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Abstract

The relation of the basic fuzzy logic BL to continuous t-norms is studied and two
additional axioms are formulated such that the extended logic is complete with respect
to tautologies over all logics given by continuous t-norms.
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0.1 Introduction.

Basic fuzzy logic BL, as developed and investigated in [3], is closely related to continu-
ous t-norms; as summarized bellow, each continuous t-norm determines (1) a semantics
of fuzzy propositional logic for which BL is sound, and (2) a particular linearly ordered
BL-algebra, Bl-algebras from a variety for which BL is sound and complete. Full
treatment is found in [3]; bellow we summarize basic facts in Sections 1 - 3. At the
end of Sect. 3 we formulate the main problem of completeness of BL. with respect to
BL-algebras given by continuous t-norms (t-algebras). In Sect. 4 we develop some
algebra of linearly ordered Bl-algebras. In Sect. 5 we exhibit two additional axioms
(B1), (B2) and show soundness and completeness of BL 4+ (B1) + (B2) for t-algebras.
The problem whether BL proves (B1), (B2) remains open.

Acknowledgement. Preparation of this paper was partially supported by the grant
No. A1030601 of the grant agency of the Academy of Sciences of the Czech Republic.

0.2 Continuous t-norms

We recall some well-known facts on continuous t-norms.
A t-norm is a binary operation * on [0, 1]
(i.e. t: [0,1]> — [0,1]) satisfying the following conditions:

(i) * is commutative and associative, i.e., for all z,y,z € [0, 1],

Txy = y*ux,

(zxy)kz = x*(y*2z),
1) t is non-decreasing in both arguments, i.e.
(ii) g g :
x1 <y implies xqxy < a9 *x Yy,
y1 <yp implies x*y; < 2% ys,
(iii) 1 * 2 = 2 and 0% = 0 for all € [0, 1].

* is a conlinuous t-norm if it is a t-norm and is a continuous mapping of [0, 1]* into
[0,1] (in the usual sense).
The following are our most important examples of continuous t-norms:

(i) Lukasiewicz t-norm: x %y = max(0,x +y — 1),
(ii) Godel t-norm: x +y = min(x,y),
(i) Product t-norm: x x y = z.y (product of reals).

It is elementary to verify conditions (i)-(iii) above.

Let * be a continuous t-norm. Then there is a unique operation = = y satistying,
for all x,y,z € [0,1], the condition (z * z) < y iff 2 < (¢ = y), namely v = y =
max{z | x * z < y}.



The operation = = y is called the residuum of the t-norm.
The following operations are residua of the three t-norms above: =z = y = 1 for
x <y and

(i) Lukasiewicz implication: v = y=1—x+y
(i1) Godel implication: © =y =y
(iii) Goguen implication: © = y = y/x
for # > y (residuum of product conjunction).
For each continuous t-norm the set F of all its idempotents is a closed subset of
[0,1] and hence its complement is a union of a set Zopen (£) of countably many non-
overlapping open intervals. Let [a,b] € Z(F) iff (a,b) € Iopen(£) (the corresponding

closed intervals, contact intervals of F). For I € Z(F) let (x| I) be the restriction of
* to I%. The following theorem characterizes all continuous t-norms.

Theorem 1. If %, £, Z(F) are as above, then

(i) for each I € Z(FE), (% | I) is isomorphic either to the product t-norm (on [0,1]) or
to Lukasiewicz’s t-norm (on [0,1]).

(ii) If @,y € [0,1] are such that there is no [ € I(F) with x,y € I, then x xy =
min(z, y).

0.3 The basic many-valued logic

Fix a continuous t-norm *: you fix a propositional calculus (whose set of truth values
is [0,1]): * is the truth function of the (strong) conjunction &, the residuum = of
* becomes the truth function of the implication. Further connectives are defined as
follows:

e A s ol = ),

eV is ((p =) = D)A (¥ — @) = ¢),
- 1S 99—>(j,

p=v is (¢ = P)&(P — ).

An evaluation of propositional variables is a mapping e assigning to each propositional
variable p its truth value e(p) € [0, 1].

