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Abstract

Trakhtenbrot theorem is shown to be valid for the three main fuzzy logics - Lukasiewicz,
Godel and product logic.
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0.1 Introduction.

It follows from Godel completeness theorem that the set of all tautologies of the classical
(Boolean) predicate logic (denote this set by TAUTP") is recursively enumerable, i.
e. Y and it is known that it is ¥;-complete. Tautologies are formulas true in all models
and 1t is crucial that both finite and infinite models are considered. Finite model theory
(flourishing due to its obvious relevance for databases) uses the language of classical
logic but admits only finite models. See [3]. Let fT AUTB°! be the set of all formulas
true in all finite models. Clearly, TAUTPY C fT AUTB°". Trakhtenbrot proved as
early as in 1950 [7] that the set fT AUTPY is not recursively enumerable (hence not
recursively axiomatizable); moreover, the set is II;-complete. Due to the properties of
classical negation it follows that the set fSATBY of all formulas ¢ true at least in
one finite model is ¥1-complete. The fact that there is no recursive axiomatic system
complete for tautologies of finite model theory means that deductive methods have
only limited importance for database theory.

Fuzzy logic generalizes Boolean logic by introducing more than two truth values;
typically the real unit interval [0, 1] serves as the ordered set of truth values (truth
degrees). Let us stress that fuzzy logic can be developed rather far in the style of
mathematical logic (see [2, 1]). On the other hand, there is a research in fuzzy databases
[6]. Thus whether and in which form Trakhtenbrot theorem generalizes to fuzzy logic
appears to be very natural. To answer this question is the main purpose of this paper.
We shall investigate three important fuzzy predicate calculi having [0, 1] for their truth
set - Lukasiewicz predicate logic LV, Godel predicate logic GV and product predicate
logic 1IV. Let C vary over L, G, 11, let fTAUTCY be the set of all formulas true in the
sense of CV in at least one finite model. Our main result is as follows:

Theorem. For C being L, G, 11, the set f — TAUT®Y is Il -complete and the set
FSATY is ¥i-complete.

This will be proved in Sect. 3. Section 2 contains preliminaries on arithmetical
hierarchy and fuzzy logic.
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0.2 Preliminaries:

The reader is assumed to be familiar with basic properties of recursive sets (of natural
numbers, words etc.), recursive relations and recursive functions. A set A is ¥y (or
recursively enumerable) if there is a binary recursive relation R such that

A ={n|(Im)R(m,n)}.
A is 11y if there is a binary recursive relation R such that

A= {n|(vVm)R(m,n)}.



Similarly, A is ¥ if for some ternary recursive relation R,
A = {n|(Im)(Vb)R(m, k,n)}

etc. Ais Yq-complete if it is Y1 and each ¥; - set B is recursively reducible to A, i. e.
for some recursive function f,

B={n[f(n) € A}.

Similarly for II;-complete etc. A set is Aj if it is both ¥; and II;. Recall that A;
sets are exactly all recursive sets. See [5] for more information. We also assume that
the reader knows basic notion of the theory of computational complexity, i. e. what
it means that a set is in P (recognized by a deterministic Turing machine running in
polynomial time) or in NP (--- nondeterministic Turing machine - --). Here we deal
with polynomial reducibility and N P-completeness as well as co-N P-completeness.
See [4].

Now we recall some basic facts on fuzzy logics. A logic with the truth set [0, 1]
is given by the choice of truth functions determining the truth value of a compound
formula from the truth values of its components. In [1] the reader may find some theory
of continuous t-norms as possible truth functions for the conjunctions, their residua as
truth functions of implication and the corresponding truth functions of negation. we
shall not need this; we shall only need three particular choices. (They are extremely
outstanding choices.) Here they are:

Lukasiewicz (L):

rxy = max(0,x 4y —1); (0.1)
r=y = 1fora<y, (0.2)
r=y = l—ax+yforz>y; (0.3)
(=) = 1—uz (0.4)
Godel (G):

rxy = min(x,y) (0.5)
r=y = 1foraz <y, (0.6)
r=y = yforaz>y; (0.7)
(=)0 = 1, (0.8)
(—=)x = 0for x> 0. (0.9)

Product (II):
zxy = x-y (usual multiplication) (0.10)
r=y = 1fora <y, (0.11)
r=y = y/zforaz>uy; (0.12)
(—x) as in Godel . (0.13)



The corresponding propositional logic has formulas built from propositional vari-

able, the constant 0 and connectives &, —. Negation, the min-conjunction and the
max-disjunction are defined as follows:

—p is p — 0,

P A s ple(p — 1),
pVibis (¢ =) = L) A (Y = @) = ).

