic func-
tions with period Y. The result of the homogenization method is finding homogenized
coefficients of elasticity a?jkl, which are constant for the entire 2 domain.

Definition 3.1.1 The function f(x,y,z) will be Y -periodic in variable y , if
Fa, i+ kg, ye + k2yz, ys + ksys, 2) = [ (2, 91,92, 93, 2)

holds for all integers ki, ky, k3. Let’s define the average value

M(f) = %%%%%V (3.1)

If function f(y) is Y-periodic, then it holds that
af)
M|—]=0. 3.2
(5 32

Let us take new variables y = % and define

X
a5 (T) = @ijhi (51?7 Z) = aijr (T, y) -

The corresponding solution is denoted @°. Then we solve the problem of how to find
function @ for € > 0 which satisfies the equation of balance

_5%(@W%%):ﬁ Ve € Q, (3.3)
boundary conditions
af’jklaa%nj = P onl's, (3.4)
u: =U; onl'y,
and Hook’s law
TZ‘ = af’jm-eil (JE) . (3-5)



3.2 The converting of the problem with periodic Hook’s co-
efficients to the problem with a homogenized coefficient

Let us consider ¢ — 0F. Functions a;;, intensively change their function values on the
interval Y likewise function @°. But the function u* is not periodical. Let’s find it in
Taylor’s form in point £, it means for one constant e:

i (z)=1u (:1;, f) + ewt (:1;, f) + eii? (:1;, f) , (3.6)
€ € €

where functions @' (:1;, f) = 4" (x,y) are periodic in y on interval Y and are independent

of €. The dependence of function @ (x,y) on € is only given by multiples € and €*. The
general relation holds for derivation of composite function

df (z,2) __6f(x,f)_+_¥6f(x,f)

dl‘j al']' € 6y]«
Now we arrange the boundary problem (3.3, 3.4) in the following way:

1. The function «* (x,y)in the boundary problem (3.3, 3.4) is a function of two
variables. For this we express its derivations with the help of a given relation for
the derivation of a composite function of two variables.

2. We use Taylor’s form (3.6) as a substitute to the arranged boundary problem
0= i+ it + il

3. We compare coefficients with the same power of e.

After providing the first part let us denote it by operators

N A
(Auf); = o, (%Max ),

!
0 ous
0 ¢ _ B k
(A U )Z = ——ayj (a”kl—ayl) 5
0 ous 0 ous
1\ _ _ .. kY .. k
(A u )2 Oy, (a”m 8:1;;) Oz (a”kl ay;) ’

(AQUE)i = —aixj (aijklg—lj;)

and the equation of balance (3.3) let us write in the form

2 (Aoue)i + et (Alue)i + (Azue)i = fi

or

0 ,,%_ee_—zo —1 41 2\ e _ r
o (a”klaxl)—(Au)i—(e A° AT 4 A?) uf = (3.7)

After comparing, we obtain these equations:
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L. from the equation of balance (3.3):

A% =0 ) XY, (3.8)

A%l + AW =0 ) x Y, (3.9)
A% + At + A = f € XY, (3.10)
Alw* + A%t =0 inQd x Y, (3.11)
Au=0  nQxY, (3.12)

2. from the first boundary condition (3.4):

ouy (z,y)

i (y) =20 (e) =0 onl's XY, (3.13)
ai (1) (6@8(;;79) n 9u2@(;;7y)) ni(x)=p;  onl, x Y, (3.14)
aisn () (a“ia(;’y) n a“%z’y)) nj(z)=0  onl, x Y, (3.15)

ais (y) %Z’y)m (z)=0  onl, x Y, (3.16)

3. from the second boundary condition (3.4):

ud = U, onl'y xY (3.17)
ul =0  onl, xY (3.18)
u: =0  onl, xY (3.19)

Equations (3.12,3.16,3.19) give a boundary problem which has the solution u? = 0.
This solution is not interesting from a physical point of view (no forces work, initial
and resultant shifting are zero).

We can prove the following lemma:

Lemma 3.2.1 Let f € [LZ (Y)]S. The equation A°w = f has a solution u €

per

[WLQ (Y)]S if and only if M (f) = 0. This solution is unique expect for an additive

per
constant.

