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http://www.nusl.cz/ntk/nusl-33752
http://www.nusl.cz
http://www.nusl.cz


INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Prague

Interactive System for Universal Functional
Optimization �UFO� � Version ����

L� Luk�san� M� T�uma� M� �Si�ska� J� Vl�cek� N� Rame�sov�a

Technical Report No� V����

December ����

This work was supported under the grant ����������� given by the Czech Republic Grant Agency

Akademie v�d �esk� republiky

�STAV INFORMATIKY A V�PO	ETN
 TECHNIKY

Institute of Computer Science� Academy of Sciences of the Czech Republic

Pod vod�renskou v��� 	� 
�	 � Prague �� Czech Republic

E�mail� ICS�uivt�cas�cz

Fax� ���		� ������ Phone� ���		� ������� ���		� ����







Contents

�� Introduction to the UFO system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� Philosophy of the UFO system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� Execution of the UFO system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� The UFO control language � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� Problem description and method selection by using the UFO control language � � � � � � � � � � � � � � � � � ��
���� The UFO environment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Problems solved using the UFO system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Speci�cation of variables � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
���� Speci�cation of the model function 
dense problems� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Speci�cation of the model function 
sparse problems� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Objective functions for discrete approximation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Speci�cation of the approximating functions 
dense problems� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Speci�cation of the approximating functions 
sparse problems� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Objective functions for optimization of dynamical systems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��	� Speci�cation of the state functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Speci�cation of the initial functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Speci�cation of the subintegral function � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Speci�cation of the terminal function � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Optimization with general constraints � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Speci�cation of the constraint functions 
dense problems� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Speci�cation of the constraint functions 
sparse problems� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�����Additional speci�cations concerning optimization problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Optimization methods in the UFO system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Heuristic methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Conjugate direction methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Variable metric methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Modi�ed Newton methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� Modi�ed Gauss�Newton methods for nonlinear least squares and nonlinear equations � � � � � � � � � � �	
���� Quasi�Newton methods for nonlinear least squares and nonlinear equations � � � � � � � � � � � � � � � � � � � � ��
��� Quasi�Newton methods with limited storage for nonlinear equations � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��	� Biconjugate direction methods for nonlinear equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Modi�ed Brent method for nonlinear equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Simplex like methods for linear programming problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Interior point methods for sparse linear programming problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Methods for quadratic programming problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Proximal bundle methods for nonsmooth optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Bundle�Newton methods for nonsmooth optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�����Variable metric bundle methods for nonsmooth optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�����Methods for minimax problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����Recursive quadratic programming methods for nonlinear programming problems � � � � � � � � � � � � � � �	
���	�Recursive minimax optimization methods for nonlinear programming problems � � � � � � � � � � � � � � � � ��
�����Inexact recursive quadratic programming methods for large sparse equality constrained

nonlinear programming problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Methods for initial value problems for ordinary di�erential equations � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Methods for direction determination � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Methods for stepsize selection � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Methods for numerical di�erentiation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Methods for objective function evaluation in the case of dynamical systems optimization � � � � � � ��

�



�����Global optimization methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Output speci�cations in the UFO system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Basic screen output � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Extended screen output � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Graphical screen output � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� Text �le output � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� User supplied output � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� Storing �nal results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Tracing in the UFO control program � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��	� Error messages � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Special tools of the UFO system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
���� Checking external subroutines � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
���� Testing optimization methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

�� Applications of the UFO system 
examples� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
���� Optimization with simple bounds � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
���� Minimization of the sum of squares � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
���� Minimax approximation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
���� Nonsmooth optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
���� Optimization with linear constraints � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
���� Minimax approximation with linear constraints � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		
��� Optimization with nonlinear constraints 
nonlinear programming� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
��	� Global optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Large�scale optimization 
sparse Hessian matrix� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Large�scale optimization 
sparse Jacobian matrix� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Large�scale sum of squares optimization 
sparse Jacobian matrix� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Large�scale nonlinear equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�����Large�scale linear programming � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
�����Large�scale quadratic programming � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�����Large�scale optimization with linear constraints � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
�����Large�scale optimization with nonlinear equality constraints � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
����Optimization of dynamical systems � general integral criterion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	
���	�Optimization of dynamical systems � special integral criterion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
�����Initial value problem for ordinary di�erential equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Model examples for demonstration of graphical output � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Nonlinear regression � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Nonlinear minimax optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Transformer network design � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	
��� Global optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	
��� Nonsmooth optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Nonlinear equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
�� Ordinary di�erential equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
�	� The Lorenz attractor � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

References � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Index of macrovariables � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Appendix A� Demonstration of the full dialogue mode � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�



Appendix B� The BEL interpreter � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
B��� General description � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
B��� List of instructions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
B��� Special characters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
B��� Description of instructions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Appendix C� Graphical screen output � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



�� Introduction to the UFO system

The universal functional optimization 
UFO� system is an interactive modular system for solving both
dense medium�size and sparse large�scale optimization problems� The UFO system can be used for the
following applications�

�� Formulation and solution of particular optimization problems that are described in chapter ��

�� Preparation of specialized optimization routines 
or subroutines� based on methods described in
chapter ��

�� Designing and testing new optimization methods� The UFO system is a very useful tool for opti�
mization algorithms development�

The special realization of the UFO system� which is described in the subsequent text� makes this
system portable and extensible and we continue with its further development�


�
� Philosophy of the UFO system

The UFO system is an open software system for solving a broad class of optimization problems� An
optimization problem solution is processed in four phases� In the �rst phase the optimization problem is
speci�ed and an optimization method is selected� This can be made in three di�erent ways�

�� The full dialogue mode� The problem speci�cation and the method selection are realized by using
a conversation between the user and the UFO system�

�� The batch mode� The problem speci�cation and the method selection are realized by using the
UFO control language� An input �le� written in the UFO control language� has to be prepared and
stored�

�� The combined mode� Only a part of the speci�cation is written in the input �le� The rest of the
speci�cation is obtained as in the dialogue mode� This possibility is usually the best one since the
problem functions can be de�ned beforehand by using a convenient text editor�

The second phase is realized by using the UFO preprocessor� This preprocessor is written in the Fortran
 language and its output is a Fortran  control program� This conception is very advantageous for
the following reasons�

�� The Fortran  
full ANSI norm� is a su�ciently high and portable programming language� More�
over� this language is very suitable for numerical computations� and a broad class of subroutines is
available in this �eld�

�� A control program� generated by the UFO preprocessor� calls for necessary modules only and
its speci�cation is very easy� Moreover� control program global declarations are determined by
the problem size� which decreases storage requirements� This way overcomes an impossibility of
dynamical declarations in the Fortran  language�

�� The UFO system is open� When a new class of optimization problems or optimization methods
has to be included� one only needs to change the system templates and prepare new modules� The
control program is composed of individual modules by using speci�cations in the �rst phase� This
fact allows us to create a great number of various optimization methods�

In the third phase� the control program is translated by using a Fortran  compiler and a �nal program
is linked by using library modules� In the fourth phase� the �nal program is executed and results which
can be viewed by using extensive output means are obtained�
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The above conception is enabled by a special form of source modules� These modules usually consist
of two parts� the interface template and the Fortran  realization� The interface template is used by
the UFO preprocessor only and it serves for the control program generation 
the part of control program
corresponding to a given module is coded in the template�� These templates also contain knowledge
bases for an automatic selection of the optimization method� If the UFO system has to be extended then
usually only templates� which do not need to be compiled� are changed� Besides interface templates�
which are a part of source modules� special templates controlling the UFO reprocessor exist� A batch
input �le written in the UFO control language is one of these special templates�

The UFO macroprocesor works in two stages� In the �rst pass� the �le P�TMP is created� This �le is
a control program ancestor containing some macroinstructions and macrovariables which are replaced in
the second pass� The control program P�FOR is the result of the second pass�


�	� Execution of the UFO system

The UFO system contains three basic procedures GENER�BAT� COMPIL�BAT and UFOGO�BAT�
The UFO preprocessor is called if the statement

GENER input name

is typed� Then the control program P�FOR� written in the Fortran  language� is obtained� Furthermore�
the compilation of the control program P�FOR� followed by its loading and executing� is started if the
statement

COMPIL output name

is typed� Finally� all the UFO system phases are performed if the statement

UFOGO input name

is typed� Here input name is the �rst part of the batch �le name that is used as an batch input �le for
the control program generation and output name is the �rst part of the text �le that is used as an text
output from the UFO system� The batch �le name must always have the form input name�UFO with the
extension UFO and the text �le name must have the form output name�OUT with the extension OUT� If
GENER� UFOGO statements do not contain the batch input �le speci�cation then a full dialogue mode
is considered 
the batch �le name is STANDARD�UFO in this case�� If COMPIL statement does not
contain a text �le speci�cation then the standard text �le name is P�OUT� The UFOGO statement has
the same meaning as the two statements GENER and COMPIL�

First we show how the batch mode proceeds� We suppose that the model function has the form

fF 
x� � ���
x�� � x��
� � 
x� � ���


the Rosenbrock function� and the starting point is x� � ���� and x� � ���� If we prepare the batch
input �le P�UFO of the form

�SET�INPUT�

X��������D	
 X���� ��	D	

�ENDSET

�SET�FMODELF�

FF���	D���X�������X���������X������	D	����

�ENDSET

�NF��

�NOUT��

�BATCH

�STANDARD

and type the statement UFOGO P�UFO� then the following results appear in the output �le P�OUT
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	 NIT� � NFV� �� NFG� 	 NDC� 	 NCG� 	 F� ����D��� G� ���D�	�

FF� �����	��	�	D���

X � ����������D�		 ����������D�		

TIME� 	�		�		���

Batch �les are written in the UFO control language� This language is described in section ���� Here
we note that a certain experience with the UFO control language can be obtained by using the demo��les
PROB���UFO�� � �� PROB���UFO� These demo��les contain �� test problems described in chapter �� We
can solve them by using the statements UFOGO PROB���� � �� UFOGO PROB���

Besides the batch mode� we can use the full dialogue mode� The full dialogue mode is started if we
type the statement UFOGO 
without a batch input �le speci�cation�� An example which demonstrates
the full dialogue mode applied to the Rosenbrock function is given in Appendix A�


��� The UFO control language

The form of the control program is determined by using statements of the UFO control language�
The UFO control language is based on the batch editing language 
BEL� ����� which is described in
Appendix B� and it contains three types of instructions�

�� Standard Fortran  instructions which can be written in the free format�

�� Fortran  instructions containing macrovariables� These instructions get a �nal form after the �rst
pass of the UFO preprocessor�

�� Special macroinstructions� These macroinstructions control the UFO preprocessor execution�

Standard Fortran  instructions used in the UFO control language have some extensions and limi�
tations� The main extension is the free format� The instructions do not have a limited length� they can
be written everywhere in the input �le and if they are written in the same line then the character ��� is
used to separate the instructions� The continuation of an instruction is speci�ed by the character �� ��
The main limitation concerns the placement of instructions in the control program� Therefore� statement
numbers greater than ���� cannot be used� comments can be introduced by the character ��� only and
the only continuation character can be �� �� Also� it is recommended to use identi�ers beginning with
the character �W� which are not used in the UFO system

Macrovariables used in the UFO system begin with the character ��� and they are supposed to be of
the type character� Their values are always in the form of a string of characters which can be sometimes
interpreted as an integer or a real or a logical constant� The chief signi�cance of the macrovariables is
their use in substituting their values for their names in the Fortran  statements� In this case we place
the macrovariable 
beginning with ���� in the text� but if it is followed by a letter or digit we have to use
brackets� For example if we write

�FLOAT W
����
or

CALL UD�HESF�TYPE�DECOMP�NUMBER
or

X
�������
P��

and if the values of �FLOAT� �HESF� �TYPE� �DECOMP� �NUMBER and �P are �REAL�	� 
it is
standard�� �D�� �L�� �G� ��� and �D� 
it is standard� then we get REAL�	 W
���� or CALL UDDLG� or
X
������D� respectively after the UFO preprocessor application� The values of macrovariables can be
de�ned by assignments as will be shown later�

The macroinstructions are very important for the UFO control language since they make the substi�
tution of texts� change of macrovariables� branching� loops� etc�� possible� We brie�y describe the most
useful of them� A more detailed description is given in Appendix B�
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�� Assignment� The assignment of a string of characters for a macrovariable is speci�ed by the
macroinstruction �MACRO��value�� For example� we have to set �HESF��D�� �TYPE��L�� �DE�
COMP��G�� �NUMBER�� 
the integers do not need to be substituted as strings� to obtain the
result given above�

�� Insertion of a text� If we write

�SET
MACRO� or �ADD
MACRO�

text text

�ENDSET �ENDADD

then a given text 
that can contain a large number of Fortran  statements� is inserted into the
macrovariable �MACRO� The macroinstruction �SET is used for the de�nition of a new macrovari�
able� The macroinstruction �ADD appends a new text into the old macrovariable so that it can be
used repeatedly�

�� Logical macrovariables� The macrovariables �INT� �REAL� �LOG and �DEF have logical val�
ues� If we write �INT
MACRO� 
or �REAL
MACRO� or �LOG
MACRO��� then the resulting
value is either �TRUE�� if the value of the macrovariable �MACRO is an integer constant 
or real
constant or logical constant�� or �FALSE� in the oposite case� If we write �DEF
MACRO� then
the value of �DEF is either �TRUE�� if the macrovariable �MACRO was previously de�ned 
by
the substitution �MACRO��value� or by using macroinstructions �SET and �ADD�� or �FALSE�
in the oposite case� This possibility can be used for branching� If we use the macroinstruction
�ERASE
MACRO�� then the previously de�ned macrovariable �MACRO becomes unde�ned 
so
that �DEF
MACRO���FALSE���

�� List of items macrovariables� Values of macrovariables can be lists of items� i�e� they can have a
more complicated form �MACRO��item � nitem �n� � �nitem n� where every item corresponds to one
value� The list of items macrovariables use pointers which point out the current items� The current
item can be obtained by the macroinstruction �DATA
MACRO� which also moves the pointer to
the next item� The macroinstruction �RESTORE
MACRO� returns the pointer to the �rst item�

�� Branching� This possibility is very similar to the branching in the Fortran  language�

�IF
condition�

statements

�ELSEIF
condition�

statements

�ELSE

statements

�ENDIF

Conditions can be logical constants �TRUE�� �FALSE�� or logical macrovariables �INT
MACRO��
�REAL
MACRO�� �LOG
MACRO��� �DEF
MACRO�� or they can have a form of comparisons
MACRO�MACRO�� MACRO��value� etc� 
besides the relation � we can also use the other
relations � or � or �� or �� or ���� Branching is used in the UFO preprocessor stage and it
has an in�uence on the form of the control program�

�� Loops� The basic looping macroinstructions have the form 
similarly as in the Fortran  or Pascal
languages��





�DO
MACRO�INDEX��INDEX��INDEX��

statements

�ENDDO

or

�REPEAT

statements

�UNTIL
condition�

For example if we set �NF��� �NC�� and write

�DO
I���NF���

�DO
J���NC���

CALL UKMCI�
�I��J��I��D���J��D��ICG�JCG�CG�

�ENDDO

�ENDDO

then the UFO preprocessor generates the sequence

CALL UKMCI�
�������D�����D��ICG�JCG�CG�

CALL UKMCI�
�������D�����D��ICG�JCG�CG�

CALL UKMCI�
�������D�����D��ICG�JCG�CG�

CALL UKMCI�
�������D�����D��ICG�JCG�CG�

CALL UKMCI�
�������D�����D��ICG�JCG�CG�

CALL UKMCI�
�������D�����D��ICG�JCG�CG�

Similarly� if we set �FLOAT��REAL�	� �N���� �MACRO��X
�N�nG
�N�nH
�N��N�n�END��� and
write

�REPEAT

�I��DATA
MACRO��

�FLOAT �I

�UNTIL
I���END���

then the UFO preprocessor generates the sequence

REAL�	 X
���

REAL�	 G
���

REAL�	 H
������

� Substitution of a �le� Suppose we have a �le with a name �le name�extension� Then we can include
it into the control program by using the macroinstructions

�INCLUDE
��le name�extension��

or

�SUBST
��le name�extension��

	



The main di�erence between these possibilities is that the macroinstruction �INCLUDE includes a
text without change 
it has to be a regular Fortran  text with a �xed format� while the macroin�
struction �SUBST substitutes a text executed consecutively by the UFO preprocessor 
so it can
contain the macrovariables and macroinstructions and it can be written in the free format�� More�
over� if this text contains a template� then the macroinstruction �SUBST substitutes only this
template� This possibility is widely used for control program generation by using intermediate
templates� If the included �le has the name �le name�I� then we can use a simpler form with�
out extension� For example� the �le UZLINS�I can be substituted by using the macroinstruction
�SUBST
�UZLINS���

	� Special macroinstructions� Besides macroinstructions of the batch editing language BEL� the UFO
control language contains special macroinstructions which control the UFO preprocessor�

�BATCH � switch to the batch mode�

�DIALOGUE � switch to the dialogue mode�

�GLOBAL � global declarations�

�INITIATION � initiation of the global variables�

�INPUT � user supplied input�

�OUTPUT � user supplied output�

�METHOD � generation of the optimization method�

�MODERASE � cancelation of the current model�

�METERASE � cancelation of the current method�

�TSTART � start of the time measurement�

�TSTOP � termination of the time measurement and print of the measured time�

�END � end of the optimization block�

�STANDARD � standard optimization block� The macroinstruction �STANDARD substitutes
the sequence of macroinstructions �GLOBAL� �INITIATION� �MODERASE�
�INPUT� �METHOD� �OUTPUT� �TSTOP�

�� Standard macrovariables� The macrovariables �FLOAT or �P have standard values �REAL�	� or
�D� respectively� This possibility has a meaning for a precision free notation� If we write

�FLOAT WA�WB

WA�����
P��

WB�����
P��

then after the UFO preprocessor execution we have

REAL�	 WA�WB

WA����D�

WB����D�

The macrovariables �FLOAT and �P are de�ned in the installation template and they can be
changed when we wish to use single precision computations�

We have described the basic possibilities of the UFO control language that are su�cient for preparing
the batch input �le� More details are given in subsequent sections and especially in Appendix B� The
following example demonstrates the use of the UFO control language for the solution of three collections
of optimization problems by two selected methods�
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�REM ��������������� basic parameters ���������������

�TOLX����	�P��	�
 �TOLF����	�P����
 �TOLG����	�P���
 �MIT��		
 �MFV���		

�KOUT�	
 �LOUT��
 �MOUT��

�BATCH

�GLOBAL

�ADD�INTEGER���IAG��NA����JAG��MA���

�REM ��������������� the first method ���������������

�CLASS��VM�
 �TYPE��L�
 �DECOMP��M�
 �NUMBER��
 �UPDATE��B�

�REM ��������������� the first model ���������������

�MODEL��AF�
 �JACA��S�
 �HESF��S�
 �NF��		
 �NA��		
 �MA��			
 �M��			

�SET�INPUT�

CALL EIUB��NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT�IEXT�IERR�

IF�IERR�NE�	� GO TO ����

�ENDSET

�SET�FMODELA�

CALL EAFU��NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU��NF�KA�X�GA�NEXT�

�ENDSET

�REM ��������������� the first solver ���������������

�INITIATION

�MODERASE

CALL UYTES�

DO ���� NEXT�����

CALL UYTES�

�INPUT

�METHOD

CALL UYTES�

���� CONTINUE

�REM ��������������� the second method ���������������

�METERASE

�CLASS��GN�
 �TYPE��L�
 �DECOMP��M�
 �NUMBER��
 �UPDATE��D�

�REM ��������������� the second model ���������������

�MODEL��AQ�
 �JACA��S�
 �HESF��S�
 �NF��		
 �NA��		
 �MA��			
 �M��			

�SET�INPUT�

CALL EIUB���NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT����IEXT�IERR�

IF�IERR�NE�	� GO TO ����

�ENDSET

�SET�FMODELA�

��



CALL EAFU���NF�KA�X�FA�NEXT����

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT����

�ENDSET

�REM ��������������� the second solver ���������������

�INITIATION

�MODERASE

DO ���� NEXT������

CALL UYTES�

�INPUT

�METHOD

CALL UYTES�

���� CONTINUE

�REM ��������������� the third model ���������������

�SET�INPUT�

CALL EIUB���NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT����IEXT�IERR�

IF�IERR�NE�	� GO TO ����

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT����

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT����

�ENDSET

�REM ��������������� the third solver ���������������

�INITIATION

�MODERASE

DO ���� NEXT������

CALL UYTES�

�INPUT

�METHOD

CALL UYTES�

���� CONTINUE

�REM ��������������� the final action ���������������

CALL UOTES

�END


��� Problem description and method selection by using the UFO control language

If we want to process either the batch mode or the mixed mode we have to prepare a batch input
�le written in the UFO control language� This input �le prescribes the structure of the control pro�
gram� If some macrovariable is used� it has to have been previously de�ned� Therefore de�nitions of
macrovariables usually lie in the beginning of the input �le� Many macrovariables serves for the de�ni�
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tion of a given optimization problem� The most important among them are macrovariables which de�ne
problem functions� speci�cally the model 
or objective� function� approximating functions for nonlinear
approximation� constrain functions for nonlinear programming� state functions� initial functions and the
terminal function for optimization of dynamical systems� These functions are speci�ed by using special
macrovariables whose names are consisted of three parts� The �rst part can contain letters F� G� D� H
or their combinations�
F � function value�
G � gradient with respect to basic variables�
D � gradient with respect to state variables�
H � Hessian matrix with respect to basic variables�
FG � function value and gradient with respect to basic variables�
FD � function value and gradient with respect to state variables�
GD � gradient with respect to basic variables and gradient with respect to state variables�
FGD � function value� gradient with respect to basic variables and gradient with respect to state

variables�
FGH � function value� gradient with respect to basic variables and Hessian matrix with respect to

basic variables�
The second part always has the form MODEL� The third part can contain letters F� A� C� E� Y and also
an additional letter S�
F � the model function or the terminal function�
A � the selected approximating function�
AS � all approximating functions�
C � the selected constraint function�
CS � all constraint functions�
E � the selected state function�
ES � all state functions�
Y � the selected initial function�
YS � all initial functions�

The following combinations are possible�

�FMODELF �FMODELA �FMODELC �FMODELE �FMODELY
�FMODELAS �FMODELCS �FMODELES �FMODELYS

�GMODELF �GMODELA �GMODELC �GMODELE �GMODELY
�GMODELAS �GMODELCS �GMODELES �GMODELYS

�DMODELF �DMODELA �DMODELE
�DMODELES

�HMODELF �HMODELA �HMODELC
�HMODELAS �HMODELCS

�FGMODELF �FGMODELA �FGMODELC �FGMODELE �FGMODELY
�FGMODELAS �FGMODELCS �FGMODELES �FGMODELYS

�FDMODELF �FDMODELA �FDMODELE
�FDMODELES

�GDMODELF �GDMODELA �GDMODELE
�GDMODELES

�FGDMODELF �FGDMODELA �FGDMODELE
�FGDMODELES

�FGHMODELF �FGHMODELA �FGHMODELC
�FGHMODELAS �FGHMODELCS

Choice of a suitable way for problem functions de�nitions is ambiguous and problem dependent� We
can only state several remarks�

�� The basic and most general way is the use of di�erent macrovariables for di�erent quantities 
val�
ues� gradients� Hessian matrices� together with an independent evaluation of individual functions
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the last letter is di�erent from S�� This way saves the computer storage and frequently also the
computational time�

�� Sometimes� evaluation of gradients require function values� In this case� it can be advantageous to
compute values and gradients simultaneously� Similar consideration holds also for Hessian matrices�

�� Even if simultaneous evaluation of all aproximating 
constraint� state� initial� functions increase
storage requirements� it can be advantageous if complicated computations exist which are common
for all such functions and also if a problem has a low dimension or sparse structure� Frequently
it is advantageous for the evaluation of state and initial functions when dynamical systems are
optimized�

�� If gradients of aproximating 
constraint� state� initial� functions are computed simultaneously 
the
last letter is equal to S�� then also function values have to be computed simultaneously� Similarly
if Hessian matrices are computed simultaneously� then also function values and gradients have to
be computed simultaneously�

A simple example of a batch input �le was shown in section ���� We repeat it here with some explanations�

�SET�INPUT�

X��������D	
 X���� ��	D	

�ENDSET

�SET�FMODELF�

FF���	D���X�������X���������X������	D	����

�ENDSET

�NF��

�NOUT��

�BATCH

�STANDARD

By using the macrovariable �INPUT� we specify initial values of variables x� � ���� and x� � ���� By
using the macrovariable �FMODELF� we specify the model function value 
the model function gradient is
not speci�ed� it will be computed numerically�� The macrovariable �NF de�nes the number of variables
and �NOUT is a print speci�cation� The macroinstruction �BATCH switches the mode to the batch
mode� The macroinstruction �STANDARD de�nes a standard form of the control program� Descriptions
of more complicated problems are shown in chapter ��

In the above example� a direct de�nition of a model function value is used� We can also use indirect
speci�cations by means of the Fortran  subroutines or the �les prepared beforehand� Suppose that the
model function value is de�ned by using the subroutine EFFU�� or it is speci�ed in the �le FVAL�FOR�
Then we can write�

�SET
FMODELF�
CALL EFFU��
NF�X�FF�NEXT�

�ENDSET
or

�SET
FMODELF�
�INCLUDE
�FVAL�FOR��

�ENDSET
or

�SET
FMODELF�
�SUBST
�FVAL�FOR��

�ENDSET

The last possibility is useful if the model function value speci�cation is written in a free format or it
contains the BEL macroinstructions�
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If we need to utilize user supplied subroutines� we can include them into the control program using
the macrovariable �SUBROUTINES�

�SET
SUBROUTINES�
user supplied subroutines

�ENDSET

In this case� some exceptions laid on the text of user supplied subroutines� forced by the UFO preprocessor�
have to be satis�ed� All comments have to begin by the character ���� the continuation line has to begin
by the character ���� the character ��� has to be replaced by ���� and the character ��� does not have to
be present�

The batch input �le should also contain the optimization method selection� Fortunately� this selection
is not critical since the optimization method can be chosen automatically by using knowledge bases
contained in the UFO system templates� Here we will only demonstrate some possibilities� The greatest
in�uence on the optimization method selection have the following macrovariables�

�CLASS � class of optimization methods 
heuristic� conjugate gradient� variable metric� New�
ton� Gauss�Newton� quasi�Newton� proximal bundle� bundle�Newton��

�TYPE � type of optimization methods 
line search� trust region��
�DECOMP � type of matrix decomposition 
original matrix� Choleski decomposition� inversion��
�NUMBER � individual methods for direction determination 
various direct� various iterative��
�UPDATE � type of variable metric or quasi�Newton update�

A more detailed description of these choices together with other choices 
�MET� �MET�� �MET�� �MET��
�MES� �MES�� �MES�� �MES�� �MOS� �MOS�� �MOS�� �MOS�� is given in section ��


��� The UFO environment

The UFO environment can be used on personal computers 
PC� with processors �	���	���	�� with
the operating system MS DOS version ��� or higher and with the Microsoft FORTRAN  compiler
version ��� or higher or the Microsoft Fortran Power Station compiler version ��� or higher�

The UFO environment is called by using the statement UFO 
program UFO�EXE�� It is controlled
by using the �pull�down menu� The main menu is activated by pressing the key �F��� � The UFO
environment contains a source program editor whose control is similar to the Word Star editor and�
therefore� to the most commonly used source program editors under the MS DOS system 
for example
Turbo Pascal�� All signi�cant statements of the source program editor are available from the UFO
environment menu�

Since the UFO environment menu is clearly understood we do not describe it 
the description is given
in ���	�� � We only show the usual way for operating input �les� When the batch mode input �le is
prepared by using the source program editor we press the key �F��� and �nd the command Run! in
the UFO environment menu� This command starts the UFO preprocessor and its action corresponds
to the statement UFOGO 
with the present input �le�� An easier possibility is pressing the keys �Alt�
�� � Similarly� pressing the keys �Alt��� has the same e�ect as the statement GENER� Furthermore�
if the control program P�FOR is loaded in the source program editor� pressing the keys �Alt��� has
the same e�ect as the statement COMPIL and pressing the keys �Alt��� causes an exit from the UFO
environment�
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�� Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an
objective function F � Rn � R over a set X � Rn� The objective function can have several forms
determined using the macrovariable �MODEL�

�MODEL��FF� � general optimization� In this case

F 
x� � �fF 
x�

where fF � Rn � R is a real valued� so�called model function

�MODEL��FL� � linear optimization� In this case

F 
x� � � 
fF �
nX
i��

gFi xi�

where fF � gFi � � � i � n� are real coe�cients�

�MODEL��FQ� � quadratic optimization� In this case

F 
x� � � 
fF �
nX
i��


gFi �
�

�

nX
j��

hFijxj�xi�

where fF � gFi � � � i � n�� hFij� � � i � n� � � j � n� are real coe�cients�

�MODEL��AF� � sum of functions minimization� In this case

F 
x� �
nAX
k��

fAk 
x�

where fAk � Rn � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��AQ� � Sum of squares minimization� In this case

F 
x� �
nAX
k��

jfAk 
x�j�

where fAk � Rn � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��AP� � sum of powers minimization� In this case

F 
x� �
nAX
k��

jfAk 
x�jr

where fAk � Rn � R� � � k � nA� are real valued� so�called approximating functions
and � � r �� is a real exponent�

�MODEL��AM� � minimization of maximum 
minimax�� In this case

F 
x� � max
��k�nA

jfAk 
x�j

where fAk � Rn � R� � � k � nA� are real valued� so�called approximating functions�
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�MODEL��DF� � minimization of general integral criterion with respect to the state equations� In this
case

F 
x� �

Z tmax
A

tmin
A

fA
x� yA
x� tA�� tA� dtA � fF 
x� yA
x� t
max
A �� tmax

A �

and

dyA
x� tA�
dtA

� fE 
x� yA
x� tA�� tA�� y
A
x� tmin

A � � fY 
x�

where fA � Rn�nE�� � R is a real valued� smooth� so�called subintegral function� fF �
Rn�nE�� � R is a real valued� smooth� so�called terminal function� fE � Rn�nE�� �
RnE is a real valued� smooth� so�called state function and fY � Rn � RnE is a real
valued� smooth� so�called initial function�

�MODEL��DQ� � minimization of sum of squares integral criterion with respect to the state equations�
In this case

F 
x� �
�
�

Z tmax
A

tmin
A

nEX
i��

wE
i 
tA�
y

A
i 
x� tA�� yEi 
tA��

� dtA �
�
�

nEX
i��

wE
i 
y

A
i 
x� t

max
A �� yEi �

�

and

dyA
x� tA�
dtA

� fE 
x� yA
x� tA�� tA�� y
A
x� tmin

A � � fY 
x�

where fE � Rn�nE�� � RnE is a real valued� smooth� so�called state function and
fY � Rn � RnE is a real valued� smooth� so�called initial function�

�MODEL��NO� � solving an initial value problem for a system of ordinary di�erential equations� In
this case

dyA
tA�
dtA

� fE 
yA
tA�� tA�� y
A
tmin

A � � ymin
A

where fE � RnE�� � RnE is a real valued� smooth� so�called state function�

The objective function de�ned by the choice �MODEL��AQ� can be used for the solution of a system
of nonlinear equations

fAk 
x� � �� � � k � nA

In this case we suppose nA � n� This case is considered separately� since for nA � n special methods for
systems of nonlinear equations can be used�

The model function fF � Rn � R can have several types of Hessian matrices speci�ed by the
macrovariable �HESF�

�HESF��D� � dense Hessian matrix�
�HESF��S� � sparse Hessian matrix with a general pattern�
�HESF��NO� � Hessian matrix is not used�

The default option is �HESF��D�� The approximating functions fAk � Rn � R� � � k � nA� can have
several types of Jacobian matrices speci�ed by the macrovariable �JACA�

�JACA��D� � dense Jacobian matrix�
�JACA��S� � sparse Jacobian matrix with a general pattern�
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�JACA��NO� � Jacobian matrix is not used�

If the approximating functions are used then we can choose several types of the Hessian matrix represen�
tation� These types are again speci�ed by the macrovariable �HESF�

�HESF��D� � dense Hessian matrix�
�HESF��S� � sparse Hessian matrix with a general pattern�
�HESF��B� � sparse Hessian matrix with a partitioned pattern
�HESF��NO� � Hessian matrix is not used�

If �JACA��D�� then it must be either �HESF��D� or �HESF��NO�� If �JACA��S�� then we can specify
all types of Hessian matrices 
�HESF��D�� �HESF��S�� �HESF��B�� �HESF��NO��� The representation
�HESF��B� usually leads to more expensive matrix operations� Therefore� we recommend to prefer the
choice �HESF��S� against the choice �HESF��B��

The subintegral function� terminal function� state function and initial function� appeared in the case
of dynamical systems optimization� are considered to be dense� Therefore we cannot use the speci�cations
�HESF��S� or �HESF��B� in this case�

The set X � Rn can be whole Rn 
unconstrained case� or it can be de�ned by box constraints

xLi � xi if i � I�

xi � xUi if i � I�

xLi � xi � xUi if i � I�

xLi � xi if i � I�

where I� 	 I� 	 I� 	 I� � fi � N � � � i � ng� by general linear constraints

cLk �
nX
i��

gCkixi if k � L�

nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi if k � L�

where gCki� � � k � nC � � � i � n� are real coe�cients and L� 	 L� 	 L� 	 L� � fk � N � � � k � nCg�
or by general nonlinear constraints

cLk � fCk 
x� if k � N�

fCk 
x� � cUk if k � N�

cLk � fCk 
x� � cUk if k � N�

cLk � fCk 
x� if k � N�
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where fCk � Rn � R� � � k � nC� are real valued� smooth� so�called constraint functions and N� 	 N� 	
N� 	N� � fk � N � � � k � nCg� The constraint functions fCk � Rn � R� � � k � nC � can have several
types of Jacobian matrices speci�ed by the macrovariable �JACC�

�JACC��D� � dense Jacobian matrix�
�JACC��S� � sparse Jacobian matrix with a general pattern�

If �JACC��D�� then must be �HESF��D� or �HESF��NO�� If �JACC��S�� then must be �HESF��S� or
�HESF��NO��

There are several limitations in the current version of the UFO system�

�� Minimization of maximum
minimax� and nonsmooth optimization is not implemented in the sparse
case�

�� Minimization of dynamical systems is not implemented in the sparse case�

�� Usually the UFO system serves for local optimization� Global optimization can be used only for
relatively small 
n � ��� dense problems that are unconstrained or that contain box constraints�

These limitations will be consecutively removed in subsequent versions of the UFO system�
In the rest of this report we will use the notation NF� NA� NC instead of n� nA� nC and X� FF� GF�

HF� FA� GA� FC� GC instead of x� fF � gF � hF � fA� gA� fC � gC � This new notation corresponds to the
notation of the variables and the �elds in the UFO system�

	�
� Speci�cation of variables

First we must specify the number of variables using the statement �NF�number of variables� If there
are no box constraints we set �KBF��� In the opposite case we set �KBF�� or �KBF��� If �KBF��
or �KBF�� then

X
I� � unbounded � if IX
I� � �
XL
I� � X
I� � if IX
I� � �

X
I� � XU
I� � if IX
I� � �
XL
I� � X
I� � XU
I� � if IX
I� � �
X
I� � constant � if IX
I� � �

where �� I� NF� The option �KBF�� must be chosen if IX
I��� for at least one index �� I� NF� Then
two di�erent �elds XL
I� and XU
I�� �� I� NF are declared� In the opposite case we set �KBF�� and
only one common �eld XL
I��XU
I�� � � I� NF is declared�

Initial values of variables X
I�� �� I� NF� types of box constraints IX
I�� �� I� NF� and lower and
upper bounds XL
I� and XU
I�� �� I� NF� can be speci�ed using macrovariable �INPUT� The default
values are IX
I��� and XL
I��XU
I���� �� I� NF� For example�

�KBF��� �NF��
�SET
INPUT�

X
���x�
X
���x�� IX
����� XL
���xL�
X
���x�� IX
����� XL
���xL� � XU
���xU�
X
���x�� IX
����

�ENDSET

The UFO system allows us to use a scaling of variables 
for instance if the values of variables di�er
very much in their magnitude�� We set�
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�NORMF�� � scaling parameters XN
I�� �� I� NF� are determined automatically so that
X
I��XN
I���� ��I�NF� for the initial values of variables�

�NORMF�� � scaling parameters must be speci�ed by the user by means of the macrovariable
�INPUT�

The scaling of variables is recommended only in exceptional cases since it increases the computational
time and storage requirements� The scaling of variables is suppressed if �NORMF�� 
this value is
default�� The scaling of variables is not permitted in the case of general constraints 
if KBC����

	�	� Speci�cation of the model function �dense problems�

If the macrovariable �MODEL is not speci�ed or if �MODEL��FF�� then the objective function is
de�ned by the formula

F
X� � � FF
X� if �IEXT � � 
minimization�
or

F
X� � � FF
X� if �IEXT � � 
maximization�

Option �IEXT�� is default�
The model function FF
X� must be de�ned by the user either directly in the full dialogue mode� or

by using corresponding macrovariables in the batch 
or mixed� mode� The value of the model function
is speci�ed by using the macrovariable �FMODELF�

�SET
FMODELF�
FF � value FF
X�

for given values of variables X
I�� �� I� NF�

�ENDSET

The �rst derivatives of the model function are speci�ed by using the macrovariable �GMODELF�

�SET
GMODELF�
GF
�� � derivative �FF
X�� �X
��
GF
�� � derivative �FF
X�� �X
��
"#
GF
NF� � derivative �FF
X�� �X
NF�

for given values of variables X
I�� ��I�NF�

�ENDSET
The second derivatives of the model function are speci�ed by using the macrovariable �HMODELF� If
�HESF��D�� then the Hessian matrix is assumed to be dense and we specify only its upper half�

�SET
HMODELF�
HF
�� � derivative ��FF
X�� � X
���

HF
�� � derivative ��FF
X�� �X
���X
��
HF
�� � derivative ��FF
X�� �X
���

HF
�� � derivative ��FF
X�� �X
�� �X
��
HF
�� � derivative ��FF
X�� �X
�� �X
��
HF
�� � derivative ��FF
X�� �X
���

"#
HF
NF�
NF������ � derivative ��FF
X�� �X
NF��


for given values of variables X
I�� ��I�NF�
�ENDSET

If the macrovariables �GMODELF or �HMODELF are not de�ned� we suppose that the �rst or the
second derivatives of the model function are not given analytically� In this case� they are computed
numerically by using the UFO system routines whenever it is required� If it is advantageous to compute
the �rst derivatives of the model function FF
X� together with its value� we can include the models

��



�FMODELF and �GMODELF into the common model �FGMODELF� Similarly we can include the
models �FMODELF� �GMODELF and �HMODELF into the common model �FGHMODELF�

To improve the e�ciency of the computation� we can specify additional information about the model
function FF
X�� The �rst piece of information� useful for an automatic choice of the optimizationmethod�
is the computational complexity speci�ed by the macrovariable �KCF�

�KCF�� � evaluation of the model function FF
X� is very easy 
it takes at most O
NF� simple
operations��

�KCF�� � evaluation of the model function FF
X� is of medium complexity 
it takes at least
O
NF� complicated operations and at most O
NF�� simple operations��

�KCF�� � evaluation of the model function FF
X� is extremely di�cult 
it takes at least
O
NF�� complicated operations or O
NF�� simple operations��

The option �KCF�� is default� An additional useful piece of information is the analytical complexity

di�erentiability and conditioning�� which is speci�ed by the macrovariable �KSF�

�KSF�� � the model function FF
X� is smooth and well�conditioned�
�KSF�� � the model function FF
X� is smooth but ill�conditioned�
�KSF�� � the model function FF
X� is nonsmooth�

The option �KSF�� is default� Other speci�cations� which can improve the computational e�ciency and
robustness of optimization methods� are a lower bound of the objective function values and an upper
bound of the stepsize� Both these values depend on a de�nition of the objective function and can be
speci�ed by the statements �FMIN�lower bound 
for the objective function� and �XMAX�upper bound

for the stepsize�� We recommend a de�nition of �FMIN whenever it is possible and a de�nition of �XMAX
whenever the objective function contains exponentials�

If �MODEL��FL�� we suppose the model function is linear of the form

FF
X� � FF �
NFX
I��

GF
I� �X
I�

In this case we need not specify the value and the �rst derivatives of the model function by the macrovari�
ables �FMODELF and �GMODELF as in the general case� Instead� we must specify the coe�cients FF

constant value� and GF
I�� �� I� NF� 
constant gradient� using the macrovariable �INPUT�

�ADD
INPUT�
FF � constant value
GF
�� � constant derivative �FF
X���X
��
GF
�� � constant derivative �FF
X���X
��
"#
GF
NF� � constant derivative �FF
X���X
NF�

�ENDADD

If �MODEL��FL�� we usually assume that either box constraints or general linear constraints are given�
In this case the optimization problem is the linear programming problem�

If �MODEL��FQ�� we suppose the model function is quadratic of the form

FF
X� � FF �
NFX
I��

GF
I� �X
I� �
�

�

NFX
I��

NFX
J��

HF
K� �X
I� �X
J�

where K�MAX
I�J��
MAX
I�J�������MIN
I�J�� In this case we need not specify the value� the �rst
derivatives and the second derivatives of the model function by the macrovariables �FMODELF� �GMOD�
ELF and �HMODELF as in the general case� The coe�cients FF 
constant value� and GF
I�� �� I�
NF� 
constant gradient� are speci�ed in the same way as in the linear case� The coe�cients HF
K�� ��
K� NF�
NF������ 
the constant Hessian matrix� must be speci�ed using the macrovariable �INPUT�
If �HESF��D�� then the Hessian matrix is assumed to be dense and we specify only its upper half�

��



�ADD
INPUT�
HF
�� � constant derivative ��FF
X���X
���

HF
�� � constant derivative ��FF
X���X
��� X
��
HF
�� � constant derivative ��FF
X���X
���

HF
�� � constant derivative ��FF
X���X
��� X
��
HF
�� � constant derivative ��FF
X���X
��� X
��
HF
�� � constant derivative ��FF
X���X
���

"
HF
NF�
NF������ � constant derivative ��FF
X���X
NF��

�ENDADD

If �MODEL��FQ�� we usually assume that either box constraints or general constraints are given� In
this case the optimization problem is the quadratic programming problem�

If the model function is linear or quadratic� then the options �KCF and �KSF need not be de�ned�
since they are not used�

	��� Speci�cation of the model function �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Hessian matrix HF� This possibility decreases computational time and storage requirements for large�scale
optimization problems� In this case we use the option �HESF��S� which means that the sparsity pattern
is speci�ed� All other speci�cations remain the same as in the case of dense problems� The sparsity
pattern of the Hessian matrix is speci�ed by using the macrovariable �INPUT� Two integer vectors IH
and JH are used where IH
I�� �� I� NF��� are pointers and JH
K�� �� K� M� are indices of nonzero
elements� Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in
rows� The number of nonzero elements must be speci�ed using the statement �M�number of elements�
The number of nonzero elements could be greater then is required 
eg� two times� since it is used for the
declaration of working �elds� For example� if we have the Hessian matrix

HF �

�
BBB�

hF��� hF��� hF��� �� hF��
hF��� hF��� �� hF��� �
hF��� �� hF��� �� hF���
�� hF��� �� hF��� ��
hF��� �� hF��� �� hF��

�
CCCA

then we have to set�

�NF��
�M��� 
the minimum required value is M����
�ADD
INPUT�

IH
����� IH
����� IH
���
IH
����� IH
������ IH
�����
JH
����� JH
����� JH
����� JH
����� JH
����
JH
����� JH
���� JH
	���� JH
����� JH
�����

�ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero�
As in the case of the dense problem� second derivatives of the model function can be speci�ed by using

the macrovariable �HMODELF� If �HESF��S�� then only nonzero elements of the upper half 
including
the diagonal� of the Hessian matrix are speci�ed� For the above example the speci�cation has the form�

��



�SET
HMODELF�
HF
���hF��� HF
���h

F
��� HF
���h

F
��� HF
���h

F
��

HF
���hF��� HF
���h
F
��� HF
��h

F
��� HF
	��h

F
��

HF
���hF��� HF
����h
F
��

�ENDSET

If the model function is quadratic 
i�e� if �MODEL��FQ�� and if �HESF��S�� then the coe�cients
HF
K�� �� K� M� 
constant sparse Hessian matrix� must be speci�ed by using the macrovariable �IN�
PUT� If the matrix given in the above example is the constant sparse Hessian matrix� we use the speci�
�cation�

�ADD
INPUT�
HF
���hF��� HF
���h

F
��� HF
���h

F
��� HF
���h

F
��

HF
���hF��� HF
���h
F
��� HF
��h

F
��� HF
	��h

F
��

HF
���hF��� HF
����h
F
��

�ENDADD

	��� Objective functions for discrete approximation

If we set �MODEL��AF�� then we suppose that the objective function F
X� has the form�

F
X� �
NAX

KA��

FA
KA�X� if KBA � �

or

F
X� �
NAX

KA��

AW
KA� � 
FA
KA�X� �AM
KA�� if KBA � �

where FA
KA�X�� �� KA� NA� are approximating functions� This form of the objective function is
very useful in large�scale optimization when the approximating functions FA
KA�X�� �� KA� NA� are
assumed to have sparse gradients�

If we set �MODEL��AP�� then we suppose that the objective function F
X� has the form�

F
X� �
�

R

NAX
KA��

jFA
KA�X�j � �R if KBA � �

or

F
X� �
�

R

NAX
KA��

jAW
KA� � 
FA
KA�X� �AM
KA��j � �R if KBA � �

where FA
KA�X�� �� KA� NA� are approximating functions� and R�� is a real exponent� The value
of the exponent is speci�ed by the choice �REXP�R 
default value is �REXP���� Since the most used
value of the exponent is R��� and since the computations are simplest and the most e�cient for such
a choice� we can use the speci�cation �MODEL��AQ� in this case 
minimization of sum of squares��
Moreover� �MODEL��AQ� is formally set whenever we chose �MODEL��AP� and �REXP���

If we set �MODEL��AM�� then we suppose that the objective function F
X� has the form�

F
X� � max
��KA�NA


�FA
KA�X�� if �IEXT � ��

F
X� � max
��KA�NA


jFA
KA�X�j� if �IEXT � �

��



F
X� � max
��KA�NA


�FA
KA�X�� if �IEXT � ��

for �KBA��� or

F
X� � max
��KA�NA


�AW
KA� � 
FA
KA�X� �AM
KA��� if �IEXT � ��

F
X� � max
��KA�NA


jAW
KA� � 
FA
KA�X� �AM
KA��j� if �IEXT � �

F
X� � max
��KA�NA


�AW
KA� � 
FA
KA�X� �AM
KA��� if �IEXT � ��

for �KBA��� where FA
KA�X�� �� KA� NA� are approximating functions� The default value is
�IEXT�� 
the minimax or the Chebyshev approximation��

The option �KBA serves as a decision between a simple objective function and a more complicated
one� The simple objective function uses no additional �elds� while the more complicated one uses at most
two additional �elds� AM and AW� The vector AM usually contains frequently used observations which
can be included into the functions FA
KA�X�� �� KA� NA� in the case of the simple objective function�
Observations AM
KA�� �� KA� NA� are speci�ed by using the macrovariable �INPUT� Their default
values are AM
KA���� �� KA� NA� The vector AW serves for possible scaling speci�ed by the option
�NORMA�

�NORMA�� � no scaling is performed� In this case AW
KA���� �� KA� NA�
�NORMA�� � scaling parameters are determined automatically so that AW
KA��jAM
KA�j� ��

KA� NA�
�NORMA�� � scaling parameters must be speci�ed by the user by means of the macrovariable

�INPUT�

The number of approximating functions NA must be speci�ed� in all the above cases� by using the
statement �NA�number of functions�

	��� Speci�cation of the approximating functions �dense problems�

The approximating functions FA
KA�X�� �� KA� NA� must be de�ned by the user either directly in
the full dialogue mode� or by using corresponding macrovariables in the batch 
or mixed� mode� Values
of the approximating functions are speci�ed by using the macrovariables �FMODELA or �FMODELAS�

�SET
FMODELA�
FA � value FA
KA�X�

for a given index KA and given values of variables X
I�� �� I� NF�

�ENDSET

or

�SET
FMODELAS�
AF
�� � value FA
��X�
AF
�� � value FA
��X�
"#
AF
NA� � value FA
NA�X�

�ENDSET

The �rst derivatives of the approximating functions are speci�ed by using the macrovariables �GMOD�
ELA or �GMODELAS�

��



�SET
GMODELA�
GA
�� � derivative �FA
KA�X���X
��
GA
�� � derivative �FA
KA�X���X
��
"#
GA
NF� � derivative �FA
KA�X���X
NF�

for a given index KA and given values of variables X
I�� �� I� NF�

�ENDSET

or

�SET
GMODELAS�
AG
�� � derivative �FA
��X���X
��
AG
�� � derivative �FA
��X���X
��
"#
AG
NF� � derivative �FA
��X���X
NF�
AG
NF��� � derivative �FA
��X���X
��
AG
NF��� � derivative �FA
��X���X
��
"#
AG
NA�NF� � derivative �FA
NA�X���X
NF�

�ENDSET

The second derivatives of the approximating functions are speci�ed by using the macrovariables �HMOD�
ELA or �HMODELAS� If �JACA��D�� then the Hessian matrices are assumed to be dense and we specify
only their upper half�

�SET
HMODELA�
HA
�� � derivative ��FA
KA�X���X
���

HA
�� � derivative ��FA
KA�X���X
���X
��
HA
�� � derivative ��FA
KA�X���X
���

HA
�� � derivative ��FA
KA�X���X
���X
��
HA
�� � derivative ��FA
KA�X���X
���X
��
HA
�� � derivative ��FA
KA�X���X
���

"#
HA
NF�
NF������ � derivative ��FA
KA�X���X
NF��


for a given index KA and given values of variables X
I�� �� I� NF�
�ENDSET

or

�SET
HMODELAS�
AH
�� � derivative ��FA
��X���X
���

AH
�� � derivative ��FA
��X���X
���X
��
AH
�� � derivative ��FA
��X���X
���

AH
�� � derivative ��FA
��X���X
���X
��
AH
�� � derivative ��FA
��X���X
���X
��
AH
�� � derivative ��FA
��X���X
���

"#
AH
NF�
NF������ � derivative ��FA
��X���X
NF��

AH
NF�
NF�������� � derivative ��FA
��X���X
���

AH
NF�
NF�������� � derivative ��FA
��X���X
���X
��
AH
NF�
NF�������� � derivative ��FA
��X���X
���

"#
AH
NA�NF�
NF������ � derivative ��FA
NA�X���X
NF��

�ENDSET

��



If the macrovariables �GMODELA and �GMODELAS or �HMODELA and �HMODELAS are not
de�ned� we suppose that the �rst or the second derivatives of the approximating functions are not given
analytically� In this case� they are computed numerically by using the UFO system routines� whenever it
is required� If it is advantageous to compute �rst derivatives of the approximating functions FA
KA�X��
�� KA� NA� together with their values� we can collect the models �FMODELA� �GMODELA into the
common model �FGMODELA and the models �FMODELAS� �GMODELAS into the common model
�FGMODELAS� Similarly we can collect the models �FMODELA� �GMODELA� �HMODELA into the
common model �FGHMODELA and the models �FMODELAS� �GMODELAS� �HMODELAS into the
common model �FGHMODELAS�

To improve the e�ciency of the computation� we can specify additional information about the approx�
imating functions FA
KA�X�� �� KA� NA� The �rst piece of information� useful for an automatic choice
of the optimization method� is the computational complexity speci�ed by the macrovariable �KCA�

�KCA�� � evaluations of the approximating functions FA
KA�X�� �� KA� NA� are very easy

they take at most O
NF� simple operations��

�KCA�� � evaluations of the approximating functions FA
KA�X�� �� KA� NA� are of medium
complexity 
they take at least O
NF� complicated operations and at most O
NF��
simple operations��

�KCA�� � evaluations of the approximating functions FA
KA�X�� �� KA� NA� are extremely
di�cult 
they take at least O
NF�� complicated or O
NF�� simple operations��

The option �KCA�� is default� An additional useful piece of information is the analytical complexity

conditioning�� which is speci�ed by the macrovariable �KSA�

�KSA�� � the approximating functions FA
KA�X�� �� KA� NA� are smooth and well�
conditioned�

�KSA�� � the approximating functions FA
KA�X�� �� KA� NA� are smooth but ill�
conditioned�

�KSA�� � the approximating functions FA
KA�X�� �� KA� NA� are nonsmooth�

The option �KSA�� is default�
If some of the approximating functions are linear having the form

FA
KA�X� �
NFX
I��

AG

KA� �� �NF� I� �X
I�

we can specify them separately� Then the number of linear approximating functions must be speci�ed by
using the statement �NAL�number of linear functions 
default value is �NAL���� We always suppose
that the �rst NAL approximating functions are linear� Then the coe�cients AG

KA����NF�I�� �� KA�
NAL� �� I� NF� are speci�ed using the macrovariable �INPUT and the macrovariables �FMODELA
or �FMODELAS� �GMODELA or �GMODELAS� �HMODELA or �HMODELAS are used only for the
speci�cation of the nonlinear approximating functions FA
KA�X�� NAL�KA� NA�

	��� Speci�cation of the approximating functions �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Jacobian matrix AG� This possibility decreases computational time and storage requirements for large�
scale optimization problems� In this case� we use the option �JACA��S� which means that the sparsity
pattern is speci�ed� All other speci�cations remain the same as in the case of dense problems� The
sparsity pattern of the Jacobian matrix is speci�ed by using the macrovariable �INPUT� Two integer
vectors IAG and JAG are used where IAG
KA�� �� KA� NA��� are pointers and JAG
K�� �� K�
IAG
NA������ are indices of nonzero elements� Nonzero elements are ordered by the gradients of the
approximating functions� The number of nonzero elements must be speci�ed by using the statement
�MA�number of elements� For example� if we have the gradients
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GA
��X� � �gA��� � � � � gA����

GA
��X� � �� � gA��� � � gA����

GA
��X� � �� � � � gA��� � ��

GA
��X� � �gA��� g
A
��� g

A
��� � ��

GA
��X� � �� � � � gA��� g
A
����

and the Jacobian matrix

AG
X� �

�
BBB�

gA�� � � � � � gA��
� � gA�� � � � gA��
� � � � gA�� � �
gA�� � gA�� � gA�� � �
� � � � gA�� � gA��

�
CCCA

then we have to set�

�NA��
�MA���
�ADD
INPUT�

IAG
����� IAG
����� IAG
����
IAG
����� IAG
����� IAG
�����
JAG
����� JAG
����� JAG
����� JAG
����� JAG
����
JAG
����� JAG
���� JAG
	���� JAG
����� JAG
�����

�ENDADD

As in the case of the dense problem� the �rst derivatives of the approximating functions can be
speci�ed by using the macrovariables �GMODELA or �GMODELAS� If �JACA��S�� then only nonzero
elements of the gradients are speci�ed� For the above example the speci�cations have the form

�SET
GMODELA�
IF 
KA�EQ��� THEN

GA
�� � �FA
��X���X
��
GA
�� � �FA
��X���X
��

ELSE IF 
KA�EQ��� THEN
GA
�� � �FA
��X���X
��
GA
�� � �FA
��X���X
��

ELSE IF 
KA�EQ��� THEN
GA
�� � �FA
��X���X
��

ELSE IF 
KA�EQ��� THEN
GA
�� � �FA
��X���X
��
GA
�� � �FA
��X���X
��
GA
�� � �FA
��X���X
��

ELSE
GA
�� � �FA
��X���X
��
GA
�� � �FA
��X���X
��

ENDIF
�ENDSET

��



or

�SET
GMODELAS�
AG
�� � �FA
��X���X
��
AG
�� � �FA
��X���X
��
AG
�� � �FA
��X���X
��
AG
�� � �FA
��X���X
��
AG
�� � �FA
��X���X
��
AG
�� � �FA
��X���X
��
AG
� � �FA
��X���X
��
AG
	� � �FA
��X���X
��
AG
�� � �FA
��X���X
��
AG
��� � �FA
��X���X
��

�ENDSET

As in the case of the dense problem� the second derivatives of the approximating functions can be
speci�ed by using the macrovariables �HMODELA or �HMODELAS� If �JACA��S�� then only nonzero
elements of the Hessian matrices are speci�ed� For the above example the speci�cations have the form

�SET
HMODELA�
IF 
KA�EQ��� THEN

HA
�� � ��FA
��X���X
���

HA
�� � ��FA
��X���X
���X
��
HA
�� � ��FA
��X���X
���

ELSE IF 
KA�EQ��� THEN
HA
�� � ��FA
��X���X
���

HA
�� � ��FA
��X���X
���X
��
HA
�� � ��FA
��X���X
���

ELSE IF 
KA�EQ��� THEN
HA
�� � ��FA
��X���X
���

ELSE IF 
KA�EQ��� THEN
HA
�� � ��FA
��X���X
���

HA
�� � ��FA
��X���X
���X
��
HA
�� � ��FA
��X���X
���

HA
�� � ��FA
��X���X
���X
��
HA
�� � ��FA
��X���X
���X
��
HA
�� � ��FA
��X���X
���

ELSE
HA
�� � ��FA
��X���X
���

HA
�� � ��FA
��X���X
���X
��
HA
�� � ��FA
��X���X
���

ENDIF
�ENDSET

or

�SET
HMODELAS�
AH
�� � ��FA
��X���X
���

AH
�� � ��FA
��X���X
���X
��
AH
�� � ��FA
��X���X
���

AH
�� � ��FA
��X���X
���

AH
�� � ��FA
��X���X
���X
��
AH
�� � ��FA
��X���X
���

AH
� � ��FA
��X���X
���

�



AH
	� � ��FA
��X���X
���

AH
�� � ��FA
��X���X
���X
��
AH
��� � ��FA
��X���X
���

AH
��� � ��FA
��X���X
���X
��
AH
��� � ��FA
��X���X
���X
��
AH
��� � ��FA
��X���X
���

AH
��� � ��FA
��X���X
���

AH
��� � ��FA
��X���X
���X
��
AH
��� � ��FA
��X���X
���

�ENDSET

Note that dimensions of arrays HA or AH must be speci�ed by the statement �MHA�dimension of HA
or �MAH�dimension of AH�

If some of the approximating functions are linear 
i�e� if �NAL��� and if �JACA��S�� then the
coe�cients AG
K�� �� K� IAG
NAL����� 
constant part of the sparse Jacobian matrix�� must be
speci�ed by using the macrovariable �INPUT� If the matrix given in the above example is the constant
sparse Jacobian matrix� we use the speci�cation�

�ADD
INPUT�
AG
���gA��� AG
���gA��� AG
���gA��� AG
���gA��
AG
���gA��� AG
���gA��� AG
��gA��� AG
	��gA��
AG
���gA��� AG
����gA��

�ENDADD

There is another possibility which can be useful when all approximating functions are linear� It is based
on the usage of special procedure UKMAI� that serves for direct input of individual Jacobian matrix
elements� The procedure UKMAI� is formally called by using the statement

CALL UKMAI�
K�I�GAKI�IAG�JAG�AG�

where K is an index of a given approximating function 
row of the Jacobian matrix�� I is an index
of a given variable 
column of the Jacobian matrix�� and GAKI is a numerical value of the element
�FA
K�X���X
I�� For the example given above we can write�

�ADD
INPUT�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�
CALL UKMAI�
����gA���IAG�JAG�AG�

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the �elds IAG
and JAG beforehand�

If we use the option �JACA��S�� then we can specify a form of the objective function sparse Hessian
matrix� There are four possibilities�

�	



�HESF��D� � dense Hessian matrix�
�HESF��B� � partitioned sparse Hessian matrix� This matrix is a sum of simple Hessian matrices

which correspond to the individual approximating functions� Only nonzero blocks are
stored�

�HESF��S� � general sparse Hessian matrix 
the same as the model function Hessian matrix
corresponding to the option �HESF��S���

�HESF��NO� � Hessian matrix is not used�

This speci�cation serves only for an internal realization of optimization methods and has no in�uence on
the user�s input� The default option is �HESF��D��

	�� Objective functions for optimization of dynamical systems

If we set �MODEL��DF�� then we suppose that the objective function F
X� has the form�

F
X� �

Z TAMAX

TAMIN

FA
X�YA
TA��TA�dTA� FF
X�YA
TAMAX��TAMAX�

where FA
X�YA
TA��TA� is a smooth subintegral function and FF
X�YA
TAMAX��TAMAX� is a smooth
terminal function� At the same time

dYA
KE�TA�
dTA

� FE
KE�X�YA
TA��TA�� YA
KE�TAMIN� � FY
KE�X�

where FE
KE�X�YA
TA��TA�� �� KE� NE� are smooth state functions and FY
KE�X�� �� KE� NE�
are smooth initial functions�

If we set �MODEL��DQ�� then we suppose the objective function F
X� has the form�

F
X� �
�
�

Z TAMAX

TAMIN

NEX
KE��

WE
KE�TA� � 
YA
KE�TA��YE
KE�TA��� dTA

�
�

�

NEX
KE��

EW
KE� � 
YA
KE�TAMAX�� EY
KE���

At the same time

dYA
KE�TA�
dTA

� FE
KE�X�YA
TA��TA�� YA
KE�TAMIN� � FY
KE�X�

where FE
KE�X�YA
TA��TA�� �� KE� NE� are smooth state functions and FY
KE�X�� �� KE� NE�
are smooth initial functions�

If we set �MODEL��NO�� then we consider the initial value problem

dYA
KE�TA�

dTA
� FE
KE�YA
TA��TA�� YA
KE�TAMIN� is given

where FE
KE�YA
TA��TA�� �� KE� NE� are smooth state functions�

In all the above cases� the statement �NE�number of di�erential equations must be used for the
speci�cation of number of di�erential equations NE�

��



	��� Speci�cation of the state functions

The state functions FE
KE�X�YA
TA��TA�� �� KE� NE� must be de�ned by the user either directly
in the full dialogue mode� or by using corresponding macrovariables in the batch 
or mixed� mode� Values
of the state functions are speci�ed by using the macrovariables �FMODELE or �FMODELES�

�SET
FMODELE�
FE � value FE
KE�X�YA
TA��TA�

for a given index KE� given vector of variables X�
given vector of state variables YA
TA� and given time TA�

�ENDSET

or

�SET
FMODELES�
EF
�� � value FE
��X�YA
TA��TA�
EF
�� � value FE
��X�YA
TA��TA�
"#
EF
NE� � value FE
NE�X�YA
TA��TA�

�ENDSET

The �rst derivatives of the state functions according to the variables are speci�ed by using the macrovari�
ables �GMODELE or �GMODELES�

�SET
GMODELE�
GE
�� � derivative �FE
KE�X�YA
TA��TA���X
��
GE
�� � derivative �FE
KE�X�YA
TA��TA���X
��
"#
GE
NF� � derivative �FE
KE�X�YA
TA��TA���X
NF�

for a given index KE� given vector of variables X�
given vector of state variables YA
TA� and given time TA�

�ENDSET

or

�SET
GMODELES�
EG
�� � derivative �FE
��X�YA
TA��TA���X
��
EG
�� � derivative �FE
��X�YA
TA��TA���X
��
"#
EG
NF� � derivative �FE
��X�YA
TA��TA���X
NF�
EG
NF��� � derivative �FE
��X�YA
TA��TA���X
��
EG
NF��� � derivative �FE
��X�YA
TA��TA���X
��
"#
EG
NE�NF� � derivative �FE
NE�X�YA
TA��TA���X
NF�

�ENDSET

The �rst derivatives of the state functions according to the state variables are speci�ed by using the
macrovariables �DMODELE or �DMODELES�

�SET
DMODELE�
DE
�� � derivative �FE
KE�X�YA
TA��TA���YA
��
DE
�� � derivative �FE
KE�X�YA
TA��TA���YA
��
"#
DE
NE� � derivative �FE
KE�X�YA
TA��TA���YA
NE�

for a given index KE� given vector of variables X�

��



given vector of state variables YA
TA� and given time TA�
�ENDSET

or

�SET
DMODELES�
ED
�� � derivative �FE
��X�YA
TA��TA���YA
��
ED
�� � derivative �FE
��X�YA
TA��TA���YA
��
"#
ED
NE� � derivative �FE
��X�YA
TA��TA���YA
NE�
ED
NE��� � derivative �FE
��X�YA
TA��TA���YA
��
ED
NE��� � derivative �FE
��X�YA
TA��TA���YA
��
"#
ED
NE�NE� � derivative �FE
NE�X�YA
TA��TA���YA
NE�

�ENDSET

If it is advantageous to compute �rst derivatives of the state functions FE
KE�X�YA
TA��TA�� ��
KE� NE� together with their values� we can collect the models �FMODELE� �GMODELE� �DMODELE
into the common model �FGDMODELE and the models �FMODELES� �GMODELES� �DMODELES
into the common model �FGDMODELES� Partially we can collect the models �FMODELE� �GMOD�
ELE or �FMODELE� �DMODELE or �GMODELE� �DMODELE into the common models �FGMOD�
ELE or �FDMODELE or �GDMODELE respectively� Similarly we can collect the models �FMODELES�
�GMODELES or �FMODELES� �DMODELES or �GMODELES� �DMODELES into the commonmod�
els �FGMODELES or �FDMODELES or �GDMODELES respectively�

If �MODEL��DQ� we have to de�ne the functions WE
KE�TA� and YE
KE�TA�� �� KE� NE�
for a given index KE and given time TA� These functions can be speci�ed by using the macrovariable
�FMODELE together with the state function FE
KE�X�YA
TA��TA��

�SET
FMODELE�
FE � value FE
KE�X�YA
TA��TA�
WE � value WE
KE�TA�
YE � value YE
KE�TA�

for a given index KE� given vector of variables X�
given vector of state variables YA
TA� and given time TA�

�ENDSET

The default values WE
KE�TA��� and YE
KE�TA��� cannot be speci�ed� they are supposed automat�
ically�

	��� Speci�cation of the initial functions

The initial functions FY
KE�X�� �� KE� NE� must be de�ned by the user either directly in the full
dialogue mode� or by using corresponding macrovariables in the batch 
or mixed� mode� Values of the
initial functions are speci�ed by using the macrovariables �FMODELY or �FMODELYS�

�SET
FMODELY�
FE � value FY
KE�X�

for a given index KE and given vector of variables X�

�ENDSET

or

�SET
FMODELYS�
EF
�� � value FY
��X�
EF
�� � value FY
��X�

��



"#
EF
NE� � value FY
NE�X�

�ENDSET

The �rst derivatives of the initial functions according to the variables are speci�ed by using the macrovari�
ables �GMODELY or �GMODELYS�

�SET
GMODELY�
GE
�� � derivative �FY
KE�X���X
��
GE
�� � derivative �FY
KE�X���X
��
"#
GE
NF� � derivative �FY
KE�X���X
NF�

for a given index KE and given vector of variables X�

�ENDSET

or

�SET
GMODELYS�
EG
�� � derivative �FY
��X���X
��
EG
�� � derivative �FY
��X���X
��
"#
EG
NF� � derivative �FY
��X���X
NF�
EG
NF��� � derivative �FY
��X���X
��
EG
NF��� � derivative �FY
��X���X
��
"#
EG
NE�NF� � derivative �FY
NE�X���X
NF�

�ENDSET

If it is advantageous to compute �rst derivatives of the initial functions FY
KE�X�� �� KE� NE�
together with their values� we can collect the models �FMODELY� �GMODELY into the common model
�FGMODELY and the models �FMODELYS� �GMODELYS into the common model �FGMODELYS�

If the initial values YA
KE�TAMIN�� �� KE� NE� do not depend on the variables X
I�� �� I� NF�
they can be speci�ed by using the macrovariable �INPUT�

�ADD
INPUT�
YA
�� � initial value YA
��TAMIN�
YA
�� � initial value YA
��TAMIN�
"#
YA
NE� � initial value YA
NE�TAMIN�

�ENDADD

	�
�� Speci�cation of the subintegral function

If �MODEL��DF�� then the subintegral function FA
X�YA
TA��TA� must be de�ned by the user
either directly in the full dialogue mode� or by using corresponding macrovariables in the batch 
or
mixed� mode� Value of the subintegral function is speci�ed by using the macrovariable �FMODELA�

�SET
FMODELA�
FA � value FA
X�YA
TA��TA�

for a given vector of variables X� given vector of state variables YA
TA�
and given time TA�

�ENDSET

��



The �rst derivatives of the subintegral function according to the variables are speci�ed by using the
macrovariable �GMODELA�

�SET
GMODELA�
GA
�� � derivative �FA
X�YA
TA��TA���X
��
GA
�� � derivative �FA
X�YA
TA��TA���X
��
"#
GA
NF� � derivative �FA
X�YA
TA��TA���X
NF�

for a given vector of variables X� given vector of state variables YA
TA�
and given time TA�

�ENDSET

The �rst derivatives of the subintegral function according to the state variables are speci�ed by using the
macrovariable �DMODELA�

�SET
DMODELA�
DA
�� � derivative �FA
X�YA
TA��TA���YA
��
DA
�� � derivative �FA
X�YA
TA��TA���YA
��
"#
DA
NE� � derivative �FA
X�YA
TA��TA���YA
NE�

for a given vector of variables X� given vector of state variables YA
TA�
and given time TA�

�ENDSET

If it is advantageous to compute �rst derivatives of the subintegral function FA
X�YA
TA��TA� to�
gether with its value� we can collect the models �FMODELA� �GMODELA and �DMODELA into the
common model �FGDMODELA� Partially we can collect the models �FMODELA� �GMODELA or
�FMODELA� �DMODELA or �GMODELA� �DMODELA into the common models �FGMODELA or
�FDMODELA or �GDMODELA respectively�

If �MODEL��DQ� and the objective function contains an integral part� we have to set �MOD�
ELA��YES� and de�ne the functions WE
KE�TA� and YE
KE�TA�� �� KE� NE� by using the macrovari�
able �FMODELE�

	�

� Speci�cation of the terminal function

If �MODEL��DF�� then the terminal function FF
X�YA
TAMAX��TAMAX� must be de�ned by the
user either directly in the full dialogue mode� or by using corresponding macrovariables in the batch 
or
mixed� mode� Value of the terminal function is speci�ed by using the macrovariable �FMODELF�

�SET
FMODELF�
FF � value FF
X�YA
TAMAX��TAMAX�

for a given vector of variables X� given vector of state variables YA
TAMAX�
and given time TAMAX�

�ENDSET

The �rst derivatives of the terminal function according to the variables are speci�ed by using the
macrovariable �GMODELF�

�SET
GMODELF�
GF
�� � derivative �FF
X�YA
TAMAX��TAMAX���X
��
GF
�� � derivative �FF
X�YA
TAMAX��TAMAX���X
��
"#
GF
NF� � derivative �FF
X�YA
TAMAX��TAMAX���X
NF�

��




for a given vector of variables X� given vector of state variables YA
TAMAX�
and given time TAMAX�

�ENDSET

The �rst derivatives of the terminal function according to the state variables are speci�ed by using the
macrovariable �DMODELF�

�SET
DMODELF�
DF
�� � derivative �FF
X�YA
TAMAX��TAMAX���YA
��
DF
�� � derivative �FF
X�YA
TAMAX��TAMAX���YA
��
"#
DF
NE� � derivative �FF
X�YA
TAMAX��TAMAX���YA
NE�

for a given vector of variables X� given vector of state variables YA
TAMAX�
and given time TAMAX�

�ENDSET

If it is advantageous to compute �rst derivatives of the terminal function FF
X�YA
TAMAX��TAMAX�
together with its value� we can collect the models �FMODELF� �GMODELF and �DMODELF into
the common model �FGDMODELF� Partially we can collect the models �FMODELF� �GMODELF or
�FMODELF� �DMODELF or �GMODELF� �DMODELF into the common models �FGMODELF or
�FDMODELF or �GDMODELF respectively�

If �MODEL��DQ� and the objective function contains a terminal part� we have to set �MOD�
ELF��YES� and de�ne the coe�cients EW
KE� and EY
KE�� �� KE� NE� by using the macrovariable
�INPUT�

�ADD
INPUT�
EW
�� � value EW
��� EY
�� � value EY
��
EW
�� � value EW
��� EY
�� � value EY
��
"#
EW
NE� � value EW
NE�� EY
NE� � value EY
NE�

�ENDADD

	�
	� Optimization with general constraints�

If there are no general constraints we set �KBC��� In the oposite case we set �KBC�� or �KBC���
If �KBC�� or �KBC�� then

FC
KC�X� � unbounded � if IC
KC� � �
CL
KC� � FC
KC�X� � if IC
KC� � �

FC
KC�X� � CU
KC� � if IC
KC� � �
CL
KC� � FC
KC�X� � CU
KC� � if IC
KC� � �
CL
KC� � FC
KC�X� � CU
KC� � if IC
KC� � �

where �� KC� NC�The option �KBC�� must be chosen if IC
KC��� for at least one index �� KC�
NC� Then two di�erent �elds XL
K� and XU
KC�� �� KC� NC are declared� In the opposite case we
set �KBC�� and only one common �eld XL
KC��XU
KC�� �� KC� NC is declared� The number of
constraints NC must be speci�ed by using the statement �NC�number of functions�

Types of general constraints IC
KC�� ��KC� NC� and lower and upper bounds XL
KC� and XU
KC��
�� KC� NC� can be speci�ed by using the macrovariable �INPUT� Default values are IC
KC��� and
XL
KC��XU
KC���� �� KC� NC� For example�

�KBF��� �NC��

��



�ADD
INPUT�
IC
����� CL
���cL�
IC
����� CL
���cL�
IC
����� CL
���cL� � CU
���c

L
�

�ENDADD

	�
�� Speci�cation of the constraint functions �dense problems�

The constraint functions FC
KC�X�� �� KC� NC� must be de�ned by the user either directly in the
full dialogue mode� or by using corresponding macrovariables in the batch 
or mixed� mode� Values of
the constraint functions are speci�ed by using the macrovariables �FMODELC or �FMODELCS�

�SET
FMODELC�
FC � value FC
KC�X�

for a given index KC and given values of variables X
I�� �� I� NF�

�ENDSET

or

�SET
FMODELCS�
CF
�� � value FC
��X�
CF
�� � value FC
��X�
"#
CF
NC� � value FC
NC�X�

�ENDSET

The �rst derivatives of the constraint functions are speci�ed by using the macrovariables �GMODELC
or �GMODELCS�

�SET
GMODELC�
GC
�� � derivative �FC
KC�X���X
��
GC
�� � derivative �FC
KC�X���X
��
"#
GC
NF� � derivative �FC
KC�X���X
NF�

for a given index KC and given values of variables X
I�� �� I� NF�

�ENDSET

or

�SET
GMODELCS�
CG
�� � derivative �FC
��X���X
��
CG
�� � derivative �FC
��X���X
��
"#
CG
NF� � derivative �FC
��X���X
NF�
CG
NF��� � derivative �FC
��X���X
��
CG
NF��� � derivative �FC
��X���X
��
"#
CG
NC�NF� � derivative �FC
NC�X���X
NF�

�ENDSET

The second derivatives of the constraint functions are speci�ed by using the macrovariables �HMODELC
or �HMODELCS� If �JACC��D�� then the Hessian matrices are assumed to be dense and we specify only
their upper half�

��



�SET
HMODELC�
HC
�� � derivative ��FC
KC�X���X
���

HC
�� � derivative ��FC
KC�X���X
���X
��
HC
�� � derivative ��FC
KC�X���X
���

HC
�� � derivative ��FC
KC�X���X
���X
��
HC
�� � derivative ��FC
KC�X���X
���X
��
HC
�� � derivative ��FC
KC�X���X
���

"#
HC
NF�
NF������ � derivative ��FC
KC�X���X
NF��


for a given index KC and given values of variables X
I�� �� I� NF�
�ENDSET

or

�SET
HMODELCS�
CH
�� � derivative ��FC
��X���X
���

CH
�� � derivative ��FC
��X���X
���X
��
CH
�� � derivative ��FC
��X���X
���

CH
�� � derivative ��FC
��X���X
���X
��
CH
�� � derivative ��FC
��X���X
���X
��
CH
�� � derivative ��FC
��X���X
���

"#
CH
NF�
NF������ � derivative ��FC
��X���X
NF��

CH
NF�
NF�������� � derivative ��FC
��X���X
���

CH
NF�
NF�������� � derivative ��FC
��X���X
���X
��
CH
NF�
NF�������� � derivative ��FC
��X���X
���

"#
CH
NC�NF�
NF������ � derivative ��FC
NC�X���X
NF��

�ENDSET

If the macrovariables �GMODELC and �GMODELCS or �HMODELC and �HMODELCS are not
de�ned� we suppose that the �rst or the second derivatives of the constraint functions are not given
analytically� In this case� they are computed numericaly� by using the UFO system routines� whenever
it is required� If it is advantageous to compute �rst derivatives of the constraint functions FC
KC�X��
�� KC� NC� together with their values� we can collect the models �FMODELC� �GMODELC into the
common model �FGMODELC and the models �FMODELCS� �GMODELCS into the common model
�FGMODELCS� Similarly we can collect the models �FMODELC� �GMODELC� �HMODELC into the
common model �FGHMODELC and the models �FMODELCS� �GMODELCS� �HMODELCS into the
common model �FGHMODELCS�

To improve the e�ciency of the computation� we can specify additional information about the con�
straint functions FC
KC�X�� �� KC� NC� The �rst piece of information� useful for an automatic choice
of the optimization method� is the computational complexity speci�ed by the macrovariable �KCC�

�KCC� � � evaluations of the constraint functions FC
KC�X�� �� KC� NC� are very easy 
they
take at most O
NF� simple operations��

�KCC� � � evaluations of the constraint functions FC
KC�X�� �� KC� NC� are of medium
complexity 
they take at least O
NF� complicated operations and at most O
NF��
simple operations��

�KCC� � � evaluations of the constraint functions FC
KC�X�� �� KC� NC� are extremely
di�cult 
they take at least O
NF�� complicated or O
NF�� simple operations��

The option �KCC�� is default�
If some of the constraint functions are linear having the form

��



FC
KC�X� �
NFX
I��

CG

KC� �� �NF� I� �X
I�

we can specify them separately� Then the number of linear constraint functions must be speci�ed by
using the statement �NCL�number of linear functions 
default value is �NCL���� We always suppose
that the �rst NCL constraint functions are linear� Then the coe�cients CG

KC����NF�I�� �� KC�
NCL� �� I� NF� are speci�ed by using the macrovariable �INPUT and the macrovariables �FMODELC
or �FMODELCS� �GMODELC or �GMODELCS� �HMODELC or �HMODELCS are used only for the
speci�cation of the nonlinear constraint functions FC
KC�X�� NCL�KC� NC�

	�
�� Speci�cation of the constraint functions �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Jacobian matrix CG� This possibility decreases computational time and storage requirements for large�
scale optimization problems� In this case� we use option �JACC��S� which means that the sparsity pattern
is speci�ed� All other speci�cations remain the same as in the case of dense problems� The sparsity pattern
of the Jacobian matrix is speci�ed by using the macrovariable �INPUT� Two integer vectors ICG and
JCG are used where ICG
KC�� �� KC� NC��� are pointers and JCG
K�� �� K� ICG
NC������ are
indices of nonzero elements� Nonzero elements are ordered by the gradients of the constraint functions�
The number of nonzero elements must be speci�ed by using the statement �MC�number of elements�
The number of nonzero elements could be greater then is needed 
two times say� since it is used for
declaration of working �elds� For example if we have the gradients

GC
��X� � �gC��� � � � � gC����

GC
��X� � �� � gC��� � � gC����

GC
��X� � �� � � � gC��� � ��

GC
��X� � �gC��� g
C
��� g

C
��� � ��

GC
��X� � �� � � � gC��� g
C
����

and the Jacobian matrix

CG
X� �

�
BBB�

gC�� � � � � � gC��
� � gC�� � � � gC��
� � � � gC�� � �
gC�� � gC�� � gC�� � �
� � � � gC�� � gC��

�
CCCA

then we have to set�

�NC��
�MC��� 
the minimum required value is MC����
�ADD
INPUT�

ICG
����� ICG
����� ICG
����
ICG
����� ICG
����� ICG
�����
JCG
����� JCG
����� JCG
����� JCG
����� JCG
����
JCG
����� JCG
���� JCG
	���� JCG
����� JCG
�����

�ENDADD

�



As in the case of the dense problem� the �rst derivatives of the constraint functions can be speci�ed by
using the macrovariables �GMODELC or �GMODELCS� If �JACC��S�� then only the nonzero elements
of the gradients are speci�ed� For the above example the speci�cation has the form�

�SET
GMODELC�
IF 
KC�EQ��� THEN

GC
�� � �FC
��X���X
��
GC
�� � �FC
��X���X
��

ELSE IF 
KC�EQ��� THEN
GC
�� � �FC
��X���X
��
GC
�� � �FC
��X���X
��

ELSE IF 
KC�EQ��� THEN
GC
�� � �FC
��X���X
��

ELSE IF 
KC�EQ��� THEN
GC
�� � �FC
��X���X
��
GC
�� � �FC
��X���X
��
GC
�� � �FC
��X���X
��

ELSE
GC
�� � �FC
��X���X
��
GC
�� � �FC
��X���X
��

ENDIF
�ENDSET

or

�SET
GMODELCS�
CG
�� � �FC
��X���X
��
CG
�� � �FC
��X���X
��
CG
�� � �FC
��X���X
��
CG
�� � �FC
��X���X
��
CG
�� � �FC
��X���X
��
CG
�� � �FC
��X���X
��
CG
� � �FC
��X���X
��
CG
	� � �FC
��X���X
��
CG
�� � �FC
��X���X
��
CG
��� � �FC
��X���X
��

�ENDSET

As in the case of the dense problem� the second derivatives of the approximating functions can be
speci�ed by using the macrovariableS �HMODELC or �HMODELCS� If �JACC��S�� then only nonzero
elements of the Hessian matrices are speci�ed� For the above example the speci�cations have the form

�SET
HMODELC�
IF 
KC�EQ��� THEN

HC
�� � ��FC
��X���X
���

HC
�� � ��FC
��X���X
���X
��
HC
�� � ��FC
��X���X
���

ELSE IF 
KC�EQ��� THEN
HC
�� � ��FC
��X���X
���

HC
�� � ��FC
��X���X
���X
��
HC
�� � ��FC
��X���X
���

ELSE IF 
KC�EQ��� THEN
HC
�� � ��FC
��X���X
���
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ELSE IF 
KC�EQ��� THEN
HC
�� � ��FC
��X���X
���

HC
�� � ��FC
��X���X
���X
��
HC
�� � ��FC
��X���X
���

HC
�� � ��FC
��X���X
���X
��
HC
�� � ��FC
��X���X
���X
��
HC
�� � ��FC
��X���X
���

ELSE
HC
�� � ��FC
��X���X
���

HC
�� � ��FC
��X���X
���X
��
HC
�� � ��FC
��X���X
���

ENDIF
�ENDSET

or

�SET
HMODELCS�
CH
�� � ��FC
��X���X
���

CH
�� � ��FC
��X���X
���X
��
CH
�� � ��FC
��X���X
���

CH
�� � ��FC
��X���X
���

CH
�� � ��FC
��X���X
���X
��
CH
�� � ��FC
��X���X
���

CH
� � ��FC
��X���X
���

CH
	� � ��FC
��X���X
���

CH
�� � ��FC
��X���X
���X
��
CH
��� � ��FC
��X���X
���

CH
��� � ��FC
��X���X
���X
��
CH
��� � ��FC
��X���X
���X
��
CH
��� � ��FC
��X���X
���

CH
��� � ��FC
��X���X
���

CH
��� � ��FC
��X���X
���X
��
CH
��� � ��FC
��X���X
���

�ENDSET

Note that dimensions of arrays HC or CH must be speci�ed by the statement �MHC�dimension of HC
or �MCH�dimension of CH�

If some of the constraint functions are linear 
i�e� if �NCL��� and if �JACC��S�� then the coe�cients
CG
K�� �� K� ICG
NCL����� 
constant part of the sparse Jacobian matrix�� must be speci�ed by using
the macrovariable �INPUT� If the matrix given in the above example is the constant sparse Jacobian
matrix� we use the speci�cation�

�ADD
INPUT�
CG
���gC��� CG
���gC��� CG
���gC��� CG
���gC��
CG
���gC��� CG
���gC��� CG
��gC��� CG
	��gC��
CG
���gC��� CG
����gC��

�ENDADD

There is another possibility which can be useful when all constraint functions are linear� It is based
on the usage of a special procedure UKMCI� that serves for direct input of individual Jacobian matrix
elements� The procedure UKMCI� is formally called by using the statement

CALL UKMCI�
K�I�GCKI�ICG�JCG�CG�

��



where K is an index of a given constraint function 
row of the Jacobian matrix�� I is an index of a given
variable 
column of the Jacobian matrix�� and GCKI is a numerical value of the element �FC
K�X���X
I��
For the example given above we can write�

�ADD
INPUT�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�
CALL UKMCI�
����gC���ICG�JCG�CG�

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify beforehand
the �elds ICG and JCG� If the number of constraints are very large then we can use a slightly more
complicated procedure UKMCI�� which uses dynamic structures and therefore works more quickly� The
procedure UKMCI� is formally called by using the statement

CALL UKMCI�
K�I�GCKI�ICG�JCG�CG�LCG�

where K is an index of a given constraint function 
row of the Jacobian matrix�� I is an index of a given
variable 
column of the Jacobian matrix�� GCKI is a numerical value of the element �FC
K�X���X
I�
and LCG is an auxiliary working �eld�

	�
�� Additional speci�cations concerning optimization problems

Useful speci�cations� which can improve the computational e�ciency and robustness of the optimiza�
tion methods� are a lower bound for the objective function value and an upper bound for the stepsize� Both
of these values depend on a de�nition of the objective function and can be speci�ed by the statements
�FMIN�lower bound 
for the objective function value� and �XMAX�upper bound 
for the stepsize��
We recommend a de�nition of �FMIN� whenever it is possible� and a de�nition of �XMAX� whenever
the objective function contains exponentials� If the objective function is a sum of powers 
or a sum of
squares�� then automatically �FMIN��� The default option for the maximum stepsize is �XMAX������

If there are no general constraints and if the number of variables is not greater than ��� then we can
use global optimization methods� A decision between local and global optimization is e�ected by means
of macrovariable �EXTREM�

�EXTREM��L� � a local extremum� that usually contains the starting point in its region of attractivity
is found�

�EXTREM��G� � all extrema in the given region are found and a global extremum is determined�

The default option is �EXTREM��L�� If �EXTREM��G�� we cannot use the common models �FG�
MODELF and �FGHMODELF for a common speci�cation of the value � the gradient and the Hessian
matrix of the model function� Similarly we cannot use the models �FGMODELA or �FGMODELAS and
�FGHMODELA or �FGHMODELAS for a common speci�cation of the approximating functions�

The global optimization is performed over a bounded region speci�ed by lower and upper bounds
XL
I� and XU
I�� �� I� NF� If these bounds are not speci�ed 
using the macrovariable �INPUT��
they are computed from the initial values of variables and from the given maximum stepsize� so that
XL
I��X
I��XMAX and XU
I��X
I��XMAX� �� I� NF� The maximum stepsize is speci�ed� as in

��



the case given above� using the statement �XMAX�maximum stepsize� The default option is again
�XMAX������

Additional useful speci�cations� concerning the solution precision� are bounds used in termination
criteria� These bounds can be speci�ed by the macrovariables �TOLX� �TOLF� �TOLB� �TOLG� �TOLC
and MIC� MIT� MFV�

�TOLX � lower bound for a relative change of variables�
�TOLF � lower bound for a relative change of function values�
�TOLB � lower bound for the objective function value�
�TOLG � lower bound for the objective function gradient norm�
�TOLC � lower bound for the violated constraint functions�

�MIC � maximum number of penalty function changes�
�MIT � maximum number of iterations�
�MFV � maximum number of function evaluations�

The default values are �TOLX�����D�	�� �TOLF�����D����� �TOLB������D���� �TOLG�����D����
�TOLC�����D��� and MIC��� MIT����� MFV������

��



� Optimization methods in the UFO system

The UFO system has a modular structure� All optimization methods can be set up using the indi�
vidual simple modules� For example� the sequential quadratic programming variable metric methods for
nonlinearly constrained optimization problems are set up by using the modules for the objective func�
tion evaluation� penalty function de�nition� direction determination� quadratic programming solution�
stepsize selection� and variable metric update� Optimization methods contained in the UFO system
can be roughly divided into two groups� The �rst group contains methods for unconstrained and lin�
early constrained optimization problems� while the second group contains methods for general nonlinear
programming problems� Methods for general nonlinear programming problems� i�e� for problems with
nonlinear constraints� are classi�ed by their realization form which is determined by using the macrovari�
able �FORM�

�FORM��SQ� � sequential 
or recursive� quadratic programming methods for general dense prob�
lems�

�FORM��SM� � sequential 
or recursive� minimax optimization methods for general dense problems�
�FORM��SE� � inexact sequential 
or recursive� quadratic programmingmethods for sparse equality

constrained problems�

Sections ��� � ���� concern methods for unconstrained and linearly constrained problems� These methods
do not use the macrovariable �FORM for a classi�cation� Methods for general nonlinear programming
problems are described in Sections ���� � ���� Basic parts of optimization methods are described in
Sections ���	 � ����� Section ���� is devoted to global optimization methods�

Methods for unconstrained and linearly constrained problems contained in the UFO system can be
partitioned into several classes which are speci�ed by using the macrovariable �CLASS�

�CLASS��HM� � heuristic methods for small�size problems� This class contains the pattern search
method and the simplex method�

�CLASS��CD� � conjugate direction methods that use no matrices� This class contains conjugate di�
rection methods� variable metric methods with limited storage and di�erence versions
of the truncated Newton method�

�CLASS��VM� � variable metric methods that use an approximation of the Hessian matrix which is
updated in each iteration�

�CLASS��MN� � modi�ed Newton methods that use the Hessian matrix computed either analytically
or numerically�

�CLASS��GN� � modi�ed Gauss�Newton methods for nonlinear least squares problems that use the
normal equation matrix as an approximation of the Hessian matrix� These methods
are also realized by using the Jacobian matrix representation�

�CLASS��QN� � quasi�Newton methods for nonlinear least squares problems and nonlinear equations�
�CLASS��QL� � quasi�Newton methods with limited storage for sparse nonlinear least squares prob�

lems and sparse nonlinear equations�
�CLASS��BD� � biconjugate direction methods for nonlinear equations�
�CLASS��BR� � modi�ed Brent method for nonlinear equations�
�CLASS��LP� � special methods for linear programming problems�
�CLASS��QP� � special methods for quadratic programming problems�
�CLASS��BM� � proximal bundle methods for nonsmooth optimization�
�CLASS��BN� � bundle�Newton methods for nonsmooth optimization�

The individual methods from the above classes can be chosen by using additional speci�cations� The
most important ones concerning direction determination and stepsize selection� are type of the method�
kind of the matrix decomposition and number of the method� The type of the method is speci�ed by the
macrovariable �TYPE�
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�TYPE��L� � line search methods�
�TYPE��G� � general trust region methods �
�TYPE��T� � special trust region methods for nonlinear least squares problems�
�TYPE��M� � modi�ed Marquardt methods for nonlinear least squares problems�
�TYPE��P� � pattern search method of Hooke and Jeeves�
�TYPE��S� � simplex method of Nelder and Mead�

The kind of the matrix decomposition is speci�ed by the macrovariable �DECOMP�

�DECOMP��M� � the symmetric matrix is used as an input for the direction determination�
�DECOMP��G� � the LDLT decomposition without permutations is used as an input for the direction

determination� This decomposition is usually obtained by the Gill�Murray algorithm
�����

�DECOMP��S� � the LDLT decomposition with permutations is used as an input for the direction
determination� This decomposition is usually obtained by the Schnabel�Eskow algo�
rithm ������

�DECOMP��B� � the block LDLT decomposition with permutations is used as an input for the di�
rection determination� This decomposition is usually obtained by the Bunch�Parlett
algorithm �����

�DECOMP��I� � the inverse of a symmetric matrix is used as an input for the direction determination�
�DECOMP��R� � the RTR decomposition without permutation is used as an input for the direction

determination� This decomposition is usually obtained by the recursive QR factor�
ization �����

�DECOMP��C� � the RTR decomposition with permutations is used as an input for the direction
determination� This decomposition is usually obtained by an application of the rank
revealing algoritm ����

�DECOMP��A� � the rectangular matrix is used as an input for the direction determination�
�DECOMP��Q� � the QR decomposition of a rectangular matrix without permutations is used as an

input for the direction determination� This decomposition is usually obtained by
using the Householder re�ection with the explicitly stored orthogonal matrix Q�

�DECOMP��E� � the general square matrix is used as an input for the direction determination in the
case NA�NF 
system of nonlinear equations��

�DECOMP��K� � the inde�nite Karush�Kuhn�Tucker matrix is used as an input for the direction
determination in the equality constrained case�

The macrovariable �DECOMP is also used for the selection of conjugate direction methods� In this case
it does not concern the kind of matrix decomposition�

The serial number of the method is speci�ed by the macrovariable �NUMBER� It determines an
individual realization of the direction determination�

Additional information about speci�cations �TYPE� �DECOMP� �NUMBER is given in Section �����
All options used for the method selection have default values which follows from the knowledge bases

coded in the individual templates� Therefore� they need not be speci�ed by the user� The possibilities
we describe can be of service to users that are familiar with optimization methods�

Almost all optimization methods have di�erent realizations for three di�erent representations of the
objective function� If �HESF��D�� then dense variants for either unconstrained problems or box con�
strained problems or linearly constrained problems 
with dense linear constraints speci�ed by �JACC��D��
can be used� If �HESF��S�� then sparse variants for either unconstrained problems or box constrained
problems or linearly constrained problems 
with sparse linear constraints speci�ed by �JACC��S�� can
be used� If �JACA��S� and �HESF��B�� then partitioned variants for either unconstrained problems
or box constrained problems can be used� Partitioned variants of optimization methods are usually less
e�cient due to more expensive matrix operations� Therefore� we recommend to prefer sparse variants
against the partitioned ones�
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��
� Heuristic methods

Heuristic 
or comparative� methods are speci�ed by the statement �CLASS��HM�� These methods
can be used only for small�size problems 
with at most �� variables�� The main advantage of the heuristic
methods is that they do not require continuity of the objectiver function�

The individual heuristic methods are speci�ed by the macrovariable �TYPE�

�TYPE��P� � pattern search method of Hooke and Jeeves �����
�TYPE��S� � simplex method of Nelder and Mead ������

The default value is �TYPE��P��

��	� Conjugate direction methods

Conjugate direction methods are speci�ed by the statement �CLASS��CD�� These methods are very
e�cient for large problems with computationally simple objective functions 
�KCF�� or �KCA���� The
main advantage of conjugate direction methods is that matrices are not used 
implicitly �HESF��NO���
This fact highly decreases storage requirements�

The individual conjugate direction methods are speci�ed by the macrovariable �DECOMP�

�DECOMP��C� � conjugate gradient methods� These methods are the simplest ones from all conju�
gate direction methods and they require the fewest storage requirements� However�
they usually consume a greater number of function evaluations then other conjugate
direction methods�

�DECOMP��V� � variable metric methods with limited storage� These methods allow us to prescribe
storage requirements using the number of VM steps 
the number of necessary used
vectors is approximately two times greater than the number of VM steps�� The num�
ber of VM steps is speci�ed by the macrovariable �MF� Variable metric methods with
limited storage usually consume fewer function evaluations then conjugate gradient
methods�

�DECOMP��M� � inexact di�erence version of the modi�ed Newton method ���� This method is
implemented either as the line search method or as the trust region method� It can
be very e�cient but� since it consumes a greater number of gradient evalutions� it
can be slower then other conjugate direction methods� particularly if the objective
function is more complicated 
�KCF�� or �KCA����

There are two families of conjugate gradient methods implemented in the UFO system�

�NUMBER�� � basic conjugate gradient methods described in ���� The individual methods are
speci�ed by using the macrovariables �MET� �MET� and �MET��

�NUMBER�� � generalized conjugate gradient methods introduced in ����� The individual methods
are speci�ed by using the macrovariable �MET��

If �MET��� then the steepest descent method is used� If �MET��� then the Fletcher�Reeves method ��	�
is used� If �MET��� then the Polak�Ribiere method ����� is used� If �MET��� then the Hestenes�Stiefel
method ��� is used� The macrovariable �MET� speci�es the restart procedure as it is described in ���� If
�MET���� then a restarted CG method with positive parameter is used� If �MET���� then a bounded
CG method with positive parameter is used� If �MET���� then a bounded CG method with positive
lower bound is used� If �MET���� then a CG method with the Powell restart is used� If �MET����
then a CG method with the test on conjugacy is used� If �MET���� then a CG method with the test
on orthogonality is used� The macrovariable �MET� speci�es the scaling parameter as it is described in
��� 
�MET��� for suppressed scaling and �MET��� for scaling in each iteraton��

Similarly� the UFO system contains two variable metric methods with limited storage�

�NUMBER�� � The BFGS method with limited storage described in ������ The default number of
VM steps is �MF���
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�NUMBER�� � The extended BFGS method with limited storage described in ����� The default
number of VM steps is �MF���

Both these methods are realized by using various scaling techniques ����� speci�ed by the macrovariable
�MET�� If �MET���� then scaling is suppressed� If �MET���� then scalar scaling is used� If �MET����
then diagonal scaling is used� If �MET���� then scalar and diagonal scalings are used simultaneously�

The possible speci�cations 
type�decomp�number� for the conjugate direction methods in the uncon�
strained case are�

L�C��� L�V���
L�C��� L�V���

L�M���
G�M���

The default choice is L�C��� In both the box constrained and the linearly constrained cases we cannot
use speci�cations with �DECOMP��M�� Conjugate direction methods can be used also for sparse linear
constraints when �JACC��S��

���� Variable metric methods

Variable metric methods are speci�ed by the statement �CLASS��VM�� These methods are most
commonly used for either unconstrained or linearly constrained optimizations� Variable metric methods
use a symmetric 
usually positive de�nite� matrix which is updated in every iteration in such a way
that it approximates the Hessian matrix of the objective function as precisely as possible� In the UFO
system� the variable metric methods are realized in three di�erent forms 
for �HESF��D�� �HESF��S�
and �HESF��B�� depending on the Hessian matrix speci�cation�

There are two families of variable metric methods for dense problems 
�HESF��D�� which are distin�
guished using the macrovariable �UPDATE�

�UPDATE��B� � the Broyden family ����� Variable metric methods from this family are the most
commonly used ones since they are very robust and e�cient�

�UPDATE��D� � the Davidon family ����� Variable metric methods from this family are similar to
the previous ones� The only di�erence is that projections into the new subspace are
computed� This guarantees the quadratic termination property even in the case of an
imperfect line search�

The default value is �UPDATE��B��
Individual variable metric methods are speci�ed by using the macrovariables �MET� �MET�� and

�MET�� The macrovariable �MET determines the variable metric update� If �MET��� then the BFGS
method ����� ����� ����� ���	� is used� If �MET��� then the DFP method ����� ��� is used� If �MET���
then the Hoshino method ���� is used� If �MET��� then the safeguarded rank�one method ��� is used�
If �MET��� then the optimally conditioned method ���� is used� If �MET��� then the rank�one based
method ��� from the preconvex part of the Broyden family is used� If �MET�� then the variationally
derived method ��� from the preconvex part of the Broyden family is used� If �MET�	� then the heuristic
method ��� is used� If �MET��� then the method ����� derived from the matrix decomposition is used�
If �MET���� then the method ����� which minimizes the angle between the direction vector and the
negative gradient is used� If �MET���� then the method ��� which minimizes the norm of the direction
vector is used� If �MET���� then the least prior deviation method ���� is used� The default value is
�MET��� If we specify �DECOMP��M�� then we can use only the values �MET���������

The macrovariable �MET� determines the Oren 
scaling� parameter ������ If �MET���� then no
scaling is used� If �MET���� then initial scaling ����� is used� If �MET���� then controlled scaling
��� is used� If �MET���� then simple controlled scaling �	�� is used� If �MET���� then scaling in each
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iteration is used� The default value is �MET���� The scaling parameter is determined by using heuristic
rules given in ����

The macrovariable �MET� determines a value of the Biggs 
nonquadratic model� parameter ����
If �MET���� then the unit value is used� If �MET���� then the Spedicato value ����� is used� If
�MET���� then the modi�ed Spedicato value ��� is used� If �MET���� then the value determined from
the homogeneous model ��� is used� If �MET���� then the value determined from the cubic model ���
is used� The default value is �MET����

The macrovariable �MET� determines the Powell correction ������ If �MET��� then the Powell
correction is suppressed� If �MET��� then the Powell correction is applied�

The possible speci�cations 
type�decomposition�number� for dense variable metric methods in the
unconstrained case are�

L�G��� L�S��� L�B��� L�I��� L�M���
L�M���

G�G��� G�S��� G�B��� G�M���
G�G��� G�S��� G�B��� G�M���

G�M���
G�M���
G�M���
G�M��

The default choice is L�I��� In both the box constrained and the linearly constrained cases we cannot use
speci�cations with �DECOMP��B��

If the Hessian matrix is sparse with a general pattern 
�HESF��S��� then the sparse variable metric
methods� that preserve this pattern� are used� The individual variable metric updates 
or families� are
speci�ed by using the macrovariable �UPDATE�

�UPDATE��M� � the simple Marwill projection ����� This update can be used only if �DECOMP��M��
�UPDATE��G� � the fractioned Marwill projection ������ This update can be used only if �DE�

COMP��M� and �NUMBER���
�UPDATE��T� � the fractioned Toint projection 
the best method given in ������� This update can

be used only if �DECOMP��M� and �NUMBER���
�UPDATE��B� � the partitioned variable metric updates from the Broyden family ����� These updates

can be used only if �MODEL��AF� or �MODEL��AQ� or �MODEL��AP��

The default value is �UPDATE��M��
Fractioned updates with the speci�cations �UPDATE��G� or �UPDATE��T� can be used only in the

unconstrained case� If �UPDATE��B�� then the particular update is speci�ed by using the macrovariable
�MET� If �MET��� then the BFGS method is used� If �MET��� then the DFP method is used� If
�MET��� then the Hoshino method is used� If �MET��� then the safeguarded rank�one method is used�
The default value is �MET���

If �DECOMP��G�� then less e�cient sparse product form updates from the Broyden family are used�
In this case� the values �MET������ can be used�

The possible speci�cations 
type�decomposition�number� for sparse variable metric methods in the
unconstrained case are�

L�G��� L�M���
L�M���

G�G��� G�M���
G�M���
G�M���
G�M���
G�M���
G�M��

��



The default choice is L�M��� In both the box constrained and the linearly constrained cases we can
use only speci�cations with �DECOMP��M� and �NUMBER��� Similarly� if the fractioned updates

�UPDATE��T� and �UPDATE��G�� are required� then only speci�cations with �DECOMP��M� and
�NUMBER�� can be used�

If the Hessian matrix is sparse with a partitioned pattern 
�HESF��B��� then only the partitioned
variable metric updates� speci�ed by the choice �UPDATE��B�� can be used� These updates are the
same as in the case in which the Hessian matrix is sparse with a general pattern� but the partitioned
realization is usually less e�cient than the general one due to more expensive matrix operations�

The possible speci�cations 
type�decomposition�number� for partitioned variable metric methods in
the unconstrained case are�

L�M���
G�M���

The default choice is L�M���

���� Modi�ed Newton methods

Modi�ed Newton methods are speci�ed by the statement �CLASS��MN�� These methods use the
Hessian matrix of the objective function which is computed either analytically or numerically� The UFO
system performs a numerical computation of the Hessian matrix automatically whenever the macrovari�
able �HMODELF 
or �FGHMODELF� is not de�ned� Modi�ed Newton methods are realized in three
di�erent forms 
for �HESF��D�� �HESF��S� and �HESF��B�� depending on the Hessian matrix speci��
cation� Even if the modi�ed Newton methods can be realized as the line search methods 
�TYPE��L���
it is more advantageous to realize them as the trust region methods 
�TYPE��G���

If the Hessian matrix is dense 
�HESF��D��� then all second derivatives have to be given analytically
or they are computed numericaly by using di�erences of gradients� The possible speci�cations 
type�
decomposition�number� for dense modi�ed Newton methods in the unconstrained case are�

L�G��� L�S��� L�B��� L�M���
L�G��� L�S��� L�B��� L�M���

L�M���
G�G��� G�S��� G�B��� G�M���
G�G��� G�S��� G�B��� G�M���

G�M���
G�M���
G�M���
G�M��

The default choice is G�M�� In both the box constrained and the linearly constrained cases we cannot
use speci�cations with �DECOMP��S� and �DECOMP��B�� The choice L�G�� di�ers from the choice
L�G��� The last one corresponds to the combination of both the Newton and the conjugate gradient
methods�

If the Hessian matrix is sparse with a general pattern 
�HESF��S��� we have two possibilities� If
�MODEL��FF�� then only the structurally nonzero second order derivatives have to be given analytically
by using the prescribed pattern� Numerical computation of the second derivatives is based on the fact
that a substantially lower number of di�erences has to be used in comparison with the dense case�
The determination of suitable di�erences is a combinatorial problem equivalent to some graph coloring
problem ��	�� ����� If �MODEL��AF� or �MODEL��AQ� or �MODEL��AP�� then only the nonzero
second derivatives of the approximating functions have to be given analytically by using the prescribed
pattern� Numerical computation of the second derivatives is based on the fact that the approximating
functions depend on a minor number of variables so that the number of di�erences is substantially lower
in comparison to the dense case�
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If �MODEL��AQ� 
sum of squares�� then the combination �	�� of both the modi�ed Newton and the
modi�ed Gauss�Newton methods can be used� This choice is possible by using the macrovariable �MET�
If �MET��� then the modi�ed Newton method is used� If �MET��� then the combined method is used�
The default value is �MET���

The possible speci�cations 
type�decomposition�number� for sparse modi�ed Newton methods in the
unconstrained case are�

L�G��� L�M���
L�M���

G�G��� G�M���
G�M���
G�M���
G�M���
G�M���
G�M��

The default choice is G�M��� In the box constrained case we can only use speci�cations with �DE�
COMP��M� and �NUMBER��� The choice L�M�� di�ers from the choice L�M��� The last one corre�
sponds to the incomplete Gill�Murray decomposition�

If the Hessian matrix is sparse with a partitioned pattern 
�HESF��B��� then a computation of
the second order derivatives is the same as in the case when the Hessian matrix is sparse with a general
pattern� but the partitioned realization is usually less e�cient than the general one due to more expensive
matrix operations�

If �MODEL��AQ� 
sum of squares�� then the combination of both the modi�ed Newton and the
modi�ed Gauss�Newton methods can be used� This choice is possible by using the macrovariable �MET
like the dense case� The possible speci�cations 
type�decomposition�number� for partitioned modi�ed
Newton methods in the unconstrained case are�

L�M���
G�M���

The default choice is G�M���

���� Modi�ed Gauss�Newton methods for nonlinear least squares and nonlinear equations

Modi�ed Gauss�Newton methods are speci�ed by the statement �CLASS��GN�� These methods are
special optimization methods for either nonlinear least squares 
�MODEL��AQ�� or nonlinear least pow�
ers 
�MODEL��AP�� problems� Modi�ed Gauss�Newton methods are based on the fact that the �rst
term in the Hessian matrix expression� the so�called normal equation matrix� depending on the �rst
derivatives of the approximating functions only� is a good approximation of the whole Hessian matrix�
The second term in the Hessian matrix expression can be approximated by using the variable metric
updates�

Modi�ed Gauss�Newton methods are realized in four di�erent forms 
for �HESF��D�� �HESF��S��
�HESF��B�� �HESF��NO�� depending on the Hessian matrix speci�cation� Even if the modi�ed Gauss�
Newton methods can be realized as the line search methods 
�TYPE��L��� it is more advantageous to
realize them as the trust region methods 
�TYPE��G���

If the Hessian matrix is speci�ed to be dense 
�HESF��D��� then the normal equation matrix is also
dense� In this case� we can use hybrid methods with dense updates�

�UPDATE��NO� � no update is used� The method utilizes the normal equation matrix 
the �rst part
of the Hessian matrix expression��

�UPDATE��S� � the Dennis structured approach ��	� is used� The second part of the Hessian matrix
is approximated by using modi�ed variable metric updates� This part is added to
the normal equation matrix if the conditions for leaving the modi�ed Gauss�Newton
method are satis�ed�
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�UPDATE��F� � the Fletcher hybrid approach ���� ���� is used� The Hessian matrix is approximated
either by the normal equation matrix or by the matrix obtained by using the variable
metric updates� The decision between the two cases is based on the rate of function
value decrease and on the normal equation matrix conditioning�

�UPDATE��B� � a variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi�ed Gauss�Newton method are satis�ed �	���

The default value is �UPDATE��NO��
Individual variable metric updates from the above families are speci�ed by using the macrovariable

�MET� If �MET��� then the BFGS method is used� If �MET��� then the DFP method is used� If
�MET��� then the Hoshino method is used� If �MET��� then the original 
unsafeguarded� rank�one
method is used� The value �MET�� is allowed only if �UPDATE��S� and it is the default in this case�
The value �MET�� is the default in the other cases�

Variable metric updates 
�UPDATE�F or �UPDATE��B�� can be realized either as simple updates

normal equation matrix is updated� or as cumulative updates 
previous approximation of the Hessian
matrix is updated�� as it is described in �	��� Decision between these possibilities is mediated by the
macrovariable �MOT�� If �MOT���� then the cumulative update is used� If �MOT���� then the simple
update is used�

In the dense case� the modi�ed Gauss�Newton methods can be realized with additional special matrix
decompositions that cannot be used in other cases� If �DECOMP��R�� then the recursive QR decompo�
sition ����� is used with an additional correction of the upper triangular matrix R� If �DECOMP��C�
then� moreover� the upper triangular matrix R is changed by using the rank revealing algorithm ���
that can improve its conditioning� The possible speci�cations 
type�decomposition�number� for dense
modi�ed Gauss�Newton methods in the unconstrained case are�

L�G�� � L�S��� L�B��� L�R��� L�C��� L�M���
L�M���

G�G��� G�S��� G�B��� G�R��� G�C��� G�M���
G�G��� G�S��� G�B��� G�R��� G�C��� G�M���

G�M���
G�M���
G�M���
G�M��

T�G��� T�S��� T�R��� T�C��� T�M���
T�G���

T�S�� T���� T�M��
M�M���

The default choice is G�M�� In both the box constrained and the linearly constrained cases we cannot use
speci�cations �DECOMP��S�� �DECOMP��R�� �DECOMP��C�� If �DECOMP��S� or �DECOMP��C��
then variable metric updates cannot be used 
�UPDATE��NO��� The speci�cation �UPDATE��S� can
be used only if �DECOMP��M��

If the Hessian matrix is speci�ed to be sparse with a general pattern 
�HESF��S��� then the normal
equation matrix has the same structure� In this case� we can use hybrid methods with sparse updates�

�UPDATE��NO� � no update is used� The method utilizes the normal equation matrix 
the �rst part
of the Hessian matrix expression��

�UPDATE��S� � the Dennis structured approach ��	� is used� The second part of the Hessian matrix
is approximated by using modi�ed variable metric updates� This part is added to the
normal equation matrix if conditions for leaving the modi�ed Gauss�Newton method
are satis�ed�
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�UPDATE��D� � the Brown�Dennis structured approach ���� is used� The Hessian matrices of approx�
imating functions are approximated by using variable metric updates� These matrices
serve for approximating the second part of the Hessian matrix which is added to the
normal equation matrix if conditions for leaving the modi�ed Gauss�Newton method
are satis�ed�

�UPDATE��B� � a variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi�ed Gauss�Newton method are satis�ed �	���

�UPDATE��M� � a sparse update based on the Marwill projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi�ed Gauss�Newton method are satis�ed �	���

The default value is �UPDATE��NO��
Individual variable metric updates from the above families are speci�ed by using the macrovariable

�MET like the dense case� The value �MET�� is allowed only if either �UPDATE��S� or �UPDATE��D�
and it is the default in this case� The value �MET�� is the default in the other cases excepting the case
�UPDATE��M� in which the macrovariable �MET is not utilized�

Variable metric updates 
�UPDATE�M or �UPDATE��B�� can be realized either as simple updates

normal equation matrix is updated� or as cumulative updates 
previous approximation of the Hessian
matrix is updated�� Decision between these possibilities is mediated by the macrovariable �MOT� simi�
larly as in the dense case�

If �UPDATE��D�� then we can use several switches for utilizing variable metric updates speci�ed by
the macrovariable �MOT�� If �MOT���� then the Fletcher and Xu switch ���� is used� If �MOT����
then a modi�cation of the Fletcher and Xu switch is used� If �MOT���� then the Denis and Welsch
switch ���� is used� If �MOT���� then the Ramsin and Wedin switch ����� is used� The default value is
�MOT����

The possible speci�cations 
type�decomposition�number� for sparse Gauss�Newton methods in the
unconstrained case are�

L�G��� L�M���
L�M���

G�G��� G�M���
G�G��� G�M���

G�M���
G�M���
G�M���
G�M��

T�G��� T�M���
T�M��
M�M���

The default choice is G�M��� In the box constrained case we can use only speci�cations with �DE�
COMP��M� and �NUMBER���

If the Hessian matrix is speci�ed to be sparse with a partitioned pattern 
�HESF��B�� then the normal
equation matrix has the same structure� If that is the case� then we can use hybrid methods with par�
titioned updates �UPDATE��NO�� �UPDATE��S�� �UPDATE��D�� �UPDATE��F�� �UPDATE��B��
whose details were already explained above� Note that the partitioned realization is usually less e�cient
than the general one due to more expensive matrix operations�

The possible speci�cations 
type�decomposition�number� for partitioned Gauss�Newton methods are�

L�M���
G�M���

The default choice is G�M���
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If the Hessian matrix is not speci�ed 
�HESF��NO��� then the normal equation matrix is not used�
Instead of that the Jacobian matrix� de�ning a linear least squares problem� is utilized in each iteration�
Such� so�called� normal equation free� Gauss�Newton methods are realized in two di�erent forms 
for
�JACA��D� and �JACA��S�� depending on the Jacobian matrix speci�cation�

If the Jacobian matrix is speci�ed to be dense 
�JACA��D��� then we cannot use hybrid methods
with variable metric updates 
only the speci�cation �UPDATE��NO is permitted�� Moreover� dense�
normal equation free� Gauss�Newton methods can be used only in the unconstrained case�

The possible speci�cations 
type�decomposition�number� for dense� normal equation free� Gauss�
Newton methods are�

L�Q��� L�A��� L�E���
L�A��� L�E���
L�A��� L�E���

L�E���
G�Q��� G�A��� G�E���
G�Q��� G�E���

G�A��� G�E���
G�A��� G�E���

G�E���
G�A��

The default choice is G�A�� for least squares problems and G�E�� for systems of nonlinear equations� The
speci�cation �DECOMP��E� can be used only if NA�NF 
system of nonlinear equations��

If the Jacobian matrix is speci�ed to be sparse 
�JACA��S��� then we can use hybrid methods with
simple variable metric updates�

�UPDATE��NO� � no update is used� The method utilizes original Jacobian matrix�
�UPDATE��V� � the simple factorized BFGS update �	�� is used� The second order information is

approximated by the unsymmetric rank�one update of the Jacobian matrix�
�UPDATE��R� � the simple factorized rank�one update �	�� is used� The second order information is

approximated by the addition of a dense row to the Jacobian matrix�

If �UPDATE��V� or �UPDATE��R�� then we can use several switches for utilizing variable metric
updates� speci�ed by the macrovariable �MOT�� like the case with the speci�cation �HESF��S� described
above� The default value is �MOT����

The main advantage of sparse� normal equation free� Gauss�Newton methods consists in the fact that
the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row� If this
is the case� then the classical Gauss�Newton methods cannot be used� On the other hand� the normal
equation matrix has often a lower number of nonzero elements then the Jacobian one� As a result� the
classical Gauss�Newton methods are more e�cient in this case�

The possible speci�cations 
type�decomposition�number� for sparse� normal equation free� Gauss�
Newton methods are�

L�A��� L�E���
L�A��� L�E���
L�A��� L�E���

L�E���
G�A��� G�E���

G�E���
G�A��� G�E���
G�A��� G�E���

G�E���
G�A��
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The default choice is G�A�� for least squares problems and G�E�� for systems of nonlinear equations� The
speci�cation �DECOMP��E� can be used only if NA�NF 
system of nonlinear equations�� In the box
constrained case we can use only speci�cations with either �NUMBER�� or �NUMBER��� The choice
L�E�� di�ers from the choice L�E��� The last one corresponds to the incomplete LU decomposition�

���� Quasi�Newton methods for nonlinear least squares and nonlinear equations

Quasi�Newton methods are speci�ed by the statement �CLASS��QN�� These methods are special
optimization methods for nonlinear least squares 
�MODEL��AQ�� problems including systems of non�
linear equations in the case when the �rst derivatives are not speci�ed analytically 
the macrovariable
�GMODELA is not de�ned�� Quasi�Newtod methods use a rectangular matrix which is updated in every
iteration in such a way that it aproximates the Jacobian matrix as precisely as possible� In the UFO
system� the quasi�Newton methods are realized in two di�erent forms 
for �JACA��D� and �JACA��S��
depending on the Jacobian matrix speci�cation�

There are two possibilities for dense problems 
�JACA��D�� which are distinguished by using the
macrovariable �UPDATE�

�UPDATE��NO� � no update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � the Broyden family ���� of rank�one updates is used in almost all iterations� Only
after restart the Jacobian matrix is approximated numerically by using di�erences�

When �UPDATE��B�� then the individual quasi�Newton methods are speci�ed by using the macrovariable
�MET� If �MET��� then the �rst 
good� Broyden update ���� is used� If �MET��� then the second
Broyden update ���� is used� If �MET��� then the second Greenstadt update ����� is used� If �MET���
then the �rst Greenstadt update ����� is used� If �MET��� then the �rst Todd OC update ���� is used�
If �MET��� then the �rst Todd OCX update ���� is used� If �MET�� then the second Todd OC update
���� is used� If �MET�	� then the second Todd OCX update ���� is used� The default value is �MET���
Dense quasi�Newton methods can be used only in the unconstrained case�

The possible speci�cations 
type�decomposition�number� for dense quasi�Newton methods are�

L�Q��� L�A��� L�E���
L�A��� L�E���
L�A��� L�E���

L�E���
G�Q��� G�A��� G�E���
G�Q��� G�E���

G�A��� G�E���
G�A��� G�E���

G�E���
G�A��

The default choice is G�Q��� The speci�cation �DECOMP��E� can be used only if NA�NF 
system of
nonlinear equations��

If the Jacobian matrix is sparse with a general pattern 
�JACA��S��� then there are two possibili�
ties for computing an approximation of the Jacobian matrix by the di�erences� These possibilities are
distinguished by using the macrovariable �NUMDER�

�NUMDER�� � derivatives of individual approximating functions are computed�
�NUMDER�� � the Coleman�More ���� graph coloring algorithm is used�

Moreover� various sparse quasi�Newton updates that preserve pattern of the Jacobian matrix can be used�
If �NUMDER��� then there are three choices of the quasi�Newton updates which are speci�ed by the

macrovariable �UPDATE�
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�UPDATE��NO� � no update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � sparse quasi�Newton updates are used in almost all iterations� Only after restart�
the Jacobian matrix is approximated numerically by using di�erences�

�UPDATE��S� � modi�ed Newton methods such as row scaling update are used in almost all itera�
tions� Only after restart the Jacobian matrix is approximated numerically by using
di�erences�

If �NUMDER��� then there are four choices of the quasi�Newton updates which are speci�ed by the
macrovariable �UPDATE�

�UPDATE��NO� � no update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � sparse quasi�Newton updates ���� are used in almost all iterations� Only after
restart the Jacobian matrix is approximated numerically by using di�erences�

�UPDATE��S� � modi�ed Newton methods such as row scaling update are used in almost all itera�
tions� Only after restart the Jacobian matrix is approximated numerically by using
di�erences�

�UPDATE��C� � cyclic column determination methods are used in almost all iterations� Only after
restart the Jacobian matrix is approximated numerically by using di�erences�

When �UPDATE��B�� then the individual quasi�Newton methods are speci�ed by using the macrovariable
�MET� If �MET��� then the Schubert update ���� is used� If �MET��� then the Bogle�Perkins update
���� is used� If �MET��� then the column update ���� is used� When �UPDATE��S� and �MET�� then
the modi�ed Newton method is used� When �UPDATE��S� and �MET�� then the row scaling update
���� is used� When �UPDATE��C� and �MET�� then the cyclic column determination method ��� is
used� When �UPDATE��S� and �MET�� then the cyclic column determination method ��� followed
by the Schubert update ���� is used�

The possible speci�cations 
type�decomposition�number� for sparse quasi�Newton methods are�

L�A��� L�E���
L�A��� L�E���
L�A��� L�E���

L�E���
G�A��� G�E���

G�E���
G�A��� G�E���
G�A��� G�E���

G�E���
G�A��

The default choice is G�A�� for least squares problems and G�E�� for systems of nonlinear equations� The
speci�cation �DECOMP��E� can be used only if NA�NF 
system of nonlinear equations�� In the box
constrained case we can use only speci�cations with either �NUMBER�� or �NUMBER��� The choice
L�E�� di�ers from the choice L�E��� The later one corresponds to the incomplete LU decomposition�

��� Quasi�Newton methods with limited storage for nonlinear equations

Quasi�Newton methods with limited storage are speci�ed by the statement �CLASS��QL�� The num�
ber of QN steps is speci�ed by the macrovariable �MF� These methods are special methods for solving
sparse systems of nonlinear equations 
�MODEL��AQ�� in a case in which the �rst derivatives are not
speci�ed analytically 
the macrovariable �GMODELA is not de�ned�� Therefore� only the case NA�NF
is permitted� Quasi�Newtod methods with limited storage use an initial approximation of the sparse
Jacobian matrix together with several small�size matrices which are updated in every iteration in such a
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way that they aproximate the Jacobian matrix as precisely as possible� There are two possibilities which
are distinguished by using the macrovariable �UPDATE�

�UPDATE��NO� � no update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � the Broyden good update of rank�one with limited storage ���� is used in almost
all iterations� Only after restart the Jacobian matrix is approximated numerically by
using di�erences�

The possible speci�cations 
type�decomposition�number� for quasi�Newton methods with limited stor�
age are�

L�A��� L�E���
L�A��� L�E���

L�E���
G�A��� G�E���
G�A��� G�E���

G�E���

The default choice is G�E���
Besides the quasi�Newtod methods with limited storage� this class contains inverse column scaling

methods which are chosen by using the speci�cation �DECOMP��I�� There are two possibilities which
are distinguished by using the macrovariable �UPDATE�

�UPDATE��NO� � no update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � the inverse column scaling update ���� is used in almost all iterations� Only after
restart the Jacobian matrix is approximated numerically by using di�erences�

The possible speci�cations 
type�decomposition�number� for inverse column scaling methods are�

L�I���
L�I���

If �NUMBER��� then a complete LU decomposition is used� If �NUMBER��� then a combination of
direct and iterative methods is used� The default choice is L�I���

���� Biconjugate direction methods for nonlinear equations

Biconjugate direction methods are speci�ed by the statement �CLASS��BD�� These methods are
special methods for solving systems of nonlinear equations 
�MODEL��AQ�� in the case when the �rst
derivatives are not speci�ed analytically 
the macrovariable �GMODELA is not de�ned�� Therefore only
the case NA�NF is permitted� Biconjugate direction methods are very e�cient for large problems with
computationally simple functions in nonlinear equations 
�KCA���� The main advantage of biconjugate
direction methods is that matrices are not used� This fact highly decreases storage requirements�

The individual biconjugate direction methods are speci�ed by the macrovariable �DECOMP�

�DECOMP��E� � inexact di�erence version of the Newton method for systems of nonlinear equations
�	��� This method is implemented either as the line search method or as the trust
region method and it is based on smoothed CGS algorithm�

Iterative methods for solving linearized equations can be modi�ed by using tridiagonal decomposition�
This possibility is determined by the macrovariable �MOS�� If �MOS���� then tridiagonal decomposi�
tion is not used� If �MOS���� then tridiagonal decomposition is used before the iterative process� If
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�MOS���� then tridiagonal decomposition is used as a preconditioner� If �MOS���� then both previous
cases are assumed� The default value is �MOS����

The possible speci�cations 
type�decomposition�number� for the biconjugate direction methods are�

L�E���
L�E���
L�E���
G�E���
G�E���
G�E���

The default choice is G�E���

���� Modi�ed Brent method for nonlinear equations

The Brent method is speci�ed by the statement �CLASS��BR�� This method is a special method
for solving dense systems of nonlinear equations 
�MODEL��AQ�� in the case when the �rst derivatives
are not speci�ed analytically 
the macrovariable �GMODELA is not de�ned�� Therefore� only the case
NA�NF is permitted� The Brent method does not need any additional speci�cations 
macrovariables
�TYPE� �DECOMP� �NUMBER are not used��

��
�� Simplex type methods for linear programming problems

Simplex type methods for linear programming problems are speci�ed by the statement �CLASS��LP��
These methods are realized in two di�erent forms 
for �JACC��D� and �JACC��S�� depending on the
constraint Jacobian matrix speci�cation�

If the constraint Jacobian matrix is dense 
�JACC��D��� then we can use two di�erent linear pro�
gramming methods based on the active set strategy�

�NUMBER�� � primal reduced gradient 
null�space� method 
like the method proposed in ������
which is a special implementation of the steepest descent reduced gradient method�

�NUMBER�� � primal projected gradient 
range�space� method which is a special implementation
of the steepest descent projected gradient method�

The possible speci�cations 
type�number� for dense linear programming methods are L�� and L���
The default choice is L���

If the constraint Jacobian matrix is sparse 
�JACC��S��� then we can use one linear programming
method based on the simplex algorithm�

�NUMBER�� � primal reduced gradient 
null�space� method which is described in ������

The possible speci�cation 
type�number� for sparse linear programming methods is L���

��

� Interior point methods for sparse linear programming problems

Interior point methods for sparse linear programming problems are speci�ed by using the statement
�CLASS��LI�� These methods� based on an infeasible primal�dual predictor�corrector strategy� can be
used only in the sparse case when �JACC��S�� Individual methods are chosen by using the macrovariable
�MLP�

�MLP�� � the �rst algorithm of Miao �����
�MLP�� � the second algorithm of Miao �����
�MLP�� � the Mizuno algorithm �����
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All these methods can be realized in three form depending on a way of solving linear generalized Karush�
Kuhn�Tucker system�
�NUMBER�� � direct solution based on the Gill�Murray decomposition applied to the Schur com�

plement�
�NUMBER�� � direct solution based on the Bunch�Parlett decomposition applied to the original

Karush�Kuhn�Tucker system�
�NUMBER�� � iterative solution based on the conjugate gradient method applied to the Schur

complement�

The possible speci�cations 
type�number� for interior point methods are L��� L�� and L��� The default
choice is L���

��
	� Simplex type methods for quadratic programming problems

Simplex type methods for quadratic programming problems are speci�ed by using the statement
�CLASS��QP�� These methods are realized in two di�erent forms 
for �JACC��D� and �JACC��S��
depending on the constraint Jacobian matrix speci�cation�

If the constraint Jacobian matrix is dense 
�JACC��D��� then we can use three di�erent quadratic
programming methods based on the active set strategy�

�NUMBER�� � primal reduced gradient 
null�space� method 
like the method proposed in ����
which is a special implementation of the Newton reduced gradient method�

�NUMBER�� � primal projected gradient 
range�space� method 
like the method proposed in �����
which is a special implementation of the Newton projected gradient method�

�NUMBER�� � dual projected gradient 
range�space� method 
like the method proposed in ������

The possible speci�cations 
type�number� for dense quadratic programming methods are L��� L��� and
L��� The default choice is L���

If the constraint Jacobian matrix is sparse 
�JACC��S��� then we can use one quadratic programming
method based on the simplex algorithm�

�NUMBER�� � primal reduced gradient 
null�space� method which is described in ������

The possible speci�cation 
type�number� for sparse linear programming methods is L���

��
�� Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimizationproblems are speci�ed by the statement �CLASS
��BM�� These methods use a solution of the special quadratic programming subproblem derived from
the cutting plane approach� This subproblem is in fact the same as in recursive quadratic programming
methods for minimax problems� Proximal bundle methods are realized only for unconstrained or linearly
constrained dense problems 
�JACA��D��� The special quadratic programming subproblem can be solved
by using the following methods�

�NUMBER�� � dual projected gradient 
range�space� method proposed in ����
�NUMBER�� � primal projected gradient 
range�space� method which is a special implementation

of the Newton projected gradient method�

Proximal bundle methods are realized only as line search methods in two modi�cations� which are spec�
i�ed by the macrovariable �MEX� If �MEX��� then a convex version is assumed� If �MEX��� then
a nonconvex version is assumed and we can de�ne a measure of nonconvexity using the macrovariable
�ETA�� The default value is �ETA������� The possible speci�cations 
type�number� for bundle methods
are L�� and L��� The default choice is L��� There are implemented various methods for computing of
the weight parameter which are chosen by using the macrovariables �MOS and �MES�� If �MOS��
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and �MES���� then weights are updated using curvature of the one�dimensional quadratic function� If
�MOS�� and �MES���� then weights are updated using minimum position estimate 
suitable for poly�
hedral and nearly polyhedral functions�� If �MOS��� then weights are updated using the quasi�Newton
condition� Proximal bundle methods are used whenever �KSF�� or �KSA��� They can be also used for
minimax problems as it is shown in Section �����

��
�� Bundle�Newton methods for nonsmooth optimization

Bundle�Newton methods for nonsmooth optimization problems are speci�ed by the statement �CLASS
��BN�� These methods use a solution of the special quadratic programming subproblem derived from
the cutting plane approach which contains second order information� This subproblem is in fact the
same as in recursive quadratic programming methods for minimax problems� Bundle�Newton methods
are realized only for unconstrained or linearly constrained dense problems 
�JACA��D��� The special
quadratic programming subproblem can be solved by using the following methods�

�NUMBER�� � dual projected gradient 
range�space� method proposed in ����
�NUMBER�� � primal projected gradient 
range�space� method which is a special implementation

of the Newton projected gradient method�

A nonconvex version is assumed and we can de�ne a measure of nonconvexity using the macrovariable
�ETA�� The default value is �ETA������� The possible speci�cations 
type�number� for bundle methods
are L�� and L��� The default choice is L��� Bundle�Newton methods can be used when �KSF�� or
�KSA��� They can be also used for minimax problems as it is shown in Section �����

��
�� Variable metric bundle methods for nonsmooth optimization

Variable metric bundle methods for nonsmooth optimization problems are speci�ed by the statement
�CLASS ��BV�� These methods are based on a special realization of the BFGS variable metric method�
This realization uses special null steps and restarts� Stepsize selection is based on a polyhedral approxi�
mation obtained using bundles of points and subgradients� Variable metric bundle methods are realized
only for unconstrained dense problems 
�JACA��D��� Variable metric bundle methods can be used when
�KSF�� or �KSA��� They can be also used for minimax problems as it is shown in Section �����

��
�� Methods for minimax problems�

Minimax problems are speci�ed by the choice �MODEL��AM�� These problems can be solved using
four classes of methods�

�CLASS��BM� � proximal bundle methods�
�CLASS��BN� � bundle�Newton methods�
�CLASS��LP� � recursive linear programming methods�
�CLASS��VM� � recursive quadratic programming variable metric methods� An approximation of

Lagrangian function Hessian matrix is updated in each iteration using the variable
metric updates belonging to the Broyden family�

�CLASS��MN� � recursive quadratic programming modi�ed Newton methods� The Lagrangian func�
tion Hessian matrix is computed in each iteration either analytically or numerically�

the default value is �CLASS��VM�� Variable metric methods are the same as in Section ��� with the
choice �DECOMP��G� and �UPDATE��B� 
values �MET�� � �MET��� can be used�� Similarly� mod�
i�ed Newton methods are the same as in Section ��� with the choice �DECOMP��G� 
the Gill�Murray
decomposition is used��

Even if minimax problems can be solved by using bundle methods described in Sections ���� � ����� it
is more e�cient to use recursive linear programming or recursive quadratic programming methods that
utilize a special structure of minimax problems�
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Recursive linear programming methods are realized as trust region methods with box constrained
subproblems� The special linear programming subproblem� which is derived from the minimax problem�
is solved by a primal projected gradient 
range�space� method which is a special implementation of the
steepest descent method�

Recursive quadratic programming methods are realized in three di�erent forms�

�TYPE��L� � line search methods�
�TYPE��G� � general trust region methods �
�TYPE��C� � general trust region methods with second order corrections �����

If �TYPE��L�� then The special line search method 
�MES��� described in ��� can be used successfully�
The special quadratic programming subproblem� which is derived from the minimax problem� can be

solved by using two di�erent methods�

�NUMBER�� � dual projected gradient 
range�space� method proposed in ����
�NUMBER�� � primal projected gradient 
range�space� method which is a special implementation

of the Newton projected gradient method�

All of the above methods are realized only for dense unconstrained or linearly constrained problems�
The possible speci�cation 
type�number� for recursive linear programming methods is G��� The possible
speci�cations 
type�number� for recursive quadratic programming methods are�

L���
L���
G���
G���
C���
C���

The default choice is L���

��
� Recursive quadratic programming methods for nonlinear programming problems�

Recursive quadratic programming methods for nonlinear programming problems are speci�ed by the
statement �FORM��SQ�� These methods belong to two following classes�

�CLASS��VM� � recursive quadratic programming variable metric methods� An approximation of
Lagrangian function Hessian matrix is updated in each iteration using variable metric
updates�

�CLASS��MN� � recursive quadratic programming modi�ed Newton methods� The Lagrangian func�
tion Hessian matrix is computed in each iteration either analytically or numerically�

the default value is �CLASS��VM�� Variable metric methods are the same as in Section ��� with the
choice �DECOMP��G� and �UPDATE��B� 
values �MET�� � �MET��� can be used�� Similarly� mod�
i�ed Newton methods are the same as in Section ��� with the choice �DECOMP��G� 
the Gill�Murray
decomposition is used��

Recursive quadratic programming methods for nonlinear programming problems are realized as line
search methods 
�TYPE��L�� with the l��exact penalty function� They are like the methods proposed in
������ The special line search method 
�MES��� for l��exact penalty function can be used successfully�
The quadratic programming subproblem can be solved by using two di�erent methods�

�NUMBER�� � dual projected gradient 
range�space� method 
like the method proposed in ������
�NUMBER�� � primal projected gradient 
range�space� method 
like the method proposed in �����

which is a special implementation of the Newton projected gradient method�
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Recursive quadratic programming methods are realized only for dense nonlinear programming prob�
lems� The possible speci�cations 
type�number� for these methods are L�� and L��� The default choice
is L���

��
�� Recursive minimax optimization methods for nonlinear programming problems�

Recursive minimax optimization methods for nonlinear programming problems are speci�ed by the
statement �FORM��SM�� These methods belong to two following classes�

�CLASS��VM� � recursive minimax optimization variable metric methods� An approximation of
Lagrangian function Hessian matrix is updated in each iteration using variable metric
updates�

�CLASS��MN� � recursive minimaxoptimizationmodi�ed Newton methods� The Lagrangian function
Hessian matrix is computed in each iteration either analytically or numerically�

the default value is �CLASS��VM�� Variable metric methods are the same as in Section ��� with the
choice �DECOMP��G� and �UPDATE��B� 
values �MET�� � �MET��� can be used�� Similarly� mod�
i�ed Newton methods are the same as in Section ��� with the choice �DECOMP��G� 
the Gill�Murray
decomposition is used��

Recursive minimax optimizationmethods for nonlinear programming problems are based on the trans�
formation of a nonlinear programming problem to a sequence of minimax problems with l��exact penalty
function 
see ����� These methods are realized as line search methods 
�TYPE��L��� The special line
search method 
�MES��� for l��exact penalty function can be used successfully� The special quadratic
programming subproblem� derived from the minimax formulation� can be solved by using two di�erent
methods�

�NUMBER�� � dual projected gradient 
range�space� method proposed in ����
�NUMBER�� � primal projected gradient 
range�space� method which is a special implementation

of the Newton projected gradient method�

Recursive quadratic programming methods are realized only for dense nonlinear programming prob�
lems� The possible speci�cations 
type�number� for these methods are L�� and L��� The default choice
is L���

��
�� Inexact recursive quadratic programming methods for large sparse equality con�
strained nonlinear programming problems�

Inexact recursive quadratic programming methods for equality constrained nonlinear programming
problems are speci�ed by the statement �FORM��SE�� These methods� which are designed for large
sparse problems� belong to the following class�

�CLASS��MN� � inexact recursive quadratic programming modi�ed Newton methods� The La�
grangian function Hessian matrix is computed in each iteration either analytically
or numerically�

Inexact recursive quadratic programming methods for equality constrained nonlinear programming
problems are based either on an inexact solution of the Karush�Kuhn�Tucker system �	�� or on a decom�
position of Lagrangian function Hessian matrix followed by an inexact solution of a range space system
for the Lagrange multipliers �	��� The �rst approach� speci�ed by the choice �DECOMP��K�� is realized
in three variants�

�NUMBER�� � exact sparse Bunch�Parlett decomposition ���� of the inde�nite Karush�Kuhn�Tucker
system�
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�NUMBER�� � inexact smoothed conjugate gradient method for the inde�nite Karush�Kuhn�Tucker
system with a precision control based on various penalty functions�

�NUMBER�� � inexact MINRES method for the inde�nite Karush�Kuhn�Tucker system with a
precision control based on various penalty functions�

A particular realization of both inexact smoothed conjugate gradient method and inexact MINRES
method depends on speci�cations given by the macrovariables �MOS�� �MOS�� �MOS�� The macrovari�
able �MOS� speci�es a precision control and a choice of penalty parameter� If �MOS���� then a precision
control is suppressed� If �MOS���� then a presision control� together with a basic choice of the penalty
parameter� is used� If �MOS���� then a presision control� together with an extended choice of the penalty
parameter� based on condition of positive de�nitness� is used� The macrovariable �MOS� speci�es a pre�
conditioning technique 
see section ������ The macrovariable �MOS� speci�es residual smoothing of the
conjugate gradient method� If �MOS���� then a residual smoothing is suppressed� If �MOS���� then a
one�dimensional residual smoothing is used�

The second approach� speci�ed by the choice �DECOMP��G�� is realized in two variants�

�NUMBER�� � sparse Gill�Murray decomposition of the Lagrangian function Hessian matrix fol�
lowed by the inexact smoothed conjugate gradient method for positive de�nite range
space system with a precision control based on various penalty functions�

�NUMBER�� � sparse Bunch�Parlett decomposition of the Lagrangian function Hessian matrix fol�
lowed by inexact MINRES method for an inde�nite range space system with a preci�
sion control based on various penalty functions�

Individual penalty functions are determined by using the macrovariable �MEP� If �MEP��� then
the l� exact penalty function is used� If �MEP��� then the augmented Lagrangian function is used� If
�MEP��� then the combined l� and augmented Lagrangian function is used�

The UFO system allows us to choose a second order correction for overcoming the Maratos e�ect�
various Lagrange multipliers updates and various forms of augmented Lagrangian function� This is
a�ected by the macrovariables �MEP�� �MEP�� �MEP�� The macrovariable �MEP� speci�es a second
order correction� If �MEP���� then the second order correction is suppressed� If �MEP���� then the
second order correction is determined as being a least squares solution of the shifted constraint system�
The macrovariable �MEP� speci�es estimates of Lagrange multipliers at the begining of each iteration�
If �MEP���� then the initial estimate is taken from the previous iteration� If �MEP���� then the initial
estimate is determined as being a least squares solution of the �rst part of the Karush�Kuhn�Tucker
system� The macrovariable �MEP� speci�es penalty term of the augmented Lagrangian function� If
�MEP���� then the basic penalty term is used� If �MEP���� then the extended Boggs�Tolle ��� penalty
term is used�

The possible speci�cations 
type�decomposition�number� for inexact recursive quadratic programming
methods for equality constrained nonlinear programming problems are

L�K���
L�K��� L�G���
L�K��� L�G���

The default choice is L�K���

��	�� Methods for initial value problems for ordinary di�erential equations

Methods for initial value problems for ordinary di�erential equations are speci�ed by using the
macrovariable �SOLVER� The UFO system contains �ve types of integration methods�

�SOLVER��DP�� � the Dormand and Prince method of the �fth order with a stepsize control for nonsti�
problems�

�SOLVER��DP	� � the Dormand and Prince method of the eighth order with a stepsize control for
nonsti� problems�
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�SOLVER��EX�� � the extrapolation method with a stepsize control� based on the midpoint rule� for
nonsti� problems�

�SOLVER��RD�� � the Radau method of the �fth order with a stepsize control for sti� problems�
�SOLVER��RS�� � the Rosenbrock method of the fourth order with a stepsize control for sti� problems�

The default value is �SOLVER��DP	�� These methods� described in ����� use a stepsize control based on
a local truncation error�

A solution to an initial value problem for ordinary di�erential equations can be stored for subsequent
processing� An extent of stored data is determined by using the macrovariable �MED� If �MED���
then no data are stored� If �MED��� then data in all solution steps are stored� If �MED��� then data
in equidistant mesh points are stored� The number of mesh points is speci�ed by using the statement
�NA�number of mesh points in the last case�

��	
� Methods for direction determination

Optimizationmethods� contained in the UFO system� are usually implemented in such a way that they
use the same modules for direction determination� These modules� realized with di�erent kinds of matrix
decomposition� are distinguished by using the macrovariables �TYPE and �NUMBER� The meaning of
the speci�cation �TYPE was explained above� Now we will explain the speci�cation �NUMBER�

If �TYPE��L�� then line search methods are supposed� In this case� relatively simple procedures for
direction determination are used� There are �ve possibilities�

�NUMBER�� � direct methods for solving linear systems based on various matrix decompositions�
These decompositions are interesting� especially in the sparse case� The Gill�Murray
decomposition ���� of the Hessian matrix is applied if �DECOMP��M� and �MOS���
or if �DECOMP��G�� The Schnabel�Eskow decomposition ����� of the Hessian matrix
is used if �DECOMP��M� and �MOS��� or if �DECOMP��S�� The Choleski decom�
position of the Hessian matrix is utilized if �DECOMP��R� or �DECOMP��C�� The
Bunch�Parlett decomposition ���� of the Hessian matrix is applied if �DECOMP��B��
The inverse matrix is used if �DECOMP��I�� The orthogonal QR decomposition �����
of the Jacobian matrix is utilized if �DECOMP��A� or �DECOMP��Q�� The com�
plete LU decomposition ���� of the Jacobian matrix is applied if �DECOMP��E�� The
Bunch�Parlett decomposition ���� of the sparse Karush�Kuhn�Tucker matrix is used if
�DECOMP��K�� Moreover� symbolic decomposition is always determined before the
iterative process in the sparse case� so that only numerical computations with known
factors are carried out in the subsequent iterations�

�NUMBER�� � an alternative possibility to the previous case� The direct solution is combined with
a conjugate gradient direction if the Hessian matrix is inde�nite� This possibility can
be advantageously used in connection with the modi�ed Newton method�

�NUMBER�� � inexact iterative methods� The conjugate gradient method ��� for solving lin�
ear systems with the Hessian matrix is applied if �DECOMP��M�� The CGLS
method ����� for solving linear least squares problems with the Jacobian matrix is
used if �DECOMP��A�� The smoothed CGS method ����� for solving linear sys�
tems with the Jacobian matrix is utilized if �DECOMP��E�� The smoothed conju�
gate gradient method �	�� for a linear system with the Karush�Kuhn�Tucker ma�
trix is applied if �DECOMP��K�� The precision is speci�ed by the macrovari�
able �MOS� If �MOS��� then the simple strategy is used� If �MOS��� then
the geometric decreasing strategy is used� If �MOS��� then the harmonic de�
creasing strategy is used� If �DECOMP��M� and �HESF��S�� then the conju�
gate gradient method can be preconditioned by using the incomplete Gill�Murray

IGM� decomposition� This possibility is speci�ed by the macrovariable �MOS�� If
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�MOS��� then preconditioning is suppressed� If �MOS���� then IGM decomposi�
tion is used� Similarly� if �DECOMP��E� and �JACA��S�� then the smoothed CGS
method can be preconditioned by using either the incomplete LU 
ILU� decomposi�
tion or the SSOR iteration� This possibility is speci�ed by the macrovariable �MOS��
If �MOS���� then preconditioning is suppressed� If �MOS���� then ILU decompo�
sition is used� If �MOS���� then SSOR iteration is used� Finally� if �DECOMP��K�
then the smoothed conjugate gradient method can be preconditioned by using var�
ious preconditioners� This possibility is speci�ed by the macrovariable �MOS�� If
�MOS��� then preconditioning is suppressed� If ABS
�MOS����� then the block
diagonal positive de�nite preconditioner ����� is used� If ABS
�MOS����� then the
inde�nite preconditioner �	�� based on a diagonal approximation of the Schur com�
plement is used� If ABS
�MOS����� then the inde�nite preconditioner �	�� based on
a diagonal perturbation of the Schur complement is used� If ABS
�MOS����� then
the inde�nite preconditioner �	�� based on a diagonal approximation of the Hessian
matrix is used� In the later cases� a complete Gill�Murray decomposition is used if
�MOS� is negative and an incomplete Gill�Murray decomposition is used if �MOS�
is positive�

�NUMBER�� � inexact iterative methods� The LSQR method ����� for solving linear least squares
problems with the Jacobian matrix is applied if �DECOMP��A�� The GMRES
method ����� for solving linear systems with the Jacobian matrix is used if �DE�
COMP��E�� The MINRES method for solving linear systems with the Karush�
Kuhn�Tucker matrix is utilized if �DECOMP��K�� The precision is speci�ed by the
macrovariable �MOS as in the previous case�

�NUMBER�� � inexact iterative methods� The smoothed BICGSTAB method ���� for solving
linear systems with the sparse Jacobian matrix is used if �DECOMP��E�� The QMR
method ���� for solving linear systems with the Karush�Kuhn�Tucker matrix is used
if �DECOMP��K�� The precision is speci�ed by the macrovariable �MOS as in the
previous case�

If the line search method is used then a descent property of the determined direction is tested� If

�sT g 
 �� k s kk g k

where sTg is the directional derivative� s is the direction� and g is the objective function gradient� then
the direction is accepted� In the opposite case the optimization method is restarted� The value �� is
speci�ed using the macrovariable �EPS��

If �TYPE��G�� then trust region methods are supposed� The initial trust region radius can be
speci�ed by the statement �XDEL�trust region radius� but the default automatically derived value is
recommended� Trust region methods can be internally scaled� This way is very advantageous for nonlinear
regression problems containing exponentials� The trust region scaling is speci�ed by the macrovariable
�MOS�� If �MOS���� then no scaling is performed� If �MOS���� then the scaling coe�cients are derived
from the normal equation matrix diagonal elements �	�� There are six possibilities�

�NUMBER�� � so�called single dog�leg methods based on various matrix decompositions� These
decompositions are interesting especially in the sparse case� The Gill�Murray decom�
position ���� of the Hessian matrix is applied if �DECOMP��M� and �MOS��� or if
�DECOMP��G�� The Schnabel�Eskow decomposition ����� is used if �DECOMP��M�
and �MOS��� or if �DECOMP��S�� The Choleski decomposition of the Hessian ma�
trix is utilized if �DECOMP��R� or �DECOMP��C�� The Bunch�Parlett decompo�
sition ���� of the Hessian matrix is applied if �DECOMP��B�� The orthogonal QR
decomposition ����� of the Jacobian matrix is utilized if �DECOMP��A� or �DE�
COMP��Q�� The complete LU decomposition ���� of the Jacobian matrix is applied
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if �DECOMP��E�� Moreover� symbolic decomposition is always determined before
the iterative process in the sparse case� so that only numerical computations with
known factors are carried out in the subsequent iterations The individual dog�leg
methods are speci�ed by the macrovariable �MOS� If �MOS��� then the single dog�
leg method ���� is used� If �MOS��� then the double dog�leg method ���� is used�
If �MOS��� then the triple dog�leg method is used� If �MOS��� then the optimum
dog�leg method ���� is used�

�NUMBER�� � an alternative possibility to the previous case� The so�called multiple dog�leg
methods 
combinations of single dog�leg methods and conjugate gradient meth�
ods� �	�� are supposed� The number of dog�leg steps is speci�ed by the statement
�MOS�number of steps�

�NUMBER�� � iterative trust region methods� The conjugate gradient trust region method �����
with the Hessian matrix is applied if �DECOMP��M�� The CGLS trust region method
�� with the Jacobian matrix is used if �DECOMP��A�� The smoothed CGS trust
region method �	� with the Jacobian matrix is utilized if �DECOMP��E�� The pre�
cision is speci�ed by the macrovariable �MOS� If �MOS��� then the simple strategy
is used� If �MOS��� then the geometric decreasing strategy is used� If �MOS���
then the harmonic decreasing strategy is used� If �DECOMP��M� and �HESF��S��
then the conjugate gradient method can be preconditioned by using the incomplete
Gill�Murray 
IGM� decomposition� This possibility is speci�ed by the macrovariable
�MOS�� If �MOS��� then preconditioning is suppressed� If �MOS���� then IGM de�
composition is used� Similarly� if �DECOMP��E� and �JACA��S�� then the smoothed
CGS method can be preconditioned by using either the incomplete LU 
ILU� decom�
position or the SSOR iteration� This possibility is speci�ed by the macrovariable
�MOS�� If �MOS���� then preconditioning is suppressed� If �MOS���� then ILU
decomposition is used� If �MOS���� then SSOR iteration is used�

�NUMBER�� � iterative trust region methods� The combined Lanczos and CG trust region method
�	�� with the Hessian matrix is applied if �DECOMP��M�� The LSQR trust region
method �� with the Jacobian matrix is used if �DECOMP��A�� The GMRES trust
region method �	� with the Jacobian matrix is utilized if �DECOMP��E�� The preci�
sion is speci�ed by the macrovariable �MOS as in the previous case� Iterative methods
can be again preconditioned� This possibility is speci�ed by the macrovariable �MOS�
as in the previous case�

�NUMBER�� � iterative trust region methods� The combined CG and Lanczos trust region method
�	�� with the Hessian matrix is applied if �DECOMP��M�� The smoothed BICGSTAB
trust region method �	� with the Jacobian matrix is utilized if �DECOMP��E�� The
precision is speci�ed by the macrovariable �MOS as in the previous case� Iterative
methods can be again preconditioned� This possibility is speci�ed by the macrovari�
able �MOS� as in the previous case�

�NUMBER� � an optimum locally constrained trust region method ����� The Gill�Murray decom�
position ���� of the Hessian matrix is applied if �DECOMP��M� and �MOS���� The
Schnabel�Eskow decomposition ����� of the Hessian matrix is used if �DECOMP��M�
and �MOS��� or if �DECOMP��S�� The special augmented Jacobian matrix is used
if �DECOMP��A��

If �TYPE��T�� then only the speci�cations �NUMBER��� �NUMBER�� and �NUMBER� can be
used� These speci�cations have the same meaning as in the case �TYPE��G�� but the implementation
is simpler� If �NUMBER�� then the simpli�ed optimum locally constrained trust region method �	� is
used�

If �TYPE��M� then Levenberg�Marquardt type methods are supposed�
�NUMBER�� � a modi�ed Marquardt method proposed by Fletcher �����
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��		� Methods for stepsize selection

Stepsize selection is a very important part of optimization methods� The UFO system contains two
types of stepsize selection procedures� line search methods and trust region methods� Line search methods
are realized in two modi�cations speci�ed by the macrovariable �SEARCH�

�SEARCH��B� � basic line search methods based on various interpolation and extrapolation formulas�
�SEARCH��M� � mixed line search methods which control the maximum stepsize like the trust region

methods�

The choice of individual line search procedures is in�uenced by the order of directional derivatives
being used� This order can be speci�ed by the macrovariable �KDS� The value of the macrovariable �KDS
is usually derived internally from the order of analytically supplied partial derivatives� If this order is
zero� then always �KDS��� In the opposite case� the value of the macrovariable �KDS can be speci�ed
by the user� If �KDS��� then only the function values are used during the line search� If �KDS���
then the function values and the �rst directional derivatives are used� If �KDS�� then� in addition� the
Hessian matrices or their approximations are computed during the line search 
this case is very useful for
a line search implementation of modi�ed Gauss�Newton methods��

The particular interpolation and extrapolation rule is speci�ed by the macrovariable �MES� If �KDS��
then we have the following possibilities�

�MES�� � The uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � Two point quadratic extrapolation or interpolation is used�
�MES�� � Three point quadratic extrapolation or interpolation is used�
�MES�� � Three point cubic extrapolation or interpolation is used�
�MES�� � Special extrapolation or interpolation is used based on the special form of the ob�

jective function�

If �KDS�� or �KDS��� then the following possibilities� based on the �rst directional derivatives� can be
used�

�MES�� � the uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � quadratic extrapolation or interpolation 
with one directional derivative� is used�
�MES�� � quadratic extrapolation or interpolation 
with two directional derivatives� is used�
�MES�� � cubic extrapolation or interpolation ���� is used�
�MES�� � conic extrapolation or interpolation ��� is used�

More detailed speci�cations concerning line search selection can be chosen using macrovariables
�MES�� �MES�� �MES��

�MES��� � constant extrapolation is used�
�MES��� � extrapolation speci�ed by the macrovariable �MES is used�
�MES��� � extrapolation is suppressed�
�MES��� � standard line search termination criterion is used�
�MES��� � special termination criterion for nonconvex functions is used�
�MES��� � line search is terminated after at least two function evaluations�
�MES��� � safeguard against rounding errors is suppressed�
�MES��� � �rst level of safeguard is used�
�MES��� � second level of safeguard is used�

Another useful speci�cation for the line search selection is a termination criterion� which is determined
by using the macrovariable �KTERS�
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�KTERS�� � nonmonotone line search procedure proposed in ���� is used� The absolute value of
the macrovariable �KTERS� which cannot be greater then ��� gives the number of
nonmonotone steps�

�KTERS�� � perfect stepsize� The relative precision of the stepsize parameter is given by the
value �EPS��

�KTERS�� � the Goldstein stepsize ����� The termination precision is given by the value �EPS��
�KTERS�� � the Curry�Altman stepsize ���� 
Wolfe conditions�� The termination precision is

given by the values �EPS� and �EPS��
�KTRES�� � the extended Curry�Altman stepsize ���� 
strict Wolfe conditions�� The termination

precision is given by the values �EPS� and �EPS��
�KTERS�� � the Armijo stepsize ���� The termination is given by the value �EPS��
�KTERS�� � the �rst stepsize� The stepsize selection is terminated after the �rst function evalu�

ation�

The last useful speci�cation for the line search methods is an initial stepsize choice which is determined
by the macrovariable �INITS� The initial stepsize is usually computed by the rule