Each evaluation e of propositional variables by elements of (0, 1) extends uniquely
to the evaluation ec () of each formula ¢ using the truth function of C (e being L, G, IT).
TAUTE is the set of all ¢ such that ec(p) = 1 for at least one e.

Fact: For C being L, G, I, TAUT® is co-N P complete and SATC is NP - complete.
(See [1] for details.)

The predicate calculus CV has a language consisting of predicates (each having a
positive natural arity). (Here we disregard object constants.)

Atomic formulas have the form P(xq,...,x,) where P is an n-ary predicate and
T1,..., %, are object variables. If @, are formulas then &), o — ¥, (Va)e, (Jz)p are
formulas; 0 is a formula.

A model has the form M = (M, (rp)p predicate) Where M £ @ is a set and rp :
Mo (P) 10, 1] is a fuzzy relation M of arity equal to the arity of P. An evaluation of
variables is a mapping v : Var — M (Var being the set of object variables. The truth
value of a formula ¢ (over C) given by M, v is defined inductively in Tarski’s style, i.e.

Hp(xlv .. 71;7%)"%\/[,@ = TP(v(xl)v SRR v(xn))v

le&tbllng,, = lllin, * 141l analogous for —, =

1(¥) ¢l = inf {llellfnlv =- w},

Analogously for 3,sup (Note that v =, w mean that v coincides with w for all
arguments except possibly x.) T AUTC" is the set of all formulas ¢ such that H‘PH%\/IU =1

for all M, v; SATC is the set of all ¢ such that H‘PH%\/IU = 1 for some M, v.

Fact. TAUT® is 3y complete; TAUTH is T, complete; TAUT™ is Tly-hard (i.
e. each Il set is reducible to TAUTMY: if the latter set is itself 11, is unknown.) See

[1].

In the rest of the preliminaries we shall elaborate a technique of coding formulas
of predicate logic by some formulas of propositional logic and finite models by some
evaluation of propositional variables.

Definition. Let M = (M, (rp)%,) be a finite model, let M have n elements.
For each predicate P; of arity s we introduce n® propositional variables p;;, . ;. where
Jis---Js € {1,...,n} (assume M = {1,...,n}). Define an evaluation ep; of these
propositional variables by setting enm(pij,..;.) = rp,(j1,...7s) (i. e. the truth value of
Pijy...j. 1s the degree in which (j1,...J,) is in the relation rp,).
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Investigate formulas of predicate logic with free variable substituted by elements of

*,70

M. For each such object ¢ we define its translation ™" as follows:
(Li(i1s -5 0))" = Pijysis (9&th)” = @*&yp™;  analogously —;

(0) =0;  ((Va)p(x)) = Ajzy #°(1), (F2) ()" = Vimy 97 (j)-

Note that if ¢ is as assumed (free variables replaced by elements of M) then ||¢||Mm
has the obvious meaning ||¢||m,, where v just assigns to each free variable the corre-
sponding element of M (and otherwise arbitrary).

Lemma. For each finite M of cardinality n and ¢ as above,

el = em(e™").

Proof obvious by induction on ¢ observing that on a finite domain V reduces to a
finite A-conjunction and analogously 4, v.

Note that ™™ is a recursive function of ¢ and n, the language Py,..., P. being
given.

0.3 The results

Lemma. For C being L, G, 11, the set fSAT is ¥y and the set fTAUTC" is II,.

Proof. Let ¢ vary over closed formulas. Recall that the sets SATC, TAUTC of
propositional formulas are of low computational complexity (co-N P, NP) and hence
recursive. Now

@ € FSATCYIff (3n)(p™" € SATC),
© € fTAUTYff (Yn)(p*" € TAUTC).

This proves the lemma.
Theorem. For C as above, fSATY is 3¥y-complete and fTAUTC" is II;-complete.
Proof. For C being (i or Il the proof is easy using the double negation interpretation:
let ™7 results from ¢ by attaching double negation to end atomic formula. Then (cf.
[1] 6.2.8, 6.3.1)
© € fFSATPViff 077 € FSATY

o € fFTAUTPY iff o™ € fTAUTY

Thus the complete sets on the left hand side are recursively reducible to the corre-
sponding sets on the right hand side showing their respective completeness.

For C = L. we must do more work. Let Crisp(P;) be the formula (Vx)(P(x)V-P(x)).
It is easy to show that ¢ € fSATBV iff A, Crisp(P;) A ¢ is in fSATLV. (This
argument also works for G,1I as an alternative to the above proof.) Thus again we
have a recursive reduction.

For fTAUTLv we proceed as follows (using a method of Ragaz, cf. [1] 6.3.6 - 6.3.9.:
for each closed v, ¥ € fFSATPViff A Crisp?(P;) A«)? is positively finitely satisfiable,
i. e. iff there is a finite model M such that |[¢)*||pr > 0. (Cf. [1] 6.2.13.) Here one has
to assume that v is classical in the sense that the only connectives used are A,V, .
Thus for each classical ¢,



o € fTAUTP®iff —=p & FSATBOU I N\, Crisp*(P;) A (—p)? is not finitely positively
satisfiable in LV, iff the formula

\/(HX)Q(PZ A _'PZ) vV 299

K3

is in fTAUTLV. Thus we have reduced the II;-complete set fT'AUTP to fTAUTLV.
Here of course a? is a&a, 2a is aVa, V being the strong disjunction of Lukasiewicz

logic. This completes the proof.

0.4 Appendix.

It is of some interest to observe that CV has the rational model property:

Claim. For C being L, GG, 11, the following holds:

(1) If there is a finite M with ||¢||§; = 1 then there is a rational-valued model M’
(of the same cardinality) with ||¢||5; = 1.

(2) the same with < 1 instead of = 1.

(Note that this gives an alternative proof of fSAT € ¥y, fTAUTC € 11,.)

Proof. Due to our representation (Sect. 2), it is enough to show for each proposi-
tional formula ¢ that if ec(p) = 1 then for some rational-valued €', ¢(¢) = 1 and the
same for < 1. First, this is easy for GG since if 0 < z; < ... < z, < 1 contain all the
values e(p;) involved and 0 < r; < ... <1, < 1 are rationals then one easily gets an
isomorphism of [0, 1] with respect to Godel connectives moving z; to r;. For L and < 1
the claim follows immediately from the continuity of truth functions; for L and =1
we use [1] 3.3.17. Finally, investigate IT and recall the transformation ¢ [1] 6.2.2 such
that, for each I, ¢! does not contain 0 or ¢! is 0; and for each e such that ¢(p;) = 0 iff
i € Ien(p) = en(p?). For “< 17 observe that for positive values z; = ¢(p;) (¢ € I), the
value er(¢r) is continuous (and positive) in z; (¢ & I). (If ¢ is 0 then there is nothing
to prove.)

Finally for “= 1”7 observe that if e is such that e(¢) = 1 then for some boolean €',

/

en(e) =1 (e(p;) =0if e(p;) =0, €(p;) = 1 otherwise). This completes the proof.



Bibliography

[1] Hajek, P. Metamathematics of fuzzy logic, Kluwer 1998

[2] Hajek P. Fuzzy logic from the logical point of view, in: Proc. SOFSEM95, Lect.
Notes Comp. Sci. 1012, Springer 1995, 31-49

[3] Ebbinghaus H. D. and Flum J. Finite model theory. Springer-Verlag 1995
[4] Papadimitriu C. H. Computational Complexity. Addison-Wesley 1994.

[5] Rogers H. Jr. Theory of recursive functions and effective computability. McGraw-

Hill 1987.

[6] Bosc P., Kacprzyk J.(ed.) Fuzines in Database Management Systems. Physica-
Verlag Wien 1995

[7] Trakhtenbrot B. A. Impossibility of an algorithm for the decision problem on finite
classes. Doklady Akademii Nauk SSSR 70 (1950) 509-572 (in Russian)