Thus the solution u® of the equation (3.8) is independent of the variable y (u® =
u® (z)), because the identity



holds and the function u° must be independent of y in order to satisfy this equation.
From equation (3.9) we obtain

0 ouf)
Aoul = —Aluo = @ (aijkl (y) gx(lw)) . (320)
J

3
This equation has the solution from a space of [Wple’f (Y)] at every point x. We will
find the solution of whole equation in the form

) = ) P 4, ), 321)

where y € [Wl’z (Y)]S. The form of solution follows directly from the relation (3.20).

per

Further we substitute this solution to the (3.20) and arrange it to the form

aiyj laijgh () (%;Ey) - gk(sh,)] 0. (3.22)

The equation (3.10) has the solution from a space of [Wple’f (Y)] ’ (it follows from lemma)
if and only if

M (A% + At + A% — f) = 0.
But we know that u? = 0, so we can write
M (Au' + A% — ) = 0.

Now we substitute solution (3.21) and after arranging it we obtain

0 Xy (y)\ Oul
M | =—a;; S,pbn — —2 —k | =0. 2
layja igh ( kORI s 9z, + f 0 (3.23)
Let us denote that
0 XS (y)
O =M |=—ajin| 6160 — 2 . 24
Aiikl [ayjaygh ( gkOhl Dun (3 )

The equation (3.23) we can then describe in the form

d [, oul B
a—xj (a”kla—xl) ‘I’ fz — 0

From equation (3.13) we obtain

ou?

0 koo
aijkla—xlnj = p; onl';.



Definition 3.2.2 The problem

a [, ol .
9, (Gima—xl +fi=0  nQ, (3.25)
0 . _ . T
Uikl Bz, M = Pi onts, (3.26)
ud = U; onl’,

for v = 1,2.3, where coefficients a?jkl are of the form (3.24) and functions x €
3
[Wl’z (Y)] satisfy equations (3.22), is called the problem homogenized in consider-

per

ation lo the original problem. For functions Y* symmetry Y™ = y"* holds.

We changed the problem with periodic coefficients of elasticity af;;, to the prob-
lem with constant (homogenized) coefficients af;,,. For homogenized coefficients the
condition of symmetry holds and they are bounded, this mean that

a?jkl = azlij = a?ikl = a?jlk?
a?jklfijfkl
m = 2
1€]]

for any symmetric matrix £;; € R* and positive constants m, M.

<M<+

3.3 The introduction of functions Y
We must know the derivations of functions y*' in order to compute homogenized coef-
ficients a;,;. Then we compute homogenized coefficients by numerical integration from

3
equation (3.24). We know that functions \* are unique in space [Wple’f (Y)] except
that an additive constant and the relation

aiyj laz’jgh () (w - gk‘shl)] =0

ayh

holds. Let us multiply this relation by any function ; € [WLQ (Y)]S and integrate:

per

a a kl
/ B [amh (y) (Xagi(y) - 5gk5hl)] e:dV =0 Vo€ [Wple’f (Y)]S. (3.27)
v Y Yn

Let Y; be subdomains of interval Y in the sense that there are given various mate-
rials. Let’s denote a7}, functions af;;, in subdomain Y;, . The number of materials is
n. After multiplying (3.27) for individual subintervals Y;, we obtain

S I P e | I

m:lYm ayh

Now we arrange this relation for n-th subinterval Y,, by using Green’s formula. Let’s
consider two various subdomains Y,, Y,. Their outer normals are different in the



direction of vectors at the meeting point and also on the opposite sides of subdomains.
Thus members containing normals n (that mean integrals over the boundary 9Y;,) will
make a disturbance in resultant sum. The relation (3.22) can be rewritten into the
form

n anl (?J) dp; 3
}Znaijgh (y) ( 8gyh - gk5hz) oy, dV =10 Yo € [Wple’f (Y)] ) (3.28)

For every couple of subdomains Y,, ¥, at every point of the conjunction of their closure,
the relation

I (y ) A (y
Wjgh (y)( 5y£ >_5gk5m) = al,, (y)( 53,2 )_5gk5h,) (3.29)

holds. But this formulation isn’t suitable for numerical solving, problems are caused
by their discretization. Equations (3.29) hold some points of the given mesh only. But
for each one order we have a different number of points and also a different number of
equations. The matrix of the system of equations obtained by discretization of problem
(3.28) will generally not be in the square form. This problem can be solved theoretically
by the choice of special mesh for all further ordering so that the number of equations
is equal to the number of unknown parameters. But then finding out of the regularity
of that matrix is very difficult. Therefore we will solve the following problem:

0 o' (y) 3
4 a—yjlaijgh(y)( Gy~ S | | @idV =0 Ve e (W (V)] (3.30)

where Y* will be a suitable approximation of y*'. When we arrange it by using Green’s
formula, we obtain

oxa dy; 3
. — 6.6, | =LAV = Wwh2yy) . 31
[oim (G —oatu) Goav =0 voe ol ea

This problem only has one solution y* & [Wple’f (Y)]S. The proof is based on Lax-
Milgram’s lemma.

