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� Introduction to the problem

We are interested in the problem of linear elasticity in composite materials� This
problem is needed to be solved in many various domains of human activity� for example
researching of geodynamical processes in the rock massive or medicine� modelling of
fractures etc�

First of all I am going to mention some basic principles and laws of the theory of
elasticity� and formulate the general problem of elasticity in the classical and weak form�
Next I will describe the method of homogenization of Hook�s elasticity coe	cients�
which are characteristic for concrete material� In practice� the material is generally
nonhomogeneous� The destination of the homogenization method is to 
nd the so
called homogenized �trough a certain average way� coe	cients for this type of material�
For a numerical solving of homogenization is used the 
nite element method�

Finally I will show you some types of nonhomogeneous materials and results of
homogenization�
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� Formulation of the general problem of elasticity

��� De�nition of the domain

Let 
 � R� be a domain with a Lipschitz�continuous boundary � � �u ��� �R� �u is
a part of the boundary where the resultant shifting U is prescribed � on the �� surface

forces
�
pare given and R is a set of the � measure which correspond to certain parts of

the boundary where a �normal� doesn�t exist� for example on the edge of 
gure� There
holds �u � �� � � � �u and �� are empty or opened in �� The volume forces described
by function �f work inside of the domain�

We want to 
nd the resultant shifting �u� the placing of stress �� and deformations
�� in domain 
� These quantities are joined by the next mathematical and physical
relations�

��� Relation for small deformations

Let us consider small deformations� a tensor of small deformations denote eij� For this
holds

eij �
�

�

�
�ui

�xj
�
�uj

�xi

�
� i� j � �� �� �� �����

��� Hook�s law

For every point x � 
 holds a linear relation between tensors of stress and small
deformations�

�ij � aijklekl� i� j � �� �� �� �����

This relation is called generalized Hook�s law� The material is characterized by Hook�s
coe	cients aijkl �x� � C

�
�

�
� generally by functions of point x � 
� These coe	cients

are bounded� The Lipschitz condition holds for them

m �
aijkl�ij�kl

k�k�
�M 	��

where m�M 
 � and �ij is a symmetric matrix of order ��
From the symmetry of tensors �ij and eij� we obtain the next conditions for Hook�s

coe	cient�
aijkl � ajikl � aijlk � aklij �����

In the equation ����� is �� Hook�s coe	cients� But from the symmetry equation
����� maximum of �� independent constants aijkl �x� exist characterized a general ma�
terial in point x�

De�nition ����� If constants aijkl �x� are independent of point x � 
� then this type
of material will be called homogeneous�

If constants aijkl �x� are independent from choice of the system of coordinates� then
this type of material will be called isotropic in point x �the material has same features
in all directions�� In the opposite case material is called anisotropic�

�



If the 
gure is isotropic� then Hook�s law will be form

�ii � � �e�� � e�� � e��� � ��eii� i � �� �� � �

�ij � ��eij� i� j � �� �� �� i �� j�

where � � � �x� 
 � and � � � �x� 	 � are so called Lam�e�s coe	cients� If the 
gures
are homogeneous in addition� then � and � are constants which can be described by
Young�s elasticity module E and Poisson�s constant 
 �� 	 
 	 �

�
��

� �
E

� �� � 
�
� � �

��


�
 �

�

E


�� � 
� ��
 �
�
�

��� Classical formulation of the linear problem of elasticity

Let 
 be the domain described in part ���� Let�s assume aijkl � C�
�
�

�
� Let�s have

functions f � �C� �
��
�
� p � �C ��� ��

� and U � �C ��u��
�� We want to 
nd the vector

function u � �C� �
� � C� �
 � �� � � C �
 � �u��� that satis
es


 �

�xj

�
aijkl

�uk
�xl

�
� fi� �x � 
�

aijkl
�uk
�xl

nj � pi on�� �

ui � Ui on�u

�����

for i� j� k� l � �� �� ��
The problem ����� can be formulate also by using a tensor of stress �ij in the

following way�

 �

�xj
�ij � fi �x � 
�

�ijnj � pi on�� �
ui � Ui on�u

�����

for i� j � �� �� ��

��	 Weak solution

Let 
 be the domain with Lipschitz�continuous boundary and the quadratic form
aijkl �x� eijekl be positive�de
nite� this means that such a constant a� 
 � exists� making

aijkl �x� eijekl 
 a�eijekl

hold� We assume that between a stress tensor and a tensor of small deformations holds
Hook�s law ������

Let us de
ne a set �space� of testing functions

V �
�
� �

h
W �

� �
�
i�

� � � �on�u
��inthesenseoftraces��

�
�

If we take any function v � V � multiply equation of balance in ����� by it and integrate
the obtained equation� Z

�

��ij

�xj
vidV �

Z
�

fividV � ��

�



By using Green�s theorem we obtain



Z
�

�ijeij �v�dV �
Z
�

�ijnjvidS �
Z
�

fividV � ��

According to the choice of space V � the integral over the part of boundary �u is equal to
zero� By substituting boundary conditions� we obtain the following relation for 
nding
the weak solution of the problem ������

The weak solution of boundary problem ����� is called function u � �W �
� �
��

�
�which

satisfy conditions

u
 U � V�R
�
�ijeij �v� dV �

R
��

pividS �
R
�
fividV �v � V�

where f � �L� �
��
�
and p � �L� ��� ��

�
�

Proof of the existence of the weak solution is based on Lax�Milgram�s lemma� It is
necessary to prove that the integral on the left hand side of the equation is continuous
with an elliptic form and integrals on the right hand side constitute a continuous linear
function� The proof of the solution uniqueness is based on a hypothesis of the existence
of two di�erent solutions which satisfy equation ������ We can prove that the di�erence
between two solutions must be zero�

�



� Homogenization of Hook�s coe�cients

��� The formulation of the linear problem of elasticity for

nonhomogeneous anisotropic material

Material usually is nonhomogeneous� It is composed of a homogeneous subdomains�
in which each one is characterized by their own coe	cients of elasticity aijkl� For this
type of subdomain� coe	cients aijkl are constant� For simplicity assume that these
homogeneous subdomain are set up periodically in the material� This kind of material
is called Y�periodic� One �period Y � contains a group of homogeneous subdomain Yi
�viz� 
gure�� In homogeneous subdomains Yi coe	cients aijkl are constant and in the
entire domain Y � they are functions of variable x� These domains Y make domain 
�

The material of domain 
 is given by Hook�s coe	cients aijkl �x� as periodic func�
tions with period Y � The result of the homogenization method is 
nding homogenized
coe	cients of elasticity a�ijkl� which are constant for the entire 
 domain�

De�nition ����� The function f �x� y� z� will be Y �periodic in variable y � if

f �x� y� � k��y�� y� � k��y�� y� � k��y�� z� � f �x� y��y�� y�� z�

holds for all integers k�� k�� k�� Let�s de�ne the average value

M �f� �
Z
Y

f �x� y� z�

meas �Y �
dV� �����

If function f �y� is Y �periodic� then it holds that

M

�
�f

�yj

�
� �� �����

Let us take new variables y � x
�
and de
ne

a�ijkl �x� � aijkl

�
x�
x

�

�
� aijkl �x� y� �

The corresponding solution is denoted �u�� Then we solve the problem of how to 
nd
function �u� for � 
 � which satis
es the equation of balance



�

�xj

�
a�ijkl

�u�k
�xl

�
� fi �x � 
� �����

boundary conditions

a�ijkl
�u�

k

�xl
nj � pi on�� �

u�i � Ui on�u�
�����

and Hook�s law
� �ij � a�ijkl�e

�
kl ��u

�� � �����

�



��� The converting of the problem with periodic Hook�s co


e�cients to the problem with a homogenized coe�cient

Let us consider �� ��� Functions a�ijkl intensively change their function values on the
interval Y likewise function �u�� But the function �u� is not periodical� Let�s 
nd it in
Taylor�s form in point x