This extends:



A formula ¢ is a 1-tautology of PC(%) if e(p) = 1 for each evaluation e.
The following formulas are axioms of the basic logic [3]:

) (=) = (¥ = x) = (¢ = X))

(A2) (pletp) — o

(A3) (@) — (V&)

(Ad) (p&e(p = P) = (P&e(yp — )

(Ada) (¢ = (¢ = X)) = ((v&t) — X)
(A5b) (
(A6)
(AT)

The deduction rule of BL is modus ponens. Given this, the notions of a proof and
of a provable formula in BL are defined in the obvious way

All axioms of BL are 1-tautologies in each PC (). If ¢ and ¢ — 1 are 1-tautologies
of PC(x) then ¢ is also a 1-tautology of PC(*). Consequently, each formula provable
in BL is a 1-tautology of each PC'(x).

Note that Lukasiewicz logic is the extension of BL. by the axiom ——¢ — ¢;; Godel
logic is the extension of BL by the axiom ¢ — (p&¢). Finally, product logic is the
extension of BL. by the following two axioms:

=X = (((pdex) = (P&ex)) = (¢ = ),

0 A= — 0.

0.4 BL-algebras; a completeness theorem.

BL-algebras are algebras of the logic BL; their theory is developed in the style of related
algebras and logics (as in [1, 2, 4]). Details are in [3].
A BL-algebra is an algebra

L=(L,NU,%=,01)
with four binary operations and two constants such that

(i) (L,N,U,0,1) is a lattice with the largest element 1 and the least element 0 (with
respect to the lattice ordering <),

(i) (L, *, 1) is a commutative semigroup with the unit element 1, i.e. * is commutative,
associative, 1 * & = x for all « (thus L is a residuated lattice, and

(iii) the following conditions hold:



Note that (3) is redundant. Define (—)x = (x = 0).
The class of all BL-algebras is a primitive class of algebras (a variety).
MV-algebras are Bl-algebras satisfying (—)(—)x = . Product algebras are BL-
algebras satisfying
N (—)z=0

(F)=)z=((zxz=yx2)=ar=y) =1

Let L be a BL-algebra. An L-evaluation of propositional variables is any mapping
e assigning to each propositional variable p an element e(p) of L. This extends in
the obvious may to an evaluation of all formulas using the operations on L as truth
functions.

The logic BL is sound with respect to L-tautologies: if ¢ is provable in BL then ¢
is an L-tautology for each BL-algebra. More generally, if 7" is a theory over BL and T
proves ¢ then, for each BL-algebra L and each L-evaluation e of propositional variables
assigning the value 1 to all the axioms of T', e(p) = 1.

Classes of provably equivalent formulas (w.r.t. a theory T') form a BL-algebra.

A usual theory of filters can be developed; in particular, prime filters correspond to
linearly ordered factorizations [4] for a broader class of algebras and [2], [1] for a more
narrow class of MV-algebras.)

Theorem 2. BL is complete, i.e. for each formula ¢ the following there things are
equivalent:

(i) ¢ is provable in BL,

(ii) for each linearly ordered BL-algebra L, ¢ is an L-tautology;

(iii) for each BL-algebra L, ¢ is an L- tautology.

Note that we also get strong completeness (for provability in theories over BL.)
For completeness theorems of the three stronger logics (Lukasiewicz, Godel, prod-
uct) see [3].

Definition 1. (1) A t-algebra is a BL-algebra ([0, 1], N, U, *,=-,0,1) whose lattice
part is the real interval [0, 1] with min and max and * is a continuous t-norm (whereas
= is its residuum).

(2) A formula ¢ is a t-tautology if it is an L-tautology for each t-algebra L.

Problem. Clearly, each BL-provable formula is a t-tautology. Is the converse true?
L.e. is each t-tautology provable in BL.? We are not able to answer this question; but
we develop below some theory of BL-algebras and exhibit two additional axioms (B1),

(B2) such that each t-tautology is provable in BL. + (B1) + (B2).

0.5 Structure of BL-chains

Clearly, saying “a BL-chain” we mean “a linearly ordered Bl.-algebra.” We start with
a lemma on arbitrary BL-algebras.



Lemma 1. Let M be a BL- algebra and let =,y u € M.

(1) If & > y then y = x* (@ = y).

(2) If  <u <y and u is idempotent then = *y = x.