3.4 The computing of functions "

We will compute functions x* from the equation (3.31). Functions ¢" are taken from

any base B of a certain subspace [Wl’z (Y)] with a finite dimension. We look for the

function ¥* in form

Kl Kl i
X —Z QP
©'EeB

Unknown coefficients o' are computed from the system of linear equations

Akt = b (3.32)
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that we obtain by using a finite element method (FEM). The matrix A and the vector
of right hand sides b have the following form:

ey 0l

(A)pn :/ Wijgh—
Y

dv,
Iy 9%‘

(5) = / w2 AV for fivedk 1
no dy;

The matrix A is the Gramm’s matrix, it is regular, symmetric and positive-definite.

3.5 The setting of matrix 4 and vector "' by FEM

To access homogenized coefficients af;;; we must solve as the first the system (3.32) and
compute functions y* by using computed functions a*!. The system of linear equations
will be solved numerically, but first we must set matrix A and vector ¥ by using the
following process.

The approximation of the domain

The domain Y C R? is splitting into a system of smaller cubes. Now we perform the
triangulation of the domain. We split every cube into six tetrahedrons, which are called
finite elements. The triangulation of the entire domain must be regular, that means
any two tetrahedrons have either an empty conjunction or a common apex, common a
whole edge or whole face. The regularity is guaranteed in the case of six tetrahedrons
in cube. We raise the mesh of tetrahedrons {V, | p € N}, which approximates the given
domain. We assume that functions af;;, are constant for every element (tetrahedron).

The choice of the basis space and basis functions

Now we return to the triangulation by using tetrahedrons. To every apex (in the system

of tetrahedrons), which is not on boundary of domain Y, we add three basis functions
3

from the basis space B C [Wl’z (Y)] . These functions are linear on every tetrahedron

and in every element. They are chosen to be non zero only in the set of tetrahedrons
which have a common apex. If we take a certain apex, then the basis function in this
apex will have only one non zero element. This element is equal to one.

The setting of the matrix of system of linear equations and of vector of right
sides

To set the matrix we use the method of transformation to a basic element. This
method is based on the choice of a basic element and the following transformation of
other elements in that way.

Let us define the basic tetrahedron V5 with apexes Ry = [1,0,0], Ry = [0,1,0],
Rs = [0,0,0] and Ry = [0,0,1] . Now we take any tetrahedron V, with apexes

11



Pz, g, 2], 1 =1,2,3,4. Let us define the matrix of transformation

Ty T3 T4
T'=1| 9 ys vya |,
22 23 *4
where
Li = Ti — T,
Yi = Yi — Y1,
Zy = R — 2
for ¢ = 2,3,4. Those are distances of apexes of a given tetrahedron from its the first
apex. We denote J the determinan of matrix T', this means J = det T'. Now we want
to transform the computing on element V, to element V4 and old variables x,y, z (we
denote them s, for ¢ = 1,2,3 for the following considerations) to transform to a new o;
for : = 1,2,3. Linear functions f on the tetrahedron V, are given by values in apexes
f (P;). By the linear transformation we transform function f to fo on the tetrahedron
Vo where are given by values f (R;). This transformation can be rewritten in the form

fo = bT.w,
where w = (01, 09, 03, 1)T b= (b1, bs, b3, b4)T. It must also hold on element V,, so

g1 092 O3 1

100 1 by ()
010 1 b (FP,)
00 1 1 by | = | F(P3)
000 1 by J(Py)
N—_—— ——
S bt f
Then T
fo=0b"w= (S_l.f) .

Now we perform the transformation

DT 0! oo\ T T Ow 0wl doy Do o
/Clz]gha . atp dx dde:ai]’gh.|J|.(S0g) .(S 1) . ——.—k—{da.S ton,

VP
where @7 = (" (P1), " (Py), " (Ps), ¢! (Py)). Let us denote g;’? = 51 and there
holds 887‘*; = (0,...,0,1,0,...,0) with 1 at the k-th place. The integral in previous
relation can be written as

Ow 9T Joy, oy Ow O™
b aadicsdy P T T o —
adk do; " Osy, Js; ag'k oy et 00T

lhiTl ]1 T1h1T2]1 Tl_hi TS_]i
T T T T 1
_ 2h 17 2h 27 2_h 3_] d :/B d —
/ 3h1T1]1 3h1T2]1 T3h1T3j1 7 e 6
0 0

Bh]‘.