� � min
c���c�
$F�sTg��

where sT g is the initial directional derivative and $F � F � Fmin or $F � Fold � F if the value of
the macrovariable �INITS is positive or negative� respectively� The absolute value of the macrovariable
�INITS determines the coe�cients c� and c� If jINITSj��� then c� � � and c� � �� If jINITSj��� then
c� � � and c� � �� If jINITSj��� then c� � � and c� � �� If jINITSj��� then c� � � and c� � ��

Trust region methods are also realized in two modi�cations speci�ed by the macrovariable �SEARCH�

�SEARCH��B� � basic trust region methods with stepsize control based on the comparison of both
the actual and the predicted function decreases�

�SEARCH��M� � mixed trust region methods which use interpolation formulas for stepsize reduction
like the line search methods ������

Trust region methods are also in�uenced using the macrovariable �KTERS� If �KTERS��� then
nonmonotone trust region procedure proposed in ���� is used� The absolute value of the macrovariable
�KTERS� which cannot be greater then ��� gives the number of nonmonotone steps�

��	�� Methods for numerical di�erentiation

The UFO system computes derivatives of the model function 
of the approximating functions� of the
constraint funcions� numerically whenever they are not given analytically� This is made possible by the
macroprocessor that generates a corresponding part of the control program� The main problem of a
numerical di�erentiation is a di�erence determination which has to be chosen in such a way that the
total in�uence of both the cancellation and the roundo� error is as small as possible� There are three
possibilities in the UFO system which are distinguished using the macrovatiable �MCG�

�MCG�� � a simple di�erence determination described in ���� is used�
�MCG�� � an optimum di�erence determination proposed in ��	� is used�
�MCG�� � an optimum di�erence determination proposed in ����� is used�

The default option is �MCG��� The above possibilities are used for a computation of the model function
�rst order derivatives� The other 
second order derivatives or derivatives of the approximating functions
and constraint functions� are always computed with the simple di�erence determination�
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��	�� Methods for objective function evaluation in the case of dynamical systems optimiza�
tion

If either �MODEL��DF� or �MODEL��DQ�� then the objective function is computed from the solu�
tion of an initial value problem for ordinary di�erential equations� The initial value problem is solved and
the integral criterion is evaluated by using integration methods speci�ed by the macrovariable �SOLVER
as it is described above� If the partial derivatives of all the used functions are given analytically� then
the gradient of the objective function is computed by integration methods� There are two possibilities
speci�ed by the macrovariable �SYSTEM�

�SYSTEM��F� � forward integration using an augmented systen of ordinary di�erential equations�
�SYSTEM��B� � backward integration using the adjoint system of ordinary di�erential equations�

The default value is �SYSTEM��F�� In the case of modi�ed Gauss�Newton methods 
�CLASS��GN���
an approximation of the Hessian matrix is also computed by using forward integration of an augmented
system�

��	�� Global optimization methods

Global optimization methods are used if �EXTREM��G� is speci�ed� Global optimization methods
use local optimization ones for �nding local minima� Therefore the particular local optimization method
has to be chosen by using the macrovariables �CLASS and �TYPE and others� Individual global opti�
mization methods are speci�ed by using the macrovariables �GCLASS and �GTYPE� The UFO system
contains four classes of global optimization methods�

�GCLASS�� � random search methods� These methods are simple and robust� but less e�cient�
�GCLASS�� � continuation methods� These methods use some penalty functions which are ad�

justed after reaching an arbitrary local minimum so that another local minimum is
found�

�GCLASS�� � clustering methods� These methods are based on randomly generated sample points
which are processed using clustering algorithms to determine attractivity regions

clusters� of the individual minima� The attractivity regions 
clusters� obtained are
not searched repeatedly�

�GCLASS�� � multi�level methods� Modern stochastic methods that involve a combination of
sampling and local search techniques� These methods combine strong theoretical
properties with an attractive computational behaviour� These methods are simpler�
but more e�cient than clustering methods�

If �GCLASS��� then we can choose four types of global optimization methods�

�GTYPE�� � singlestart methods� Random points� uniformly distributed in the given region� are
generated and a local minimization method is started from the point with the lowest
function value�

�GTYPE�� � multistart methods� Random points� uniformly distributed in a given region� are
generated and a local minimization is started from every point� Obtained local minima
are compared and selected�

�GTYPE�� � modi�ed multistart methods� Random points� distributed in a given region uni�
formly� are generated and a local minimization is started whenever a point is found
which has a lower function value than that reached up to date�

�GTYPE�� � Bayesian reduced multistart methods ��� Random samples of points are repeatedly
generated� Every random sample is reduced and a local minimization is started from
all points belonging to the reduced sample� Obtained local minima are compared and
selected� This process is repeated while the Bayessian termination criterion is not
satis�ed�
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If �GCLASS��� then we can choose three types of global optimization methods�

�GTYPE�� � tunneling function methods ����� These methods consist of two phases� a local
minimization phase and a tunneling phase� The starting point for the second phase
is the local minimum� At the end of the tunneling phase a new point is found which
has a function value equal or lower then the starting point�

�GTYPE�� � combined tunneling function and random search methods� In this case a random
search is used in the tunneling phase� if minimization of a tunneling function has
failed to �nd a new starting point�

�GTYPE�� � �lled function methods ����� ����� The idea of �lled function methods is based on a
�lled function� This function has a maximum in the point of a known minimum of
the objective function� On the other hand� this function does not have minimizers
or saddle points in any basin of a higher minimizer of the objective function� but it
does have a minimizer or saddle point in a basin of a lower minimizer of the objective
function�

If �GCLASS��� then we can choose two types of global optimization methods�

�GTYPE�� � density clustering method �	�� Density clustering refers to a class of clustering
techniques by using nonparametric probability density estimates to form clusters� All
unclustered points from a reduced sample� which are within the threshold distance
from the seed point� are added to the cluster�

�GTYPE�� � single linkage clustering method �	�� In this case� the next two clusters to be merged
are those for which the distance between the nearest points is the smallest� When
this distance becomes larger than the threshold distance� the procedure is stopped�
Starting with each point in a separate cluster� the points at distances less than the
threshold distance are linked� A cluster is recognised as a set of points linked together�

If �GCLASS��� then we can choose three types of global optimization methods�

�GTYPE�� � multi level single linkage method ������ In this case� the function values of the
sample points are used in a very simple manner to obtain a very powerful method�
The local search procedure is applied to every sample point� except if there is another
sample point within the critical distance which has a smaller function value� Clusters
can be constructed by associating a point to a local minimum� if there exists a chain
of points linking it to that minimum� This is done so that the distance between each

� successive pair is� at most� equal to the critical distance and the function value is
decreasing along the chain� A point in this way could be assigned to more than one
minimum�

�GTYPE�� � multi level mode analysis method ������ This method is a generalization of the
mode analysis method� Region is partitioned into cells� After sample reduction� it
is determined which cells contain enough points to be �full � For each full cell the
function value of the cell is de�ned to be equal to the smallest function value of any of
the sample points in the cell� Finally� for every full cell� local minimization is applied
except if a cell has a neighbouring cell which is full and has a smaller function value�

�GTYPE�� � modi�ed multi level single linkage method� This is a multi level single linkage
method with some modi�cations that are described in ������

The number of points randomly generated in the given region can be speci�ed by using the macrovari�
able �MNRND� The default value is usually �������NF� Since it depends on the number of variables
and for NF��� it is too large� we recommend the use of global optimization methods up to �� variables
only� If we use clustering or multi level single linkage methods 
�GCLASS�� or �GCLASS���� then we
can specify additional parameters�
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�MNLMIN � maximum considered number of local minima� The default value is ������NF�
�GAMA � reduction of random sample 
typically ���D� � ���D��� Greater value of GAMA

usually leads to a greater number of local minima� but it requires a greater amount
of work�

�SIGMA � parameter of cluster or single linkage termination 
typically � � 	��

�	



�� Output speci�cations in the UFO system

The UFO system has many output possibilities including the graphical pictures� These output possi�
bilities can be divided into �ve basic groups�

��
� Basic screen output

The basic screen output can be used only if �GRAPH��NO� and �DISPLAY��NO�� In this case�
individual rows corresponding to iterations and �nal results are printed on the screen consequently� A
print level of the screen output is determined by using the macrovariables �MOUT and �NOUT� The
macrovariable �MOUT can have the following values�

�MOUT� � � Screen output is suppressed�
�MOUT�� � � Standard output� The �nal results appear on the screen�
�MOUT�� � � Extended output� Additional information from every iteration appear on the screen�
�MOUT�� � � Extended output� Additional �nal results of linear or quadratic programming sub�

problems appear on the screen�
�MOUT�� � � Extended output� Additional information from every iteration of linear or quadratic

programming subproblems appear on the screen�

If �MOUT��� then a standard line of �nal results is printed� while if �MOUT�� then a modi�ed line of
�nal results� containing termination criterion� is printed�

The macrovariable �NOUT can have the following values�

�NOUT� � � Short �nal results 
scalar variables� appear on the screen�
�NOUT� � � Extended �nal results 
vectors� appear on the screen�

��	� Extended screen output

If we want to use an extended screen output� we have to set �DISPLAY��YES� 
the default value is
�DISPLAY��NO��� This type of screen output consists of text pages which correspond to individual iter�
ations and �nal results� Final results are divided into several groups which can be displayed successively�
We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of �nal results�

F � 
function� � Value of the objective function and statistics�
V � 
variables� � Values of variables if NF�� 
with their bounds if KBF����
A � 
approximation� � Values of approximating functions if NA�� 
with their prescribed values if

KBA���� Values of selected components of a solution of the set of ordinary dif�
ferential equations at the prescribed mesh points if NE���

C � 
constraints� � Values of constraint functions if NC�� 
with their bounds if KBC����
D � 
data� � Data which specify the problem solved 
sizes of problem and additional speci�ca�

tions��
O � 
options� � Options which specify the method used�

Exit�

Q � 
quit� � Exit from the extended screen output�

After typing each character we must use ENTER�
Besides these possibilities we can stop every iteration for scanning the iterative process� It is speci�ed if

we set �SCAN��YES� 
the default value is �SCAN��NO�� If �SCAN��NO�� then the output of iterations
is suppressed� Scanning of the iterative process can be terminated by using the character � !� from the
keyboard�
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���� Graphical screen output

The graphical output can be used only on PC computers under the MS DOS system� This possi�
bility is not allowed on the UNIX workstations� If we want to use a graphical output� we have to set
�GRAPH��YES� 
the default value is �GRAPH��NO��� In this case� both iterations and �nal results
appear in the graphical mode� Graphical form of �nal results can be speci�ed in detail using macrovari�
ables �PATH 
�NO�� �YES�� �EXTENDED��� �MAP 
�NO�� �YES�� �EXTENDED��� �HIL 
�NO�� �YES��
and �ISO 
�NO�� �YES��� Final results are divided into several groups which can be displayed successively�
We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of �nal results�

F � 
function� � Value of the objective function and statistics�
V � 
variables� � Values of variables if NF�� 
with their bounds if KBF����
A � 
approximation� � Values of approximating functions if NA�� 
with their prescribed values if

KBA���� Values of selected components of a solution of the set of ordinary dif�
ferential equations at the prescribed mesh points if NE���

C � 
constraints� � Values of constraint functions if NC�� 
with their bounds if KBC����
D � 
data� � Data which specify the problem solved 
sizes of problem and additional speci�ca�

tions��
O � 
options� � Options which specify the method used�
T � 
path� � Values of the objective function and selected variables 
we can change these vari�

ables during the graphical output� if we have speci�ed �PATH��EXTENDED�� in
the last NPA iterations 
only if �PATH��YES� or �PATH��EXTENDED���

Exit�

Q � 
quit� � Exit from the graphical output�
X � 
quit� � Exit from the control system�

After typing each character we must use ENTER�
Besides these possibilities we can stop every iteration for scanning the iterative process� It is speci�ed if

we set �SCAN��YES� 
the default value is �SCAN��NO��� In every iteration we can choose all possibilities
F� V� A� C� D� O as above� If we have chosen either V 
variables� or A 
approximation� or C 
constraints��
then intermediate results can be displayed graphically by typing G 
graph� from the keyboard� In all
these cases we can execute a single iteration typing ENTER merely� in the highest graphics level we can
execute all iterations until the k�th by entering the number k or all remaining iterations by typing the
character � !� from the keyboard�

Besides text representations in the graphical mode� which are essentially like the ones in the ex�
tended screen output 
with the choice �DISPLAY��YES��� we can chose several types of graphical data
representation�

a� Graphical picture�

If we have chosen either V 
variables� or A 
approximation� or C 
constraints�� then results can be
displayed graphically by typing G 
graph� from the keyboard� A graphical picture appears on the screen
in this case� It contains either values of variables with indices I� �� I � NF� or values of the approximating
functions with indices KA� � � KA � NA� or values of the constraint functions with indices KC� � � KC
� NC� If we have chosen A 
approximation� in the case of NE��� then the graphical picture contains a
component 
with the index VAR� of a solution of the set of ordinary di�erential equations at the mesh
points AT
KA�� � � KA � NA� We have to de�ne the index VAR from the keyboard in this case� The
graphical picture can be changed by typing particular characters from the keyboard�

Change of representation�

V � 
values� � Values are drawn�
O � 
ordinates� � Values and ordinates from zero axis are drawn�
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C � 
curves� � Values are connected by a curve�
M � 
mixed� � Curve and ordinates are drawn�

Change of graph 
if either KBF�� or KBA�� or KBC����

F � 
functions� � Either values of variables X
I�� � � I � NF� or values of approximating functions
AF
KA�� � � KA � NA� or values of constraint functions CF
KC�� � � KC �
NC� are demonstrated�

A � 
approximation� � Either values of variables X
I� together with their bounds XL
I� and XU
I�� � � I
� NF� or values of approximating functions AF
KA� together with their prescribed
values AM
KA� � � � KA � NA� or values of constraint functions CF
KC� together
with their bounds CL
KC� and CU
KC�� � � KC � NC� are demonstrated�

D � 
di�erences� � Either di�erences between variables and their bounds or di�erences between ap�
proximating functions and their prescribed values or di�erences between constraint
functions and their bounds are demonstrated�

Continuation 
if either NF � ��� or NA � ��� or NC � �����

P � 
previous� � Previous set of at most ��� values is drawn�
N � 
next� � Next set of at most ��� values is drawn�

New graph or return�

W � 
new� � This possibility can be used only if NE��� Then a new component 
with a new
index VAR� of a solution of the set of ordinary di�erential equations is drawn� We
have to de�ne a new index VAR from the keyboard in this case�

Q � 
quit� � Return to the displayed group of �nal results�

After typing each character we must use ENTER�
If we have chosen F 
function� as a group of �nal results� we can use additional graphical representa�

tions�

b� Two dimensional orbit�

If NE��� we can draw an orbit of two components of a solution of the set of ordinary di�erential
equations by typing G 
graph� from the keyboard� We have to de�ne an index VAR for every selected
component of a solution 
according to the text appeared on the screen�� Two dimensional orbit can be
changed by typing particular characters from the keyboard�

Change of the orbit�

V � 
values� � Values are drawn�
C � 
curves� � Values are connected by a curve�

New orbit or return�

W � 
new� � New components of a solution of the set of ordinary di�erential equations are
drawn� We have to de�ne new two indices from the keyboard in this case�

Q � 
quit� � Return to the displayed group of �nal results�

After typing each character we must use ENTER�

c� Three dimensional orbit�

If NE��� we can draw an orbit of three components of a solution of the set of ordinary di�erential
equations by typing P 
picture� from the keyboard� We have to de�ne an index VAR for every selected
component of a solution 
according to the text appeared on the screen�� Three dimensional orbit can be
changed by typing particular characters from the keyboard�

Change of the orbit�

V � 
values� � Values are drawn�
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C � 
curves� � Values are connected by a curve�
O � 
rotate� � Rotation of values or curves about a vertical axis by a subsequently entered angle

D��
T � 
tilt� � Tilting rotated values or curves by a subsequently entered angle Dtheta�
A � 
axes� � Drawing a picture with rotated and tilted axes�
S � 
scale� � Scaling of rotated and tilted values or curves to make full use of the screen�

New orbit or return�

W � 
new� � New components of a solution of the set of ordinary di�erential equations are
drawn� We have to de�ne new three indices from the keyboard in this case�

Q � 
quit� � Return to the displayed group of �nal results�

After typing each character we must use ENTER�

d� Colored map of the objective function�

If we have speci�ed either �MAP��YES� or �MAP��EXTENDED� 
default value is �MAP��NO���
we can draw a colored map of the objective function by typing M 
map� from the keyboard� This picture
can be changed by typing particular characters from the keyboard�

Change of the map�

L � 
linear� � Linear scale of the colored map�
G � 
logarithmic� � Logarithmic scale of the colored map�
R � 
re�nement� � Re�nement of the colored map�
B � 
back� � Back re�nement of the colored map�
N � 
inverse� � Colored map of the objective function negation�

Another type of picture� new map or return�

H � 
hills� � Drawing an objective function surface with respect to visibility�
I � 
isolines� � Drawing objective function contours�
W � 
new� � Selection of new variables and drawing a new colored map�
Q � 
quit� � Return to the displayed group of �nal results�

After typing each character we must use ENTER�
If we set �MAP��YES�� then one picture for two variables is drawn� If we set �MAP��EXTENDED��

then three pictures for all combinations of two from three variables are drawn� In both cases we have
to de�ne� from the keyboard� an index VAR and bounds XL
VAR�� XU
VAR� for every used variable

according to the text appeared on the screen�� Note that the choice �MAP��EXTENDED� excludes the
choices �HIL��YES� and �ISO��YES�� so that the other pictures cannot be used�

e� Objective function surface�

If we have speci�ed �HIL��YES� 
default value is �HIL��NO��� we can draw an objective function
surface with respect to visibility by typing H 
hills� from the keyboard� This picture can be changed by
typing particular characters from the keyboard�

Change of the surface�

L � 
linear� � Linear scale of the surface�
G � 
logarithmic� � Logarithmic scale of the surface�
R � 
re�nement� � Re�nement of the surface�
B � 
back� � Back re�nement of the surface�
O � 
rotate� � Rotation of the surface about a vertical axis by a subsequently entered angle D��
T � 
tilt� � Tilting the rotated surface by a subsequently entered angle Dtheta�
F � 
face� � Facing the rotated surface 
drawing the rotated surface without tilting��
N � 
inverse� � Surface of the objective function negation�
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Another type of picture� new surface or return�

M � 
map� � Drawing a colored map of the objective function�
I � 
isolines� � Drawing objective function contours�
W � 
new� � Selection of new variables and drawing new surface�
Q � 
quit� � Return to the displayed group of �nal results�

After typing each character we must use ENTER�
Before drawing the objective function surface we have to de�ne� from the keyboard� an index VAR

and bounds XL
VAR�� XU
VAR� for every used variable 
according to the text appeared on the screen��

f� Objective function contours�

If we have speci�ed �ISO��YES� 
default value is �ISO��NO��� we can draw an objective function
contours by typing I 
isolines� from the keyboard� This picture can be changed by typing particular
characters from the keyboard�

Change of contours�

L � 
linear� � Linear scale of contours�
G � 
logarithmic� � Logarithmic scale of contours�
R � 
re�nement� � Re�nement of contours�
B � 
back� � Back re�nement of contours�
O � 
color� � Coloring of contours and used levels�
N � 
inverse� � Inverse coloring of contours and used levels�

Another type of picture� new contours or return�

M � 
map� � Drawing a colored map of the objective function�
H � 
hills� � Drawing an objective function surface with respect to visibility�
W � 
new� � Selection of new variables and drawing a new surface�
Q � 
quit� � Return to the displayed group of �nal results�

After typing each character we must use ENTER�

g� Graphical path of the objective function and selected variables�

If we have chosen T 
path�� then we can display the values of the objective function as a function graph
by typing G 
graph� or draw the objective function contours with the path in the last NPA iterations�
The graph can be changed in the same way as in a��

Change of contours�

L � 
linear� � Linear scale of contours�
G � 
logarithmic� � Logarithmic scale of contours�
R � 
re�nement� � Re�nement of contours�
B � 
back� � Back re�nement of contours�
Z � 
zoom� � Zoom of the path for the number of last iterations entered�

Another type of picture� new contours or return�

W � 
new� � Selection of new variables and drawing a new contours 
only if we have speci�ed
�PATH��EXTENDED���

Q � 
quit� � Return to the displayed group of �nal results�

After typing each character we must use ENTER�
Before drawing the objective function contours we have to de�ne� from the keyboard� an index VAR

and bounds XL
VAR�� XU
VAR� for every used variable 
according to the text appeared on the screen��

�



���� Text �le output

The UFO system contains a great number of text �le output procedures which are controlled by
using the macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT�� and �LOUT� These text �le output
procedures are useful especially for debugging new optimization methods� The UFO system works with
the output �le P�OUT� The Fortran number of this output �le de�nes the common variable IWR� The
macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT� determines what is printed and the macrovariable
�LOUT has an in�uence to the extent of the print�

The macrovariable �KOUT can have the following values�

�KOUT� � � Text �le output is suppressed 
the �le P�OUT is empty� �
�KOUT� � � � Standard output� The heading and the �nal results are printed together with selected

information on each accepted iteration�
�KOUT� � � � Extended output� Additional information� obtained from stepsize selection� is printed�
�KOUT� � � � Extended output� Additional information� obtained from direction determination and

variable metric update� is printed�
�KOUT� � � � Extended output� Additional information� obtained from linear constraint addition

and deletion� is printed�
�KOUT� � � � Extended output� Additional information� obtained from numerical di�erentiation� is

printed�

If �KOUT��� then a standard heading is printed� while if �KOUT�� then an extended heading� con�
taining problem speci�cations and optimization options� is printed�

A selection of iterations� accepted for print� is controlled by the contents of the macrovariables
�KOUT�� �KOUT�� �KOUT�� If KOUT�� KOUT� then only the iterations whose numbers are be�
tween KOUT� and KOUT� are assumed� but KOUT��� ones are always omitted 
KOUT� is a lower
bound� KOUT� is an upper bound and KOUT� is a step�� Similarly� if KOUT��KOUT�� then only the
iterations whose numbers are less than KOUT� or greater then KOUT� are assumed� but KOUT���
ones are always omitted� If �KOUT���� then no iterations are assumed�

While the macrovariable �KOUT speci�es which information is printed� the macrovariable �LOUT
speci�es how much information is printed�

�LOUT� � � Basic output� The basic information 
� row if �KOUT��� is printed in each accepted
iteration�

�LOUT�� � � Extended output� Additional scalars� together with vector of variables� are printed�
�LOUT�� � � Extended output� Additional vectors 
usually gradients� are printed�
�LOUT�� � � Extended output� Aditional matrices 
usually Hessian matrices� are printed�
�LOUT�� � � The most extended output� All useful data are printed�

If �LOUT��� then basic part of the information is printed� If �LOUT��� then a more extensive part of
the information is printed�

The macrovariable �LOUT has an additional signi�cance� If �KOUT�� and �LOUT��� then a copy
of the basic screen output is provided� If �KOUT�� and �LOUT��� then paper saving print is assumed�
In the last case� only several rows are printed for every solution� This type of output is useful for
simultaneous tests of optimization methods�

To show a typical basic output which corresponds to the choices �KOUT��� �KOUT��� and �LOUT��
we propose the following results from unconstrained optimization�
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UNCONSTRAINED MINIMIZATION USING UFO SYSTEM

�������������������������������������������

OPTIMIZATION SUBROUTINE � U�FDU�

DIRECTION DETERMINATION � UDDLI�

STEP SIZE DETERMINATION � US	L	�

FUNCTION DETERMINATION � UF�F	�

GRADIENT DETERMINATION � UF	GS�

H MATRIX DETERMINATION �

VARIABLE METRIC UPDATE � UUDBI�

PROBLEM

�������

NF � � KDF� 	 KSF� � KCF� � KBF� 	 ISNF� � NORMF� 	

NA � 	 NAL� 	 MAL� 	 KDA��� KSA� 	 KCA� 	 KBA� 	 ISNA� 	 NORMA� 	

NC � 	 NCL� 	 MCL� 	 KDC��� KSC� 	 KCC� 	 KBC� 	 ISNC� 	 NORMC� 	

FINAL RESULTS

�������������

FF� ���	�������D�	�

X � ����������	D�	� ����������D�	�

TERMINATION� ITERM� GRAD TOL F����	�D�	� G� ��	D�	� D� ���D�	�

STATISTICS

����������

NIT � � NDEC � 	

NFV � �� NAV � 	 NCV � 	 NRES � �

NFG � 	 NAG � 	 NCG � 	 NREM � 	

NFH � 	 NAH � 	 NCH � 	 NADD � 	

Here the optimization subroutines used are listed on the top followed by problem speci�cations� After brief
results� the termination causes are written� The termination cause ITERM�� 
GRAD TOL� corresponds
to the attainment of the required gradient norm� F is the objective function value� G is the maximum
absolute value of gradient elements and D is the maximum relative change of variables� The statistics
contain the number of iterations NIT� the number of decompositions NDEC� the number of restarts
NRES� the number of constraint deletions or additions NREM or NADD respectively� and a set of data
concerns numbers 
N� of model function 
F� or approximating functions 
A� or constraint functions 
C�
values 
V� or gradients 
G� or Hessian matrices 
H� evaluations respectively�

���� User supplied output

The UFO system allows to the utilization of both the user supplied output subroutines and the
post�processing subroutines� These subroutines can be included into the control program by using the
macrovariable �OUTPUT�

�SET
OUTPUT�
Calling the user supplied output subroutines�
Calling the post�processing subroutines�

�ENDSET

Parameters of the user supplied output subroutines and post�processing subroutines must satisfy the

�



UFO conventions� For example� the vector of variables� the model function value� the model function
gradient must be denoted X� FF� GF respectively 
see chapter ���

���� Storing �nal results

If we set �OUTPUTDATA��YES�� then �nal values of the variables X
I�� �� I� NF� are stored in
the �le P�DAT� Similarly� if we set �INPUTDATA��YES�� then values of the variables X
I�� �� I� NF�
from the �le P�DAT are used as input data for the new optimization process�

��� Tracing in the UFO control program

Tracing in the control program is a useful tool for debugging optimization algorithms on main�frames�
If this is the case� then we will specify �TRACE��YES�� Besides simple tracing� we can prescribe scalar
integer or real variables whose values will be printed together with labels� This possibility can be speci�ed
by using the macrovariables �IDEB and �RDEB�

�IDEB � �list of integer variables separated by commas�
�RDEB � �list of real variables separated by commas�

If the macrovariables �IDEB or �RDEB are not speci�ed� then no integer or real variables are printed�
Tracing is executed only in the accepted iterations whose numbers are determined by using the

macrovariables �KOUT�� �KOUT�� �KOUT� 
see Section �����

���� Error messages

If we use the speci�cation �MOUT�� 
basic screen output�� then nonstandard terminations are
indicated� The message consists of three parts� the name of a critical subroutine� the number of a
message� and an explanation text� This possibility serves especially for a debugging and no details are
given here�

�



�� Special tools of the UFO system

The UFO system contains special tools that facilitate the user�s activity� There are tools for checking
the correctness of optimization problems and for testing optimization methods�

��
� Checking external subroutines

The values� gradients� Hessian matrices of the model function or the approximating functions or the
constraint functions are speci�ed by using the macrovariables �FMODELF� �GMODELF� �HMODELF
or �FMODELA� �GMODELA� �HMODELA or �FMODELC� �GMODELC� �HMODELC� respectively�
Sometimes checking the correctness of these models is needed� If this is the case� then both the analytical
and the numerical di�erentiation can be compared� Checking optimization problems can be speci�ed
by using the macrovariable �TEST� If �TEST��NO�� then no checking is performed� If �TEST��YES��
then both the analytical and the numerical di�erentiation is executed before optimization is started and
the derivatives obtained are printed� Only the derivatives that are analytically speci�ed 
the �rst� the
second� are checked� Finally� if �TEST��ONLY�� then only checking is performed and optimization is
not started� An output of checking an optimization problem has the following form�

STANDARD TEST OF EXTERNAL SUBROUTINES

�������������������������������������

PROBLEM NO �

PROBLEM

�������

NF � � KDF � � KSF � � KCF � � NORMF � 	

NA � 	 NAL � 	 MAL � 	 KDA � �� KSA � 	 KCA � 	 NORMA � 	

NC � � NCL � 	 MCL � 	 KDC � � KSC � 	 KCC � � NORMC � 	

PARAMETERS

����������

X � ���									D�	� ��									D�	�

DERIVATIVES

�����������

FF A � ��	�							D�	�

GF N � ���	�������D�	 ���					���D�	�

GF A � ���	�						D�	 ���									D�	�

HF N � �	�			��D�	 ��							�	D�	� ��								�D�	�

HF A � �	�						D�	 ��									D�	� ��									D�	�

FC A � ���									D�	�

GC N � ��									D�	� ��							��D�	�

GC A � ��									D�	� ��									D�	�

FC A � ��									D�	�

GC N � ��							�	D�	� ����������	D�		

GC A � ��									D�	� ��									D�	�

FC A � ��									D�	�

GC N � ��							�	D�	� ��							�D�	�

GC A � ��									D�	� ��									D�	�





Here the letter �N� indicates a numerical di�erentiation and the letter �A� indicates an analytical
di�erentiation�

��	� Testing optimization methods

The UFO system contains a great number of subroutines 
collections of test problems� that serve
for testing optimization methods� All of these subroutines begin with the letter �E� 
external�� Input
subroutines have the second letter �I� and the third letter �U� or �L� or �N� for an unconstrained or linearly
constrained or nonlinearly constrained problems� respectively� The model speci�cation subroutines have
the second letter �F� or �A� or �C� or �E� or �Y� for a model function or approximating functions or
constraint functions or state functions or initial functions� respectively� and the third letter �F� or �G� or
�H� for values or gradients or Hessian matrices� respectively� The fourth letter is always �U� or �D� or �S�
or �B� for universal or dense or sparse or partitioned problems� respectively� The last two digits specify
individual test problems collections� When we want to carry out a test of the selected method� we use
the specicications �COLLECTION��YES� and �NEXT�number of test problems in the input batch �le�

Tests corresponding to individual test problems collections are realized by using the following test
input �les�

TEST����UFO � Tests for unconstrained optimization 
�� dense problems from ����� ����� External
subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST����UFO � Tests for sum of squares minimization 
�� dense problems from ��	��� External sub�
routines EIUD��� EAFU��� EAGU��� EAHD�� are used�

TEST����UFO � Tests for linearly constrained optimization 
�� dense problems from ��	��� External
subroutines EILD��� EFFU��� EFGU�� are used�

TEST����UFO � Tests for medium�size linear programming 
� dense problems�� External subroutine
EILD�� is used�

TEST����UFO � Tests for medium�size quadratic programming 
� dense problems�� External subrou�
tine EILD�� is used�

TEST����UFO � Tests for minimax 
 dense problems from ����� External subroutines EIUD���
EAFU��� EAGU��� EAHD�� are used�

TEST���UFO � Tests for inequality constrained nonlinear programming 
�� dense problems from ��	���
External subroutines EIND�� EFFU�� EFGU�� ECFU�� ECGU� are used�

TEST�	��UFO � Tests for equality constrained nonlinearp rogramming 
�� dense problems from ��	���
External subroutines EIND�	� EFFU�	� EFGU�	� ECFU�	� ECGU�	 are used�

TEST����UFO � Tests for unconstrained global optimization 
�� problems from ������� External sub�
routines EIUD��� EFFU��� EFGU�� are used�

TEST����UFO � Tests for unconstrained optimization 
�� sparse problems from ���� ������� External
subroutines EIUS��� EFFU��� EFGU��� EFHS�� are used�

TEST����UFO � Tests for large�scale linear programming 
�	 sparse problems�� External subroutine
EILS�� is used�

TEST����UFO � Tests for large�scale quadratic programming 
�� sparse problems�� External subrou�
tine EILS�� is used�

TEST����UFO � Tests for linearly constrained optimization 
	 sparse problems�� External subroutines
EILS��� EFFU��� EFGU�� are used�

TEST����UFO � Tests for sum of functions minimization 
�� sparse problems from ���� ������� Exter�
nal subroutines EIUB��� EAFU��� EAGU�� are used�

TEST����UFO � Tests for sum of squares minimization 
�� sparse problems from ���� External sub�
routines EIUB��� EAFU��� EAGU�� are used�

TEST����UFO � Extended tests for unconstrained optimization 
	� dense problems from ����� ����
��	��� External subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST���UFO � Tests for nonlinear equations solutions 
�� dense problems�� External subroutines
EIUD�� EAFU�� EUGU� are used�

	



TEST�	��UFO � Tests for nonlinear equations 
�� sparse problems from �	���� External subroutines
EIUS�	� EAFU�	� EAGU�	 are used�

TEST����UFO � Tests for nonsmooth unconstrained optimization 
�� dense problems from ����� ������
External subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST����UFO � Tests for equality constrained sparse nonlinear programming 
�	 sparse problems from
�	���� External subroutines EIUB��� EIUS��� EIND��� EINS��� EFFU��� EFGU���
EAFU��� EAGU��� ECFU��� ECGU�� are used�

TEST����UFO � Tests for optimization of dynamical systems 
� dense problems�� External subroutines
EIUD��� EEFU��� EEGU��� EYFU��� EYGU�� are used�

TEST����UFO � Tests for linearly constrained minimax optimization 
� dense problems from �����
External subroutines EIUD��� EAFU��� EAGU��� EAHD�� are used�

TEST����UFO � Tests for sum of squares minimization 
��� dense problems from ����� ���� ��� �	���
��	��� External subroutines EIUD��� EAFU��� EAGU�� are used�

TEST����UFO � Tests for sum of functions minimization 
�� sparse problems from ���� ��� �	��� �������
External subroutines EIUB��� EAFU��� EAGU��� EIUB��� EAFU��� EAGU���
EIUB�	� EAFU�	� EAGU�	 are used�

TEST����UFO � Tests for sum of squares minimization 
� dense problems from ����� External sub�
routines EIUD��� EAFU��� EAGU�� are used�

TEST����UFO � Tests for sum of squares minimization 
� dense problems from ����� External sub�
routines EIUD��� EAFU��� EAGU�� are used�

In these input �les� all necessary macrovariables are de�ned and the external subroutines are called�
The external subroutines with the last two digits ��� � � � � �� are brie�y described in the text �les E���TXT�
� � � � E���TXT�

To demonstrate the use of the test input �le we perform a test of sum of squares minimization by
using hybrid method realized as a trust region method� The test input �le TEST���UFO has the form�

�SET�INPUT�

CALL EIUD	��NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

IF�IERR�NE� 	� GO TO ��ENDTEST

�ENDSET

�SET�FMODELA�

CALL EAFU	��NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU	��NF�KA�X�GA�NEXT�

�ENDSET

�NF���

�NA�		

�KOUT�	

�LOUT��

�MOUT��

�MIT��		

�MFV��			

�MODEL��AQ�

�CLASS��GN�

�TYPE��G�

�DECOMP��M�

�NUMBER��

�UPDATE��F�

�TOLX����	�P����

�TOLF����	�P����

�



�TOLB����	�P����

�TOLG����	�P���

�COLLECTION��YES�

�NEXT��	

�BATCH

�STANDARD

The result 
screen output� obtained has the following form 
each row corresponds to one test problem
and the last row is a summary��

� NIT� �� NFV� �� NFG� �� NDC� �� NCG� 	 F� ����D��� G� �	D���

� NIT� �� NFV� �� NFG� �� NDC� �� NCG� 	 F� ���D�	� G� ����D�	�

� NIT� �� NFV� � NFG� � NDC� � NCG� 	 F� ��	D��� G� ����D�	�

 NIT� �� NFV� �� NFG� � NDC� �� NCG� 	 F� ���	D��� G� ����D�	�

� NIT� � NFV� � NFG� � NDC� � NCG� 	 F� ���D��� G� ��	�D�	�

� NIT� �� NFV� �� NFG� �� NDC� �� NCG� 	 F� ����D�	� G� ���	D�	�

� NIT� � NFV� � NFG� � NDC� �� NCG� 	 F� ��	�D��� G� ����D���

� NIT� � NFV� � NFG� � NDC� � NCG� 	 F� ���D�	� G� ����D�	�

� NIT� � NFV� � NFG� � NDC� � NCG� 	 F� ���D�	� G� ����D�	�

�	 NIT� ��� NFV� ��� NFG� ��� NDC� ��� NCG� 	 F� �	D�	� G� ��	�D�	

�� NIT� �� NFV� �� NFG� �	 NDC� ��� NCG� 	 F� ����D��	 G� ����D�	�

�� NIT� �� NFV� � NFG� �� NDC� �� NCG� 	 F� ���D��	 G� ��	�D��	

�� NIT� �	 NFV� �� NFG� �� NDC� � NCG� 	 F� ����D�	� G� ���D�	�

� NIT� � NFV� �	 NFG� � NDC� �� NCG� 	 F� ���D��� G� ���	D��	

�� NIT� �� NFV� � NFG� �� NDC� �� NCG� 	 F� ���D�	� G� ����D�	�

�� NIT� � NFV� �� NFG� � NDC� �	� NCG� 	 F� ���D�	� G� ����D�	�

US	G	�� � �� MAXIMUM NUMBER OF REDUCTIONS

�� NIT� �� NFV� � NFG� �� NDC� �� NCG� 	 F� ����D�	 G� ���D�	�

�� NIT� �� NFV� � NFG� �� NDC� � NCG� 	 F� ����D�	� G� �	D�	�

�� NIT� �� NFV� �� NFG� � NDC� �� NCG� 	 F� ����D�	� G� ����D�	�

�	 NIT� � NFV� � NFG� � NDC� �� NCG� 	 F� ����D�	� G� ���D��	

�� NIT� �� NFV� �� NFG� �� NDC� �� NCG� 	 F� ���D��� G� ��D���

�� NIT� �	 NFV� �� NFG� �� NDC� � NCG� 	 F� ��	�D�	� G� ���D�	�

�� NIT� �	 NFV� �� NFG� �� NDC� � NCG� 	 F� ���D�	 G� ����D�	�

� NIT� � NFV� � NFG� �� NDC� �	� NCG� 	 F� ��	�D�	� G� ���D�	�

�� NIT� �	 NFV� �� NFG� �� NDC� �	 NCG� 	 F� ����D��� G� ���	D���

�� NIT� � NFV� �� NFG� �	 NDC� �� NCG� 	 F� ����D�	� G� ���D�	�

�� NIT� � NFV� � NFG� � NDC� � NCG� 	 F� ���D��� G� ��	D�	�

�� NIT� � NFV� � NFG� � NDC� �� NCG� 	 F� ����D��	 G� ����D�	�

�� NIT� � NFV� � NFG� � NDC� � NCG� 	 F� ����D��� G� ��	�D�	�

�	 NIT� � NFV� � NFG� � NDC� � NCG� 	 F� ����D��� G� ���D���

TOTAL NIT� ��� NFV� �	� NFG� ��	 NDC� ��� � ��

NCG� 	 NRS� � NAD� 	 NRM� 	

	�



�� Application of the UFO system �examples�

Before the solution of a given problem� the input �le containing the problem description and other
speci�cations for macroprocessor must usually be prepared� This input �le can contain only the macroin�
struction �STANDARD 
input �le STANDARD�UFO�� Then a full dialogue is processed� However� a
more advantageous possibility is to prepare an input �le containing a problem description while a method
selection is left to the dialogue� Moreover� since a method selection can be made automatically by using
knowledge bases coded in UFO templates� the batch mode is recommended�

When writing input �le instructions� we have to observe some conventions� Since a control program
contains a great number of common variables� we recommend using variables beginning with the letter
�W� for a problem description to avoid their double use� Real variables of this type should be declared
at the beginning of the control program by the statement �FLOAT 
for example �FLOAT W�W��W���
Simple integers I�J�K�L need not be declared� We recommend using statement numbers less than �����
for a problem description to avoid their double use�

The basic implementation of the UFO system is in a double precision arithmetic� Therefore� usually
�FLOAT��REAL�	� and �P��D�� We recommend writing real constants always in the form of �P or
D speci�cation 
for example ����P �� ����P�� or ���D �� ���D��� since the conversions from a single
precision� that depend on a compiler� can be incorrect� Instead of the constants ���D�� ���D�� ���D��
���D�� ���D�� ���D�� ���D�� we can use the common variables ZERO� HALF� ONE� TWO� THREE�
FOUR� FIVE� TEN which contain corresponding values�

In the following text� we demonstrate the application of the UFO system to �� typical problems�
Every example consists of the problem description� the problem speci�cation 
input �le�� comments to
the problem speci�cation and the problem solution 
basic screen output�� All input �les contain necessary
data and can be used in the batch mode� These input �les are included to the UFO system as the demo�
�les PROB���UFO�� � � �PROB���UFO�

��
� Optimization with simple bounds

a� Problem description�
Suppose we have to �nd a maximum of the objective function

F 
x� �
�
n!

