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Abstract

We study n by n matrices considered as linear operators on C" equipped with the [*
norm |z| = max |x;|. A characterization of matrices A of norm |A| = 1 and spectral
radius r(A) = 1 is given. The equality |A| = r(A) is closely related to the combinatorial
structure of the matrix A. The investigation of the combinatorial structure of these

matrices is based on a new approach to the study of oriented graphs the principles of
which are explained in detail.
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The present survey is concerned with contractions (linear operators of norm not
exceeding one) on n-dimensional [**-spaces. The main problem is to characterize among
all contractions those matrices whose spectral radius equals one. The description is
given in terms of two different kinds of characteristics: one is concerned with the
combinatorial structure, the other with properties of matrix character the interplay of
these two characteristics will be examined in in detail.

In this section we intend to present the classical results on spectral radii for opera-
tors on O™ equipped with the [, norm. If z € C", x = (x4, ..., 7,)T then |z| = max |-

A linear operator A on this space is represented by an n by n matrix (a;;) such that

(AJ})Z = Z ALk,
k

Its norm equals

|A| = m;axz ||
%

We shall see that the combinatorial pattern of zeros and nonzeros in a matrix A
plays an important role if A represents a linear operator on /..

A matrix of type (m,n) is a complex valued mapping defined on the cartesian
product M x N where M and N are two sets of indices of cardinalities m and n
respectively. A square matrix A defined on N x N is said to be decomposable if there
exists a nonvoid H C N different from N such that a;;, = 0 for : € H and k € N\ H.
In other words, A is decomposable iff there exists a permutation matrix P such that
PT AP has a nontrivial block decomposition of the form

A 0
prap =1 "
( A21 A22 )

with square blocks on the diagonal. A matrix is said to be indecomposable if it is not
decomposable.

A linear operator on a Banach space is said to be a contraction if its norm does
not exceed 1. In the following three propositions we shall consider contractions on
an n-dimensional [, space; they will be represented by matrices A = (a;;) defined on
N x N where N ={1,2,...,n}.

It is obvious that the study of matrices A satisfying |A| = r(A) = 1 may be reduced
to the particular case of contractions with 1 in the spectrum. The statement of the
results simplify confiderably and may easily be modified to cover the general case.

(1.1) Suppose A is an indecomposable contraction and Ax = x, x # 0; then || =

oo = 2| and 3 |ai;| =1, for all v,
J

Proof. Set M = {i;|x;| = |z|}. If i € M k ¢ M and a;, # 0 then

2] < Z laijl|z;| = laij|la;] + |aw]|vx]
J

itk

< > aggl il 4 Jair]|ze] < D7 Jaij|la] < |l
iZk 7



This contradiction shows that either M = N or a;; = 0 for ¢« € M and k& ¢ M.

The second possibility is a contradiction with the indecomposability of A. It fol-

lows that |z;| = |¢| for all 7; this implies, in its turn, that " |a,;| = 1 for all p.
J

O

As an immediate consequence we obtain a classical result of O. Taussky.

(1.2) Suppose A is indecomposable and diagonally dominant in the following sense:

|ai| > Z laix|  for all 2
ki

and the inequality is strict for at least one index 1. Then A is invertible.

Proof. It follows from the indecomposability of A that a;; # 0 for all :. Accordingly,

the matrix D = diag a;; is invertible. Represent A in the form A = D(I — B); then B

is indecomposable and Y~ |b;| < 1 for all 7, the inequality being strict for at least one
2

i. If Az =0 for some & # 0 then Bx = x. This is impossible by (1.1). O

Another consequence of (1.1) is the following result of L.Collatz.

(1.3) Let A be indecomposable and suppose that 3 |ai| < 1 for all i; if 3 |ai| < 1 for
% %
at least one index v, then r(A) < 1.

Proof. Suppose Az = Az some x # 0. Let 7 be an index for which |x;| > |z;| for all
7. Then

Awi] <D aga;] <7 Jaig]ei| < Jai
7 7

so that [A\| < 1. If [\| = 1, the matrix B = A™' A4 is indecomposable, 3~ [b;| < 1 for all
k

i and Ba = x. It follows from (1.1) that 3 |a;x| = 3 |bix| = 1 for all ¢, a contradiction.
k k
O

Many of the problems to be treated in this chapter are of a combinatorial character.
A natural tool for the study of these problems is the theory of graphs, in particular of
oriented graphs. Since we shall only be dealing with oriented graphs in the sequel we
shall use the term graph in the more restricted meaning of oriented graph.

The approach to graph theory to be used in the following investigations is based
on an idea pointed out in [6], [7], [8]. The idea consists in viewing a graph as a
mapping whose range is contained in its domain of definition: the ensuing possibility
to use iterates of the mapping brings not only a considerible technical simplification
but also deeper insight into the connections between iterates of a matrix and of the
corresponding graph.