If we denote

/1

[X’h]‘ = ? (S_I)TB;L]‘S_I

and .
Am amNT amNT INAYA
= (e T @)

then we will be able to write

arinln;  avjon Ky a3 K
agjin iy agjonKn;  agisnKp;

(A),, = (™). = (¢M)T K" (3.33)

asjinln;  asjonKn;  asisnKp;

K

The matrix K has a size 12 x 12. If at least one of functions ¢™, ¢" is equal to zero
on the tetrahedron V,,, then the form (3.33) is equal to zero. If both functions @™, "
are non zero on V, then vectors have 1 only on one place and elsewhere they are zero.
If we denote a "non zero index” ( the position of 1) of the vector ¢ - r,, and a "non
zero index” of the vector ¢" - r,,, we will get the relation for computing an elementary
matrix (A), . on the basic element

Dl Dol
A :/ 0P 9O g duds = (K
( )m,n J Cl]gh ayh ay] rayaz (X)

TmTn

The whole matrix A is set by the following process:

1. We prepare a zero matrix A, that means A;; =0 Vi,y =1,....n.
2. For every tetrahedron V,, p € N from a mesh we set an auxiliary matrix K.

3. For every couple of functions ¢™, " that are non zero on a given tetrahedron we
find numbers r,, and r,.

4. We set the corresponding elements to the resultant matrix A :
(A)Tm,rn = (A)Tm,rn + ([()Tm,’/’n .

The vector on the right hand side b*' is set by an analogical process. The relation
for the computing of * on the element V, is transformed to the basic element Vj:

Iy Ry
bkl :/ Iy Cdedudz = 2L n ] kl
() Vpamayf rdydz =~ (") v",

where . .

vkl = (aljkla 25kl agjkl) . (S_l) (Tl_jl, Tz_jl, T3_jl, 0) .
If the function " is non zero on the tetrahedron V), then the vector ¢™ has 1 only
at one position and elsewhere is zero. This nonzero position is denoted by r. It holds

13



that (¢"), = 1. We add % (vkl) to the n-th element of the resultant vector on the
right hand side 4%, that means

(), = (), + 2 (o)

Further, we solve the system of linear equations Aa* = b* by using a numerical
method.

3.6 The computing of homogenized coefficients

The domain Y is composited from finite number of subdomains Y; with Lipschitz
boundaries. The material is considered Y-periodic. We assume that we already have
computed coefficients o' by using the FEM. Now we choose the mesh of points, we
make the corresponding space of basis functions B and we computed values of functions
¥ at points of the mesh. Last we approximate derivations of functions y* by using
computed function values. The average of the biggest cube of the mesh is denoted h.

Functions Y* are generally non continuous on cubes which are on the boundary
of two different subdomains Y,,,Y,. Therefore we can not approximate well their
derivations from function values there. The set of all those elements is denoted M;.
Its volume measure is of order h.

Further, we denote M, the set of all cubes which have at least one face is merged
to Y, because functions y* are very different than functions y*'. The volume measure
of M5 is of order h too.

Functions y*' have continuous second derivations on the set Y\ (M; U M;). There-
fore we can approximate the first derivations y* by linear functions from the space B
with the error of order h. Homogenized coefficients agkl are computed by using the
numerical integration

af][‘kl = / Cli]‘gh (5gk5hl - a—yh dV

Y\(M1UM2)

Because the integrated function is computed with error of order i and the vol-
ume measure of (M; U My) is also of order h, computed homogenized coefficients agkl
convert to real values af;y, with error of order h.

4 Conclusion

We described a mathematical model and by the means of it we can compute the
field of stress and deformation inside of any material. We formulated the problem
of linear elasticity for the anisotropic nonhomogeneous material. But the solution
of this problem is difficult. Therefore, we described the method of homogenization
that transforms a generally nonhomogeneous material to material that is piecewise
homogeneous.
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The structure of the material is described by Hook’s coefficients of elasticity. By
the method of homogenization we transform general coefficients to coefficients homog-
enized. Such recomputed coefficients can be set to the problem of elasticity. This
problem can be solved by the FEM, by finding the minimum of the potential energy
functional. This leads to the solving of the system of linear equations. Systems of lin-
ear equation, which arise from those problem, can be solved by the conjugate gradient
method in the case of homogenization (the matrix has a small number of nonzero ele-
ments) or by the preconditioned conjugate gradient method in the case of an elasticity
problem.
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