� nY
i��

xi
�
� �

with simple bounds � � xi � i for � � i � n� where n � �� The starting point is xi � � for � � i � n� The
solution point is xi � i for � � i � n and the corresponding maximum value of the objective function is
F � �����

b� Problem speci�cation 
input �le��

�FLOAT W

�SET�INPUT�

DO � I���NF

X�I����D	 
 XL�I��	�D	 
 XU�I��DBLE�I� 
 IX�I���

� CONTINUE

�ENDSET

�SET�FGMODELF�

W���D	

DO � I���NF

W�W�X�I��DBLE�I�

� CONTINUE

FF�W���D	

DO � I���NF

	�



GF�I��W�X�I�

� CONTINUE

�ENDSET

�IEXT��

�NF��

�KBF��

�MOUT��

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify initial values and simple bounds for variables� By
using the macrovariable �FGMODELF we specify analytically the value and the gradient of the model
function� Because we look for a maximum� we set �IEXT���

d� Problem solution 
basic screen output��

NIT� 	 NFV� � NFG� � F� ����D�	� G� ����D�	�

NIT� � NFV�  NFG�  F� ����D�	� G� ���	D�		

NIT� � NFV� � NFG� � F� ���	D�	� G� ��		D�		

NIT� � NFV� � NFG� � F� ��		D�	� G� �			D�		

	 NIT� � NFV� � NFG� � NDC� 	 NCG� 	 F� ��		D�	� G� �			D�		

FF� ���									D�	�

X � ��									D�	� ��									D�	� ��									D�	� �									D�	�

��									D�	�

��	� Minimization of the sum of squares

a� problem description�
Suppose we have to �nd a minimum of the objective function

F 
x� �
�

�

mX
i��

�
x�e

�x�ti � x�e
�x�ti � x	e

�x�ti � yi
��

where m � ��� ti � i��� and yi � e�ti��e���ti��e��ti for � � i � m� The starting point is x� � �� x� �
�� x� � �� x� � �� x� � �� x	 � �� The solution point is x� � �� x� � ��� x� � �� x� � �� x� � �� x	 � � and
the corresponding minimum value of the objective function is F � ���

b� Problem speci�cation 
input �le��

�FLOAT W�WA�WB�WC

�SET�INPUT�

X������D	 
 X������D	 
 X������D	

X�����D	 
 X������D	 
 X������D	

DO � KA���NA

W�	��D	�DBLE�KA�

AM�KA��EXP��W����D	�EXP����	D��W����D	�EXP���D	�W�

� CONTINUE

XMAX���D�

FMIN�	�D	

	�



�ENDSET

�SET�FMODELA�

W�	��D	�FLOAT�KA�

WA�EXP��W�X����

WB�EXP��W�X����

WC�EXP��W�X����

FA�X���WA�X����WB�X����WC

�ENDSET

�NF��

�NA��	

�NAL�	

�KBA��

�MOUT��

�NOUT��

�MODEL��AQ�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the vector AM
containing values yi� � � i � m� Since the approximating functions contain exponentials� we de�ne
the maximum stepsize �XMAX���� By using the macrovariable �FGMODELA we specify analytically
the values of the approximating function� The gradients of the approximating functions are computed
numerically� For the sum of squares minimization we set �MODEL��AQ�� The speci�cation �KBA��
indicates that the vector AM is used�

d� Problem solution 
basic screen output��

NIT� 	 NFV� � NFG� 	 F� ���D�		 G� ����D�		

NIT� � NFV� � NFG� 	 F� ���D�		 G� ����D�		

NIT� � NFV� �� NFG� 	 F� ���D�		 G� ���D�	�

NIT� � NFV� �� NFG� 	 F� ����D�		 G� ����D�	�

NIT�  NFV� �� NFG� 	 F� ���	D�	� G� ����D�	�

NIT� � NFV� � NFG� 	 F� ����D�	� G� ���D�	�

NIT� � NFV� �	 NFG� 	 F� �	�D�	� G� ����D�		

NIT� � NFV� �� NFG� 	 F� ����D�	� G� ����D�	�

NIT� � NFV� � NFG� 	 F� ����D�	� G� ��	D�	�

NIT� � NFV� �� NFG� 	 F� ����D�	� G� ���D�	�

NIT� �	 NFV� �� NFG� 	 F� ��	�D�	� G� ����D�	�

NIT� �� NFV� �� NFG� 	 F� ����D�	� G� ����D�	�

NIT� �� NFV� �� NFG� 	 F� ����D�	� G� ���D�	�

NIT� �� NFV� �		 NFG� 	 F� ����D�	� G� ���	D�	�

NIT� � NFV� �	� NFG� 	 F� ����D�	� G� ����D�	�

NIT� �� NFV� �� NFG� 	 F� ��D�	� G� ����D�	�

NIT� �� NFV� ��� NFG� 	 F� ���D�	� G� ����D�	�

NIT� �� NFV� ��� NFG� 	 F� ��	�D�	� G� ���D�	�

NIT� �� NFV� ��� NFG� 	 F� ����D�	� G� ����D�	�

NIT� �� NFV� �� NFG� 	 F� ���D�	� G� ����D�	�

NIT� �	 NFV� ��	 NFG� 	 F� ����D�	 G� ����D�	�

NIT� �� NFV� ��� NFG� 	 F� ����D�	 G� ���D�	�

NIT� �� NFV� ��� NFG� 	 F� ���D�	 G� ���	D�	�

	�



NIT� �� NFV� ��� NFG� 	 F� ����D�	 G� ���D�	�

NIT� � NFV� ��	 NFG� 	 F� ����D�	� G� ���D�	�

NIT� �� NFV� ��� NFG� 	 F� ����D�	� G� ����D�	�

NIT� �� NFV� �� NFG� 	 F� ����D�	� G� ����D�	�

NIT� �� NFV� �	� NFG� 	 F� ����D��	 G� ���D�	

NIT� �� NFV� �	� NFG� 	 F� ���D��� G� ��	�D��	

	 NIT� �� NFV� �	� NFG� 	 NDC� �	� NCG� 	 F� ���D��� G� ��	�D��	

F � �������	�D���

X � �									D�	� ��									D�	� ��									D�	� ��									D�	�

��									D�	� ��									D�	�

���� Minimax approximation

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F 
x� � max
��i�m

j
x� � tix�

� � tix� � t�ix� � t�ix�
� yij

where m � ��� ti � 
i� ������ � and yi � e�ti for � � i � m� Starting point is x� � ���� x� � �� x� �
�� x� � �� x� � �� The solution point is x� � �����	� x� � ������� x� � ������� x� � ������� x� �
������ and the corresponding minimum value of the objective function is F � �����������

b� Problem speci�cation 
input �le��

�FLOAT W

�SET�INPUT�

X����	��D	 
 X����	�	D	 
 X����	�	D	

X���	�	D	 
 X����	�	D	

�ENDSET

�SET�FMODELA�

W�	��D	�DBLE�KA������	D	

FA��X����W�X��������	D	�W��X����W��X���W�X�������EXP�W�

�ENDSET

�MODEL��AM�

�NF��

�NA���

�NAL�	

�MOUT��

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FMODELA we specify analytically the values of the approximating functions� The gradients of the
approximating functions are computed numerically� For minimax approximation we set �MODEL��AM��

d� Problem solution 
basic screen output��

	�



NIT� 	 NFV� � NFG� 	 F� ����D�	� G� ��		D���

NIT� � NFV� �� NFG� 	 F� ���D�		 G� ����D�		

NIT� � NFV� �� NFG� 	 F� ����D�	� G� ����D�		

NIT� � NFV� �� NFG� 	 F� ����D�	� G� ���D�		

NIT�  NFV� �� NFG� 	 F� ����D�	� G� ���	D�	�

NIT� � NFV� �� NFG� 	 F� ����D�	� G� ����D�	�

NIT� � NFV� � NFG� 	 F� ����D�	� G� ����D�	�

NIT� � NFV� � NFG� 	 F� ����D�	� G� ����D�	�

NIT� � NFV� �� NFG� 	 F� ���D�	� G� ����D�	�

NIT� � NFV� �� NFG� 	 F� ����D�	� G� ����D�	�

NIT� �	 NFV� �� NFG� 	 F� ����D�	� G� ����D�	�

	 NIT� �	 NFV� �� NFG� 	 NDC� 	 NCG� 	 F� ����D�	� G� ����D�	�

F � �����������D�	�

X � �����������D�		 �������	D�		 �����	�����D�		 ����	��	��D�		

�����	���	�D�	�

���� Nonsmooth optimization

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F 
x� � �x� � � � 
x�� � x�� � �� �

�
jx�� � x�� � �j

Starting point is x� � ��� x� � ���� The solution point is x� � �� x� � �� and the corresponding
minimum value of the objective function is F � �����

b� Problem speci�cation 
input �le��

�FLOAT W

�SET�INPUT�

X�������D	

X�������D	

�ENDSET

�SET�FGMODELF�

W�X�������X���������D	

FF��X������D	�W�����D	�ABS�W�

W�SIGN�����P 	�W���D	

GF����W�X������D	

GF����W�X���

�ENDSET

�NF��

�KSF��

�MOUT��

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FGMODELF we specify analytically the value and the gradient of the objective function� For
nonsmooth optimization we set �KSF���

	�



d� Problem solution 
basic screen output��

NIT� 	 NFV� � NFG� � F� ���D�	� G� ��		D���

NIT� � NFV� � NFG� � F� �����D�		 G� ���	D�	�

NIT� � NFV�  NFG�  F� ���	�D�		 G� ����D�		

NIT� � NFV� � NFG� � F� ����D�	� G� ��	�D�		

NIT�  NFV� � NFG� � F� �����D�		 G� ��	�D�		

NIT� � NFV� � NFG� � F� ����D�		 G� ���D�		

NIT� � NFV� � NFG� � F� �����D�		 G� ����D�		

NIT� � NFV� � NFG� � F� ���D�		 G� ����D�		

NIT� � NFV� �	 NFG� �	 F� �����D�		 G� ���D�	�

NIT� � NFV� �� NFG� �� F� �����D�		 G� ���D�		

NIT� �	 NFV� �� NFG� �� F� �����D�		 G� ��	�D�		

NIT� �� NFV� �� NFG� �� F� ���		D�	� G� ���	D�	�

NIT� �� NFV� � NFG� � F� ���		D�	� G� ��D�	�

NIT� �� NFV� �� NFG� �� F� ���		D�	� G� ����D�	�

	 NIT� �� NFV� �� NFG� �� NDC� 	 NCG� 	 F����		D�	� G� ����D�	�

FF� ���									D�	�

X � ��									D�	� �										D�		

���� Optimization with linear constraints

a� problem speci�cation�

Suppose we have to �nd a minimum of the objective function

F 
x� � 
x� � x��
� � 
x� � ��� � 
x� � ��� � 
x� � ��	

over the set given by the linear constraints

x� � x� � x� � �x� � 

x� � �x� � �

The starting point is x� � ��� x� � � x� � �� x� � �� x� � ��	� The solution point is x� � �� x� �
�� x� � �� x� � �� x� � � and the corresponding minimum value of the objective function is F � ���

b� Problem speci�cation 
input �le��

�SET�INPUT�

X���� ��D� 
 X���� ��D	 
 X���� ��D	

X������D	 
 X����	��D	

IC����� 
 CL������D	

CG������D	 
 CG������D	 
 CG������D	

CG����D	 
 CG����	�D	

IC����� 
 CL������D	

CG����	�D	 
 CG����	�D	 
 CG������D	

CG����	�D	 
 CG��	����D	

FMIN �	�D	

�ENDSET

�SET�FMODELF�

FF��X����X���������X������D	����� �

	�



�X�����D	�����X������D	����

�ENDSET

�SET�GMODELF�

GF���� ��D	��X����X����

GF�������D	��X����X����

GF���� ��D	��X������D	�

GF��� �D	��X�����D	����

GF���� ��D	��X������D	����

�ENDSET

�NF��

�NC��

�NCL��

�KBC��

�MOUT��

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and types and values of
the general linear constraints� Since there are only the equality constraints� we can specify only the left
sides 
CL
�� and CL
��� and we can set �KBC��� The speci�cation �FMIN�� is used� since the objective
function value cannot be less then zero� By using the macrovariable �FMODELF we specify analytically
the value of the model function� By using the macrovariable �GMODELF we specify analytically the
gradient of the model function�

d� Problem solution 
basic screen output��

NIT� 	 NFV� � NFG� � F� ����D�	� G� ����D�	�

NIT� � NFV� � NFG� � F� ���D�	� G� ����D�	�

NIT� � NFV� � NFG� � F� ��	�D�	� G� ����D�	�

NIT� � NFV�  NFG�  F� ����D�	� G� ����D�	�

NIT�  NFV� � NFG� � F� ����D�		 G� ����D�		

NIT� � NFV� � NFG� � F� ����D�		 G� ����D�		

NIT� � NFV� � NFG� � F� ����D�	� G� ����D�		

NIT� � NFV� � NFG� � F� ����D�	� G� ����D�		

NIT� � NFV� � NFG� � F� ���D�	� G� ����D�	�

NIT� � NFV� �	 NFG� �	 F� ����D�	� G� ���D�	�

NIT� �	 NFV� �� NFG� �� F� ����D�	� G� ����D�	�

NIT� �� NFV� �� NFG� �� F� ����D�	� G� ��	�D�	�

NIT� �� NFV� �� NFG� �� F� ���	D�	 G� ����D�	�

NIT� �� NFV� � NFG� � F� ���D�	 G� ����D�	�

NIT� � NFV� �� NFG� �� F� ���D�	� G� ���	D�	�

NIT� �� NFV� �� NFG� �� F� ���	D�	� G� ����D�	�

NIT� �� NFV� �� NFG� �� F� ����D�	� G� ��	�D�	�

NIT� �� NFV� �� NFG� �� F� ����D�	� G� �	�D�	�

NIT� �� NFV� �� NFG� �� F� ����D�	� G� ����D�	�

NIT� �� NFV� �	 NFG� �	 F� ����D�	� G� ����D�	

NIT� �	 NFV� �� NFG� �� F� ���D�	� G� ��		D�	

NIT� �� NFV� �� NFG� �� F� ����D�	� G� ���	D�	�

NIT� �� NFV� �� NFG� �� F� ����D�	� G� ���D�	

	



NIT� �� NFV� � NFG� � F� ��	D�	� G� ����D�	�

NIT� � NFV� �� NFG� �� F� ����D�	� G� ��	�D�	

NIT� �� NFV� �� NFG� �� F� ����D��	 G� ����D�	

NIT� �� NFV� �� NFG� �� F� ����D��	 G� ����D�	�

NIT� �� NFV� �� NFG� �� F� ��	D��� G� ��	�D�	�

	 NIT� �� NFV� �� NFG� �� NDC� 	 NCG� 	 F� ��	D��� G� ��	�D�	�

FF� ��	����D���

X � ��		�������D�	� ��		�������D�	� ���������D�		 ���������D�		

��							��D�	�

���� Minimax approximation with linear constraints

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F 
x� � max
f�
x�� f�
x�� f�
x��

with

f�
x� � � exp
x� � x��

f�
x� � sinh
x� � ��� �

f�
x� � � log
x��� �

over the set given by the box constraint x� 
 ����� and the linear constraint

�
���

x� � x� �
�
�

 ��

Starting point is x� � ��� x� � ������ The solution point is x� � ������� x� � ����� and the
corresponding minimum value of the objective function is F � �����	����

b� Problem speci�cation 
input �le��

�SET�INPUT�

X�������D 	 
 IX����	

X���� ��D�� 
 XL���� ��D�� 
 IX�����

CL�������D�� 
 IC�����

CG������D�� 
 CG�������D 	

�ENDSET

�SET�FMODELA�

IF �KA�EQ��� FA��EXP�X����X����

IF �KA�EQ��� FA� SINH�X������D	����D	

IF �KA�EQ��� FA��LOG�X�������D	

�ENDSET

�MODEL��AM�

�IEXT���

�NF��

�NA��

�NC��

�NCL��

�KBF��

�KBC��

		



�MOUT��

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and types and values of
both the box constraints and the general linear constraints� Since there are only one�sided constraints�
we specify only the left sides 
XL
�� and CL
��� and we can set �KBF�� and �KBC��� By using
the macrovariable �FMODELA we specify analytically the values of the approximating functions� The
gradients of the approximating functions are computed numerically� For minimax approximation we set
�MODEL��AM� and �IEXT����

d� Problem solution 
basic screen output��

NIT� 	 NFV� � NFG� 	 F� ����D�	� G� ��		D���

NIT� � NFV� � NFG� 	 F� ����D�	� G� ����D�		

NIT� � NFV� � NFG� 	 F� ����D�		 G� ���D�		

NIT� � NFV� �� NFG� 	 F� �����D�		 G� ����D�		

NIT�  NFV� �� NFG� 	 F� �����D�		 G� ���D�		

NIT� � NFV� �� NFG� 	 F� ����D�		 G� ����D�	�

NIT� � NFV� �� NFG� 	 F� ���D�		 G� ���D�	�

NIT� � NFV� � NFG� 	 F� ���D�		 G� ����D�	

	 NIT� � NFV� � NFG� 	 NDC� 	 NCG� 	 F����D�		 G� ����D�	�

F � �����	��	D�		

X � ���������D�	� ���������	�D�		

��� Optimization with nonlinear constraints �nonlinear programming�

a� Problem description�

Suppose we have to �nd a maximum of the objective function

F 
x� � x�x�

over the set given by the simple bounds x� 
 �� x� 
 �� x� 
 �� x
 
 � and by the nonlinear constraints


x� � x	�
� � 
x� � x
�

� 
 �

x�x� � x�x�p
x�� � x��


 �

x�x	 � x�x
p
x�� � x��


 �

x�x� � 
x� � x��x� � x�x�p

x� � x��� � x��


 �

x�x� � 
x� � x��x
 � x�x	p

x� � x�� � x��


 �

	�



The starting point is x� � ���� x� � ���� x� � ���� x� � ����� x� � ���� x	 � ���� x
 � ���� The
solution point is x� � ��	�	� x� � ������ x� � ��	�	� x� � ������ x� � ������ x	 � ������ x
 � �����
and the corresponding minimum value of the objective function is F � �������

b� Problem speci�cation 
input �le��

�FLOAT W

�SET�INPUT�

X���� ��	D	 
 XL���� 	�	D	 
 IX���� �

X���� 	�	D	

X���� ��	D	 
 XL���� 	�	D	 
 IX���� �

X�������D	

X���� ���D	 
 XL���� ��	D	 
 IX���� �

X���� ��	D	

X���� 	�	D	 
 XL���� ��	D	 
 IX���� �

CL�����	D	 
 IC���� �

CL������	D	 
 IC���� �

CL������	D	 
 IC���� �

CL�����	D	 
 IC��� �

CL������	D	 
 IC���� �

�ENDSET

�SET�FMODELF�

FF�X����X���

�ENDSET

�SET�FMODELC�

IF �KC�LE�	� THEN

ELSE IF �KC�EQ��� THEN

FC��X���X���������X����X�������

ELSE IF �KC�EQ��� THEN

W�SQRT�X�������X�������

FC��X����X���X����X�����W

ELSE IF �KC�EQ��� THEN

W�SQRT�X�������X�������

FC��X����X����X����X�����W

ELSE IF �KC�EQ�� THEN

W�SQRT��X����X��������X�������

FC��X����X�����X����X�����X����X����X����W

ELSE IF �KC�EQ��� THEN

W�SQRT��X����X��������X�������

FC��X����X�����X����X�����X����X����X�����W

ENDIF

�ENDSET

�NF��

�NC��

�NCL�	

�KBF��

�KBC��

�MOUT��

�NOUT��

�BATCH

�STANDARD

��



c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify initial values and simple bounds for variables and
types and values of the general constraints� Since there are only one�sided simple bounds and one�sided
general constraints� we set �KBF�� and �KBC��� By using the macrovariable �FMODELF we specify
analytically the value of the model function� The gradient of the model function is computed numerically�

d� Problem solution 
basic screen output��

NIC� 	 NIT� 	 NFV� � NFG� 	 F� ��		D�	� C� ���D�	� G� �			D�		

NIC� 	 NIT� � NFV� �� NFG� 	 F� ����D�	� C� ����D�		 G� ����D�	�

NIC� 	 NIT� � NFV� �� NFG� 	 F� ���	D�	� C� ��	�D�	� G� ��	�D�	�

NIC� 	 NIT� � NFV� � NFG� 	 F� ���D�	� C� ����D�	� G� ��	D�	�

NIC� 	 NIT�  NFV� �� NFG� 	 F� ����D�	� C� ����D�	� G� ��	D�		

NIC� 	 NIT� � NFV� �� NFG� 	 F� ����D�	� C� ���D�	� G� ���D�		

NIC� 	 NIT� � NFV� �� NFG� 	 F� ����D�	� C� ��	D�	� G� ��	D�		

NIC� 	 NIT� � NFV� � NFG� 	 F� ����D�	� C� ����D�	 G� ����D�	�

NIC� 	 NIT� � NFV� �	� NFG� 	 F� ����D�	� C� ���D�	� G� ����D�	�

NIC� 	 NIT� � NFV� ��	 NFG� 	 F� ����D�	� C� ����D�	 G� ���D�	�

NIC� 	 NIT� �	 NFV� ��� NFG� 	 F� ����D�	� C� ����D�	� G� ����D�	�

NIC� 	 NIT� �� NFV� �� NFG� 	 F� ����D�	� C� ����D�	� G� ����D�	�

NIC� 	 NIT� �� NFV� ��� NFG� 	 F� ����D�	� C� ����D��� G� ��	�D�	�

	 NIC� 	 NIT� �� NFV� ��� NFG� 	 F� ����D�	� C� ����D��� G� ���D�	�

FF� �������	��	D�	�

X � ������	�	D�	� ��������	�D�	� ��������	D�	� ��						���D�	�

���������D�	� ���������D�	� ��									D�	�

���� Global optimization

a� Problem description�

Suppose we have to �nd a global minimum of the objective function

F 
x� � 
x� � ���
x� � ��� � 
x� � ���
x� � ��� � x��x
�
�

over the set given by the inequalities ��� � x� � �� and ��� � x� � ��� The starting point is x� � ��
x� � �� The solution point is x� � ������� x� � ������ and the global minimumvalue of the objective
function is F � �	�����

b� Problem speci�cation 
input �le��

�SET�INPUT�

XL��������D	 
 XU�����	�D	

XL��������D	 
 XU�����	�D	

�ENDSET

�SET�FMODELF�

FF���X������D	���X������D	������ �

��X������D	���X������D	�������X����X�������

�ENDSET

�NF��

�MOUT��

�EXTREM��G�

�BATCH

�STANDARD

��



c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify bounds de�ning the investigated region� By using
the macrovariable �FMODELF we specify analytically the value of the model function� The gradient
of the model function is computed numerically� Since we require to �nd a global minimum we set
�EXTREM��G��

d� Problem solution 
basic screen output��

	 NIT� �� NFV� ��� NEX�  F� ���	�D�	�

��EXTREM � F � ���	�	������D�	�

X � �����������D�	� �����	��	D�	�

��EXTREM � F � ���	�������D�	�

X � �����������D�	� ����������D�	�

��EXTREM � F � ����	���	��D�	�

X � �������	���D�	� �������	���D�	�

�EXTREM � F � ������	���D�	�

X � ���������D�	� �����������D�	�

���� Large scale optimization �sparse Hessian matrix�

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F 
x� �
nX
i��

�

�� �xi�xi � xi�� � xi�� � �

��
� xn�� � x� � �

where n � ���� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ���

b� Problem speci�cation 
input �le��

�FLOAT A

�SET�INPUT�

DO � I���NF

X�I�����	D	

J����I�����

IH�I��J

JH�J��I

JH�J����I��

� CONTINUE

IH�NF������NF

�ENDSET

�SET�FMODELF�

FF�	�	D	

DO � J���NF

A����	D	���	D	�X�J���X�J����	D	

IF �J�GT��� A�A�X�J���

��



IF �J�LT�NF� A�A�X�J���

FF�FF�A�A

� CONTINUE

�ENDSET

�SET�GMODELF�

GF����	�	D	

DO � J���NF

A����	D	���	D	�X�J���X�J����	D	

IF �J�GT��� A�A�X�J���

IF �J�LT�NF� A�A�X�J���

A�A�A

GF�J��GF�J��A����	D	��	D	�X�J��

IF �J�GT��� GF�J����GF�J����A

IF �J�LT�NF� GF�J�����A

� CONTINUE

�ENDSET

�NF��		

�M��		

�MOUT��

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Hessian matrix� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is ��NF������� We set �M����� since a greater space
is needed for sparse matrix processing� By using the macrovariable �FMODELF we specify analytically
the value of the model function� By using the macrovariable �GMODELF we specify analytically the
gradient of the model function�

d� problem solution 
basic screen output��

NIT� 	 NFV� � NFG�  F� ��	D�	� G� ���	D�	�

NIT� � NFV� � NFG� � F� ����D�	� G� ����D�	�

NIT� � NFV� � NFG� �� F� ����D�	� G� ���D�	�

NIT� � NFV�  NFG� �� F� ���D�		 G� ���D�	�

NIT�  NFV� � NFG� �	 F� ���	D�	� G� ����D�		

NIT� � NFV� � NFG� � F� ��D�	� G� ����D�	�

NIT� � NFV� � NFG� �� F� ���	D�	� G� ����D�	�

NIT� � NFV� � NFG� �� F� ��	�D�	� G� ���D�	

NIT� � NFV� � NFG� �� F� ����D��� G� �	�D�	�

NIT� � NFV� �	 NFG� 	 F� ����D�� G� ����D�	�

	 NIT� � NFV� �	 NFG� 	 NDC� 	 NCG� � F� ����D�� G� ����D�	�

��
�� Large�scale optimization �sparse Jacobian matrix�

a� Problem description�

Suppose we have to �nd a minimum of the objective function

��



F 
x� �
nX
i��

fAi 
x�

where n���� and

fAi 
x� �
�

�� �xi�xi � xi�� � �

��
� i � �

fAi 
x� �
�

�� �xi�xi � xi�� � xi�� � �

��
� � � i � n� �

fAi 
x� �
�

�� �xi�xi � xi�� � �

��
� i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ���

This problem is equivalent to the previous problem��

b� Problem speci�cation 
input �le��

�FLOAT A

�SET�INPUT�

DO � I���NF

X�I�����	D	

� CONTINUE

L��

DO � I���NF

IAG�I��L

IF �I�GT��� THEN

JAG�L��I��

L�L��

ENDIF

JAG�L��I

L�L��

IF �I�LT�NF� THEN

JAG�L��I��

L�L��

ENDIF

� CONTINUE

IAG�NF����L

�ENDSET

�SET�FMODELA�

A����	D	���	D	�X�KA���X�KA����	D	

IF �KA�GT��� A�A�X�KA���

IF �KA�LT�NF� A�A�X�KA���

FA�A�A

�ENDSET

�SET�GMODELA�

A����	D	���	D	�X�KA���X�KA����	D	

IF �KA�GT��� A�A�X�KA���

IF �KA�LT�NF� A�A�X�KA���

A�A�A

GA�KA��A����	D	��	D	�X�KA��

IF �KA�GT��� GA�KA�����A

IF �KA�LT�NF� GA�KA�����A

��



�ENDSET

�NF��		

�NA��		

�MA��		

�M��		

�MOUT��

�MODEL��AF�

�JACA��S�

�HESF��B�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pat�
tern of the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is
tridiagonal and the number of its nonzero elements is ��NF�����	� Therefore� we set �MA����� Since
we use the partitioned Hessian matrix� indicated by the statement �HESF��B�� we must specify the
number of its nonzero elements 
it is ��NF���� Therefore� we set �M����� By using the macrovariable
�FMODELA we specify analytically the values of the approximating functions� By using the macrovari�
able �GMODELA we specify analytically the gradients of the approximating functions� For the sum of
values minimization we set �MODEL��AF��

d� problem solution 
basic screen output��

NIT� 	 NFV� � NFG� � F� ��	D�	� G� ���	D�	�

NIT� � NFV� � NFG� � F� ����D�	� G� ����D�	�

NIT� � NFV� � NFG� � F� ����D�	� G� ����D�	�

NIT� � NFV� � NFG� � F� ��	�D�	� G� ����D�	�

NIT�  NFV� � NFG� � F� ���	D�	� G� ����D�	�

NIT� � NFV� � NFG� � F� ����D�	� G� ����D�	�

NIT� � NFV� �	 NFG� �	 F� ����D�	� G� ���	D�		

NIT� � NFV� �� NFG� �� F� ����D�	� G� ���D�	�

NIT� � NFV� �� NFG� �� F� ��	�D�	� G� ����D�	�

NIT� � NFV� �� NFG� �� F� ����D�	� G� ���D�	�

NIT� �	 NFV� � NFG� � F� ����D�	� G� ����D�	

NIT� �� NFV� �� NFG� �� F� ����D��� G� ����D�	�

NIT� �� NFV� �� NFG� �� F� ����D��� G� ����D�	�

NIT� �� NFV� �� NFG� �� F� ����D��� G� ����D�	�

	 NIT� �� NFV� �� NFG� �� NDC� 	 NCG�  F� ����D��� G� ����D�	�

��

� Large�scale sum of squares optimization �sparse Jacobian matrix�

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F 
x� �
nX
i��

�
fAi 
x�

��

where n � ��� and

fAi 
x� � 
�� �xi�xi � xi�� � � � i � �

��



fAi 
x� � 
�� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi 
x� � 
�� �xi�xi � xi�� � � � i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ���

This problem is equivalent to the previous problem��

b� Problem speci�cation 
input �le��

�SET�INPUT�

DO � I���NF

X�I�����	D	

� CONTINUE

L��

DO � I���NA

IAG�I��L

IF �I�GT��� THEN

JAG�L��I��

L�L��

ENDIF

JAG�L��I

L�L��

IF �I�LT�NA� THEN

JAG�L��I��

L�L��

ENDIF

� CONTINUE

IAG�NA����L

�ENDSET

�SET�FMODELA�

I�KA

FA����	D	���	D	�X�I���X�I����	D	

IF �I�GT��� FA�FA�X�I���

IF �I�LT�NA� FA�FA�X�I���

�ENDSET

�SET�GMODELA�

I�KA

GA�I����	D	��	D	�X�I�

IF �I�GT��� GA�I�������	D	

IF �I�LT�NA� GA�I�������	D	

�ENDSET

�NF��		

�NA��		

�MA��		

�M��		

�MOUT��

�MODEL��AQ�

�JACA��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

��



By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is tridiag�
onal and the number of its nonzero elements is ��NF�����	� Therefore� we set �MA����� Since we do
not use the sparse Hessian matrix� we do not specify the number of its nonzero elements� By using the
macrovariable �FMODELA we specify analytically the values of the approximating functions� By using
the macrovariable �GMODELA we specify analytically the gradients of the approximating functions� For
the sum of squares minimization we set �MODEL��AQ��

d� problem solution 
basic screen output��

NIT� 	 NFV� � NFG� � F� ��	�D�	� G� ���	D�	�

NIT� � NFV� � NFG� � F� ����D�	� G� ���	D�	�

NIT� � NFV� � NFG� � F� ����D�	� G� ����D�		

NIT� � NFV�  NFG�  F� ���D�	� G� ����D�	�

NIT�  NFV� � NFG� � F� ����D��� G� ����D�	�

	 NIT�  NFV� � NFG� � NDC�  NCG� 	 F� ����D��� G� ����D�	�

��
	� Large�scale nonlinear equations

a� Problem description�

Suppose we have to solve a system of the nonlinear equations

fAi 
x� � 
�� �xi�xi � xi�� � � � � � i � �

fAi 
x� � 
�� �xi�xi � xi�� � xi�� � � � � � � � i � n� �

fAi 
x� � 
�� �xi�xi � xi�� � � � � � i � n

where n����� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ��� 
This problem is equivalent to the previous problem��

b� Problem speci�cation 
input �le��

�SET�INPUT�

DO � I���NF

X�I�����	D	

� CONTINUE

�ENDSET

�SET�FMODELA�

I�KA

FA����	D	���	D	�X�I���X�I����	D	

IF �I�GT��� FA�FA�X�I���

IF �I�LT�NA� FA�FA�X�I���

�ENDSET

�NF��		

�NA��		

�MOUT��

�MODEL��AQ�

�JACA��NO�

�BATCH

�STANDARD

�



c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FMODELA we specify analytically the values of functions in the nonlinear equations� For solving
nonlinear equations we set �MODEL��AQ��

d� problem solution 
basic screen output��

NIT� 	 NFV� � F� ��	�D�	�

NIT� � NFV� � F� ����D�	�

NIT� � NFV� � F� ����D�	�

NIT� � NFV� �� F� ���	D�	�

NIT�  NFV� �� F� ���	D���

	 NIT�  NFV� �� NDC�  NCG� � F� ���	D���

��
�� Large�scale linear programming

a� Problem description�

Suppose we have to �nd a maximum of the linear function

F 
x� �
nX
i��


���ixi

with simple bounds ��� � xi � ��� � � xi � n� and linear constraints

�xi � xi�� � xi�� � i� � � i � nC

where n � �� and nC � �	� The starting point is not given� The maximum value of the linear objective
function is F � ��

b� Problem speci�cation 
input �le��

�SET�INPUT�

DO � I���NF

IX�I���

XL�I�����	D�

XU�I�� ��	D�

GF�I��FLOAT�������I�

� CONTINUE

DO � KC���NC

IC�KC���

CL�KC��FLOAT�KC�

CALL UKMCI��KC�KC����	D	�ICG�JCG�CG�

CALL UKMCI��KC�KC�����	D	�ICG�JCG�CG�

CALL UKMCI��KC�KC������	D	�ICG�JCG�CG�

� CONTINUE

�ENDSET

�IEXT��

�NF��	

�NC���

�NCL���

�MC��		

�KBF��

�	



�KBC��

�MOUT��

�NOUT��

�MODEL��FL�

�JACC��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify bounds for variables and the sparsity pattern with
numerical values of the constraint Jacobian matrix� We use the procedure UKMCI�� The sparse Jacobian
matrix� indicated by the statement �JACC��S�� is tridiagonal and the number of its nonzero elements
is ��
NF������� We set �MC���� as a su�ciently large dimension for auxiliary �elds� The option
�MODEL��FL� indicates the linear programming problem�

d� Problem solution 
basic screen output��

NUMITR� � IJNEW� �	 IJOLD� �� KINP� 	 IU� � F� ���	D�	

NUMITR� � IJNEW� �� IJOLD� �	 KINP� 	 IU� � F� ��	�D�	

NUMITR� � IJNEW� 	 IJOLD� �	 KINP� 	 IU� � F� �			D�		

	 NUMITR� � NEL� � NREF� � KINP� 	 IU� � F� �			D�		 ITERL� �

NUMITR� � IJNEW� �� IJOLD� �� KINP� 	 IU� � F����		D�	�

NUMITR� � IJNEW� �	 IJOLD� �� KINP� 	 IU� � F����		D�	�

NUMITR� � IJNEW� 	 IJOLD� �� KINP� 	 IU� � F����		D�	�

	 NUMITR� � NEL� � NREF� � KINP� 	 IU� � F����		D�	� ITERL� �

	 NIT� 	 NFV� 	 NFG� 	 NDC� 	 NCG� 	 F� ��		D�	� G� �			D�		

FF� ��									D�	�

X � ���									D�	� �										D�		 ��									D�	� ���									D�	�

���									D�	� ���									D�	� ���									D�	� ���									D�	�

���									D�	� ���									D�	� ����								D�	� ���								D�	�

���								D�	� ����								D�	� ����								D�	� ����								D�	�

����								D�	� ���									D�	� ���									D�	� ����								D�	�

��
�� Large�scale quadratic programming

a� Problem description�

Suppose we have to �nd a minimum of the quadratic function

F 
x� �
k��X
i��


xk�i�� � xk�i�
�

with simple bounds �i � xi � �i��� ���
�i�� � �i� � xk�i � ���
�i�� � �i�� � � i � k � �� �k � xk �
�k��� and linear constraints

xk�i � xi�� � xi � �� � � i � k � �

where �i � � � 
��������i� � � i � k � �� and where n � �k � � � ��� nC � k � � � ��� The starting
point is not given� The minimum value of the quadratic objective function is F � ��������

b� Problem speci�cation 
input �le��

��



�FLOAT WA�WB�WC

�SET�INPUT�

WA���		D	
 WB���	�D	

DO � I���NC

J�I�NC��

WC���	D	����	�D	����I���

IX�I���
 XL�I��WA
 XU�I��WB

IX�J���
 XL�J��	�D	��WC�WA�
 XU�J��	��D	��WC�WA�

GF�I��	�	D	

GF�J��	�	D	

WA�WB
 WB�WC

IC�I���
 CL�I��	�	D	

CALL UKMCI��I�J���	D	�ICG�JCG�CG�

CALL UKMCI��I�I���	D	�ICG�JCG�CG�

CALL UKMCI��I�I������	D	�ICG�JCG�CG�

IH�I���

� CONTINUE

IX�NC�����
 XL�NC����WA
 XU�NC����WB

GF�NC�����

IH�NC�����
 IH�NC�����

K�NC��

DO � I�K�NF��

IH�I����IH�I���

� CONTINUE

IH�NF����IH�NF���

J��

DO � I�K�NF

JH�J��I
 JH�J����I��

HF�J����	D	
 HF�J�������	D	

IF �I�EQ�K�OR�I�EQ�NF� HF�J����	D	

J�J��

� CONTINUE

�ENDSET

�NF��

�NC��	

�NCL��	

�MC��		

�M��		

�MCOLS��		

�MROWS��	

�KBF��

�KBC��

�MOUT��

�NOUT��

�MODEL��FQ�

�JACC��S�

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

���



By using the macrovariable �INPUT we specify bounds for variables� the sparsity pattern with numer�
ical values of the model Hessian matrix� and the sparsity pattern with numerical values of the constraint
Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix� indicated by the statement
�HESF��S�� is very simple and the number of its upper half nonzero elements is ��
N�NC������� We
set M����� as a su�ciently large dimension for working �elds� The sparse Jacobian matrix� indicated
by the statement �JACC��S�� is tridiagonal and the number of its nonzero elements is ��NC���� We set
�MC���� as a su�ciently large dimension for working �elds� The option �MODEL��FQ� indicates the
linear programming problem�

d� Problem solution 
basic screen output��

NUMITR� � IJNEW� �� IJOLD� �� KINP� 	 IU� �� F� ���D�		

NUMITR� � IJNEW� �� IJOLD� �� KINP� 	 IU� �� F� ����D�		

NUMITR� � IJNEW� �� IJOLD� �� KINP� 	 IU� �� F� ����D�		

NUMITR�  IJNEW� �� IJOLD� �� KINP� 	 IU� �� F� ���D�		

NUMITR� � IJNEW� �� IJOLD� �� KINP� 	 IU� �� F� ��	�D�	�

NUMITR� � IJNEW� �� IJOLD� �� KINP� 	 IU� �� F� ���D�	�

NUMITR� � IJNEW� �� IJOLD� �	 KINP� 	 IU� �� F� ����D�	�

NUMITR� � IJNEW� �� IJOLD� �� KINP� 	 IU� �� F� ���D�	�

NUMITR� � IJNEW� 	 IJOLD� �� KINP� 	 IU� �� F� �			D�		

	 NUMITR� � NEL� � NREF� � KINP� 	 IU� �� F� �			D�		 ITERL� �

NAQ� � NIQ� 	 NSBSP� � NCGR� 	 IU� �� F� ��������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP� �� NCGR� � IU� �� F� ��������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP� �� NCGR� � IU� �� F� ��������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP� �� NCGR� �	 IU� �� F� ��������D�	� G� ����D�	�

NAQ� � NIQ�  NSBSP� �	 NCGR� � IU� �� F� ��������D�	� G� ���D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� ������	�D�	� G� ����D�	�

NAQ� � NIQ� 	 NSBSP� � NCGR� �� IU� �� F� �������D�	� G� ���D�	�

NAQ� � NIQ� � NSBSP� �� NCGR� � IU� �� F� �������D�	� G� ���D�	�

NAQ� � NIQ� � NSBSP� �� NCGR� �	 IU� �� F� �������D�	� G� ���D�	�

NAQ� � NIQ� � NSBSP� �� NCGR� �� IU� �� F� �������D�	� G� ���D�	�

NAQ� � NIQ�  NSBSP� �	 NCGR� � IU� �� F� �������D�	� G� ��D�	�

NAQ� � NIQ� � NSBSP� � NCGR� � IU� �� F� �������	D�	� G� ����D�	�

NAQ� � NIQ� 	 NSBSP� �	 NCGR� � IU� �� F� ��������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �	 IU� �� F� �������D�	� G� ��	�D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �������D�	� G� ����D�	�

NAQ�  NIQ� 	 NSBSP� � NCGR� �� IU� �� F� �������D�	� G� ����D�	�

NAQ�  NIQ� � NSBSP� � NCGR� �� IU� 	 F� �������D�	� G� ����D�	�

NAQ� � NIQ� 	 NSBSP� �	 NCGR� �� IU� 	 F� �������D�	� G� ���D�	�

NAQ� � NIQ� 	 NSBSP� �� NCGR� �� IU� 	 F� �������D�	� G� ���D�	�

NAQ� � NIQ� � NSBSP� �� NCGR� �� IU� 	 F� ������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP� �	 NCGR� �� IU� 	 F� �������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� 	 F� �������D�	� G� ����D�	�

NAQ� � NIQ�  NSBSP� � NCGR� �� IU� � F� �������D�	� G� ���D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� � F� �������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� � F� �������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� 	 F� ��������D�	� G� ����D�	�

NAQ� � NIQ� 	 NSBSP� � NCGR� �� IU� 	 F� ��������D�	� G� ���D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� ��������D�	� G� ���	D�	�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� ��������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP�  NCGR� �� IU� �� F� �������D�	� G� ���D�	�

NAQ� � NIQ� 	 NSBSP� � NCGR� �� IU� �� F� �������D�	� G� ����D�	�

���



NAQ� � NIQ� � NSBSP� � NCGR� �	 IU� �� F� ��������D�	� G� ����D�	�

NAQ� � NIQ� � NSBSP�  NCGR� �� IU� �� F� ��������D�	� G� ��D�	�

NAQ� � NIQ� � NSBSP�  NCGR� � IU� �� F� �������	D�	� G� �			D�		

	 NAQ� � NIQ� � NSBSP�  NCGR� � IU� �� F� �������	D�	� G� �			D�		

	 NIT� 	 NFV� 	 NFG� 	 NDC� 	 NCG� � F� ����D�	� G� �			D�		

FF� �������	��D�	�

X � ���	���				D�	� ��	�							D�	� ��	����	�		D�	� ��	���		�D�	�

��	���	��D�	� ��	�����	��D�	� ��	��������D�	� ��	�������	D�	�

��	������	�D�	� ��	��������D�	� ���	������D�	� �������	���D�	�

�����	�����D�	� ����������D�	� ����	��	���D�	� ������	�	��D�	�

�������	��D�	� ��������	��D�	� ���		������D�	� ����	���D�	�

����	��			D�	� �	�						D�		 �����	�				D�	� ����	�	�		D�	�

�����	����D�	� ��	������D�	� ���	��	�	�D�	� �������	��D�	�

�����������D�	� ��	������	�D�	� ����������D�	� ����������D�	�

������	��D�	� �������	���D�	� ������	��D�	� ��������D�	�

���	�	�	��D�	� ��������	�D�	� ������	����D�	� �����	���	�D�	�

�����������D�	�

��
�� Large�scale optimization with linear constraints

a� Problem description�

The problem we have solved is in fact the Hock and Schittkowski problem number ��� 
see ����� which
has �� variables and 	 linear constraints� The minimum value of the objective function is F � ����	���

b� Problem speci�cation 
input �eld��

�FLOAT WI�WJ

�SET�INPUT�

DO � I���NF

X�I���	�	D	
 XL�I��	�	D	
 XU�I����	D	
 IX�I���

� CONTINUE

IH� ��� �
 IH� ��� �
 IH� ����	
 IH� ����
 IH� �����

IH� ����
 IH� �����
 IH� ����	
 IH� �����
 IH��	����

IH�������
 IH�����	
 IH������
 IH����
 IH������

IH������
 IH������


JH� ��� �
 JH� ��� 
 JH� ��� �
 JH� �� �
 JH� �����

JH� ��� �
 JH� ��� �
 JH� ��� �
 JH� ����	


JH��	�� �
 JH����� �
 JH����� �
 JH������	
 JH�����

JH����� 
 JH����� �
 JH�������
 JH�������


JH����� �
 JH��	�� �
 JH������	
 JH�������
 JH�������

JH���� �
 JH����� �
 JH�������


JH����� �
 JH�������
 JH�������


JH��	�� �
 JH������	
 JH�������


JH����� �
 JH������
 JH�������


JH������	
 JH������


JH�������
 JH�������


JH�	����
 JH�����


JH������
 JH�����


JH����


JH������


JH������


���



DO � I���NC

IC�I���

� CONTINUE

CL���� ���D	

CL���� ���D	

CL��������D	

CL�������D	

CL���� ���D	

CL���� ���D	

CL���� ���D	

CL��������D	

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� �� 	��	D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� � 	���D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� �� ��		D	�ICG�JCG�CG�

CALL UKMCI���� ������D	�ICG�JCG�CG�

CALL UKMCI���� ������	D	�ICG�JCG�CG�

CALL UKMCI���� � ����D	�ICG�JCG�CG�

CALL UKMCI���� �������D	�ICG�JCG�CG�

CALL UKMCI���� �� 	��	D	�ICG�JCG�CG�

CALL UKMCI�����	� ��		D	�ICG�JCG�CG�

CALL UKMCI���� �� ����D	�ICG�JCG�CG�

CALL UKMCI���� ���	���D	�ICG�JCG�CG�

CALL UKMCI���� �������D	�ICG�JCG�CG�

CALL UKMCI���� ���	���D	�ICG�JCG�CG�

CALL UKMCI���� ���	��D	�ICG�JCG�CG�

CALL UKMCI������� ��		D	�ICG�JCG�CG�

CALL UKMCI��� ������	D	�ICG�JCG�CG�

CALL UKMCI��� �����	�D	�ICG�JCG�CG�

CALL UKMCI��� �� 	���D	�ICG�JCG�CG�

CALL UKMCI��� ��	��D	�ICG�JCG�CG�

CALL UKMCI��� �������D	�ICG�JCG�CG�

CALL UKMCI��� ���	��D	�ICG�JCG�CG�

CALL UKMCI������ ��		D	�ICG�JCG�CG�

CALL UKMCI���� �����D	�ICG�JCG�CG�

CALL UKMCI���� �� ����D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� ���	���D	�ICG�JCG�CG�

CALL UKMCI���� ���	��D	�ICG�JCG�CG�

CALL UKMCI������� ��		D	�ICG�JCG�CG�

CALL UKMCI���� �������D	�ICG�JCG�CG�

CALL UKMCI���� ���	���D	�ICG�JCG�CG�

CALL UKMCI���� �� ����D	�ICG�JCG�CG�

CALL UKMCI���� �� ���D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� ���	���D	�ICG�JCG�CG�

CALL UKMCI������ ��		D	�ICG�JCG�CG�

���



CALL UKMCI���� �� ����D	�ICG�JCG�CG�

CALL UKMCI���� � 	���D	�ICG�JCG�CG�

CALL UKMCI���� �� ����D	�ICG�JCG�CG�

CALL UKMCI���� ���	���D	�ICG�JCG�CG�

CALL UKMCI������� ��		D	�ICG�JCG�CG�

CALL UKMCI���� �� 	��D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� �����	D	�ICG�JCG�CG�

CALL UKMCI���� �� 	���D	�ICG�JCG�CG�

CALL UKMCI���� �����	�D	�ICG�JCG�CG�

CALL UKMCI���� �� 	��	D	�ICG�JCG�CG�

CALL UKMCI������� ��		D	�ICG�JCG�CG�

�ENDSET

�SET�FGMODELF�

FF�	�	D	

DO � I���NF

GF�I��	�	D	

� CONTINUE

DO � I���NF

WI�X�I���X�I����	D	����	D	

K��IH�I�

K��IH�I�����

DO  K�K��K�

J�JH�K�

WJ�X�J���X�J����	D	����	D	

FF�FF�WI�WJ

GF�I��GF�I�����	D	�X�I����	D	��WJ

GF�J��GF�J��WI����	D	�X�J����	D	�

 CONTINUE

� CONTINUE

�ENDSET

�NF���

�M��		

�NC��

�NCL��

�MC��		

�KBF��

�KBC��

�MOUT��

�NOUT��

�JACC��S�

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify bounds for variables� the sparsity pattern with numer�
ical values of the model Hessian matrix� and the sparsity pattern with numerical values of the constraint
Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix is indicated by the state�
ment �HESF��S�� The sparse Jacobian matrix is indicated by the statement �JACC��S�� The option
�MODEL��FF� indicates a general objective function� By using the macrovariable �FGMODELF we

���



specify analytically the value and the gradient of the model function�

d� Problem solution 
basic screen output��

NIT� 	 NFV� � NFG� � F� ���D�	 G� ��		D�	�

NIT� � NFV� � NFG� � F� ����D�	� G� �			D�		

NIT� � NFV�  NFG�  F� ����D�	� G� �			D�		

NIT� � NFV� � NFG� � F� ���D�	� G� ����D�	�

NIT�  NFV� � NFG� � F� ���D�	� G� ���D�	�

NIT� � NFV� � NFG� � F� ���D�	� G� ����D�	�

NIT� � NFV� � NFG� � F� ���D�	� G� ��	�D�	�

NIT� � NFV� � NFG� � F� ���D�	� G� ���	D�	�

NIT� � NFV� �	 NFG� �	 F� ���D�	� G� ����D�	

NIT� � NFV� �� NFG� �� F� ���D�	� G� �			D�		

	 NIT� � NFV� �� NFG� �� NDC� 	 NCG� 	 F� ���D�	� G� �			D�		

FF� ���������D�	�

X � ����������D�	� ��������	�D�		 ��	���	����D�		 ����	����D�		

������	����D�	� ������	���D�		 �������	���D�	� �����	����D�		

����������D�	� ������������D��� �										D�		 �										D�		

���	�	����D�		 �										D�		 ����������D�		 �										D�		

��
�� Large�scale optimization with nonlinear equality constraints

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F 
x� �
nX
i��

�
fAi 
x�

��

where n � ��� and

fAi 
x� � 
�� �xi�xi � xi�� � � � i � �

fAi 
x� � 
�� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi 
x� � 
�� �xi�xi � xi�� � � � i � n

over the set given by the nonlinear equality constraints

	xi
x
�
i � xi���� �
�� xi� � �
xi � x�i��� � x�i�� � xi�� � xi�� � x�i�� � �� � � i � n� �

The starting point is xi � ��� � � i � n� The minimum value of the objective function is F � ��������

b� Problem speci�cation 
input �le��

�FLOAT WA�WB

�SET�INPUT�

DO � I���NF

X�I�����D	

� CONTINUE

���



M�	

IH�����

DO � I���NF

M�M��

JH�M��I

IF �I�LE�NF��� THEN

M�M��

JH�M��I��

ENDIF

IF �I�LE�NF��� THEN

M�M��

JH�M��I��

ENDIF

IH�I����M��

� CONTINUE

MC�	

ICG�����

DO � I���NF��

MC�MC��

JCG�MC��I��

MC�MC��

JCG�MC��I��

MC�MC��

JCG�MC��I

MC�MC��

JCG�MC��I��

MC�MC��

JCG�MC��I��

ICG�I����MC��

� CONTINUE

DO  KC���NC

IC�KC���

CL�KC��	�D	

 CONTINUE

�ENDSET

�SET�FMODELF�

FF�	�D	

DO � J���NF

WA����D	���D	�X�J���X�J����D	

IF �J�GT� �� WA�WA�X�J���

IF �J�LT�NF� WA�WA�X�J���

FF�FF�WA���

� CONTINUE

�ENDSET

�SET�GMODELF�

DO � J���NF

GF�J��	�D	

� CONTINUE

DO � J���NF

WA����D	���D	�X�J���X�J����D	

IF �J�GT� �� WA�WA�X�J���

IF �J�LT�NF� WA�WA�X�J���

���



WB���D	�WA

GF�J��GF�J��WB����D	��D	�X�J��

IF �J�GT� �� GF�J����GF�J����WB

IF �J�LT�NF� GF�J����GF�J����WB

� CONTINUE

�ENDSET

�SET�FMODELC�

K�KC��

FC���D	�X�K���X�K�����X�K�������D	����D	�X�K���

� �D	��X�K��X�K��������X�K�������X�K����X�K����

� X�K������

�ENDSET

�SET�GMODELC�

K�KC��

GC�K�������D	

GC�K�������D	�X�K����D	�X�K���

GC�K����D	�X�K�������D	�X�K������D	

GC�K�������D	�X�K������D	

GC�K�������D	�X�K���

�ENDSET

�NF��		

�M���		

�NC���

�NCL�	

�MC��		

�KBC��

�MOUT��

�JACC��S�

�HESF��S�

�FORM��SE�

�FMIN�	

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables� the sparsity pattern of
the objective Hessian matrix� the sparsity pattern of the constraint Jacobian matrix� and the constraint
speci�cations� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is ��NF������� We set �M������ since a greater
space is needed for sparse matrix processing� The sparse Jacobian matrix is indicated by the statement
�JACC��S�� Since there are only the equality constraints� we can specify only the left sides CL
KC�� �
� KC � NC� and we can set �KBC��� The speci�cation �FMIN�� is used� since the objective function
value cannot be less then zero� By using the macrovariable �FMODELF we specify analytically the value
of the model function� By using the macrovariable �GMODELF we specify analytically the gradient of
the model function� By using the macrovariable �FMODELC we specify analytically the values of the
constraint functions� By using the macrovariable �GMODELC we specify analytically the gradients of the
constraint functions� The choice �FORM��SE� correspond to inexact recursive quadratic programming
methods for equality constrained problems�

d� problem solution 
basic screen output��

��



NIC� 	 NIT� 	 NFV� � NFG� �	 F� ��	D�	� C� ���	D�	� G� ���	D�	�

NIC� 	 NIT� � NFV� � NFG� �	 F� ���D�	� C� ����D�	� G� ����D�	�

NIC� 	 NIT� � NFV� � NFG� �	 F� ���D�	� C� ����D�	� G� ���D�	�

NIC� 	 NIT� � NFV�  NFG� 	 F� ����D�	� C� ����D�	� G� ���D�	�

NIC� 	 NIT�  NFV� � NFG� �	 F� ���D�	� C� ��D�		 G� ����D�	�

NIC� 	 NIT� � NFV� � NFG� �	 F� �����D�		 C� ����D�		 G� ��	�D�	�

NIC� 	 NIT� � NFV� � NFG� �	 F� ����D�	� C� ����D�	� G� ���D�	�

NIC� 	 NIT� � NFV� � NFG� �	 F� ����D�	� C� ���D�	� G� ����D�		

NIC� 	 NIT� � NFV� �	 NFG� �	 F� ���	D�	� C� ����D�	� G� ���D�		

NIC� 	 NIT� � NFV� �� NFG� �		 F� ����D�	� C� ����D�	� G� ����D�	�

NIC� 	 NIT� �	 NFV� �� NFG� ��	 F� ����D�	� C� ���D�	� G� ����D�	�

NIC� 	 NIT� �� NFV� �� NFG� ��	 F� ����D�	� C� ���D�	 G� ����D�	�

NIC� 	 NIT� �� NFV� � NFG� ��	 F� ����D�	� C� ����D�	� G� ���D�	

NIC� 	 NIT� �� NFV� �� NFG� �	 F� ����D�	� C� ���	D�	� G� ���	D�	�

	 NIC� 	 NIT� � NFV� �� NFG� �	 F� ����D�	� C� ���	D�	� G� ���	D�	�

��
� Optimization of dynamical systems � general integral criterion

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F 
x� �
�

�

Z T

�


y��
t� � y��
t��dt�
�

�

y��
T � � y��
T ��

where T � ��� and where

dy��t�
dt

� y�
t�� y�
�� � x�

dy��t�
dt

� 
�� y��
t��y�
t� � y�
t�� y�
�� � �

b� Problem speci�cation 
input �eld��

�SET�INPUT�

X����ZERO

TA�ZERO

TAMAX����D 	

�ENDSET

�SET�FMODELF�

FF�HALF��YA�������YA�������

�ENDSET

�SET�DMODELF�

DF����YA���

DF����YA���

�ENDSET

�SET�FMODELA�

FA�HALF��YA�������YA�������

�ENDSET

�SET�DMODELA�

DA����YA���

DA����YA���

�ENDSET

��	



�SET�FMODELE�

GO TO ����� KE

� FE�YA���

GO TO �

� FE��ONE�YA��������YA����YA���

� CONTINUE

�ENDSET

�SET�DMODELE�

GO TO ���� KE

 DE����ZERO

DE����ONE

GO TO �

� DE�����ONE�TWO�YA����YA���

DE����ONE�YA������

� CONTINUE

�ENDSET

�SET�FMODELY�

GO TO ����� KE

� FE�X���

GO TO �

� FE�ONE

� CONTINUE

�ENDSET

�SET�GMODELY�

GO TO ��	���� KE

�	 GE����ONE

GO TO ��

�� GE����ZERO

�� CONTINUE

�ENDSET

�NF��

�NE��

�MODEL��DF�

�MOUT��

�NOUT��

�TOLR����	�P���

�TOLA����	�P���

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify as the initial value of the variable x� as the initial and
terminal times � and T� respectively� By using the macrovariables �FMODELA and �DMODELA we
specify subintegral function and by using the macrovariables �FMODELF and �DMODELF we specify
terminal function� Right hand sides of the di�erential equations are speci�ed by using the macrovari�
ables �FMODELE and �DMODELE� while initial values and their derivatives are given by using the
macrovariables �FMODELY and �GMODELY� The option �MODEL��DF� indicates general integral
criterion�

d� Problem solution 
basic screen output��

���



NIT� 	 NFV� � NFG� 	 F� ����D�	� G� ���D�	�

NIT� � NFV� � NFG� 	 F� ����D�	� G� ����D�		

NIT� � NFV�  NFG� 	 F� ���D�	� G� ���D�	�

NIT� � NFV� � NFG� 	 F� ���D�	� G� ����D�	�

NIT�  NFV� � NFG� 	 F� ���D�	� G� ��	�D�	�

	 NIT�  NFV� � NFG� 	 NDC� 	 NCG� 	 F� ���D�	� G� ��	�D�	�

FF� ����������D�		

X � ����������D�		

��
�� Optimization of dynamical systems � special integral criterion

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F 
x� �
�
�

Z T

�


y�
t�� ��
� � t���dt

where T � � and where

dy�
t�

dt
� �x�y�
t�� y�
�� � x�

b� Problem speci�cation 
input �eld��

�SET�INPUT�

X������	D 	

X����	�	D 	

TA�ZERO

TAMAX�ONE

�ENDSET

�SET�FMODELE�

FE��X����YA������

YE�ONE��ONE�TA�

WE�ONE

�ENDSET

�SET�GDMODELE�

GE�����YA������

GE����ZERO

DE�����TWO�X����YA���

�ENDSET

�SET�FMODELY�

FE�X���

�ENDSET

�SET�GMODELY�

GE����ZERO

GE����ONE

�ENDSET

�MODELA��YES�

�NF��

�NE��

�MODEL��DQ�

�CLASS��GN�

���



�UPDATE��F�

�MOUT��

�NOUT��

�TOLR����	�P���

�TOLA����	�P���

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify as the initial values of the variables x� and x� as the
initial and terminal times � and T� respectively� The right hand side of the di�erential equation is speci�ed
by using the macrovariables �FMODELE and �GDMODELE� while initial values and their derivatives are
given by using the macrovariables �FMODELY and �GMODELY� The option �MODEL��DQ� together
with �MODELA��YES� indicates special integral criterion�

d� Problem solution 
basic screen output��

NIT� 	 NFV� � NFG� � F� ���	D�		 G� ����D�		

NIT� � NFV� � NFG� � F� ����D�	� G� ���D�		

NIT� � NFV� � NFG� � F� ���	D�	� G� ����D�	�

NIT� � NFV� � NFG�  F� ���	D�	 G� ����D�	�

NIT�  NFV� � NFG� � F� ����D�	� G� ��		D�	

NIT� � NFV� �� NFG� � F� ����D��� G� ��		D�	�

	 NIT� � NFV� �� NFG� � NDC� � NCG� 	 F� ����D��� G� ��		D�	�

F � �����	��	��D���

X � �����������D�		 ����������	D�		

��
�� Initial value problem for ordinary di�erential equations

a� Problem description�

Suppose we have to �nd a solution of the Van der Pol equation

dy��t�
dt

� y�
t�� y�
�� � �

dy��t�
dt

� 
�� y��
t��y�
t� � y�
t�� y�
�� � �

in the interval � � t � T where T � ���

b� Problem speci�cation 
input �eld��

�SET�INPUT�

YA������	D	

YA����	�	D	

TA�	�	D	

TAMAX���	D�

�ENDSET

�SET�FMODELE�

IF �KE�EQ��� THEN

FE�YA���

ELSE

���



FE����	D	�YA��������YA����YA���

ENDIF

�ENDSET

�NA���

�NE��

�MODEL��NO�

�MED��

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify as the initial values of the variables y� and y� as
the initial and terminal times � and T� respectively� Right hand sides of the di�erential equations are
speci�ed by using the macrovariable �FMODELE� The option �MODEL��NO� indicates integration of
a system of ordinary di�erential equations�

d� Problem solution 
basic screen output��

	 NSTP� � NACC� �� NREJ� �� NEV �����

� AT � �										D�		

AY � ��									D�	� �										D�		

� AT � ��									D�		

AY � ����������	D�	� ���������D�		

� AT � ��									D�	�

AY � ���	����D�	� ����	���	���D�		

 AT � ���								D�	�

AY � ��		������D�	� �������	���D�	�

� AT � ��									D�	�

AY � �����������D�		 ���������		D�	�

� AT � ���								D�	�

AY � ���	�����D�		 ��������	��D�	�

� AT � ��									D�	�

AY � ������	����D�	� ���	��	�	���D�	�

� AT � ���								D�	�

AY � �����������	D�	� ����	������D�		

� AT � �									D�	�

AY � �����������D�	� ����������D�		

�	 AT � ��								D�	�

AY � ��������	��D�	� ����	����D�		

�� AT � ��									D�	�

AY � �����	�����D�		 ���	�	�����D�	�

�� AT � ���								D�	�

AY � �����	�	�D�	� ����������D�	�

�� AT � ��									D�	�

AY � �����	����D�	� ��������	D�	�

� AT � ���								D�	�

AY � ����������D�	� �����	����D�		

�� AT � ��									D�	�

AY � ����	�����	D�	� �����������D�		

�� AT � ���								D�	�

���



AY � ����		�����D�	� ���	������D�		

�� AT � ��									D�	�

AY � ����������D�	� �����������D�		

�� AT � ���								D�	�

AY � ����������D�		 �����������D�	�

�� AT � ��									D�	�

AY � ���������	D�		 �������	����D�	�

�	 AT � ���								D�	�

AY � ����������D�	� ���������D�	�

�� AT � ��									D�	�

AY � ���		��	��D�	� ����	�����D�	�

���



�� Model examples for demonstration of graphical output

Here we introduce several problem speci�cations 
input �les� which demonstrates application of graph�
ical output� These input �les are included to the UFO system as the demo��les PROC���UFO�� � �
�PROC�	�UFO� Corresponding gra�cal pictures are included in the appendix� The recommended data
for graphical pictures are introduced in lines which begin by the directive �REM�

�
� Nonlinear regression

�SET�INPUT�

LDIM��

X������	D�	

X������	D

X�������D	

X�����	�D	

X������	D��

X������	D�

X�������D	

X������	�D	

X������	D��

X��	���	D�

X��������D	

X�������	�D	

X�������	D��

X�����	D�

X��������D	

X�������	�D	

X�������	D��

X�������	D�

X��������D	

X��	����	�D	

BETA�����D	

CALL BIUD	��NF�LDIM�NA�X�XL�XU�IX�AT�AM�

�ENDSET

�SET�FMODELA�

CALL BAFU	��NF�LDIM�KA�NA�X�AT�FA�BETA�

�ENDSET

�SET�GMODELA�

CALL BAGU	��NF�LDIM�KA�NA�X�AT�GA�BETA�

�ENDSET

�NF��	

�NA��		

�KOUT�	

�KOUT��	

�KOUT���		

�KOUT���

�LOUT�	

�MOUT��

�MIT��		

�MODEL��AQ�

�CLASS��GN�

�TYPE��G�

���



�DECOMP��M�

�NUMBER��

�UPDATE��F�

�TOLX����	�P����

�TOLF����	�P����

�TOLB����	�P����

�TOLG����	�P���

�KBA��

�KBF��

�GRAPH��YES�

�SCAN��YES�

�BATCH

�ADD�REAL���BETA�AT��NA���

�ADD�SUBROUTINES�

SUBROUTINE BIUD	��N�L�NA�X�XL�XU�IX�AT�AM�

INTEGER N�L�NA�IX�N��I�K

REAL�� X�N��XL�N��XU�N��AT�NA��AM�NA�

N��L

K�	

DO � I���L

X�K����LOG�X�K����

XL�K����LOG���	D�	�

XU�K����LOG���	D�	�

IX�K�����

X�K����LOG�X�K����

XL�K����LOG���	D�	�

XU�K����LOG���	D��	�

IX�K�����

XL�K������	D��

XU�K������	D��

IX�K�����

XL�K�����				�D	

XU�K�����					D�

IX�K����

K�K�

� CONTINUE

OPEN ����FILE��PROC	��DAT��STATUS��OLD��

NA�	

� NA�NA��

READ �������D������ERR��� AT�NA��AM�NA�

GO TO �

� NA�NA��

RETURN

END

SUBROUTINE BAFU	��N�L�KA�NA�X�AT�FA�BETA�

INTEGER N�L�KA�NA

REAL�� X�N��AT�NA��FA�Q����QD���

REAL�� ARG�POM�BK�B�INT�BETA

INTEGER J�K

COMMON �BCOM� Q�QD

DATA BK ���������D���

FA�	�	D 	

���



K�	

DO � J���L

ARG�X�K�����BK�AT�KA��

IF �KA�EQ��� THEN

Q�J��B�INT�AT�KA��ARG�

FA�FA�EXP�X�K����X�K����ARG�

ELSE

POM�X�K�����	D	

FA�FA�EXP�X�K����X�K����ARG��

� ���	D	��POM�BETA��EXP�X�K������B�INT�AT�KA��ARG��

� Q�J�������X�K���POM�

ENDIF

K�K�

� CONTINUE

RETURN

END

SUBROUTINE BAGU	��N�L�KA�NA�X�AT�GA�BETA�

INTEGER N�L�KA�NA

REAL�� X�N��AT�NA��GA�N�

REAL�� FAC�ARG�POM�POW�BK�B�INT�B�INTD�A�B�C�D�E�F�G

REAL�� Q����QD����QQ�QQD�BETA

INTEGER J�K

COMMON �BCOM� Q�QD

DATA BK ���������D���

K�	

DO � J���L

FAC���	D	��BK�AT�KA��

ARG�FAC�X�K���

IF �KA�EQ��� THEN

Q�J��B�INT�AT�KA��ARG�

QD�J��FAC�B�INTD�AT�KA��ARG�

QQ�	�	D	

QQD�	�	D	

ELSE

QQ�B�INT�AT�KA��ARG��Q�J�

QQD�FAC�B�INTD�AT�KA��ARG��QD�J�

ENDIF

POM�X�K�����	D	

POW��X�K���POM

A�EXP�X�K����X�K����ARG�

B�EXP�X�K����

G�B�QQ

C����	D	��POM�BETA��G�

D�C��POW

E�POW�D�C

F�POM�POM

GA�K����A��D�E��POM�BETA��G�

GA�K����A�D

GA�K����A���FAC�D�E��POM�BETA��B�QQD�

GA�K���A�D��LOG�C��F�POW�G��C�BETA��

K�K�

� CONTINUE

���



RETURN

END

FUNCTION B�INT�T�X�

REAL�� T�X�B�INT

REAL�� A��A��A��A�A��A��B��B��B��B�B��B�

DATA A��A��A��A�A��A� ���	D�	� ��	�	D�	� ����	D�	�

� ����	D�	� �	���	D�	� ��	�	D�	�

DATA B��B��B��B�B��B� ���	D�	� ��	�	D�	� �		�	D�	�

� ���		�	D�	� ����	�	D�	� �		�	D�	�

B�INT����	D	��A��X��A��X��A�X��A��X��A��X��A��X�������

� �B��X��B��X��B�X��B��X��B��X��B��X��������EXP��X��T

RETURN

END

FUNCTION B�INTD�T�X�

REAL�� T�X�B�INTD

REAL�� A��A��A��A�A��A��B��B��B��B�B��B�

REAL�� C��C��C��C�C��D��D��D��D�D��DIS�DEN�DISD�DEND

DATA A��A��A��A�A��A� ���	D�	� ��	�	D�	� ����	D�	�

� ����	D�	� �	���	D�	� ��	�	D�	�

DATA B��B��B��B�B��B� ���	D�	� ��	�	D�	� �		�	D�	�

� ���		�	D�	� ����	�	D�	� �		�	D�	�

DATA C��C��C��C�C� ��	��	D�	� ���	�	D�	� �	��	D�	�

� ������	D�	� �	���	D�	�

DATA D��D��D��D�D� ���	�	D�	� ���	�	D�	� ���		�	D�	�

� ���		�	D�	� ����	�	D�	�

DIS�A��X��A��X��A�X��A��X��A��X��A��X�����

DEN�B��X��B��X��B�X��B��X��B��X��B��X�����

DISD�C��X��C�X��C��X��C��X��C����	D	�X����

DEND�D��X��D�X��D��X��D��X��D����	D	�X����

B�INTD���DIS�DISD�DEND�DIS�DEN��DEN���	D	��EXP��X��T

RETURN

END

�ENDADD

�STANDARD

�	� Nonlinear minimax optimization

�FLOAT W

�SET�INPUT�

X����	��D	 
 X����	�	D	 
 X����	�	D	

X���	�	D	 
 X����	�	D	

�ENDSET

�SET�FMODELA�

W�	��D	�DBLE�KA������	D	

FA��X����W�X��������	D	�W��X����W��X���W�X�������EXP�W�

�ENDSET

�MODEL��AM�

�NF��

�NA���

�NAL�	

�GRAPH��YES�

��



�MAP��YES�

�HIL��YES�

�ISO��YES�

�PATH��EXTENDED�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR��� XL���� XU��

��� Transformer network design

�SET�INPUT�

NEXT�

CALL EIUD	��NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

�ENDSET

�SET�FMODELA�

CALL EAFU	��NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU	��NF�KA�X�GA�NEXT�

�ENDSET

�NF��

�NA���

�NAL�	

�MOUT��

�MODEL��AM�

�GRAPH��YES�

�MAP��YES�

�HIL��YES�

�ISO��YES�

�PATH��EXTENDED�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR��� XL���� XU��

��� Global optimization

�SET�INPUT�

NEXT�

CALL EIUD	��NF�XL�XU�NEXT�IERR�

�ENDSET

�SET�FMODELF�

CALL EFFU	��NF�X�FF�NEXT�

�ENDSET

�NF�

�MOUT��

�GCLASS��

��	



�GRAPH��YES�

�MAP��YES�

�HIL��YES�

�ISO��YES�

�EXTREM��G�

�BATCH

�STANDARD

�REM VAR��� XL������ XU����

�REM VAR��� XL������ XU����

��� Nonsmooth optimization

�SET�INPUT�

NEXT���

CALL EIUD���NF�X�FMIN�XMAX�NEXT�IEXT�IERR�

MA�NF��

�ENDSET

�SET�FMODELF�

CALL EFFU���NF�X�FF�NEXT�

�ENDSET

�SET�GMODELF�

CALL EFGU���NF�X�GF�NEXT�

�ENDSET

�KSF��

�NF��	

�MOUT���

�MODEL��FF�

�GRAPH��YES�

�MAP��YES�

�HIL��YES�

�ISO��YES�

�PATH��YES�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR�� XL���� XU��

��� Nonlinear equations

�SET�INPUT�

DO � I���NF

X�I�����	D	

� CONTINUE

�ENDSET

�SET�FMODELA�

I�KA

FA����	D	���	D	�X�I���X�I����	D	

IF �I�GT��� FA�FA�X�I���

���



IF �I�LT�NA� FA�FA�X�I���

�ENDSET

�NF��		

�NA��		

�MOUT��

�MODEL��AQ�

�JACA��NO�

�GRAPH��YES�

�BATCH

�STANDARD

�� Ordinary di�erential equations

�FLOAT W��W��W��W

�SET�INPUT�

TA�	�	D	

YA����	���D	

YA����	�	D	

YA����	�	D	

YA������		�����	����	�����	��������D	

TAMAX����	�������	��������������	���D	

�ENDSET

�SET�FMODELE�

W��	�	�������D	

W����D	�W�

W���YA����W������YA������

W��W��SQRT�W��

W��YA����W������YA������

W�W�SQRT�W�

GO TO �������� KE

� FE�YA���

GO TO �

� FE�YA��

GO TO �

� FE�YA������YA���W���YA����W���W��W���YA����W���W

GO TO �

 FE�YA������YA����W��YA����W��W��YA����W

� CONTINUE

�ENDSET

�NE�

�NA��			

�MODEL��NO�

�SOLVER��DP��

�MOUT���

�TOLR����	�P���

�TOLA����	�P���

�MED��

�GRAPH��YES�

�BATCH

�STANDARD

���



��� The Lorenz attractor

�FLOAT W��W��W�

�SET�INPUT�

W���	�	D	

W�����	D	

W����	D	���	D	

TA�	�	D	

YA�������	D	

YA���� ��	D	

YA����W����	D	

TAMAX��	�	D	

�ENDSET

�SET�FMODELE�

GO TO ������� KE

� FE��W��YA����W��YA���

GO TO 

� FE��YA����YA����W��YA����YA���

GO TO 

� FE�YA����YA����W��YA���

 CONTINUE

�ENDSET

�NE��

�NA��			

�MODEL��NO�

�SOLVER��DP��

�MOUT���

�TOLR����	�P���

�TOLA����	�P���

�MED��

�GRAPH��YES�

�BATCH

�STANDARD

���
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Appendix A� Demonstration of the full dialogue mode

Suppose that the model function has the form

fF 
x� � ���
x�� � x��
� � 
x� � ���


the Rosenbrock function� and the starting point is x� � ���� and x� � ���� If we type the statement
UFOGO 
without batch input �le speci�cation�� then the following questions 
which we supplement
together with answers� appear on the screen�

UFO PREPROCESSOR V�����

AND OTHER INPUT DATA HAVE TO BE SPECIFIED�

TYPES OF CONSTRAINTS� THE STRUCTURE OF SPARSE PROBLEM�

HERE THE STARTING POINT� BOUNDS FOR VARIABLES�

USER SUPPLIED INPUT�

� INPUT � 	 �

X��	 
 ����D� X��	 
 ��D
� GRAPH �NO	 �

SPECIFICATION OF GRAPHICAL OUTPUT

NO � GRAPHICAL OUTPUT SUPPRESSED

YES � GRAPHICAL OUTPUT REQUIRED

� DISPLAY �NO	 �

SPECIFICATION OF EXTENDED SCREEN OUTPUT

NO � EXTENDED SCREEN OUTPUT SUPPRESSED

YES � EXTENDED SCREEN OUTPUT REQUIRED

� MODEL �FF	 �

TYPE OF OBJECTIVE FUNCTION

FF � GENERAL FUNCTION

FL � LINEAR FUNCTION

FQ � QUADRATIC FUNCTION

AF � SUM OF FUNCTIONS

AQ � SUM OF SQUARES

AP � SUM OF POWERS

AM � MINIMAX

DF � DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION

DQ � DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO � MODEL IS NOT SPECIFIED