A graph ¢ on a set N is an additive mapping of exp N into exp N: ¢ satisfies
the following two requirements: ¢ maps the empty set onto itself and ¢(A; U Ay) =



©(A1)Up(Asy) for any two subsets Ay, Ay of N. A path W of length k in ¢ is a sequence
20 ,i, such that ¢; € p(i;-1) for j = 1,..., k. The vertices iy and ), are called the
mltlal and end point of the path W the number k is called the length of W and will be
denoted by I[(W). Clearly there exists a path of length k& connecting the initial point
io to the end point i, if and a only if ¢ € ©*(ig). A cycle of length k in ¢ is a path of
length k£ in ¢ whose end point coincides with the initial point. A simple cycle is one for
which the vertices zg,...,7;_; are all distinct. There is a cycle of length & in ¢ passing
through 7 if and only if i € p*(2).
Let ¢ be a graph in N. If ¢©° is understood as the identity mapping ¢°(X) = X,
for all X C N, define the graph ¢* by setting

= J M4
7=0

so that j € >(A) if and only if j may be reached by a path starting in A. Clearly
w(p=(A)) C e™(A) for every A.

A graph ¢ on N is said to be irreducible if it has no nontrivial invariant set, more
precisely, if there exists no nonvoid set P C N different form N for which ¢(P) C P.

If ¢ is irreducible then > (A) = N for each nonvoid A; in particular, given arbitrary
i,k € N, thereis a path of length > 1 in ¢ connecting ¢ to k. Conversely, if o>*(A) = N
for every nonvoid A then ¢ is irreducible.

Let ¢ be an indecomposable graph. The index of imprimitivity of the graph ¢,
denoted by h(yp), is defined as the ged of the lengths of all cycles in ¢, in other words,
h(p) = ged of all k for which there exists x such that = € p*(z).

Now let ¢ be irreducible and let h = h(p). It follows from the irreducibility of ¢
that, given ¢,k € N, there exists a positive integer m such that k € ™ (7). Let us show
now that all exponents m with this property belong to the same class modulo h. To see
that take a positive integer w such that 1 € " (k); it follows that ¢ € (k) C @™ (1).
Thus w + m is divisible by 2 and m belongs to the class of —w modulo h. We shall
denote this class by d(¢, k).

In this manner d is defined on N x N, its values are residue classes modulo #;
we shall see that it possesses some of the properties of a distance. The following
proposition exhibits three different ways of describing d.

It could be described as oriented distance: clearly d(x,z) = 0 for every =, it is
additive, d(i, k) = d(7,s) + d(s, k) for all triples ¢, s, k; it is not symmetric, however;
indeed, d(k,2) = —d(¢, k).

(2.1) Proposition. Let ¢ be an irreducible graph. Let i,k € N be given. Consider the
following sets of integers

Si = {d; d>0 suchthat i € ¢%(k)}
Sy = {n—m, suchthat ™) Ne"(k)# 0}
Ss = {q—p, suchthat o P(¢{)Ne (k) # 0}

There exists a class of integers modulo h which contains all three sets Sy, Sa, Ss.

This class will be denoted by d(i, k).



Proof. It suffices to prove the last two statements, the first set being a subset of
the second. Fix an integer v such that ¢ € ¢"(k). Furthermore, consider an x €
" (1) N"(k) and ay € 7 P(z) N 9(k). Let s be an integer such that y € ¢*(x).

x
O
m n
v
g O- O k
S
P q
Y
O
Y

We have the following relations modulo &

p+tm+s = 0
g+n+s =
g+vt+m+s =

The first two yield p — ¢ = n — m. Combining the last two we obtain n —m = wv.
O

This “distance” is additive in the following sense: d(i,k) = d(¢,p) + d(p,k); in
particular d(k,?) = —d(i, k). It follows that the relation £ on N defined by pFq iff
d(p,q) = 0 is an equivalence relation.

Given any A C N we write F/(A) for the set of all # such that a Ex for some a € A.
Clearly F(pA) = p(FE(A)).

(2.2) Proposition. Let ¢ be irreducible and let h = h(yv) > 1. Let B be an arbitrary
class of the equivalence E, F(p) say. For any integer k

#*(B) = {x; d(p,x) = k mod h},

in particular p"(B) = B. Furthermore,

BU@(B)U...U" 1 (B)

is the decomposition of N into classes of the equivalence F.