�
� it means for one constant ��

�u� �x� � �u

�
x�
x

�

�
� ��u�

�
x�
x

�

�
� ��u�

�
x�
x

�

�
� �����

where functions �ui
�
x� x

�

�
� �ui �x� y� are periodic in y on interval Y and are independent

of �� The dependence of function �u �x� y� on � is only given by multiples � and ��� The
general relation holds for derivation of composite function

df
�
x� x

�

�
dxj

�
�f

�
x� x

�

�
�xj

�
�

�

�f
�
x� x

�

�
�yj

�

Now we arrange the boundary problem ����� ���� in the following way�

�� The function �u� �x� y�in the boundary problem ����� ���� is a function of two
variables� For this we express its derivations with the help of a given relation for
the derivation of a composite function of two variables�

�� We use Taylor�s form ����� as a substitute to the arranged boundary problem

�u� � �u� � ���u� � ����u��

�� We compare coe	cients with the same power of ��

After providing the 
rst part let us denote it by operators

�A�u��i � 

�

�xj

�
aijkl

�u�k
�xl

�
�

�
A�u�

�
i
� 


�

�yj

�
aijkl

�u�k
�yl

�
�

�
A�u�

�
i
� 


�

�yj

�
aijkl

�u�k
�xl

�



�

�xj

�
aijkl

�u�k
�yl

�
�

�
A�u�

�
i
� 


�

�xj

�
aijkl

�u�k
�xl

�

and the equation of balance ����� let us write in the form

���
�
A�u�

�
i
� ���

�
A�u�

�
i
�
�
A�u�

�
i
� fi

or



�

�xj

�
aijkl

�u�k
�xl

�
� �A�u��

i
�
�
���A� � ���A� �A�

�
i
u�i � fi� �����

After comparing� we obtain these equations�

�



�� from the equation of balance ������

A�u� � � in

 Y� �����

A�u� �A�u� � � in
 
 Y� �����

A�u� �A�u� �A�u� � f in

 Y� ������

A�u� �A�u� � � in
 
 Y� ������

A�u� � � in

 Y� ������

�� from the 
rst boundary condition ������

aijkl �y�
�u�k �x� y�

�yl
nj �x� � � on�� 
 Y� ������

aijkl �y�

�
�u�k �x� y�

�yl
�
�u�k �x� y�

�xl

�
nj �x� � pi on�� 
 Y� ������

aijkl �y�

�
�u�k �x� y�

�yl
�
�u�k �x� y�

�xl

�
nj �x� � � on�� 
 Y� ������

aijkl �y�
�u�k �x� y�

�xl
nj �x� � � on�� 
 Y� ������

�� from the second boundary condition ������

u�i � Ui on�u 
 Y ������

u�i � � on�u 
 Y ������

u�i � � on�u 
 Y ������

Equations ���������������� give a boundary problem which has the solution u�i � ��
This solution is not interesting from a physical point of view �no forces work� initial
and resultant shifting are zero��

We can prove the following lemma�

Lemma ����� Let f �
h
L�
per �Y �

i�
� The equation A�u � f has a solution u �h

W ���
per �Y �

i�
if and only if M �f� � �� This solution is unique expect for an additive

constant�

Thus the solution u� of the equation ����� is independent of the variable y �u� �
u� �x��� because the identity



�

�yj

�
aijkl �y�

�u�k
�yl

�
� �

�



holds and the function u� must be independent of y in order to satisfy this equation�
From equation ����� we obtain