� NF �	 �

NUMBER OF VARIABLES

�

���



� IEXT �	 �

TYPE OF EXTREMUM

 � MINIMUM

� � MAXIMUM

� FMODELF ��	 �

MODEL OF OBJECTIVE FUNCTION

FF 
 �FORTRAN EXPRESSION�

FF 
 ��D���X��	��� � X��		��� � �X��	 � ��D	���

GF�NF	 
 �FORTRAN EXPRESSION�

�

�

GF��	 
 �FORTRAN EXPRESSION�

GF��	 
 �FORTRAN EXPRESSION�

MODEL OF GRADIENT OF OBJECTIVE FUNCTION

� GMODELF ��	 �

HF�M	 
 �FORTRAN EXPRESSION�

�

�

HF��	 
 �FORTRAN EXPRESSION�

HF��	 
 �FORTRAN EXPRESSION�

MODEL OF HESSIAN MATRIX

� HMODELF ��	 �

� KCF ��	 �

COMPLEXITY OF THE OBJECTIVE FUNCTION

� � EASY COMPUTED FUNCTION

� � REASONABLE BUT NOT EASY COMPUTED FUNCTION

� � EXTREMELY COMPLICATED FUNCTION

� KSF ��	 �

SMOOTHNESS OF THE OBJECTIVE FUNCTION�

� � SMOOTH AND WELL�CONDITIONED FUNCTION

� � SMOOTH BUT ILL�CONDITIONED FUNCTION

� � NONSMOOTH FUNCTION

� HESF �D	 �

TYPE OF HESSIAN MATRIX�

D � DENSE

S � SPARSE WITH KNOWN �GENERAL	 STRUCTURE

NO � HESSIAN MATRIX IS NOT USED

���



� KBF �	 �

TYPE OF SIMPLE BOUNDS�

 � NO SIMPLE BOUNDS

� � ONE SIDED SIMPLE BOUNDS

� � TWO SIDED SIMPLE BOUNDS

� KBC �	 �

TYPE OF GENERAL CONSTRAINTS�

 � NO GENERAL CONSTRAINTS

� � ONE SIDED GENERAL CONSTRAINTS

� � TWO SIDED GENERAL CONSTRAINTS

� EXTREM �L	 �

TYPE OF OPTIMIZATION

L � LOCAL OPTIMIZATION

G � GLOBAL OPTIMIZATION

� NORMF �	 �

SCALING SPECIFICATION FOR VARIABLES�

 � NO SCALING IS PERFORMED

� � SCALING FACTORS ARE DETERMINED AUTOMATICALLY

� � SCALING FACTORS ARE SUPPLIED BY USER

� INPUTDATA �NO	 �

READ INPUT VALUES OF X �YES OR NO	

� TEST �NO	 �

STANDARD TEST OF EXTERNAL SUBROUTINES�

NO � NO TEST

YES � PERFORM TEST BEFORE SOLUTION

AFTER � PERFORM TEST AFTER SOLUTION

ONLY � PERFORM TEST WITHOUT SOLUTION

� KOUT �	 �

LEVEL OF TEXT FILE OUTPUT�

ABS�KOUT	
 � NO PRINT OR PAPER SAVING PRINT

ABS�KOUT	
� � STANDARD PRINT OF ITERATIONS

ABS�KOUT	
� � ADDITIONAL PRINT OF STEPSIZE SELECTION

ABS�KOUT	
� � ADDITIONAL PRINT OF DIRECTION DETERMINATION

AND VARIABLE METRIC UPDATE

ABS�KOUT	
� � ADDITINAL PRINT OF CONSTRAINT HANDLING

ABS�KOUT	
� � ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION

KOUT� � ADDITIONAL PRINT OF DATA AND OPTIONS IN THE HEADING

���



� LOUT ��	 �

LEVEL OF TEXT FILE OUTPUT�

 � NO PRINT

� � COPY OF THE BASIC SCREEN OUTPUT

�� � PAPER SAVING PRINT

� MOUT ��	 �

LEVEL OF BASIC SCREEN OUTPUT�

ABS�MOUT	
 � NO OUTPUT

ABS�MOUT	
� � FINAL OUTPUT

ABS�MOUT	
� � ADDITIONAL OUTPUT IN EACH ITERATION

ABS�MOUT	
� � ADDITIONAL FINAL OUTPUT OF LINEAR OR

QUADRATIC PROGRAMMING

ABS�MOUT	
� � ADDITIONAL OUTPUT IN EACH ITERATION

OF LINEAR OR QUADRATIC PROGRAMMING

MOUT� � FINAL OUTPUT WITH TERMINATION CRITERION

� NOUT �	 �

LEVEL OF BASIC SCREEN OUTPUT�

 � BASIC FINAL OUTPUT

� � EXTENDED FINAL OUTPUT

�
� MSELECT ��	 �

SELECTION OF OPTIMIZATION METHOD

� � AUTOMATICAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS

� � MANUAL SELECTION OF METHOD AND ALL PARAMETERS

SPECIFIC OUTPUT�

CAN BE USED FOR ADDITIONAL COMPUTATIONS AND FOR A

HERE THE RESULTS OBTAINED IN THE OPTIMIZATION PROCESS

USER SUPPLIED OUTPUT�

� OUTPUT � 	 �

� OUTPUTDATA �NO	 �

WRITE OUTPUT VALUES OF X �YES OR NO	

UFO PREPROCESSOR STOP

Each question is represented by one frame that contains the contents of the question 
name of the
macrovariable which has to be de�ned�� the default value 
in the brackets� and an explanation of the
requirement� If no default value is wanted then the corresponding value or text has to be typed� The
dialogue can be ended by pressing the key �! � �

The result of the UFO preprocessor action is the following control program 
reported in a slightly
shortened form� consisting of global declarations� input speci�cations� problem de�nition� method real�

���



ization and control variables adjustement�

�

� �������������������

� GLOBAL DECLARATIONS

� �������������������

�

INTEGER ITIME

INTEGER IMD

INTEGER IX���

REAL�� UXVDOT

REAL�� GF���

REAL�� X���

REAL�� HD���

REAL�� HF�����������

REAL�� S���

REAL�� ALF

REAL�� BET

REAL�� XO���

REAL�� GO���

INTEGER IMB

�

� commons placed here were omitted

� since they require a large space

�

�

� �������������������

� END OF DECLARATIONS

� �������������������

�

CALL UYCLEA

CALL UYINTP

�

� ����������

� METHOD ���

� ����������

�

CALL UYINT�

X��������D	

X������	D	

M�NF��NF�����

CALL UYTIM��ITIME�

CALL UYCLST

NDECF�	

CALL UO	FU�

�

� ����������������������

� VARIABLE METRIC METHOD

� TEMPLATE � U�FDU�

� ����������������������

�

ASSIGN ��	�	 TO IMD

���



CALL UYPRO���UXFU����

CALL UYPRO�

��	�	 CONTINUE

�

� �����������������

� MODEL DESCRIPTION

� �����������������

�

���		 CALL UF�F	��NF�GF�GF�FF�F�

GOTO ����	�����	�����	� ISB��

����	 CONTINUE

ASSIGN ����	 TO IMB

���		 CONTINUE

NFV�NFV��

FF����D	��X�������X���������X������	D	����

GOTO IMB

����	 CONTINUE

GOTO ���		

����	 CONTINUE

CALL UF	GS��NF�X�IX�X�GF�FF�HD�R�SNORM���	D������	D��������

GOTO ����		�����	� ISB��

����	 CONTINUE

ASSIGN ����	 TO IMB

GOTO ���		

����	 CONTINUE

GO TO ����	

���	 CONTINUE

�

� ������������������������

� END OF MODEL DESCRIPTION

� ������������������������

�

GO TO IMD

��	�	 CONTINUE

CALL UYTRUG�X�GF�GF�

CALL UO�FU��X�GF�HF�X�X�

CALL UYFUT�

IF�ITERM�NE�	� GOTO ��	�	

��		 CONTINUE

ASSIGN ��		 TO IMD

CALL UUDSD��N�HF���

GOTO ���	�	���	�	� ISB��

��	�	 CONTINUE

IF�ITERM�NE�	� GOTO ��	�	

CALL UYCPSD�IX�HF�HD�

CALL UYTRUH�X�HF�

�

� �����������������������

� DIRECTION DETERMINATION

� TEMPLATE � UDGLG�

� �����������������������

�

���



CALL UOD�D�

IF �IDECF�LT�	� THEN

IDECF��

INF�	

ENDIF

IF �IDECF�EQ�	� THEN

TDXX������INV �

�

� INVERSION

�

ALF�ETA�

CALL UXDPGF�N�HF�INF�ALF�BET�

CALL UXDPGI�N�HF�

NDECF�NDECF��

IDECF��

ELSE IF �IDECF�EQ��� THEN

ELSE

ITERD���

TDXX��BAD DEC��

CALL UOERR���UDDLI�����

GO TO ����	

ENDIF

GNORM�SQRT�UXVDOT�N�GF�GF��

�

� NEWTON LIKE STEP

�

CALL UXDSMM�N�HF�GF�S�

CALL UXVNEG�N�S�S�

INITD�MAX�ABS�INITD����

ITERD��

IF�INF�EQ�	� THEN

TDXX������� POS�

ELSEIF�INF�LT�	� THEN

TDXX������� ZER�

ELSE

TDXX������� NEG�

ENDIF

SNORM�SQRT�UXVDOT�N�S�S��

NRED�INF

CALL UOD�D��ALF�SIG�INF�

����	 CALL UOD�D��N�GF�S�

�

� ������������������������������

� END OF DIRECTION DETERMINATION

� ������������������������������

�

CALL UD�TL��GF�S�

IF�ITERM�NE�	� GOTO ��	�	

IF�IREST�NE�	� GOTO ��		

CALL UYTRUS�X�X�XO�GF�GO�S�S�

��	�	 CONTINUE

ASSIGN ��	�	 TO IMD

��



CALL US	L	��EPS��RO�RP�R�FO�FP�F�PO�PP�FMIN�FMAX�PAR��PAR��RMAX�RM

� IN�SNORM�MODE�KTERS�MES�MES��MES��INITS�MRED�

GOTO ���	����	��� ISB��

��	�� CONTINUE

CALL UXVDIR�NF�R�S�XO�X�

GOTO ��	�	

��	� CONTINUE

IF �ITERS�LE�	� THEN

CALL UYZER	�X�XO�

IF�IDIR�EQ�	� THEN

CALL UYRES��TSXX�

CALL UYSET�

GO TO ��		

ELSE IF �MOT��EQ�	� THEN

CALL UYSET�

GO TO ��		

ELSE

ITERD�	

ENDIF

ENDIF

IF�KD�GT�LD� THEN

ASSIGN ��	�	 TO IMD

GO TO ��	�	

ENDIF

��	�	 CONTINUE

TXFU�TUXX

CALL UYUPSD�X�IX�XO�GF�GO�HD�

CALL UYTRUD�X�X�XO�GF�GO�

CALL UUDBI��N�HF�GF�S�XO�GO�R�F�FO�P�PO�PAR��PAR����	D �	���

IF�IDIR�EQ�	� THEN

IF�ITERH�NE�	� CALL UYRES���UPDATE ��

GOTO ��	�	

ELSE

GOTO ��		

ENDIF

��	�	 CONTINUE

IF�ITERM�LT�	� TXFU�TDXX

CALL UYEPI����

CALL UO�FU��X�X�X�X�

�

� �����������������

� END OF METHOD ���

� �����������������

�

CALL UYTIM��ITIME�

END

�

� ������������������������

� INITIATION OF METHOD ���

� ������������������������

�

SUBROUTINE UYINT�

��	



�

� commons placed here were omitted

� since they require a large space

�

REAL�� XDELS�RPF�S�RPF�S�RPF�S�RGF�S�RGF�S�RGF�S

COMMON�UMCLST� XDELS�RPF�S�RPF�S�RPF�S�RGF�S�RGF�S�RGF�S

ETA	���	D���

ETA����	D �	

ITR��

IRD��

IWR��

�

� many other assignments follows which were

� omitted since they require a large space

�

END

�

� ���������������������

� INITIATION OF PROBLEM

� ���������������������

�

SUBROUTINE UYINTP

�

� commons placed here were omitted

� since they require a large space

�

NF��

IEXT�	

KCF��

KSF��

KBF�	

KBC�	

NORMF�	

KDF�	

KDA���

KDC���

KDE���

KDY���

END

� ����������������������������������������

� BROYDEN CLASS OF VARIABLE METRIC UPDATES

� TEMPLATE � UUDBI�

� ����������������������������������������

SUBROUTINE UUDBI��N�H�G�S�XO�GO�R�F�FO�P�PO�PAR��PAR��ETA��MET�

�

� commons placed here were omitted

� since they require a large space

�

�

REAL�� H�N��N�������G�N��S�N��XO�N��GO�N��R�F�FO�P�PO�PAR��PAR��ET

� A�

REAL�� AA�CC

���



COMMON �UMFUN�� AA�CC

REAL�� UXVDOT�UNFUN�

REAL�� UXDPGP

REAL�� DEN�DIS�POM�POM��POM�A�B�C�GAM�RHO�PAR

INTEGER IUPDT

LOGICAL L��L��L�

EXTERNAL UNFUN�

IF �MET�LE�	� GO TO ��

CALL UOU�D��N�XO�GO�

IF �IDECF�NE��� THEN

ITERH���

TUXX��BAD DEC��

CALL UOERR���UUDBI�����

GO TO ��

ENDIF

L��ABS����GE���OR�ABS����EQ���AND�NIT�EQ�KIT

L���NOT�L�

�

� DETERMINATION OF THE PARAMETERS A� B� C

�

B�UXVDOT�N�XO�GO�

IF �B�LE�ZERO� THEN

ITERH��

TUXX��B � NEG��

GO TO ��

ENDIF

CALL UXDSMM�N�H�GO�S�

A�UXVDOT�N�GO�S�

IF �A�LE�ZERO� THEN

ITERH��

TUXX��A � NEG��

GO TO ��

ENDIF

IF�MET�GE��OR�L�� THEN

IF �ITERD�NE��� THEN

MET��

C�ZERO

ELSE

C��R�PO

IF �C�LE�ZERO� THEN

ITERH��

TUXX��C � NEG��

GO TO ��

ENDIF

ENDIF

ELSE

C�ZERO

ENDIF

�

� DETERMINATION OF THE PARAMETER RHO �NONQUADRATIC PROPERTIES�

�

RHO�HALF�B��FO�F�P�

���



IF�RHO�LE���	D��� RHO�ONE

IF�RHO���	D���GE�ONE� RHO�ONE

AA�A�B

CC�C�B

IUPDT�	

IF �L�� THEN

�

� DETERMINATION OF THE PARAMETER GAM �SELF SCALING�

�

IF �C�LE�ZERO� THEN

PAR�A�B

POM��	��D 	

POM���	D 	

ELSE

PAR�SQRT�A�C�

POM��	��D 	

POM���	D 	

ENDIF

GAM�RHO�PAR

IF �NIT�NE�KIT� THEN

L��PAR��LE�ZERO

L��L��AND�ABS�PAR���LE�	��D 	

L��L��OR���NOT�L��AND�GAM�GT�ONE�

L��L��OR��L��AND�PAR��LT�ZERO�AND�GAM�GT�ONE�

L��L��OR��L��AND�PAR��GT�ZERO�AND�GAM�LT�ONE�

L��L��OR�GAM�LT�POM�

L��L��OR�GAM�GT�POM

ENDIF

ENDIF

IF �L�� THEN

GAM�ONE

PAR�RHO�GAM

ENDIF

�

� NEW UPDATE

�

POM�ONE��AA�CC�

DEN�MAX�POM���	D�����C�A���	��D 	�

POM��DEN�POM��MAX���	D����ONE�POM�

TUXX��NEW �

�	 CONTINUE

�

� GENERAL UPDATE

�

DEN�PAR�POM�AA

DIS�POM�DEN

CALL UXDSMU�N�H��PAR�DIS�ONE��A�S�

CALL UXVDIR�N��DIS�S�XO�S�

CALL UXDSMU�N�H�DEN�B�S�

�� CONTINUE

ITERH�	

IF �GAM�EQ�ONE� GO TO ��

���



�

� SCALING

�

CALL UXDSMS�N�H�GAM�

�� CONTINUE

CALL UOU�D��N�H�S�RHO�GAM�PAR�A�B�C�POM�ETA��

RETURN

END

The results 
screen output� obtained using this control program have the following form�

	 NIT� �� NFV� �	 NFG� 	 NDC� 	 NCG� 	 F� ����D��� G� ��	�D�	�

FF� ������	��	D���

X � �����������D�		 ��						��	D�	�

TIME� 	�		�		���

���



Appendix B� The BEL interpreter

The BEL 
Batch Editor Language� interpreter� developed as a part of the UFO project� is especially
determined for the generation of computer programs� batch editing of texts� preparation of print �les�
�ltering of text �les etc� The BEL interpreter allows us to generate a prescribed output �le from the
input �le 
template� which is a mixture of text lines and special instructions�

The UFO system is organized in such a way that a control program may not be written in the FOR�
TRAN language immediately� Instead� the procedure written in the UFO control language is supplied�
By using the installation template� the compiler of the UFO control language 
UFOCLP � UFO Control
Language Preprocessor� generates the table of symbols which is together with the user supplied procedure
o�ered to the BEL interpreter� The BEL interpreter then generates the resulting control program which
is written in the FORTRAN language�

B�
� General description

Although the BEL interpreter can be used in various general applications� it was developed especially
for the generation of FORTRAN programs� It is�

�� Interpreter� since instructions contained in the input text are interpreted and immediately realized�

�� Batch editor� since it serves for editing batch �les�

�� Macroprocessor� since it makes it possible to de�ne or modify special macrovariables which can be
substituted to the processed text�

The macrovariable can be an integer constant� a logical constant� a string of characters� a set of text
lines� a set of BEL instructions� even a text �le�

The BEL interpreter requires an input text �le and a table of symbols� The input text �le 
template�
consists of standard text lines together with the BEL instructions� The table of symbols contains names
and values of used macrovariables�

The BEL instructions� contained in the input text �le� can be of two types�

�� Directives� i�e� control instructions and instructions for manipulationwith a table of symbols� These
instructions begin with the special character CHDIR� In the subsequent text� we will suppose that
CHDIR���� 
��� is the default value��

�� Substitutions� i�e�instructions for substitution of macrovariables into the text� These instructions
begin with the special character CHSUB� In the subsequent text� we will suppose that CHSUB����

��� is the default value��

The BEL interpreter works in the following way�

�� The line of the input �le is read�

�� The line is recognized and if the character CHSUB is found� then a pertinent substitution is realized�

�� If the �rst character 
di�erent from blank� is CHDIR� then the line is a directive line� The recognized
directive is realized�

This process is repeated until the directive �END or the end of the �le is found� Note that we suppose
that CHSUB and CHDIR have the same values� This is allowed� since the correct meaning is recognized
from the context�

At the end of this subsection� we stress some speci�c features and advantages of the BEL interpreter�

�� The substitution is recursive� The depth of recursion only depends on the declared work space size�

���



�� The substitution is allowed in both the text lines and the directives�

�� Names and values of macrovariables can have an arbitrary length which again only depends on the
declared work space size�

�� The set of directives is relatively small with a consistent syntax� It contains all important instruc�
tions 
�IF��ELSEIF��ELSE��ENDIF� �DO��ENDDO� �REPEAT��UNTIL etc��

�� The control parameters 
CHDIR� CHSUB etc�� can be changed during the work of the BEL
interpreter� This makes it possible to generate a program written in the BEL language which can
be immedialely processed�

�� The BEL interpreter is a fully portable device� It can be implemented in an arbitrary system
containing FORTRAN  compiler�

B�	� List of instructions

Substitutions�

�INTEGER � substitute by the absolute label computed from the relative label�
�NAME� �
NAME� � substitute by the value of the macrovariable NAME�
�DATA
NAME� � substitute by a new item from the list of items which is a value of the macrovari�

able NAME�
�DEF
NAME� � substitute by ��TRUE�� if the macrovariable NAME is de�ned in the table of

symbols� Otherwise substitute by ��FALSE��
�INT
NAME� � substitute by ��TRUE�� if the value of the macrovariable NAME is an integer

constant� Otherwise substitute by ��FALSE��
�LOG
NAME� � substitute by ��TRUE�� if the value of the macrovariable NAME is a logical

constant� Otherwise substitute by ��FALSE��
�REAL
NAME� � substitute by ��TRUE�� if the value of the macrovariableNAME is a real constant�

Otherwise substitute by ��FALSE��
�� � substitute ��� 
replace ���� by ����� This makes possible to insert the character

CHSUB into the text�

Directives�

�ADD � add a value to a macrovariable�
�ADD� �ENDADD � add text lines to a macrovariable�
�CLEAR � clear value of a macrovariable which is a list of items type�
�DO� �ENDDO � cycle�
�EXIT � termination of the BEL interpreter work�
�ERASE � erase a macrovariable from the table of symbols�
�IF� �ELSEIF�
�ELSE� �ENDIF � conditioned instruction�
�HELP� �CHECK � set a default value to a macrovariable which has not been previously de�ned�
�INCLUDE � insert a macrovariable or a text �le into the output �le�
�OPTION � change some optional parameter of the BEL interpreter�
�REM � remark�
�REPEAT� �UNTIL � cycle�
�RESTORE � adjust the list of items pointer to the �rst item�
�REWIND � rewind the �le on a given unit�
�SET � set a value to a macrovariable�
�SET� �ENDSET � set text lines to a macrovariable�
�SUBST � substitute a text �le into the input �le�

���



B��� Special characters

The following special characters are important for the BEL interpreter work�

� � CHSUB 
Substitution Character� � this is the �rst character in every substitution� If ��� should be
inserted into the text� then we have to use �����

� � CHDIR 
Directive Character� � if the �rst character on the line is CHDIR� then the line is a directive
line 
CHSUB and CHDIR are distinguished by the context��

� � CHCON 
Continuation Character� � if the last character on the line is CHCON� then it is assumed
that the logical line continues on the next physical line�

� � CHEOL 
End Of Line Character� � this character speci�es the end of the logical line if it does not
coincide with the end of the physical line� This makes it possible to write several logical lines by
using the same physical line�

n � CHDS 
Data Separator Character� � this character separates individual items in the list of items
type macrovariable�

The use of special characters can be demonstrated by the following simple example� Assume that the
input text has the form

�A��PaulnPeternJanenMary�
This is a list of my brothers and sis�
ters�
�DO
I������ �DATA
A�� �ENDDO

Then the output from the BEL interpreter has the form

This is a list of my brothers and sisters�
Paul
Peter
Jane
Mary

The special characters can be changed by the directive �OPTION� But no special character has to
be an alphabet or a digit� Moreover� di�erent special characters have to di�er 
with the exception of
CHSUB and CHDIR��

B��� Description of instructions

This subsection contains a detailed description of the syntax and action of individual BEL instructions�
The following de�nitions will be used�

�digit� ��� � j � j � j � j � � � � � j �

�alphabet� ��� A j B j C j D j � � � � � j Z

�character� ��� an arbitrary character with exception of apostrophe

�integer constant� ��� 
� j �� �digit� f�digit�g

�logical constant� ��� �TRUE� j �FALSE�

�macroname� ��� �alphabet� f�alphabet� j �digit�g

�string of characters� ��� �f�character� j  g

�text� ��� �string of characters� �f� �string of characters�g

�list of items� ��� �string of characters� �fn �string of characters�g

���



Substitutions�

�INTEGER

Syntax�
The type of INTEGER is an integer constant� Although it can have an arbitrary value� an application
to the control program generation requires that it is positive and less then LABEL� 
see the directive
�OPTION��

Action�
The integer constant INTEGER is a relative label in a given template� The absolute label� substituted
into the control program� is computed by the formula LABEL�LABEL��K�LABEL�� where LABEL�
and LABEL� are options of the BEL interpreter 
see the directive �OPTION� and K is a serial number
of application of the directive �SUBST�

Example�

���

generates

�����

if the main template is used or

�����

after the �rst application of the directive �SUBST�

�NAME� ��NAME�

Syntax�
The type of NAME is a macroname� This substitution has two forms either �NAME or �
NAME�� The
latter form is required if the substitution appears inside a continuous string of characters to separate the
NAME from the adjacent text�

Action�
The string ��NAME� is replaced by the value of the macrovariable NAME�

Example�

�A��UFO�
�A SYSTEM

generates

UFO SYSTEM

�DATA�NAME�

Syntax�
The type of NAME is a macroname�

Action�
The string ��DATA
NAME�� is replaced by the next item of the list of items which is a value of the
macrovariable NAME� If the next item does not exist� then the list of items pointer is returned to the
�rst item� Additional information is contained in the description of the directive �RESTORE�

Example�

�LIST��ITEM�nITEM�nITEM��
�DATA
LIST�
�DATA
LIST�

���



�DATA
LIST�
�DATA
LIST�

generates

ITEM�
ITEM�
ITEM�
ITEM�

�DEF�NAME�

Syntax�
The type of NAME is a macroname�

Action�
If the macrovariable NAME is de�ned in the table of symbols� then the string ��DEF
NAME�� is replaced
by the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A���
�DEF
A�

generates

�TRUE�

�INT�NAME�

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is an integer constant� then the string ��INT
NAME�� is replaced
by the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A����
�INT
A�

generates

�TRUE�

�LOG�NAME�

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is a logical constant� then the string ��INT
NAME�� is replaced
by the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A��FALSE�
�LOG
A�

generates

�TRUE�

��



�REAL�NAME�

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is a real constant 
i�e� string of character which satis�es syntactic
rules for FORTRAN real constants�� then the string ��REAL
NAME�� is replaced by the logical constant
�TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A�������D����
�REAL
A�

generates

�TRUE�

��

Action�
The string ���� is replaced by the character ���� This substitution alows us to insert the character ��� into
the generated text or into the macrovariable�

Example�

�I��NAME�
��DEF
�I�

generates

�DEF
NAME�

Directives�

�ADD�NAME
�NAME	 or VALUE�

Syntax�
The type of NAME� and NAME� is a macroname�
The type of VALUE is an integer constant or a logical constant or a string of characters�

Action�
The value of the macrovariable NAME� or the VALUE is added to the value of the macrovariable NAME�

the resulting value of the macrovariable NAME� is �NAME��NAME� in the �rst case��

Example�

�NAME��TOM�
�ADD
NAME�� JONES��
Name� �NAME

generates

Name� TOM JONES

�ADD�NAME�
TEXT

�ENDADD

Syntax�
The type of NAME is a macroname�
The type of TEXT is text�

��	



Action�
The TEXT is added to the value of the macrovariable NAME�

Example�

�SET
A�
Day� ��

�ENDSET
�ADD
A�

Month� December
Year� ���

�ENDADD

generates

Day� ��
Month� December
Year� ���

Remark� Only substitutions are realized in the text TEXT 
not directives��

�CLEAR�NAME�

Syntax�
The type of NAME is a macroname�

Action�
This directive clears a list of items type value of the macrovariable NAME� i�e� it deletes all duplications
of items� Small and capital letters of items are not distinguished�

Example�

�DECL��NnIX
N�nNnMn InJnNnM�
�CLEAR
DECL�
�END���DATA
DECL��
�REPEAT

�I���DATA
DECL��
INTEGER �I

�UNTIL
I�END�

generates

INTEGER IX
N�
INTEGER M
INTEGER I
INTEGER J
INTEGER N

�DO�NAME�INDEX
�INDEX	�INDEX��
TEXT

�ENDDO

Syntax�
The type of NAME is a macroname�
The type of INDEX�� INDEX�� INDEX� is a macroname or an integer constant�
The type of TEXT is text�

Action�
This directive has a similar meaning as the statement DO in the FORTRAN language�
NAME is the cycle counter�

���



INDEX� is the initial value of the cycle counter�
INDEX� is the �nal value of the cycle counter�
INDEX� is the change of the cycle counter after a cycle step�
If INDEX� is not present� then the default value INDEX��� is assumed�
The cycle counter NAME does not have to be changed in the cycle step�
The value INDEX� does not have to be equal to ��
The body of the cycle is terminated by �ENDDO�
If INDEX��INDEX� and INDEX��� or INDEX��INDEX� and INDEX���� then the cycle is not
realized�
Cycles can be nested� The maximum depth of nested cycles is ���

Example�

�A��XnYnZ�
�DO
I�������

A
�I����C
�I���DATA
A�
�ENDDO

generates

A
�����C
���X
A
�����C
���Y
A
�����C
���Z

�ERASE�NAME�

Syntax�
The type of NAME is a macroname�

Action�
The macrovariable NAME is erased from the table of symbols�

Example�

�A��
�DEF
A�
�ERASE
A�
�DEF
A�

generates

�TRUE�
�FALSE�

�EXIT

Action�
The directive �EXIT has the same meaning as the end of the �le achievement� If nested �les are processed

see the description of the directive �SUBST�� then the directive �EXIT realizes to return to the hihger
level �le 
if the higher level �le does not exist� then �EXIT has the same meaning as �STOP��

�HELP
TEXT

�CHECK�NAME�DEFAULT�TYPE�LEVEL�TRANSFER�

Syntax�
The type of TEXT is text�
The type of NAME is a macroname�
The type of DEFAULT is either a macroname or an integer constant or a logical constant or a string of
characters�
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The type of TYPE is either list of items or one of the strings INT 
integer�� LOG 
logical�� REAL 
real��
The type of LEVEL is an integer constant�
The type of TRANSFER is a logical constant�

Action�
The text TEXT appears on the screen if the dialogue mode is used� The value of the macrovariable
�NAME is checked to have the type TYPE� If the macrovariable �NAME is not de�ned or if it has a
wrong value then the value DEFAULT is used� The value of LEVEL gives the lowest level of the dialogue

����� or �� from which the text TEXT appears on the screen� The value of TRANSFER speci�es
transfer of the variable �NAME into the control program 
YES if transfer is accepted or NO if transfer
is suppressed��

Example�

�HELP
TYPE OF HESSIAN MATRIX�

D � DENSE
B � SPARSE WITH KNOWN 
PARTITIONED� STRUCTURE
S � SPARSE WITH KNOWN 
GENERAL� STRUCTURE
NO � HESSIAN MATRIX IN NOT USED

�CHECK
HESF��NO���DnBnSnNO����NO�

�IF�CONDITION� LINE

Syntax�
The CONDITION can be of the following types�
The type of CONDITION is a macroname and a value of CONDITION is a logical constant�
The type of CONDITION is a logical constant 
�TRUE� or �FALSE���
The type of CONDITION is a string of the form PART��operator�PART��
The type of PART� and PART� can be a macroname or an integer constant or a logical constant or a
string 
values of PART� and PART� have to be of the same type� and �operator� can have the following
forms�

� equal to
�� not equal to
� less than 
for integer values only�
�� less than or equal to 
for integer values only�
� greater than 
for integer values only�
�� greater than or equal to 
for integer values only�

LINE is either text line or directive�

Action�
If the condition CONDITION is satis�ed then LINE is generated into the output �le 
if it is a text line�
or carried out 
if it is a directive�� If values of PART� and PART� are strings� then small and capital
letters are not distinguished and blanks are ignored�

Example�

�A��J O H N�
�IF
A��John�� Yes
�IF
A���Mary�� No

generates

Yes
No

���



�IF�CONDITION
�
TEXT


�ELSEIF�CONDITION	�
TEXT�
�
�
�

�ELSE
TEXT

�ENDIF

Syntax�
CONDITION� and CONDITION� have the same syntax and meaning as CONDITION in the previous
case� The number of repeated �ELSEIF is not limited� �ELSEIF or �ELSE can be omitted�

Action�
This directive has a similar meaning as the conditioned statement IF�ELSEIF�ELSE�ENDIF in the FOR�
TRAN language� The conditioned statements can be nested� The maximumdepth of nested conditioned
statements is ���

Example�

�A���
�L��FALSE�
�IF
A����

A � A � �
B � B � �
�IF
L�
C � C � �
�ENDIF

�ELSE
WRITE
���� I

�ENDIF

generates

A � A � �
B � B � �

�INCLUDE�NAME�

Syntax�
The type of NAME is a macroname�

Action�
The directive �INCLUDE
NAME� is a special case of substitution� This directive makes us possible
to insert 
into generated text� one or more lines� which were previously assigned to the macrovariable
NAME� In contrast with the standard substitution �NAME� the inserted lines are not processed by the
BEL interpreter� so that directives are not carried out�

Example�

�SET
LINES�
�ADD
A�
X � Y � Z
CALL SUB
X�
�ENDADD

�ENDSET

���



�INCLUDE
LINES�

generates

�ADD
A�
X � Y � Z
CALL SUB
X�
�ENDADD

�INCLUDE��FILE��

Syntax�
The type of FILE is a string�

Action�
The directive �INCLUDE
�FILE�� is a special case of substitution� This directive makes us possible to
insert 
into generated text� the text� which is stored in the �le with the name FILE� The inserted text is
not processed by the BEL interpreter� so that directives are not carried out�

Example�

�INCLUDE
�C�nUFOnUMCOMN�I��

includes FORTRAN common blocks into the generated text 
these common blocks are stored in the �le
C�nUFOnUMCOMN�I�

�OPTION�OPTIONNAME�NAME or VALUE�

Syntax�
OPTIONNAME is a selected name from the table of optional parameters 
see below��
The type of NAME is a macroname� The value of NAME has to be an integer constant or a logical
constant or a string of character and has to correspond to the type of OPTIONNAME�
The type of VALUE has to be an integer constant or a logical constant or a string of character and has
to correspond to the type of OPTIONNAME�

Action�
This directive makes us possible to change selected optional parameter of the BEL interpreter� Optional
parameters are contained in the following table�

���



Name Type Default Description
CHDIR char� � see B��
CHEOL char� � see B��
CHCON char� � see B��
CHDS char� n see B��
ILNLEN int� 	� physical length of the input line
OLNLEN int� 	� physical length of the input line
IUNIT int� � No� of the input �le unit
OUNIT int� � No� of the output �le unit
INUNIT int� � No� of the �INCLUDE �les unit
IIUNIT int� � No� of the interactive mode input unit
OIUNIT int� � No� of the interactive mode output unit
DIALOG int� � level of dialogue 
� or � or ��
MODERW int� � READ�WRITE mode 
� or � or ��
LABEL� int� ����� initial label
LABEL� int� ��� di�erence between two consecutive labels
LSUBS int� �TRUE� substitutions carried out
LOUT int� �TRUE� output �le created
LSMLET int� �TRUE� small letters used in instructions
LFORTO int� �TRUE� output in standard FORTRAN format
LFRFMT int� �TRUE� input in free FORTRAN format


used only if LFORTO��TRUE��

�REM

Action�
The rest of the line 
following after �REM� is ignored by the BEL interpreter� The directive �REM is
used for remarks�

�REPEAT
TEXT

�UNTIL�CONDITION�

Syntax�
The type of TEXT is text�
CONDITION has the same syntax and meaning as that in the directive �IF
� � ���

Action�
This directive has a similar meaning as the statement REPEAT�UNTIL in the PASCAL language�
The cycle is terminated whenever the condition CONDITION is satis�ed 
at least one realization is
carried out��
Cycles can be nested� The maximum depth of nested cycles is ���

Example�

�N���
�REAL��X
�N�nG
�N�nH
�N��N�n�END��
�REPEAT

�I��DATA
REAL�
REAL �I

�UNTIL
I���END���

generates

REAL X
���
REAL G
���

���



REAL H
������

�RESTORE�NAME�

Syntax�
The type of NAME is a macroname�

Action�
The directive �RESTORE
NAME� can only be used if the value of the macrovariable NAME is a list
of items� Such a macrovariable uses a pointer which points out the next called item� The directive
�RESTORE adjust this pointer to point out the �rst item of the list 
if the end of this list is found� then
the pointer is adjusted to point out the �rst item without the application of the directive �RESTORE��

Example�

�A��XnYnZ�
�DATA
A�
�DATA
A�

�RESTORE
A�
�DATA
A�

generates

X
Y
X

�REWIND�UNIT�

Syntax�
The type of UNIT is an integer constant�

Action�
The �le opened on the unit with the number UNIT is rewound so that it can again be read from the �rst
record 
numbering of I�O units is used in the FORTRAN language��

�NAME
 � NAME	 or VALUE�

�SET�NAME
 � NAME	 or VALUE�

Syntax�
The type of NAME� and NAME� is a macroname�
The type of VALUE is an integer constant or a logical constant or a string of characters�
This directive has two forms� The latter form is used if the a macroname is identical with some directive

e�g� �SET
REM��REMARK����

Action�
The new macrovariable with the name NAME� and the value equal to the value of the macrovariable
NAME� or constant VALUE is inserted into the table of symbols� If the macrovariable NAME� has
already been de�ned in the table of symbols� then it is changed�

�SET�NAME�
TEXT

�ENDSET

Syntax�
The type of NAME is a macroname�
The type of TEXT is text�

Action�
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The macrovariable NAME is inserted into the table of symbols with the value TEXT� If the macrovariable
NAME has already been de�ned in the table of symbols� then it is changed�

Example�

�SET
INIT�
CALL EIUD��
NF�X�FMIN�XMAX�NEXT�IEXT�IERR�
IF 
IERR�NE��� GO TO ��ENDTEST

�ENDSET
�INIT

generates

CALL EIUD��
NF�X�FMIN�XMAX�NEXT�IEXT�IERR�
IF 
IERR�NE��� GO TO �ENDTEST

Remark� Only substitutions are realized in the text TEXT 
not directives��

�SUBST��FILE��

Syntax�
The type of FILE is a string�

Action�
This directive performs the following actions�
The new reference label is computed 
using the parameters LABEL� and LABEL� of the BEL interpreter��
The �le with the name FILE is opened�
This �le is processed by the BEL interpreter�
The �le with the name FILE is closed�
The old reference label is restored�

This directive is similar to the directive �INCLUDE
�FILE��� But the inserted text is now processed
by the BEL interpreter� All substitutions and directives are carried out� The directive �SUBST
�FILE��
serves for the division of large texts into segments and makes the generation of texts possible by using
conditioned branching� This is advantageously used for generation of the control program in the UFO
system where templates corresponding individual subroutines are such segments�

Example�

�INCLUDE
�C�nUFOnUMCOMN�I��

includes FORTRAN common blocks into the generated text 
these common blocks are stored in the �le
C�nUFOnUMCOMN�I�

���



Appendix C� Graphical screen output
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