(3) If + < u <y and u is idempotent then y = x = & (caution: the first inequality
is strict!).

Proof. (1) f x > ytheny=aNy =2a* (2 = y).

(2) First, the statement is trivial for + = v < y: Then u*y > uxu = u and obviously
uky < u. Thus assume @ < u <y. Then x*xy > w*u = ur(u = v)*u = ux(u = ) = x.

(3) On the one hand, # < (y = ). On the other hand, if + < z < u then
zxy=z>uz, thus z > (y = ).

From now on, we shall investigate BL-chains.

Definition 2. Let M be a BL-chain and v < v two idempotents. Let [u,v]p =
{z € M|u < x <wv}; endow [u,v]p with the ordering of M and put, for z,y € [u, v]m,

/
T Yy=x*xyY,

r='y=x=yifz >y,
="y =vifz <y.
Lemma 2. The structure [u,v]p is a BL-algebra.

Proof. First observe that [u, 1]y is a BL-subalgebra of M (with respect to N, U, z, =,
1 and w instead of 0; thus all axioms not mentioning 0 are true in [u, 1]pg and clearly u
is the least element of [u, 1]p. Second, [u, v]p is @ homomorphic image of [u, 1]y via
the homomorphism f identical on [u, v]p and sending all elements @ > v onto v. (The
verification is left to the dilligent reader; we only show that [u, 1] is closed under =-.
Indeed if # > y > u then usx = u <y, thus u <z =y.)

Definition 3. Let M1, M2 be two BlL-chains. Taking possibly isomorphic copies
assume that 1y, = Oy, and the rests of My, My are disjoint (i.e. (M —{1lag}) N (Mz—
{0a,}0 = 0). Let My @ M; be the structure whose universe is My U Ms,

x <yif (x,y € My and = <; y),

or (x,y € My and = <5 y),

or (x € My and y € M,).

Furthermore, © %y = a *; y for x,y € M;, x xy = x for « € M; and y € M,; for
<y, (xr=vy)=la; forz >y weput (z=vy)=(x=y)ifx,y € M, and put
(x = y)=yfor x € My and y € My — M.

Lemma 3. M = M;@ M, is a Bl-chain with 0p; = 0Oas, 1lar = 1laz, and

1ar, = Opg, being a non-extremal idempotent.

Proof. By checking. Let us check divisibility and residuation. min(x,y) = a*(x =
y) is evident if @,y € M, for i = 1 or i = 2. Assume « € My — My, y € M; — My; then
z*x(x = y)=a*y =y by definition.



Residuation: we check « * z <y iff 2 < (2 = y). Again the only non-trivial case is
x € My — My, y € My — M;. Then we have to prove . x z <y iff z <y. Let v %2z < g,
then z € My, z=axxz <.

We generalize the above definition as follows:

Definition 4. Let (1, <) be a chain with a least element 0 and a largest element
1. For each a € I, let a’ be the upper neighbour of a, if it exists, i.e. at = 3 iff
a < f3 and there is no 4 such that o < v < . Otherwise o™ = a. Let{M,|a € I} be
a system of BL-chains such that if M, has the least element o and largest element o™
(thus if @ = at then M, is the one-element BL-algebra). Assume that for a # 3 the
non-extremal elements of M, are disjoint from the non-extremal elements of Ms. Let
@D.cr M, be the structure defined as follows:

The domain is U,c; My; for @ € M,y € Mgz we put « <y iff @« < for [a = 3 and
r <, vyl
xxy =x*,y for z,y € M,,
zxy =min(z,y) for @ € M,y € Mg, a0 # 3;
r=>y=1ifz <y;
r=>y=z=>,yife>yand z,y € M,;
r=>y=yitee Mg—M,,y e M, — Mz and o < 5.

Lemma 4. Under the above notation, M = @,y M, is a BL-chain; for each «,
M, = [a, at]m.

Proof as above

Definition 5. Let M be a BL-chain. A pair X,Y C M is a cut in M if
) XuY =M
i)z € X and y € Y implies < y for each x,y,
iii) YV is closed under x*
iv) foreach x € X, y €Y, x*xy = .

1
1

(
(
(
(

Lemma 5. Let X,Y be a cut. Then X is also closed under *; for v € X — Y,
y €Y — X we have (y = x) = z.

Proof. We prove the last thing, the other ones being evident. If X NY = {d} then
d is an idempotent by (iv) and (y = z) = x follows by Lemma 1 above. If X NY = {)
then evidently z x y = x iff z = y, thus (y = ) = y.

Examples (1) Let * be a continuous t-norm on [0,1] and let I be the set of its
idempotents. For each o € I, let M, = [, at]p where M is the t-algebra given by
*. By the representation theorem for continuous t-norms, M = @,c; M,; each M,
is either isomorphic to the standard MV-chain [0, 1], or the standard product algebra
[0, 1]1 or is a singleton.

(2) Let I = {0,1,2}, 0 < 1 < 2; let My be the standard MV-algebra My on
[0,1] and M; the standard product algebra My linearly shifted to [1, 2] (thus x*y =
I+(x—1)(y—1)). Let Mo; = Mo @7 M; be as defined above. My has exactly one non-



extremal idempotent 1; let M = Mg; — {1}. M has no non-extremal idempotents and

does not satisty cancellation: for0 < z < 1,1 <z <y<2weget 0 < xxz=y%xz =z,
but x # y.

Definition 6. A BL-chain M is saturatedif for each cut X, Y there is an idempotent
d such that * € X and y € Y implies x < d < y.

Theorem 3: Each BL-chain M can be isomorphically embedded into a saturated
BL-chain.

Proof. For a given cut X,Y in M such that there is no idempotent d separating
X,Y (i.e. such that + € X and y € YV imply # < d < y) we extend M by such an
idempotent d = dxy and define z < diff r € X;d<yiffyeY;x*xd=2a,forz e X,
y*xd=dfory € Y. Furthermore, s == d=1andd=x=xforx € X,y =>d=4d
and d = y =1 for y € Y. The resulting algebra M’ = M U {d} is a BL-chain. Let us
check associativity: let « € X,y € YV, thus (z *d)*xy =xxy,x* (d*y) =z xd = z,
thus using * xy = = we get v xy = x for v € X and y € Y. Similarly for other
axioms; we just check residuation for y = d, y € Y. Indeed, y x z < d iff z < d, thus
d = max{z|y * z < d}.

Now observe that you may add all the new idempotents at once (for all cuts)
and that the old structure M is dense in the new structure M*: for any two new
idempotents d < d there is an @ € M,d < x < d. Thus there emerge no new
(non-separated) cuts.

Definition 7. M is reducible if there are My, My each having at least two elements
and such that M = M; @ M,. M is weakly reducible if there are My, M, and an
embedding f of M into My @ M, such that both f(M;) and f(M,) have at least two

elements.

Theorem 4. Each saturated BL-chain M is an @-sum of an ordered system of
saturated irreducible BL-chains.
In more details, M = @, ¢;[a, at]m where I is the set of idempotents of M.

Proof obvious from the preceding.

0.6 On the problem of axiomatizing t-algebras

The problem if BL is complete with respect to t-algebras reduces to the problem if each
non-degenerated! irreducible saturated BL-chain is either an MV-algebra or a product
algebra. Recall that each MV-chain is locally embeddable into [0, 1]§, and each product
chain (linearly ordered product algebra) is locally embeddable into [0, 1]i. This means
that for each finite subset X of an MV-chain M there is a finite Y C [0,1] and a

!Having at least two elements.



bijection f : X — Y such that for all z,y,2 € X, 2y y = 2 iff f(2)*p f(y) = f(2),
the same for =, and @ <p; y iff f(x) < f(y).)

To solve positively our problem it would be enough to show that each BL-chain
is locally embeddable into a t-algebra, which in turn reduces, due to the theorems of
our last section, to the above question on irreducible saturated BL-chains. Indeed,
given a BL-chain M and a finite set X C M, you may assume M to be saturated (by
embedding into a bigger algebra) and is a @-sum of finitely many irreducible intervals
[a, at] (by deleting unnecessary factors). If our question has a positive answer you
might associate to each [a, a®] a copy of [0,1]f or [0,1]n and a local embedding of
X N [, o] into it; thus you might compose a t-norm such that your X is locally
embedabble into the corresponding t-algebra.