A�u� � 
A�u� �
�

�yj

�
aijkl �y�

�u�k �x�

�xl

�
� ������

This equation has the solution from a space of
h
W ���

per �Y �
i�

at every point x� We will

nd the solution of whole equation in the form

u�g �x� y� � 
�klg �y�
�u�k �x�

�x�
� �ug �x� � ������

where � �
h
W ���

per �Y �
i�
� The form of solution follows directly from the relation �������

Further we substitute this solution to the ������ and arrange it to the form

�

�yj

	
aijgh �y�

�
��klg �y�

�yh

 �gk�hl

�

� �� ������

The equation ������ has the solution from a space of
h
W ���

per �Y �
i�

�it follows from lemma�
if and only if

M
�
A�u� �A�u� �A�u� 
 f

�
� ��

But we know that u� � �� so we can write

M
�
A�u� �A�u� 
 f

�
� ��

Now we substitute solution ������ and after arranging it we obtain

M

	
�

�yj
aijgh

�
�gk�hl 


��klg �y�

�yh

�
�u�k
�xl

� fi



� �� ������

Let us denote that

a�ijkl � M

	
�

�yj
aijgh

�
�gk�hl 


��klg �y�

�yh

�

� ������

The equation ������ we can then describe in the form

�

�xj

�
a�ijkl

�u�k
�xl

�
� fi � ��

From equation ������ we obtain

a�ijkl
�u�k
�xl

nj � pi on�� �

�



De�nition ����� The problem

�

�xj

�
a�ijkl

�u�k
�xl

�
� fi � � in
� ������

a�ijkl
�u�

k

�xl
nj � pi on�� �

u�i � Ui on�u
������

for i � �� �� �� where coe	cients a�ijkl are of the form �
���� and functions � �h
W ���

per �Y �
i�

satisfy equations �
����� is called the problem homogenized in consider�

ation to the original problem� For functions �kl symmetry �kl � �lk holds�

We changed the problem with periodic coe	cients of elasticity a�ijkl to the prob�
lem with constant �homogenized� coe	cients a�ijkl� For homogenized coe	cients the
condition of symmetry holds and they are bounded� this mean that

a�ijkl � a�klij � a�jikl � a�ijlk�

m �
a�ijkl�ij�kl

k�k�
�M 	 ��

for any symmetric matrix �ij � R� and positive constants m�M �

��� The introduction of functions ��kl

We must know the derivations of functions �kl in order to compute homogenized coef�

cients a�ijkl� Then we compute homogenized coe	cients by numerical integration from

equation ������� We know that functions �kl are unique in space
h
W ���

per �Y �
i�

except
that an additive constant and the relation

�

�yj

	
aijgh �y�

�
��klg �y�

�yh

 �gk�hl

�

� �

holds� Let us multiply this relation by any function �i �
h
W ���

per �Y �
i�

and integrate�

Z
Y

�

�yj

	
aijgh �y�

�
��klg �y�

�yh

 �gk�hl

�

�idV � � �� �

h
W ���

per �Y �
i�
� ������

Let Yi be subdomains of interval Y in the sense that there are given various mate�
rials� Let�s denote amijkl functions a

�
ijkl in subdomain Ym � The number of materials is

n� After multiplying ������ for individual subintervals Yi� we obtain

nX
m��

Z
Ym

�

�yj

	
amijgh �y�

�
��klg �y�

�yh

 �gk�hl

�

�idV � ��

Now we arrange this relation for n�th subinterval Yn by using Green�s formula� Let�s
consider two various subdomains Yp� Yr� Their outer normals are di�erent in the

�



direction of vectors at the meeting point and also on the opposite sides of subdomains�
Thus members containing normals n �that mean integrals over the boundary �Yn� will
make a disturbance in resultant sum� The relation ������ can be rewritten into the
form

Z
Yn

anijgh �y�

�
��klg �y�

�yh

 �gk�hl

�
��i

�yj
dV � � �� �

h
W ���

per �Y �
i�
� ������

For every couple of subdomains Yp� Yr at every point of the conjunction of their closure�
the relation

a
p
ijgh �y�

�
��klg �y�

�yh

 �gk�hl

�
� arijgh �y�

�
��klg �y�

�yh

 �gk�hl

�
������

holds� But this formulation isn�t suitable for numerical solving� problems are caused
by their discretization� Equations ������ hold some points of the given mesh only� But
for each one order we have a di�erent number of points and also a di�erent number of
equations� The matrix of the system of equations obtained by discretization of problem
������ will generally not be in the square form� This problem can be solved theoretically
by the choice of special mesh for all further ordering so that the number of equations
is equal to the number of unknown parameters� But then 
nding out of the regularity
of that matrix is very di	cult� Therefore we will solve the following problem�

Z
Y

�

�yj

	
aijgh �y�

�
� ��klg �y�

�yh

 �gk�hl

�

�idV � � �� �

h
W ���

per �Y �
i�
� ������

where ��kl will be a suitable approximation of �kl� When we arrange it by using Green�s
formula� we obtain

Z
Y

aijgh

�
� ��klg
�yh


 �gk�hl

�
��i

�yj
dV � � �� �

h
W ���

per �Y �
i�
� ������

This problem only has one solution ��kl �
h
W ���

per �Y �
i�
� The proof is based on Lax�

Milgram�s lemma�

��� The computing of functions ��kl

We will compute functions ��kl from the equation ������� Functions �n are taken from

any base B of a certain subspace
� o

W ��� �Y �
��

with a 
nite dimension� We look for the

function ��kl in form
��kl �

X
�i�B

�kli �
i�

Unknown coe	cients �kli are computed from the system of linear equations

A�kli � bkl� ������

��



that we obtain by using a 
nite element method �FEM�� The matrix A and the vector
of right hand sides bkl have the following form�

�A�m�n �
Z
Y

aijgh
��m

g

�yh

��n
i

�yj
dV�

�
bkl
�
n
�
Z
Y

aijkl
��n

i

�yj
dV forfixedk� l�

The matrix A is the Gramm�s matrix� it is regular� symmetric and positive�de
nite�

��	 The setting of matrix A and vector bkl by FEM

To access homogenized coe	cients a�ijkl we must solve as the 
rst the system ������ and
compute functions ��kl by using computed functions �kl� The system of linear equations
will be solved numerically� but 
rst we must set matrix A and vector bkl by using the
following process�

The approximation of the domain

The domain Y � R� is splitting into a system of smaller cubes� Now we perform the
triangulation of the domain� We split every cube into six tetrahedrons� which are called
�nite elements� The triangulation of the entire domain must be regular� that means
any two tetrahedrons have either an empty conjunction or a common apex� common a
whole edge or whole face� The regularity is guaranteed in the case of six tetrahedrons
in cube� We raise the mesh of tetrahedrons fVp j p � Ng� which approximates the given
domain� We assume that functions a�ijkl are constant for every element �tetrahedron��

The choice of the basis space and basis functions

Now we return to the triangulation by using tetrahedrons� To every apex �in the system
of tetrahedrons�� which is not on boundary of domain Y � we add three basis functions

from the basis space B �
� o

W ��� �Y �
��
� These functions are linear on every tetrahedron

and in every element� They are chosen to be non zero only in the set of tetrahedrons
which have a common apex� If we take a certain apex� then the basis function in this
apex will have only one non zero element� This element is equal to one�

The setting of the matrix of system of linear equations and of vector of right
sides

To set the matrix we use the method of transformation to a basic element� This
method is based on the choice of a basic element and the following transformation of
other elements in that way�

Let us de
ne the basic tetrahedron V� with apexes R� � ��� �� ��� R� � ��� �� ���
R� � ��� �� �� and R	 � ��� �� �� � Now we take any tetrahedron Vp with apexes

��



Pi �xi� yi� zi� � i � �� �� �� �� Let us de
ne the matrix of transformation

T �



B� �x� �x� �x	

�y� �y� �y	
�z� �z� �z	

�
CA �

where
�xi � xi 
 x��

�yi � yi 
 y��

�zi � zi 
 z�

for i � �� �� �� Those are distances of apexes of a given tetrahedron from its the 
rst
apex� We denote J the determinan of matrix T � this means J � detT � Now we want
to transform the computing on element Vp to element V� and old variables x� y� z �we
denote them si for i � �� �� � for the following considerations� to transform to a new 
i
for i � �� �� �� Linear functions f on the tetrahedron Vp are given by values in apexes
f �Pi�� By the linear transformation we transform function f to f� on the tetrahedron
V� where are given by values f �Ri�� This transformation can be rewritten in the form