Proof. Consider the set

H=BUgpB)U...U" ' (B)

Since o(H) C H it follows that H = N. If the intersection ¢"(B) N ¢*(B) is nonvoid
for some 0 <r < s < h—1, we have d(p,x) = r, d(p,x) = s for some element x of this
intersection. Then 0 < s —r < h and s —r = 0 mod h so that r = 5. The sets ’(B)
are thus disjoint. a

If o is irreducible and if k() > 1, the preceding proposition shows that ¢" is
reducible; indeed, any class of the equivalence F is ©" invariant. Furthermore, ¢ is
easily seen to be reducible for any nontrivial divisor of A. In this manner h(y) > 1
implies the reducibility of some iterate of . The following proposition shows that this
property of the iterates of ¢ is characteristic for h(¢) > 1.

(2.3) Suppose that ¢ is irreducible. Then ©" is irreducible if and only if (h,r) = 1.

Proof. It suffices to show that (h,r) = 1 implies ¢” irreducible, in other words, to
prove the following assertion: given any =,y € N, there exists a nonnegative integer b
such that y € ¢" (z). Consider simple cycles (1, ..., C; in the graph ¢ such that h is
the ged of their lengths dy, ..., ds. Since ¢ is irreducible there exists a path connecting
x to y which intersects each of the cycles Cy,...,Cs. Let m be the length of this
path. Since 1 = (r,h) = (r,d1,...,ds) there exist integers yo,y1,...,ys such that
m =ryo+>.d;y;. Set A =rd;...ds and define Ag = Ar~', A; = Adj_l. Let ay,...,2;

be negative integers for which y; + 2;A4; < 0. Set 29 = — 3" ;. Then
T

S

r(yo + zodo) + D di(y; + x;A;) =

1

:ry0—|—2djyj—|—2$kz4:m
1 0

Since m is positive the integer b = yo + x9Ag is positive. In this manner we have
obtained a relation of the form

m + Z d;v; = br
1
with positive b and vq,...,v,. Since y € ¢”(x) and the v; are positive we also have
Y € c,om/(:zj) where m’ = m+>_d;v;. Since m’is a positive multiple of r, the irreducibility

of ¢" is proved.

(2.4) Let @ be irreducible; if ¢" is reducible for some r > 1 then the smallest integer s
for which ¢* is reducible equals d = (h,s). In particular s is a divisor of h.

Proof. It follows from the preceding proposition that A > 1. Let s be the smallest
exponent for which ¢*® is reducible. Set d = (h,s). Since ¢° is reducible, d > 1 by

5



(2.3). Since ¢ is reducible, we have s < d. Since s is a multiple of d it follows that
s = d whence s|h. 0

Now we are ready to describe the combinatorial structure of /., contractions with
spectral radius one. We begin by proving a simple proposition about the solvability of
a system of equations xl; = B where [; are given integers and B, given numbers. The
meaning of the proposition will become evident in the sequel.

(3.1) Let By,...B, be given real numbers and let Iy,...1, be given positive integers.
Denote by h the greatest common divisor of the l; so that there exist integers m;

such that h =3 I;m;

1° suppose there exists an x which satisfies

xly, =B, for s=1,2,...,n (0.1)

then

T = %ZBSmS

and the following implication holds:

whenever Z lsy, =0 then ZBSyS =0 (0.2)

2 if the implication (0.2) holds then x = %ZBSmS is the unique solution of
the system of equations (0.1)

Proof. Suppose first that x is a solution of the system of equations (0.1). Then
xh =3 xlyms, =5 Bsm,. Furthermore, if 3 l,y, = 0 then 0 = x> Ly, = > B,ys.

On the other hand, suppose the implication (0.2) holds. We intend to show that
r = %ZBjmj is a solution of the system (0.1). To see that, choose an index p and
consider the difference 2/, — B,. We have

h(zl, — B,) = ZBjmjlp - szljmj = ZBsys

where y; = m;l, for j # p and y, = m,l, — > [;m;. Since

Z Ly, = Z Ismgl, + L,(mpl, —h) =0
sEp
the implication (0.2) yields 3 Bsys = 0 so that «l, — B, = 0. Since p was arbitrary,
this completes the proof. a

The combinatorial structure of the pattern of nonzero entries of a matrix may be
investigated by examining the graph of the matrix. We begin by assigning to each
matrix on N x N a graph on N.