This still remains open, on the other hand, one may look for some t-tautologies as
possible new axioms defining a subvariety of BL-algebras, leaving the question open if
these formulas are BL-provable.

We shall show that it suffices to add two axioms to get the desired completeness.

Definition 8. Let M be a BL-chain, let x,y,z € M. The triple (x,y, z) is patho-
logical it v < z <y, x*xy=x,v*xz<xand z*xy < z.

Lemma 6. (1) If (z,y, z) is pathological then z,y, z are from the same component
[a, a*] for some idempotent «.
(2) If M is t-algebra then M has no pathological triples.

Proof. (1) By Lemma 1 (2), there is no idempotent between x, z and no between
T.

(2) By (1), z,y, 2 € [a,at] for some a € [0,1]. Since M is a t-algebra, [a, a™] is
isomorphic to [0,1]f or [0,1]g. Obviously, x * 2 < x implies > a, and z *y < 2
implies y < a*. but then z *y < z (verify easily for 0 <z <y < 1in [0,1]f,, [0, 1]m).

2

Corollary 1. If M has a pathological triple then it is not locally embeddable into
any t-algebra.

Lemma 7. Let M be saturated, irreducible and without pathological triples. Then
rxy =z impliesz =0or y=1.

Proof Assume x xy = z,2 > 0,y < 1. For each z, let z € Xy iff zxy = z, and
ze Y iff zxax =ua. Clearly x € Xy and y € Y; and each z belongs either to X, or to
Y. Y is closed under # (evident) and @ ¢ Y due to irreducibility. Put X = M —Y; we
prove that for v € X and v € Y, we have ux v = w.

First assume v < @ < wv. Then usv =2 * (¢ = u)*v =2 * (¢ = u) = u (since
veY).

Let 2 < u < v: We have u*xa < x (since u € V), x *v = = and hence u* v = u,
otherwise (x,u,v) would be a pathological triple. This contradicts irreducibility of M.

Lemma 8. A saturated irreducible BL-chain without pathological triples satisfies
the following cancellation: if z * z =y * z > 0 then z = y.



Proof. Let z %z =y*2z >0 and # < y; then © = y * (y = ) (= min(z,y)). Then
yxz=(y*xz)*(y = x)and (y = x) < 1, which gives y *x z = 0 by the preceding
lemma.

Corollary 2. A saturated irreducible BL-chain without pathological triples and
without non-trivial zero divisors (i. e. x,y > 0 implies @ * y > 0) is a product algebra.

Proof. See [3] 1.6.9 and 4.1.8. Indeed, if 0 < & < y then « = y * (y = z) and
(y = ) the unique element u satisfying @ = y * u, thus we have positive subtraction.
Moreover, & > x * y for all x,y.

Theorem 5. (1) The following formula (B1)

(o = (&) V(X = @) V(1 = )V (&) = (p&t))*)V
VIl = (p&t)) — (x — (x&2))]

is a t-tautology.
(2) If (B1) is true in a BL-chain M then M has no pathological triples.

Proof. We have to prove the folowing claim (x): IF 2%z < 2,2 < z,2z <
y, (z*xy)* < z+xy THEN x = (2*y) < 2 = (z*y). Note that if (x) is true for all z,y, »
from a BL-chain M then, in particular, [F 2 x 2z < 2z, 2 < 2z, 2 < y, (x x y)? < (x * y)
AND o = axy THEN z = z % y.

Now observe that z*z <z, < z <y AND 2 = x xy implies that (z *y) is not an

2

idempotent: if txy =u=u?thenx =z *y < z*y < z, thus * < u < z and u = u?,

hence = % z = z, a contradiction. Thus we get [F sz < z,2 <z <y AND zxy ==
THEN z = zx*y, hence I[F 2 < 2z <y AND e *y =2 THEN (z*z =2 OR z %y = z2),
hence M has no pathological triples. This proves (2).

Thus let us verify (*) in any t-algebra. Let a % z < x, (2 * y) non-idempotent and
¥ < z <y. Then z, z are from the same component [a, a™]. If z, y are separated by an
idempotent then z * y = z, hence z = (z *y) = 1. Otherwise also y is in [a, a™]. Now
[, @] is isomorphic either to [0, 1]y or [0, 1]

Case 1: L. We have to prove | —az 4%y < 1—z4zxy,i. e. z—a < (zxy—ax*y).
Recall # < z and x *y > 0 (since x * y is not idempotent). Thus zxy — x xy =
z+y—l—zc—y+1=2—=x.

Case 2: 1I. The assumption = * z < x implies * > 0, hence y,z,z - y,z -y > 0.
We have to prove (¢ = x*y) < z = (z*y); we even prove equality. Indeed,
v=aky=(v-y)fr=y=(2-y)/z=2=y)

This completes the proof of the whole theorem.

Definition 9. N(y, z) stands for (y = 2) = z.

Lemma 9. The identity N(y,z) = y holds
(1) in [0,1]f, for all y > =,
(2) in [0, 1] for all y > z > 0.



Proof. (1) Assuming y > z,
(y=z)=z=1l—-y+z)=z=1-14y—z+4+z=y.
(2) Assuming y > z > 0,

(y=2)=2)=(2/y) = z=2/(z]y) = y.

Corollary 3. FEach t-algebra satisfies the following:
IF 2?2 < (zNy) AND 2 xy < (z Ny) THEN N(y,2?) =y.

Proof. The assumption guarantees that z,y are from the same component, y > z?
and x > 2% Thus if [a,a™] is the component in question it is either isomorphic to
[0, 1]y, or it is isomorphic to [0, 1] and, in this latter case, #* > 0. Hence the result
follows by the preceding lemma.

Theorem 6. Let (B2) be the formula

(e AY) = @)V (e Ap) = (p&ap)) V(¢ — ©*) — ?) — ¥]

(1) (B2) is a t-tautology.
(2) Each irreducible saturated BlL-chain satisfying (B1) and (B2) and having a
non-trivial zero divisor (x > 0, 2* = 0) is an MV-algebra.

Proof. We have to verify for each t-algebra:

IF 2* < min(x,y) AND 2 xy < min(z,y) THEN N(y,2?) = y. But this is just the
corollary above.

To prove (2) observe that if (z > 0, 2? = 0) and 0 < y < 1 then z*y < min(z,y) due
to a lemma above and the condition from the Corollary verifies N(y,0) = y (and obvi-
ously, N(0,0) = 0and N(0,1) = 1). Thus the algebra in question satisfies (—)(—)z = «
and hence is an MV-algebra.

Completeness theorem 7. Let BL be the logic BL + (B1) + (B2), let ¢ be any
formula.

BLY |- ¢ iff ¢ is a t-tautology, i. e. ¢ is a tautology over any t-algebra. Thus BL*
is the logic of continuous t-norms.

Proof. Soundness is clear. Assume BL! I/ ¢. Then, by the completeness for BL,
there is a BL-chain M satisfying (B1) and (B2) and an evaluation e of propositional
variables in M such that eni(p) < Inm. Let X be a finite subset of M containing Ong, 1
and values of all subformulas > of o under epg. Assume M saturated, M = @7, [a;, o |
let 0 = uy < ...< u,q1 = 1 berationals from the unit interval and let X; = X N[ay, of ].
Define ul = u;, for ¢+ < n 4 1. Construct a t-norm *" whose restriction to [u;, u]] is
isomorphic to [0, 1]y, if [y, o] is an MV-algebra; else to [0, 1] if [y, o] is a product
algebra; For ¢ < n let f; be a mapping of X; into [u;, u}] which is a partial isomorphism
with respect to the operation * of M and the operation *’ on [0,1]; let f = U f;. Then

f is a partial isomorphism of X into [0, 1] with respect to (*,%’) and hence also with
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respect to the corresponding implication =, ="'. Let M’ be the t-algebra given by *’
on [0, 1].

Let €'(p;) = f(e(pi)); then obviously, e\ (¢) = f(em(2)) for each subformula ¢ of
¢ and hence e}, () < 1; ¢ is not a t-tautology. This completes the proof.

Remark. It follows that BL-algebras satistying all t-tautologies form a variety -
the variety given by axioms of BLf. The problem remains if (B1), (B2) are provable
in BL; on the other hand, each of the logics L, G, II proves (B1), (B2). (Exercise:
find corresponding proofs!) A possibly more easy problem is: simplify (B1), (B2) -
admittedly they are not too inviting.
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