f� � bT ���

where � � �
�� 
�� 
�� ��
T
� b � �b�� b�� b�� b	�

T � It must also hold on element Vp� so
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The matrix K has a size �� 
 ��� If at least one of functions �m� �n is equal to zero
on the tetrahedron Vp� then the form ������ is equal to zero� If both functions �m� �n

are non zero on Vp then vectors have � only on one place and elsewhere they are zero�
If we denote a �non zero index� � the position of �� of the vector  �m � rm and a �non
zero index� of the vector  �n � rn� we will get the relation for computing an elementary
matrix �A�

m�n
on the basic element

�A�m�n �
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The whole matrix A is set by the following process�

�� We prepare a zero matrix A� that means Aij � � �i� j � �� ���� n�

�� For every tetrahedron Vp� p � N from a mesh we set an auxiliary matrix K�

�� For every couple of functions �m� �n that are non zero on a given tetrahedron we

nd numbers rm and rn�

�� We set the corresponding elements to the resultant matrix A �

�A�
rm�rn

� �A�
rm�rn

� �K�
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The vector on the right hand side bkl is set by an analogical process� The relation
for the computing of bkl on the element Vp is transformed to the basic element V��
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If the function �n is non zero on the tetrahedron Vp� then the vector  �n has � only
at one position and elsewhere is zero� This nonzero position is denoted by r� It holds

��



that �  �n�
r
� �� We add jJj




�
vkl

�
r
to the n�th element of the resultant vector on the

right hand side bkl� that means
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Further� we solve the system of linear equations A�kl � bkl by using a numerical
method�

��� The computing of homogenized coe�cients

The domain Y is composited from 
nite number of subdomains Yi with Lipschitz
boundaries� The material is considered Y �periodic� We assume that we already have
computed coe	cients �kl by using the FEM� Now we choose the mesh of points� we
make the corresponding space of basis functions B and we computed values of functions
��kl at points of the mesh� Last we approximate derivations of functions ��kl by using
computed function values� The average of the biggest cube of the mesh is denoted h�

Functions ��kl are generally non continuous on cubes which are on the boundary
of two di�erent subdomains Ym� Yn� Therefore we can not approximate well their
derivations from function values there� The set of all those elements is denoted M��
Its volume measure is of order h�

Further� we denote M� the set of all cubes which have at least one face is merged
to Y � because functions ��kl are very di�erent than functions �kl� The volume measure
of M� is of order h too�

Functions ��kl have continuous second derivations on the set Y n �M� �M��� There�
fore we can approximate the 
rst derivations ��kl by linear functions from the space B
with the error of order h� Homogenized coe	cients aHijkl are computed by using the
numerical integration

aHijkl �
Z

Y n�M��M��

aijgh

�
�gk�hl 


� ��kl

�yh

�
dV�

Because the integrated function is computed with error of order h and the vol�
ume measure of �M� �M�� is also of order h� computed homogenized coe	cients aHijkl
convert to real values a�ijkl with error of order h�

� Conclusion

We described a mathematical model and by the means of it we can compute the

eld of stress and deformation inside of any material� We formulated the problem
of linear elasticity for the anisotropic nonhomogeneous material� But the solution
of this problem is di	cult� Therefore� we described the method of homogenization
that transforms a generally nonhomogeneous material to material that is piecewise
homogeneous�

��



The structure of the material is described by Hook�s coe	cients of elasticity� By
the method of homogenization we transform general coe	cients to coe	cients homog�
enized� Such recomputed coe	cients can be set to the problem of elasticity� This
problem can be solved by the FEM� by 
nding the minimum of the potential energy
functional� This leads to the solving of the system of linear equations� Systems of lin�
ear equation� which arise from those problem� can be solved by the conjugate gradient
method in the case of homogenization �the matrix has a small number of nonzero ele�
ments� or by the preconditioned conjugate gradient method in the case of an elasticity
problem�

��


