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Abstract

For any Boolean function f let L( f) be its formula size complexity in the basis {A, &, 1}.
For every n and every k& < n/2, we describe a probabilistic distribution on formulas in
the basis {A,®,1} in some given set of n variables and of the size at most (k) = 4%,
Let pnx(f) be the probability that the formula chosen from the distribution computes
the function f. For every function f with L(f) < {(k)*, where o = log,(3/2), we have
Puk(f) > 0. Moreover, for every function f, if p,x(f) > 0, then

1/4

(4n) ™0 < pp(f) < O

where ¢ > 1 is an absolute constant. Although the upper and lower bounds are ex-
ponentially small in {(k), they are quasipolynomially related whenever ((k) > Inf{M gy
The construction is a step towards developping a model appropriate for investigation
of the properties of a typical (random) Boolean function of some given complexity.
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1 Introduction

Probabilistic methods appear to be very powerful in combinatorics and computer sci-
ence. A natural point of view on these methods is that we investigate the properties
of a typical object chosen from a set. One of the very first facts proven on Boolean
functions is that a typical Boolean function chosen from the set of all functions has
exponential complexity in any reasonable computation model. In particular, for the
Boolean formulas the result may be found in [5]. Hence, the properties of functions
chosen from the set of all functions cannot say much about functions of moderate
complexity.

In this situation, it is natural to ask what are the typical properties of functions
chosen among the functions of some given complexity rather than among all functions.
One possibility to construct a probabilistic distribution on functions of limited com-
plexity is to describe the distribution in terms of their representations. In this case, it
is easy to guarantee the complexity bound just using only representations of an appro-
priate size. However, if the distribution is defined only in terms of syntactic properties
of the representations, it may easily be the case that the distribution is concentrated
on a small set of functions, e.g. on the two constant functions.

In the present paper a syntactically defined probabilistic model of Boolean formu-
las is described. The model is constructed by iterating the 4-ary Boolean operation
T1T9 B w3 P x4 starting from a simple distribution on variables, their negations and
the constants. After k iterations, the model generates a distribution on functions of
the formula size complexity in the basis {A, @, 1} bounded by ((k) = 4*. The set of
functions having nonzero probability contains all functions of complexity at most (&),
where o = log,(3/2). An upper bound on the probability of each of the functions with
a positive probability is given. The upper bound is quasipolynomially related to a
trivial lower bound on this probability (Theorem 3.2). It follows that the distribution
is not concentrated on any small set of functions.

The result is proved for a particular case of the model investigated in [6] and [7]. For
this particular case, comparing to the bounds from [6] and [7], much stronger bounds
on the probability of single functions are obtained.

A similar model based on balanced formulas build up from the NAND operation
(or equivalently from alternating levels of ANDs and ORs) and with randomly cho-
sen literals was suggested by Friedmann [2] in order to get information on Boolean
complexity. Friedman suggested to study the distributions using their moments and
presented an application of this method to iterated AND, namely to random 1-SAT
and random 2-SAT.

Formulas with a fixed tree of connectives and with the leaves assigned to variables
or some other simple functions at random were used also for some other more specific
purposes. Let us mention the construction of a monotone formula of size O(n®?)
presented in [10] and the proof of existence of e.g. Ramsey graphs on 2" vertices,
whose adjacency matrix is representable by a Boolean formula of polynomial size in n,
see [4], [8].

A different model of random Boolean formulas based on the uniform distribution
on all AND/OR formulas of size tending to infinity was investigated in [3]. It is proved



that the distributions on functions obtained in this way converge to a limit distribution,
in which the probability of every function f is positive and related to the complexity of
[ as follows. If L'(f) > Q(n?), then the probability p(f) of f in the limit distribution
satisfies

(8n)~H' D2 < p(f) < MO

Y

where ¢; > 1 is an absolute constant and L'(f) is the formula size complexity of f in
the basis {A,V,—}. The existence of a limit distribution with all probabilities positive
was investigated also for a more general model of random trees, see [12].

The number B(n, () of distinct Boolean functions of n variables expressible by an
AND/OR formula of size at most ¢ is estimated in [9]. In a wide range of the values
of £, matching lower and upper bound on B(n, () is proved. Namely, if both a(n) and
B(n) tend to infinity with n and a(n) < ¢ < 27/nf0) then B(n,l) = ((c; — o(1))n)’,
where ¢y = 2/(In4 — 1).

2 The probability model

Let n > 2 be a fixed natural number throughout the paper. The Boolean functions of
n variables are the functions {0,1}" — {0,1}. Since n is fixed, we call them simply
Boolean functions. The projection functions are denoted x; for ¢ = 1,...,n as usual.
The negation of z; is denoted as x;. The conjunction is denoted like the multiplication,
i.e. without any operation symbol. Recall that & is the addition mod 2.

For any Boolean function u let u=!(1) be the set of @ € {0,1}" for which u(a) = 1.

Moreover, let |u| = |[u™*(1)|. For arbitrary Boolean functions w,v let
(u,v) = P ula)v(a).
a€{0,1}"

If AC{0,1}" and ¢ is a Boolean function, we denote as ¢|4 the restriction of ¢ to the
set A. Let X4 be the characteristic function of A.

For any nonconstant function f, let L(f) be the formula size complexity of f in the
basis {A, @, 1}, i.e. the minimum number of occurrences of the variables in a formula
expressing f in the given basis. Moreover, let L(f) =1, if f is a constant function.

The probability distributions studied in the present paper are defined as follows.

Definition 2.1 Let g,0 € {0,1,241,..., 2., T1, Ta..., T, } be a random Boolean function
such that Pr(g,o = 0) = Pr(g,0 = 1) = 1/4 and each of the literals occurrs as g, o with
probability 1/(4n). For every k > 0 let ¢y k1 = Gnk1Gn k2 P Gnks B Gnka, Where g ;i
are independent realizations of ¢, ;. Finally, for every k > 0, let p,, 1 (f) = Pr(f = gnk)-

For the purpose of the present paper, g, is defined to be a Boolean function.
Clearly, the definition of this function implicitly describes a Boolean formula expressing
Gn.k, which contains (k) = 4% occurrences of variables, their negations and constants.
Hence, p,x(f) > 0 implies L(f) < (k).

The distribution is chosen so that if @ and @ are complementary points in {0,1}", i.e.
they have the Hamming distance n, then ¢, 0(a) and ¢, (a) are independent random
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variables. This simplifies the analysis of the distribution of g, j for small k in the proof
of Lemma 4.6.

For every f and k, if p, x(f) > 0, then also p, 41(f) > 0, sincee.g. f=1-fH050
and the constants occur as g, with positive probability for all n and k. Moreover,
every Boolean function f, that depends essentially only on variables a1, x4, ..., x;, may
be expressed as f = x;f1 & fo § 0, where f1, fo do not depend on z;. Extending this
by induction and using the fact that p,o(f) > 0 for every f depending on at most one
variable, one can prove that for every Boolean function f we have p,, ,—1(f) > 0.

By the well-known relationship between the size and the depth complexity of the
Boolean formulas in any complete basis, see e.g. [11], one can prove that for any
Boolean function f we have p,(f) > 0 for some & = O(log L(f)). In fact, we can
prove a better estimate using the method of balancing formulas in the basis {A, &}
from [1]. For convenience of the reader, we present the proof from [1] adapted to our
model. For a comparison, recall that p, x(f) > 0 is possible only if L(f) < (k).

Theorem 2.2 For every n and k and for every Boolean function f that satisfies
L(f) < (k)08 B/ we have p,x(f) > 0.

Proof: Let D(f) be the smallest k, for which p,, 1 (f) > 0. Recall that for any function
[, L(f) = 1. By induction on L(f), an upper bound D(f) < logs,, L(f) will be
proved. This bound implies the theorem, since L(f) < ((k)"#:G/2) is equivalent to
logs/ L(f) < k.

If L(f) = 1, then f is a constant, a variable or negation of a variable. Hence,
D(f) =0. Let L(f) > 2 and let the upper bound on D(f) be true for all functions of
complexity less than L(f). We will find functions fi, fy and f5 such that f = fifa® f5
and L(f;) < 2/3 - L(f) for j = 1,2,3. Then, since f = fifs & f5 & 0, we have
D(f) <max(D(f1), D(f2), D(fs3))+ 1. By the induction hypothesis and the bound on
L(f;), this implies D(f) < logs,, L(f).

For any formula ¢, let size( @) denote the number of occurrences of variables in ¢. In
order to find fi, fy and f5, consider a formula ¢ expressing f satisfying size(¢) = L(f).
This is possible, since f is a nonconstant function. Find the smallest subformula ¢’ of
¢ that satisfies size(¢') > 2/3 - L(f). This subformula is either of the form a & 3 or
a3, where a and 3 are subformulas of ¢. It is easy to see that 1/3 - L(f) < size(a) <
2/3 - L(f). The same inequality holds also for size(3). Let ¢ (y) be the formula ¢,
where « is replaced by a new variable y. For every input, « evaluates either to 0 or 1.
Hence, using also the properties of &, ¢ = () = o - (¢(0) G (1)) & (0).

Now, let fi, f and f5 be the functions expressed by the formulas «, ¥(0) & ¢(1)
and ¢ (0) respectively. This choice implies immediately f = f; f>& f5. Since a contains
at least one occurrence of a variable, we have L(f1) < size(a) < 2/3 - L(f). Since the
size of 1(0) is size(¢) — size(a) > 0, we have also L(fs) < size((0)) <2/3 - L(f).

It remains to show that L(fy) < 2/3 - L(f). To this end, we first construct two
sequences of formulas. Let ¢o(y) be the formula ¢ (y). This formula consists of two
subformulas. Denote the two subformulas ¢4(y) and =1, where 1o(y) is the one, which
contains the unique occurrence of y. By repeating this decomposition and assuming
w.l.o.g. that in each step of the process, y is in the left hand side subformula, we



obtain sequences o(y), ..., ¥n(y) and ¥1,...,7v, of subformulas of ¢(y), such that

Yoly) = ©(y), Ym(y) = y and for all ¢ = 1,...,m, ¥;_1(y) is either ;(y) & v; or
Yi(y)7i. Let I be the set of those ¢'s, for which ¢;_1(y) = ¥i(y)7.

Clearly, for any assignment of the values of the variables 1, zs,...,z,, a change of
the value of y propagates to the root of the formula ¢ (y) if and only if the value of v;
for all ¢ € I is equal to 1 for the given assignment. Hence,

»(0) D Y(l) = /\ Yi-

Since «; are disjoint subformulas of ¢(0), we have size(A;c;vi) < 2/3 - L(f). Since
L(f) > 2, this implies L(f2) < 2/3- L(f) even if f; is a constant function. O

Lemma 2.3 For every k > 0 we have

max Pr(g = f) 2 maxPr(jess = f)

Proof: Let giyq1 = 711712 e iz;i@ 714, where /~1j are independent realizations of §,. Because
of the independence of the h;, we obtain for any Boolean function f

Pr(f = gry1) = ZPI’(f = }Nllilz @ il:a @ f1) - PI"(INM = f1).
f1

By using the properties of &, this is at most

ZPr(fl — hiho @ hs D - H;ELXPI’(?M = fa) = H;ELXPI’(E];C = f2).
f : :

This finishes the proof of the lemma. O

3 The result

For the proof of the bounds on p, (f), we use the fact that the distribution of gx|a for
a fixed A C {0,1}" tends to the uniform distribution on the functions A — {0, 1} when
k tends to infinity. Moreover, we need an explicitly given estimate of the distance of
the distribution of gi|4 from the uniform one depending on A and k. Such an estimate
is given in the following theorem, which is proved in the next section. For any at least
two element subset A of the Boolean cube, let (A) be the minimum of p(x,y), where
p is the Hamming distance and xz,y € A are distinct. If |A| = 1 then let pu(A) = n.
Moreover, for every nonzero function w, let p(w) be defined as p(w™'(1)).

Theorem 3.1 There exists a constant K > 0 such that for every n, every nonempty
subset A C {0,1}", every f : A — {0,1} and every k > ko(A) = 2log, |A| +
logy,(n/u(A)) + K, we have

N 1 1
Pr(gela = f) — gmar| = SR



Note that the number of different functions, which may appear as a realization of
Gnis does not exceed (2n + 2)*". Hence, for k < log, |A| — log, log,(2n + 2) not every
function f : A — {0,1} has a positive probability. This gives a lower bound on the
values of ko(A) that satisfy the statement of Theorem 3.1. If |A| is at least n®*(1) this
lower bound and the value of kyo(A) for which Theorem 3.1 is actually proved differ at
most by a multiplicative constant.

The proof of Theorem 3.1 is given in Section 4. Now, we will apply the theorem to
derive the following bound.

Theorem 3.2 There exists a constant ¢ > 1 such that for every sufficiently large n,
every k that satisfies 0 < k < n/2 and every Boolean function [, we have either

Pri(f) =0 or
1/4

(4n) ™ < ps(f) <
where ((k) = 4%.
Proof:  Clearly, every realization of g,o has a probability at least 1/(4n). For every

k, gnx is a combination of (k) independent realizations of g, 0. This implies the lower

bound.
Let Ao be any maximal subset of {0,1}" that satisfies u(Ag) > n/6. Then, every
point of the Boolean cube is within Hamming distance at most n/6 from Ag. Hence,

n/sl 7,
|Ao| D () > on,
i=0 \J

By using the estimate

(1)< () () = ()

for d = |n/6] and using the fact that the estimate is even larger with d = n/6, we

obtain
| Ag| > 27(6¢)™/ > 271,

Let K’ =log, 6 + K, where K is the constant from Theorem 3.1. Clearly, for every
nonempty A C Ag, we have K’ > log,(n/u(Ao))+ K > logy(n/u(A))+ K. The desired
bound on Pr(g; = f) will be proved separately for 0 < k < K'+4 and K'+4 <k <n/2
starting with the latter range.

If K"+4 <k <n/2, choose any subset A C Ag such that

2(]6—](/)/2 _ 1 S |A| S 2(]6—](/)/2‘

The upper bound on |A] in this requirement implies & > ko(A), where ko(A) is the
number from Theorem 3.1. Hence, for every Boolean function f, we have by Theorem

3.1
2

Pr(gy = f) < Pr(grla = fla) < STk



Hence, assuming log, 0 = —oo and using the lower bound on |A|, we have
log, Pr(jr = f) <1 —|A] <2 —20=K)/2 < _olh=K")/2-1

In other words,

log, Pr(gr = f) < =278 Y(k)Y/4, (3.1)

If0 <k <K' +4, use Lemma 2.3 and the fact that for every f, Pr(go = f) < 1/4
to derive for every f

log, Pr(g = [) < —2 < 20D = 9= =1yt

This, together with (3.1), implies the upper bound in the theorem, if we choose ¢ =

K'j2—1

22" . O

4 Convergence to the uniform distribution

In this section Theorem 3.1 is proved. To this end, we use the discrete Fourier transform
of the distribution of §;. For a random Boolean function with an arbitrary distribution,
the discrete Fourier transform is defined as follows.

Definition 4.1 If w is a Boolean function and ¢ a random Boolean function, then let

A(g,w) = B(=1)lo),

One may easily see that |[A(g,w)| < 1 and A(g,0) = 1 holds for any § and w. More-
over, it is easy to verify the following formula for the inverse of the Fourier transform.

Lemma 4.2 For every A C {0,1}" and every f: A — {0,1}, we have

Prgla= )= 5 3 AGw)(-DP,

wSXA

Notice that if A is a nonempty subset of {0, 1}" and §|4 has the uniform distribution
on the functions A — {0,1}, then A(g, X4) = 0. On the other hand, using Lemma
4.2, one can see that if A(g, Xg) = 0 for every nonempty subset B C A, then g|4 is
uniformly distributed on the functions A — {0, 1}.

In the following theorem, we express the Fourier coefficients of the distribution of a
parity and of a conjunction of two independent random Boolean functions. Note that
for two random Boolean functions 711 and /~12, A(izl, /~12) is a random variable depending
on the distribution of 711 and on the actual value of /~12. It does not depend on the
actual value of h;. In the context of random Boolean formulas, the identity (4.1) for
the parity was already used in [4].

Lemma 4.3 Let hy, hy be independent random Boolean functions. Then we have



A(hy @ hyyw) = Alhy, w)A(hy, w) (4.1)
A(hiha,w) = By, Ak, how) (4.2)

Proof: Due to the independence of Ay, ks, we have
E(_l)(h@ﬁz,w) — E(—1)<h1’w>(—1)<h2’w> — E(_1)<h17w>E(_1)<h27w>‘

This proves (4.1). Since <iL1/~12,w> = </~11, ]~12w>, by using the expansion to the condi-
tional expectations, we obtain

E(_l)(iﬂﬁz,uﬁ — Z E ((—1)<ﬁ177b2w>|ﬁ2w — U) Pr(ilzw — U).

v<w

Since 711 and 712 are independent, the distributign of 711 under the condition /~12w = v is
the same as the unconditional distribution of £;. Hence, the conditional expectation
in the sum above is equal to A(hy,v). Hence,

A hlhg, Z A hl, PI’ hzw = U)

v<w
This implies (4.2). O

For simplicity, let us use the abbreviation A(w) = A(gx,w). Let il forj =1,2,3,4
be independent realizations of gz. Then, i1 = h1h2 @ hs @ hy and by (4.1)

Apgr(w) = A(hyhy, w) A (w)?. (4.3)
In particular, since |A(/~11i~zz, w)| is always at most one, we have
A1 (w)| < JAx(w)]”. (4.4)

This implies that, by increasing k, |Ax(w)| can be made arbitrarily small provided that
it is initially strictly less than one.

In the proof of Theorem 3.1, we use a real number v that satisfies 1 < v < 3/2. It is
very natural to present the proof with such a general value of this parameter, although
the theorem is finally proved by setting v = /2.

Theorem 3.1 is proved at the end of this section as a consequence of an upper bound
on the Fourier coefficients of the distribution of ¢p. The upper bound will have the
form

|A(ge, w)| < g1

for all w, 0 # w < Xy, and all k& > r, where a real number ¢ > 1 and integers r and m,
are appropriately chosen. Extending an estimate in this form from any k& > r to k + 1
instead of k is guaranteed by Lemma 4.7 on the assumption that mg is large enough.
The number r for which the bound is true for the required my and k£ = r is found using
Lemma 4.6. Let us start with two auxiliary statements.



Lemma 4.4 Let h be a random Boolean function. Let q > 1 and m be some real
numbers, let A be a subset of the Boolean cube and let |A(h,u)| < ¢l¥I=™ be satisfied
for every nonzero u, u < Xa. Then, for every function f: A — {0,1} we have

g+ 1\ _
(13",

Proof: Since A(iz, 0) = 1, we have by Lemma 4.2 that the LHS of the inequality in
the lemma is at most

1 wem _ L .

OyquXA u<XA

1

Pr(hla = f) - STaT

Theorem 4.5 Let h, q, m and A be as in Lemma 4.4. Let |A(/~z,u)| < glel=m be
satisfied for every nonzero u, u < X4, Let hy, hy be independent realizations of h.
Then for every Boolean function w satisfying w < X4, we have

s 1y 1l 4y vl 241 ]
Atnda) < (5) +2(157) e (=)

Proof: Let a Boolean function w < X4 be given. First, let us prove the inequality

B¢l < (q;1)|w|+ (ngl)M ¢ (4.5)

Let v < X4 be any function and denote B = v~!(1). Note that the assumption of
Lemma 4.4 is satisfied also with B instead of A. Since v < h is equivalent to |g = 1,

Lemma 4.4 implies
~ 1 q _I_ 1 |U| m
Pro < By < g+ ()

Hence, we have

<hw

()

v<w

w |l
q_1)| | q2_1 —-m

=5 | £ -] = St v <

This proves (4.5).



By (4.2) we have |A(iL1/~12,w)| < E;L2|A(izl,/~12w)|. Using the bound |A(l~11,0)| <1
and for v # 0 the bound |A(hy,v)| < ¢/I=™, we obtain

|A(iL1/~12,w)| < Z |A(iL1,v)| . Pr(izzw =v)

v<w

< Pr(izzw =0)+ Z q|v|_m . Pr(]szw =v)

v<w
= Pr(izzw =0)+E [q'i@w'_m] )
By Lemma 4.4 used for the set A = w™!(1), we have
. . 1 1 1l
Pr(hgw = 0) = Pr(h2|A = 0) S W + (%) q—m‘
By (4.5)

- [w] 2 1 |20
|haw|—m q+ 1 —-m q + —2m
E [q ] < (—2 ) "+ ( 5 q "

By combining these two contributions, we obtain the theorem. O

Lemma 4.6 For every real number ¢ that satisfies 1 < ¢ < 3, every natural number
m >3, every nonzero Boolean function w and every integer r > logy(n/u(w))+5(m—

3) + 1, we have |A,(w)] < ¢lvI=™.

Proof: Throughout the proof, we assume ¢ = 3. Clearly, proving this case is sufficient,
since the inequality is weaker, if ¢ < 3 and |w| < m. If |w| > m, the inequality is
trivially satisfied.

Let us fix some nonzero function w. In order to prove the lemma, we prove a
slightly stronger statement. Namely, we prove that for every m > 3 and every integer

r > logy(n/u(w)) + 5(m — 3) + 1, we have
A (0)] < g (16)

for every nonzero v satisfying v < w.

The estimate is proved by induction on m. Let us start with m = 3. In this case,
|A,(v)] < ¢IVI73 is trivially satisfied for every v satisfying |v| > 3 and every » > 0. For
the cases |[v| =1 and |v]| = 2 assume that v < w.

If |v| =1, then v = Xy, for some a € {0,1}". By definition,

Ao(v) = B(=1)75) = Pr(go(a) = 0) = Pr{go(a) = 1) = 0.

Using (4.4), |A(v)] =0 < ¢!"1=3 for all r > 0.
If [v] = 2, then v = X, for some distinct a,b € {0,1}". By definition,

Ao(v) = B(—1)ae 00000 =1 — 2 Pr(goo(a) # guo(D)).



The event §,0(a) # gno(b) takes place if and only if g, is equal to x; or z; for some
¢ such that a; # b;. Since each value ¢t = 1,...,n appears with the probability 1/(2n),
we have Ag(v) = 1 — p(a, b)/n, where p denotes the Hamming distance. Since v < w,
we have p(a,b) = p(v) > p(w). Hence, 0 < Ag(v) <1 — p(w)/n.

Summarizing this and using (4.4), we obtain

12, (0)] < 1) < (1 = plw)/n)? < K

It follows that for every r > logy(n/p(w)) + 1 and every v satisfying |v| = 2 and v < w

we have
A )] < e < gt < gt

Now, let m > 4 and r > logy(n/p(w)) + 5(m — 3) + 1. It is sufficient to prove
(4.6) for all v that satisfy additionally 1 < |v| < m — 1. The induction hypothesis says
that for all nonzero v, v < w and every s > logy(n/u(w)) + 5(m — 4) + 1, we have
[Ag(0)] < gll=mtt,

If 1 < |v] <m — 2, then (4.4) and the induction hypothesis with s = r — 5 imply
1A (0)] < JA(0)P2 < |A(v)]2 < 2=+ This is at most ¢I'I=™ by comparing the
exponents. Let |[v] = m —1. By (4.4) we obtain |A,(v)] < |Agi(v)]'°. Moreover, using
(4.3) and the induction hypothesis together with Theorem 4.5 used with m — 1 instead
of m and with A = w™*(1), we obtain

1 m—1 q—|—1 m—1 q2+1 m—1
A, <= 2| —— .
A= (3) w2 (S) + (G

By a routine calculation, one can verify that for ¢ = 3 and m > 4, this implies

A, (0)] < [Agpa (0)]' < g7" = g7

This completes the proof of (4.6) and hence also of the lemma. O

Lemma 4.7 For every v, 1 < v < 3/2, there exists a real number ¢ > 1 and a natural
number mqo > 1 such that for every k > 0, every real m > mg and every A C {0,1}",
the following is true: if for every w, 0 # w < X4, we have |Ag(w)| < ¢"1=" then for
every w, 0 # w < Xy, we have |Appq1(w)| < glvl=vm

Proof:  Let 6 be such that 0 < é < min(3/2 — v,1/6). Moreover, let us prove that
there is a number ¢ > 1 satisfying

1 241
% < ¢"** and % < ¢'t, (4.7)

By taking the logarithm of both sides of both inequalities, the existence of such a
number ¢ follows from the facts that

In £+1 e N
m =2 = lim =2 = - <~ 44
g—1+ In ¢? 9—1+ Ing 2 2
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Let ¢ > 1 be such that (4.7) and ¢ < 1.618 is satisfied. Note that 1 4+ ¢ > ¢*.
Moreover, let mq be a large integer specified later according to v, 6 and ¢. Let m be
such that m > mgy. We are going to formulate conditions, which imply

A (w)] < g (4.8)

for all w, 0 # w < Xy, provided |Ag(w)| < ¢!™1=™ holds for all w, 0 # w < X 4.

To this end, we consider three cases: 1 < |w| < m/2, m/2 < |w| < m and
m < Jw| < vm. In the remaining case, |w| > vm, (4.8) is trivially satisfied.

If 1 < |w|] < m/2, then 2(|w| —m) < |w| — vm and hence, using (4.4), we obtain
B (1)) < JAk(w)f < g2 < gloi=om,

In the two remaining cases we use the identity (4.3). To obtain a bound on the first
factor of its RHS, we simplify the bound from Theorem 4.5 in the range of |w| and ¢
now considered. Since ¢ +1 > ¢? and |w| > m/2, we have (¢ + 1)*lg=™ > 1. Hence,
using also (4.7),

- wl 2 ol
Al £ 3 (TE) g (S

2

< 3q(/2AOwl=m 4 (1426)w]-2m (4.9)

In order to prove (4.8), we first derive a bound on the ratio of its LHS and RHS in
both cases now considered. If m/2 < |w| < m, we use (4.3), (4.9) and |A(w)] < ¢gl¥I=™

to obtain
|Ak+1(w)|q—|w|—|—ym < 3q(3/2—|—5)|w|—|—(u—3)m + q2(1—|—5)|w|—|—(u—4)m

The RHS of this is increasing in |w|. Hence, we obtain an upper bound by setting
|w| = m. Thus
|Ak+1(w)|q—|w|—|—ym S 3q(1/—3/2—|—5)m 4 q(u—2—|—25)m‘ (410)

If m < |w| < wvm, we only know |Ag(w)| < 1. Hence, by (4.3) and (4.9) we get

|Ak+1(w)|q—|w|—|—ym < 3q(—1/2—|—5)|w|—|—(u—1)m + q25|w|—|—(u—2)m

We derive an upper bound on the RHS of this inequality by substituting an appropriate
value of |w| in each of its two terms. In the first one we substitute the smallest value
of the range (|w| = m) and in the second one the largest value (|w| = vm). Hence, we
obtain

|Ak+1(w)|q—|w|—|—ym S 3q(1/—3/2—|—5)m 4 q(u—2—|—25u)m‘ (411)

Because of our choice of 8, the RHS of both (4.10) and (4.11) converge to zero, if
m — oo. Since v, 6 and ¢ are now fixed, it is possible to take a natural number mg
large enough to guarantee that (4.10) and (4.11) are both at most 1 and, hence, (4.8)
is satisfied. This completes the proof of the lemma. O

Finally, here is the convergence result that we have been aiming toward.

Proof of Theorem 3.1: Let v, 1 < v < 3/2, and a nonempty subset A C {0,1}" be
given. Let ¢ and mg be some numbers for which the conclusion of Lemma 4.7 holds.
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As a basis for an iterative use of Lemma 4.7, we need a number r such that for all w,
0 # w < X4, the inequality
A (w)] < gl

is satisfied. Lemma 4.6 guarantees that this is true for some r = log,(n/u(A)) + O(1).
For every s > 0, by using the inequality from Lemma 4.7 s times, we obtain

[Arps(w)] < gl
for every w, 0 # w < X4. Since mg > 1, assuming s = [log, |A| + log, 2], we obtain
[Arps(w)] < gl

for every w, 0 # w < X 4. Let t be such that ¢ > 2 and u > 0. By using (4.4) t 4 u
times, we obtain

A sppu(w)] < (q2t+“)|w|_2|‘4| < (22u)|w|—2|A|

for every w, 0 # w < X 4. Let ko(A)=r+ s+t k> ko(A) and let u =k — ko(A). By

Lemma 4.4 used with ¢ = 22" and m = 2|A|, we have

< g (142 (@) < ()

1
Pr(gela = f) — o

Since r = logy(n/u(A)) + O(1), s = log, |[A| + O(1) and t = O(1), Theorem 3.1 is

proved, if we assume v = /2. O
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