Let A be a matrix on N x N and consider the corresponding graph :



if A C N then k € p(A) iff a;, # 0 for some ¢ € A.
Given i € N and k € (i) set

Wi, k) = &

]
To each path W = (ig,...,7;) in ¢ we assign a number w(W) by the formula

k

w(W) = [Twlij,7)

7=1
(3.2) Let @ be an irreducible graph on N, G' a group and let w be a mapping assigning
to each path W in ¢ an element w(W) of G' such that
w(W1W2) = w(Wl)w(Wg)

if the endpoint of Wy coincides with the initial point of Wy. Then these are
equivalent

1° there exists a mapping f: N — G such that
w(W) = f(i)~" f(k)

W =(~,....k)
2 w(C) =1 for each cycle in the graph ¢
Proof. It suffices to prove the implication 2° — 1°. Fix a vertex p € N. Foreach: € N
fix a path W,; from p to ¢ and set f(i) = w(W,;). To prove that w(W) = f(¢)~' f(k)
for each path W with initial point « and end point £ it suffices to fix a path W* from
k to p and to observe that both W,,WW™ and W*W,; are cycles in ¢.
Now we are able to resume our study of linear operators on the n-dimensional /.

space. We shall use a classical notion. An n by n matrix M = (m;;) is said to be
stochastic if

m, > 0 for all 2,k
Zmik =1 for every 1
&

(3.3) Let A be an indecomposable contraction. Then these are equivalent

1° there exists a nonzero vector x such that Ax =«

2 there exists a unique (up to scalar multiples) nonzero vector x with Ax =

3 Zk: la;| =1 for every @ and w(C) =1 for every cycle in the graph of A

4° there exists a diagonal matriz D with diagonal elements of modulus one such
that DY AD s stochastic

5° there exists a diagonal matriz D such that D™YAD is stochastic



Proof. Suppose first that = is a nonzero vector and that Az = x. According to (1.1)
> Ja;x| =1 for all ¢ and the moduli of the x; are all equal. It follows that
2

aQipTp X

|agpar| ||
for every ¢, k for which a;; # 0. Since |x;| = |xg| this implies wy = |ZZZ| = gf—; Fix an
index p and set f(j) = i—f for y=1,...,n. If a;x # 0 then w;, = %= F@)7 (k).

On the other hand, suppose that condition 3° is satisfied. It follows from (3.2)
that there exists a function f defined on N with values on the unit circle such that

wir, = f(1)7  f(k). Tt follows that

agf(k)™ = lairlwif (k)™ = lanlf(1)™
for every pair 7, k for which a;x # 0. Let D be the diagonal matrix with f(1)7*,..., f(n)™!
on the diagonal. Then

(D'AD) i = f(D)aif(k)™" = |am]

whence 4° follows.

If 5° is satisfied, consider the vector ¢ = (1,1,...,1)T. Setting 2 = De we obtain
Az = .

If A is indecomposable the linear space Ker(A — 1) cannot contain two linearly
independent vectors, since, in that case, it would also contain a nonzero vector with at
least one coordinate zero and this is impossible by (1,1). The proof is complete. O

(3.4) Suppose A indecomposable, |A| < 1. Then the following conditions are equivalent

°r(A)=1
2 Y lag| =1 for every ¢ and the following implication holds:
%

if Ch,...C, are the simple cycles in A and if a1, ... a, are integers such that

S I(Cs)as =0 then [Tw(Cs)* =1

If these conditions are satisfied then a number A of modulus one belongs to the
spectrum of A if and only if \* = [Jw(C,)™ where h = h(yp) and the m, satisfy
h =% 1(Cs)ms.

Proof. Suppose that r(A) = 1, let A be an eigenvalue of A of modulus 1 and = a

nonzero vector with Az = Ax. Set B = A™*A. Then Bz = x. It follows from (1.1)

that Y |[bix| = 1 for every ¢ so that Y |a;| = 1 for every ¢ as well. Furthermore, if
% %

wp(t, k) = é:l then wp(C) = 1 for every cycle in B but this is equivalent to the
identity w4 (C) = A for every cycle in A. Suppose that ai,...,a, are integers such
that 3" I(Cy)as = 0. It follows that [Jwa(Cs)* = A\EUCS)as —

In particular, if h =3 I(Cy)m then

)\h — H )\I(C’S)mS — HWA(Cs)mS



Conversely, suppose condition 2° is satisfied. Denote by h the greatest common
divisor of the lengths ;. Then h =} [;m, for suitable m, and [; = hg; for suitable ¢;.
Since h =Y l;m; =3 hq;m; we have }_m;q; = 1.

Now consider a A of modulus one which satisfies the equation

)\h = HwA(CS)mS

and let us prove that it is an eigenvalue of A, or, in other words, that the matrix
B = A7!' A possesses a nonzero fixed vector. Since |A| = 1 we have Y |b;x| = 1 for every
k

i. According to (3.3) it suffices to show that wg(C}) = 1 for every ¢, in other words,

that % = 1 for each t. For brevity, we now write w, for w4(C,). Given a fixed {,

we have

e Ve 1 g
_ me _ megt—1 meq
= (H W ) = W H w,

Wi Wi Wi st

In view of the implication sub 2° this product will equal one if we show that

Li(meg — 1)+ Iimgg = 0;
s#£L

this sum equals

_lt—I'thlsms:_lt—l'thZsms:_lt—l'qth:() u
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