
A Subexponential Lower Bounds for Branching Programs Restricted with Regard
to Some Semantic Aspects

Žák, Stanislav
1997

Dostupný z http://www.nusl.cz/ntk/nusl-33735

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 04.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33735
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A subexponential lower bound for branching

programs restricted with regard to some

semantic aspects

Stanislav �Z�ak

Technical report No� ���

October ��� �		�

Institute of Computer Science� Academy of Sciences of the Czech Republic
Pod vod�renskou v��� �� �	�
� Prague 	� Czech Republic

phone� ���
�� ��
� �� �
 fax� ���
�� 	� 	� �	�
e�mail� stan�uivt�cas�cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A subexponential lower bound for branching

programs restricted with regard to some

semantic aspects

Stanislav �Z�ak�

Technical report No� ���
October ��� �		�

Abstract

Branching programs �b�p�s� or binary decision diagrams are a general graph�based model of sequential
computation� The b�p�s of polynomial size are a nonuniform counterpart of LOG� Lower bounds of
di�erent kinds of restricted b�p��s are intensively investigated� The restrictions based on the number
of tests of variables during any computation �along any path in the case of syntactic b�p�s � resp�� are
very important� Various superpolynomial or even exponential lower bounds are known for ��branching
programs� ���	k��branching programs� and syntactic k�branching programs�

In the paper we present a restriction of another type � the so called gentle branching programs
�g�b�p�s� together with the following results�

�� For each ��b�p� P there is a gentle ��b�p� P � computing the same function such that jP �j �
jP j�
�� Some Boolean functions which are superpolynomially �or even exponentially � hard for ��b�p�s

are polynomially easy for g�b�p�s�

� The same holds for Boolean functions which are superpolynomially hard for ���	k��b�p�s or

for syntactic k�b�p�s�
�� The functions whose sequences cause the hierarchies for ���	k��b�p�s and for syntactic k�b�p�s

�both with respect to k� are polynomially easy for g�b�p�s�
� We �nd a function in P which is superpolynomially hard for g�b�p�s� The proof is based on a

lower bound theorem�

Both� the lower bound theorem and the de�nition of gentle branching programs are derived from

a deeper consideration of the phenomenon of branching of computations�

Keywords
Branching programs� lower bounds

�This research was supported by the GA CR� Grant� No� ���������� �Hypercomplex� and partly
by INCO�Copernicus Contract IP����� ALTEC�KIT�

� Introduction

��� Branching programs

A branching program
b�p�� is a computational model for representing Boolean func�
tions� The input of a branching program is a vector consisting of the values of n
Boolean variables� The branching program itself is a directed acyclic graph with one
source� The out�degree of each node is at most �� Every branching node � i�e� a node
of out�degree �� is labeled by an input variable
or equivalently by an iput bit� and
one of its out�going edges is labeled by �� the other one by �� The sinks
out�degree
� �� are labeled by � and �� A branching program determines a Boolean function as
follows� The computation starts at the source� If a node of out�degree � is reached� the
computation follows the unique edge leaving the node� In each branching node� the
variable assigned to the node is tested and the out�going edge labeled by the actual
value of the variable is chosen� Finaly� a sink is reached� Its label determines the value
of the function for the given input� By the size of a branching program P we mean the
number jP j of its nodes�

Branching programs are a model of the con�guration space of Turing machines
where each node corresponds to a con�guration� Thus� the polynomially sized b�p�s
represent a nonuniform variant of LOG� Hence a superpolynomial lower bound on b�p�s
for a Boolean function computable within polynomial time would imply P �� LOG�

Some generalization of b�p�s have been studied� Let us mention nondeterministic
b�p�s where each branching node may have more than two out�going edges� The poly�
nomial sized nondeterministic b�p�s represent a nonuniform variant of NLOG� Let us
mention also the ��b�p�s ����� and the probabilistic b�p�s ����

In the present paper we use the classical deterministic branching programs� We
work in one of the main streams of branching programs investigation which consists in
proving lower bounds for restricted branching programs� it means for branching pro�
grams of some special properties�

An example of a restriction from the early beginning of investigation are branching
programs of restricted width ��� or oblivious branching programs of limited depth� �����

A special type of b�p�s are the so called ordered binary decision diagrams
OBDD�
where along each computation the tests preserve a �xed ordering of variables and each
variable is tested at most once� OBDD�s play an important role as a tool for repre�
senting Boolean functions in many computer applications�

�

��� Restricted branching programs

The most commonly used restrictions are based on the number of tests during a com�
putation or along a path in b�p�s in the question� So� the read�once branching programs

��b�p�s�� where during each computation each variable is tested at most once� are well�
known� The lower bounds range from �c

p
n����������� through �n�logn ��� to �cn �����������

and �n�o�n� ��	��There are lower bounds also in ������������

There are some attempts to prove lower bounds for large classes of restricted branch�
ing programs� The real�time branching programs are allowed to do at most n tests
during each computation� The related lower bounds are in ��������������

The syntactic k�branching programs are allowed to have at most k tests on each vari�
able along any
consistent or nonconsistent� path� The lower bounds are in ����������	�
and the hierarchy with respect to k in ����������

The
���k��branching programs are allowed to test at most k variables repeatedly
during each computation� The lower bounds are in ������������ and the hierarchy in
�����
The hierarchy for the syntactic case is proven in ������

We present another attempt in this direction with results as stated in the Abstract�
However� the problem of the superpolynomial lower bound for ��b�p�s
from �	���
remains open till now�

��� The basic ideas and the results

Our results are derived from two informal ideas�

Let us introduce the �rst one� For the branching program in question given any
input we want to catch what information about the contents of the input bits is re�
membered
or forgotten� at any moment of the computation� We represent such a
knowledge by a word of the length n over the alphabet f�� �����g where ��� stand
for �unknown��

From some reasoning about TM�s it follows that the de�nition of crosses
�� has
to satisfy the next two� very natural conditions

a� Immediately before a test on a bit i� i is crossed�
b� Immediately after a test on a bit i� i is non�crossed�
From this requirement it follows that the knowledge depends not only on the node

reached during the computation but that di�erent inputs reaching the same node may
have remembered di�erent information� This notion of remembered and forgotten in�
formation formally de�ned in Section � enables us to formulate and to prove our two
lower bound method theorems�

The second informal idea concerns a situation where two computations reach the

�

same node v of the b�p� and after v they never branch� In this case we see that the
bits on which these inputs di�er have no in�uence on the common part of their com�
putations and hence no in�uence on the reached sink� At v these computations must
have achieved a partial result� In Section � we try to catch this strange phenomenon
by de�ning when a bit of an input has �� This allows us to de�ne the distribution
of inputs over any branching program which is a key�notion of the de�nition of gentle
branching programs in Section �� There we also prove the relation of ��b�p��s and gentle
b�p��s as indicated in the Abstract�

In Section � we prove a subexponential lower bound �n
���

on the size of gentle
branching programs for a Boolean function which is computable within polynomial
time on Turing machines� The proof is based on the theorems from Section � men�
tioned above�

In Section � we prove an O
n� upper bound
on gentle branching programs� for the
Boolean function f which is de�ned as follows f
A�x� � � iff A�x � ��
the input bits
are arranged into a matrix and a vector�� From �	����� it is possible to derive that f is
subexponentially hard for syntactic k� and for
���k��branching programs� Moreover
we prove an O
nlog�n� upper bound for functions which are used in the Okolnish�
nikovova proof of the hierarchy of syntactic k�branching programs ���������� Further�
we prove a polynomial upper bound O
n�� for multipointer functions which are used
in ���� for the proof of the hierarchy of
���k��branching programs�

In Section � we prove an O
n���� upper bound for the parity of the number of
triangles in a graph
this function requires �c�n� on read�once b�p�s ���������

Further� we prove a O
n�� upper bound for half�cliques�only function and a O
n��
upper bound for the Ablayev�Karpinski function ���� The last upper bound is proven
for the multiplication� Its size is O
n��
cf� ������

� Preliminaries

First we introduce some technicalities concerning words� For a binary word
a binary
string� m � f�� �gn bymi we mean its i�th symbol� If A � f�� �� ���� ng� by mA we mean
the assignment of bits from A consistent with m� If R is a predicate on f�� �� ���� ng
by mR we mean mA where A � fj j R
j�g� E�g� m��i�m�i where � � i � n� If
A�B � f�� ���� ng� A � B � � and a
b�resp�� is an assignment of A
B�resp�� then
by �ab� we mean the assignment of A � B such that �ab�A � a� �ab�B � b� E�g�
�m�im�i� � m� For a word m by jmj� we mean the number of its ones� similarly jmj��

Secondly we introduce some notions concerning branching programs� Let P be a
branching program� m � f�� �gn be an input word� By comp
m�
the computation on
m� we understand the sequence of nodes of P which starts in the source of P and ends
in a sink such that in each branching node v with a label i comp
m� chooses the succes�
sor v� such that the label of the edge
v� v�� is equal to mi� If a node v � comp
m� we

�

say that comp
m� goes through v or simply that m goes through v or that m reaches
v� Similarly we say that m goes through an edge�

If v is a node of a branching program P then by Pv we mean the branching program
with the source in v� If M � f�� �gn then by PM we mean the branching program
which is given by deleting of all nodes and edges
from P � for which no m � M goes
through�

Further� let us remember the operation of development of a branching program P

from its source� into a tree� By a development of P from its node v we understand
the development of Pv�

By a subcube we mean the set M of inputs such that there is I� I � f�� ���� ng and
M � f�uv�jv � f�� �gIg where u is an assignment of f�� ���� ng	 I� The bits from I are
called free bits� the other are called �xed bits� For a sink v of P M is called an original
subcube if all inputs from M reach v and the free bits of M are never tested� For a
node v � P by an agregate computation we mean the set of computations
the set of
inputs� which follow the same branch of Pv till its sink�

� Windows

By a window we mean a string w � w����wn � f�� �����gn� By the length lw of such
a window w we understand the number of i�s such that wi � f�� �g
the number of
noncrossed bits��

We say that a window w is a window over a word u � f�� �gn i� for each its
noncrossed bit i wi � ui holds�

De�nition ��� Let P be a branching program �over n variables�� Let v be a node of
P and M be a subset of the set of all inputs which �starting in the source of P � reach
v� Let m �M �

Then we de�ne the window w
m� v�M�P � over m in the node v with respect to M as
follows � �Starting at v� we develop the program Pv into a tree� In this tree we perform
all computations starting from v which are given by the inputs from M � We omit all
the edges and the nodes of the tree which are not reached by any of these computations�
We omit all non�branching nodes� Now let us consider the branch b which is followed
by the computation comp
m��

�� We assign crosses �	� to all bits of w
m� v�M�P � which are labels of nodes of
the branch b�

� Now we consider the set L of all inputs �from M� which follow b till its leaf� We
assign the cross �	� to each bit which is not tested during any computation �from the
source to the sink� on any word from L�

�� Further� we assign a double�cross � to each remaining bit i of w
m� v�M�P � for
which in L there is an input m� �M such that mi �� m�

i�
� The remaining bits of w
m� v�M�P � have the same contents as in m�

�

Comment� a� We see that all inputs following the same branch b have the same
set of crossed
�� bits� of double�crossed
�� bits and that all non�crossed bits have
the same contents�

b� The larger M the lesser number of non�crossed bits�

Before stating the main theorems we will prove some facts to become familiar with
the de�nition�

For a moment due to some technical reasons we shall use a slightly modi�ed branch�
ing programs such that on each path for each node with in�degree � � or out�degree
� � both its immediate predecessors and successors have in�degree � out�degree � ��

Let us �x a set M � f�� �gn� let P be a branching program such that P � PM �
For each node v of P we put Mv �df fm �M jm reaches vg� In the sequel
before the
main theorems � at each node v � P we will consider the windows with respect to Mv

only�

Proposition ��� Let v be a branching node of P with a test on the bit i� Let v� be
one of two nodes which immediately succeedes v� Then for any m � M going through
v� v� the following holds� The windows for m at v and at v� di�er only in the bit i� At
v i is crossed� at v� i is non�crossed�

Proof� Let m �M � Let b be the branch of the tree developped at v which is followed
by m� Since P � PM at v the tree has a branching node labeled by i� Hence i is
crossed� At v� all inputs from Mv� have the same value of i� hence i is non�crossed�
The branch b� of the tree developped at v�
induced by m� has the same branching
nodes as b has
with the exception of v with the label i� and its leaf has the same set
of inputs as the leaf of b has� Hence the set of crossed and double�crossed bits remains
the same
with the exception of i�� �

Comment� We can follow a computation on any input m from the source to a sink
and consider the changes of the window on m during the computation� The proposi�
tion says that a test on a bit implies that exactly one crossed bit becomes non�crossed�
which is in a good correspondence with the informal idea that a test is an acquisition
of exactly one bit of information�

By a symmetric word we mean any word of the form uv where v � uR� By a pair
of symmetric positions we mean any pair
i� j� � � � i� j � n� where i � n	 j � ��

Theorem ��� Let M � f�� �gn� let P be a branching program recognizing symmetric
words of the length n� Then for each symmetric word m and for each pair
i� j� of
symmetric positions during comp
m� there is at least one node v at which� in the
window for m �with the respect to Mv�� both i� j are non�crossed�

Comment� The theorem corresponds to the informal idea that for comparing two
bits i� j it is necessary that both i� j are known
non�crossed� at the same moment�

�

Proof�

By contradiction� Let m be a symmetric word and i� j be a pair of symmetric
positions such that during comp
m� they are never both non�crossed at the same
moment
at the same node�� We see that for both i� j there are some nodes at which
they are non�crossed since both must be tested during comp
m�� Let us assume that
the last window on i precedes the last window on j� Let v be the node from comp
m�
such that immediately before v i is non�crossed and this is the last moment when i
is non�crossed during comp
m�� Since at v i is not non�crossed there is an input m�

such that mi �� m�
i and such that a� m�m� branches after v on i or b� m�m� follow a

common path till a common sink� According to a� there is a window on m with the
non�crossed i after v� It is impossible� It remains only the case b�� From b� it follows
that m� is also a symmetric word� After v j becomes non�crossed� Hence after v there
is a test on j
according to the previous proposition�� Since from v m�m� follow the
same path m�m� have the same value on j� For our symmetric words m�m� we have
m�

i �� mi � mj � m�
j� A contradiction� �

Now we introduce two main lower bound method theorems�

Theorem ��� Let P be a branching program� let v be one of its nodes� let M be a
subset of the set of all inputs which �starting at the source� reach v� Then the average
number of crosses and double�crosses in w
m� v�M�P � for m �M is at least log� jM j�

More formally�
P

m�M
n	 lw
m� v�M�P ��jM j
 log�jM j�
Proof� Let us develop the program PvM into a tree T�� Let d� be the average number
of crosses
�� and double�crosses
�� over all m � M �

We transform T� into a tree T� which in each of its leaves has only one input from
M � In each leaf of T� which is reached by two or more inputs from M we start a
new subtree such that on each its branch there is a test on each bit which is crossed
according to rule � of the de�nition of w
�� v�M�P � and then on each branch there are
some tests on bits which are double�crossed in w
�� v�M�P � until in each leaf of the
transformed tree T� there is only one input from M �

If we apply the rules � � � from the de�nition of windows on T�� we see that for
each m � M � for each bit i � if i is crossed according to T� then i was a crossed or
double�crossed bit according to T�� Since T� does not give double�crosses we see that
for the average number d� of crosses given by T� the inequality d�
 d� holds�

Further� we shall transform T� into a balanced tree T��
By a balanced tree we
mean a tree where for each pair of its branches the di�erence of their lengths is at
most one�� We shall also transform the set M into another set M � of inputs such that
jM �j � jM j� Let d� be the average number of crosses given by T� to inputs from M ��
We shall prove d�
 d�
 log� jM �j � log� jM j�

Let us describe one step of the transformation of T� into T�� Suppose there are two
branches b�� b� of T� such that jb�j 	 jb�j
 � where for any branch b jbj denotes the

�

number of its tests
its length�� Let m�
 m�� resp�� be the input which follows b�
b��
resp�� till its leaf� We delete m� from M � The total number of crosses is decreased by
jb�j � �
jb�j is the number of crosses on b� and � is given by the disappearing of the
last cross on the input m which branches with m� in the last test of b��� We add such
an input m� to M that m� follows b� till its leaf where m� branches with m�� By the
last action the total number of crosses is increased by jb�j� �
jb�j � � is the number
of crosses on m� and � is for the additional cross on m���

We repeat this procedure until the resulting tree is balanced� We see that jM j �
jM �j and d�
 d��

Now it remains to prove the following proposition�

Proposition ��� Let T� be a ballanced tree� Let M be the number of its leaves� Then
the average length of branches of T� is at least log�
jM j��

Proof� Let k be the length of the shorter branches of T�� Let m be the number of
nodes of T� on the level k which are not leaves� m �� �� �k 	 � ��

We see that the number of branches of T� is �k � m� Hence� the average length
of branches of T� is �
�k � m��k � �m��
�k � m�� We have to verify log�
�

k � m� �
k��m�
�k�m�� It su�ces to verify �m�
�k�m�
 log�
��m��k�� For m �� �� �k �
we put x �
� �m��k�� hence x �� �� � ��

It su�ces to verify �x 	 �
 x� log� x� It is the truth for x � �� x � �� Moreover
for x �� �� � �
x� log� x�

�� �
log� e��x � �� Hence� x� log� x is a convex function on
� �� � �� Therefore �x	 �
 x�log�x�

�

�

Theorem ��� Let P be a branching program� Let fXigri�� be a system of sets of some
inputs� To each Xi a node vi of P is assigned such that all x � Xi go through vi� Then

log� r
 log�
Pr

i�� jXij 	 n � average length of w
x� vi�Xi� P ��
More formally� log� r
 log�

Pr
i�� jXij 	 n�

Pr
i��

P
x�Xi

lw
x� vi�Xi� P ��
Pr

i�� jXij�

Proof�

For x �
���� we put 	
x� � x� log� x� We know that 	
x� is a convex function since
	��
x� �
log� e��x � �� According to Jensen�s inequality we have 	

Pr
i�� jXij�r� �

Pr

i�� 	
jXij���r�

Further
Pr

i�� jXij�log�
Pr
i�� jXij�r� �Pr

i�� jXij� log� jXij and log�
Pr

i�� jXij	log� r �

Pr

i�� jXij� log� jXij��Pr
i�� jXij�

�

According to Theorem ���� the last expression is not greater than the average num�
ber of crosses and double�crosses in w
�� vi�Xi� P � which is equal to n	average length of windows�
Hence

log� r
 log�
Pr

i�� jXij 	 n � average length of windows�
�

Comments� a� Under the assumption that fXigri�� cover all �n inputs the state�
ment of the Theorem is abreviated as follows

�log�r
 average length of windows��
If there is a relation between r and jP j we have a lower bound for jP j�

b� The Theorem corresponds to an informal idea that �If we want to have a possi�
bitity to remember much information about many inputs then we need a large mem�
ory��

c� Both Theorems form a method for proving lower bounds on the size of general
branching programs� We will apply them in Section � for our lower bound� There is
an open question to �nd another nontrivial application�

� Gentle branching programs

Let us introduce the key�notion for the de�nition of the gentle branching programs�

De�nition ��� By the distribution on a branching program we mean a partition of
the set of all inputs f�� �gn together with a one�to�one assignment of all classes of the
partition to some nodes of the branching program in question� The partition and the
assignment are given by the following rule�

Brie�y �with a danger of confusion�� We stop each input in the node where its
window has a double�cross � for the �rst time �or in a sink��

Precisely� By Pr we mean the next procedure�
Input� A � f�� �gn� For each computation comp
m�� m � A� in each node v let

us consider the window w
m� v�M�P � where M � A is the set of all inputs from A
reaching v�

For each m � A we mark the �rst v in comp
m� such that w
m� v�M�P � has a bit
with a double�cross ��

In the set S of marked nodes we say that v � S is a maximum one i� there is no
v� � S� m� � A such that v� is marked for m� and v� precedes v in comp
m���

For each maximum node v � S we de�ne Mv �df fm � A j v is marked for comp
m�g�
Output� RA �df fMvjv is maximumg �

A � A	 SRA�

We perform Pr starting with A � f�� �gn until RA � ��

�

The resulting partition is given as R �df RA�
� ���RAk

� fMs� � ���Mslg where RAi

means RA for the i	 th cycle of Pr� and Msj is the set of inputs which reach the sink
sj �after the last cycle of Pr��

It is easy to see that the assignment v � Mv � R which we have constructed is
one�to�one�

By a proper class of the distribution we mean a class from RA�
� ��� �RAk

�

It is clear that each improper class Msj is an original subcube�

De�nition ��� For a distribution D� by the factorization of D we mean a �ner par�
tition given by the factorization of each proper class of D according to the equivalence
�to have the same set of �bits with� double�crosses ��s��

More precisely� Let M be a proper class of D� Let v be the node such that M � Mv

in the j�th cycle of Pr �for some j�� We say that m��m� �M are equivalent
i� i
i � ����n�
w
m�� v�M�P �i � � � w
m�� v�M�P �i � ��
where Aj is the input for the j�th cycle of Pr�

Let M�C be two sets of inputs� C � M � and let all inputs from M reach a node
v� We say that C preserves the double�crosses of M if for each u � C and for each
i� � � i � n the next implication holds w
u� v�M�P �i � �� w
u� v� C� P �i � ��

It is easy to see that each class F of the factorization of any class M of the distri�
bution preserves the double�crosses of M �

We say that a class of M of a distribution D is a significant one i� jM j
 �n�
�
We say that an fd�class F subclass of a class M of a distribution is a significant one
i� jF j
 jM j���
� � will be quanti�ed in the next chapter�

De�nition ��� Let F be an fd�class�
By hF we mean the set of bits which are double�crossed� by tF we mean the set of

the other bits�
HF �df fmhF j m � Fg�
TF �df fmtF j m � Fg�

De�nition ��� Let F be an fd�class at a node v� Let D be the set of bits which are
double�crossed �for all f � F �� Let SF be the tree induced by F at v� Let V�� ���� Vt be
the agregate computations which coincide with branches of SF � Let M�

i � ����M
mi
i be the

maximum original subcubes which are formed by inputs following Vi� By Gj
i we mean

the set of bits from D which are free for M j
i and by Oj

i we mean the set of bits from D
which are �xed for M j

i �

De�nition ��� Let P be a branching program� We say that P is a gentle branching
program if the following holds�

	

If there is a signi�cant proper class in the distribution on P then there is another
signi�cant proper class �at a node v� containing a signi�cant fd�class F ful�lling the
following conditions �R��� �R
�� �R��

�R�� Let the sets W��W� of bits be de�ned as follows �
W� �df fij
f�� f� � F �
w
f�� v� F� P �i � w
f�� v� F� P �i � f�� �g�g
W� �df fij
�f � F �
w
f� v� F� P �i � f�� �g�g�
The condition is jW� 	W�j � �� �� will be quanti�ed in the next section��

�R
� h � HF t � TF fP
�h� t�� � fQ
t� where Q � PvF �

�R�� For all i� j Oj
i is the same set�

From the de�nition of windows we know that the condition
R�� implies for all i� j
Gj
i � ��

Theorem ��� For each ��branching program P there is a gentle ��branching program
P � with jP �j � �jP j and fP � fP � �

Proof� Let P be a ��branching program�

Proposition ��� Let C be a proper class of the distribution on P � Then C consists
of a unique fd�subclass satisfying �R����R
� of the de�nition of gentle programs�

Proof�

Let C be equal to the set fui � f�� �gnji � �� ���� sg� For each i � i � �� ���� s� let Ri

be the set of bits tested during comp
ui� before v is reached� Let R �df
Ss
i��Ri�

Proposition ��	 For each bit i outside R and for each j� j � �� ���� s� w
uj� v� C� P �i �
��

Proof� Let us develop a tree T induced by C from the node v� During comp
uj� after
reaching v the bit i is either read for the �rst time � therefore in T there is a branching
node with the label i and we have the desired � on i� or the bit i is not tested at all �
we have a � on i� too�

�

Let us remember the well�known fact that after v no uj tests any bit from R�

Proposition ��� For each i � R if i is a double�crossed bit for an uj � C then i is a
double�crossed bit for all uj � C�

Proof� Let i � R be a double crossed bit for an u � C� Then there is an u� � C such
that u� follows u to its sink� u� u� di�er on i and at least one from the inputs u� u� is
tested on i before v�

��

Let us choose any uj � C� Let nj �df u
j
f�� ������ ng	R�� We see that �uR� nj� and

�u�R�nj � have the same properties
mentioned above� as u� u�� Therefore they have a
� on i� Moreover� they follow uj from v to the sink in question� Therefore uj has a �
on i� too�

�

Corollary ���
 All uj � C have the same region of the crossed ���� the double�crossed
��� and the non�crossed bits�

We see that C is also an fd�class satisfying
R���
R���
�

Proposition ���� For each ��branching program P there is a branching program P �

such that
��� fP � � fP �
�
� jP �j � �jP j�
��� P � is a ��branching program �
�� Each proper class of the distribution on P � satis�es �R�� from the de�nition of

the gentle branching programs�

Proof�

We will transform P into P � by a sequence of elementary steps� Each of them will
consist in inserting one redundant test in the program� �Redundant test � means a
test where both out�going edges go to the same node� It is clear that
�� fP � � fP will
be satis�ed�

Let Q be a ��branching program arising from P after some transformation steps�
Let us describe the elementary step on Q�

For any input u by compD
u� we mean the initial part of comp
u� from the source
to the node at which u is distributed� We say that an edge e of Q is supported by a
path p i� e � p� Let D
Q� be the subgraph of Q given by edges which are supported
by compD
u�� u � f�� �gn� D
Q� is also an oriented acyclic graph with one source� Its
special properties are

a� Its sinks are given by the nodes of Q at which some inputs are distributed�
b� Except of sinks
and the source� all nodes of D
Q� have in�degree � in D
Q��

Let us consider the set of all nodes of Q at which a proper class not satisfying
R��
is distributed� Let v be a maximum node of this set
i�e� in P v has no predecessors
from this set�� Let F be the proper class distributed at v� Let v�� ���� vl be the imme�
diate predecessors of v in D
Q�� In D
Q� for each j� � � j � l there is a unique path
pj going from the source to v via vj� Let M j be the maximum original subcube go�
ing through pj to v� Let Gj be the set of bits fromD
see def� ���� which are free forM j�

��

There is a j� such that Gj� �� � since F does not satisfy
R��� Let a � Gj� �

On pj� let y be the �rst node such that the subprogram Qy does not contain any
test on a� Such a y exists because in Qv there is no test on a since a � D� y is not
the source because in Q a test on a must exist since a � D� Let x be the immediate
predecessors of y on pj� � In Qx there is a test on a therefore no path from the source to
x contains a test on a� Now it is clear that if we insert a redundant test
 � two nodes�
on a between x and y the resulting program Q� remains to be ��branching program� At
this moment we see that the point
�� of the statement of the Theorem is also satis�ed�

Let us consider the distribution on Q�� In comparison with the situation on Q there
are changes concerning F � In D
Q�� the path pj� from D
Q� is interrupted at the sec�
ond node of the test inserted between x and y where a new class F � of the distribution

on Q�� arises� It is clear that F � satis�es
R�� since inputs from F � have double�crosses

�� only on a�

Slightly more complicated situation is at the node v� If l
 � than at v there is
some class of distribution with l 	 � in�going original subcubes M j �

In the case l � � one path pj with only one M j remains alone� pj expands to a tree
whose branches end by meeting one another or by meeting another path in D
Q�� or
by reaching a sink�

We see that D
P �� without the nodes with in�degree � � forms a tree� The �rst
nodes of inserted redundant tests are placed only in the leaves of this tree� The remain�
ing nodes are from P � Hence� the number of the inserted �rst nodes is at most twice
the maximum number of leaves of any tree in P which is equal to twice
jP j � �����
Since at least one leaf of our tree is from P we may estimate the number of inserted
�rst nodes by jP j� Hence� jP �j � �jP j
the point � of the statement of the Theorem��

�

From Proposition ��� it follows that P � is a gentle ��branching program�

The proof of Theorem is completed�
�

� The lower bound

For the purposes of the present paper we put
 � � � ��n
���

and � � n����

We shall de�ne a Boolean function J for which we shall prove our lower bound for
gentle b�p��s�

��

Let us assume that n input bits are organized into a binary
�� ��
k
p
n�pn�k��

matrix A where k � N� k
 � and moreover
p
n�k is an odd number�
Such a ma�

trix A will be called �a matrix for J��� The columns of A are indexed by numbers
i �� 	
pn�k 	 �����

p
n�k 	 ���� �� The column C� will be called the starting

column�

In the following de�nition for two vectors
columns� M�C of the same dimension
by M �C
M �C� resp�� we shall mean the column which is the componentwise sum
modulo �
componentwise conjunction� resp�� of M and C� For a column M by jM j�
we shall mean the number of ��s in M � Similarly jM j��

On natural numbers larger than

p
n�k	���� for q � �n��� we de�ne some intervals

N�� ���� Nq and a binary labeling of numbers from these intervals�
For i� � � i � q� the labeling on Ni forms the word
�i�i����� We see that each

two positions in Ni which di�er by about i have di�erent labels and that the summary
length of N�� ���� Nq is at most ���q��
The area of intervalsNi is adjacent to the matrix
for J ��

Further the interval � k
p
n�� 	

p
n�k 	 ����� k

p
n�� �

p
n�k 	 ���� � will be

called the marked area MA� We see that the inequality
���q� � k

p
n�� 	pn�k � �

holds� It gives more than a su�cient space for
Sq
i��Ni between the matrix for J

and MA�

Outside of
Sq
i��Ni �MA the odd positive numbers greater than

p
n�k 	 ���� will

be labelled by �� the even ones by �� The negative numbers will be labelled in the
symmetric way with only the exception that bits symmetric to those from MA will be
labelled by zeroe�s�

De�nition ��� Let A be a matrix for J � Let s be an index of a column of A� M be a
column of dimension k

p
n and � � f���g�

We de�ne Jump
M�s��� �
M �� s����� as follows �
M � �df M�Cs�
Let p �df
jM �j� 	 jM �j����� If s � p �� 	
pn�k 	 �����

p
n�k 	 ���� � then

s� � s� p and �� � ��
If s� p is in MA� then s� � s� p 	 k

p
n�� and �� � ��

If s�p is outside of the matrix for J and not in MA then s� � s�p and �� remains
unde�ned�

In the sequel M will be called the �memory column� incoming to Cs and M � will
be called the �memory column� out�going from Cs�

We see that if s� is also an index of a column of Awe can iterate Jump on
M �� s������

De�nition ��� Let A be a matrix for J � The value J
A� is given as follows �
Starting with the values M � �k

p
n� s � � and � � � we iterate Jump until the

number of iterations is n or the last s� is outside of A
�MA�� In the case of n iterations
we de�ne J
A� � �� In the other case J
A� is de�ned as the label of s��

��

It is easy to see that J is computable on Turing machines within a polynomial time
� J � P�

Theorem ��� Each gentle branching program computing the function J is of a size
greater than c
n� � �n

���
�

Proof� By contradiction� Let P be a gentle program computing J � the size of P is
c
n�� Let us perform the distribution on P and its factorization�

Since the number of sinks is at most c
n� there are at most c
n� improper classes
of our distribution� Each improper class consists of only one original subcube other�
wise there would be double�crossed bits and the class would be proper� Each original
subcube S in question has at most

p
n�k 	 ���� � � free bits on C� since in the other

case there would be a possibility to reach both output values after the �rst jump which
is in contradiction with the fact that all inputs from S reach the same sink� Hence� S
has at least b �df k

p
n	

p
n�k 	 ���� 	 � �xed bits�

Therefore� the improper classes cover at most c
n��n�b inputs� We see that there
is a proper class of the distribution of the cardinality at least

�n 	 c
n���n�b��c
n�
 �n�
�
Such a proper class is a signi�cant one� Since P is a gentle branching program at a

node v� there is a signi�cant proper class with a signi�cant fd�subclass F ful�lling the
conditions
R���
R���
R�� of the de�nition of gentle branching programs� The cardi�
nality of F is at least f
 �n�

����

Let D�SF � Vi�M i
j �mi� O

i
j be as in the De�nition ���� We will prove that D � �� this

will be a contradiction�

For each i all inputs from Vi have the same region Oi of non�crossed bits and also
the same region Ri of bits with crosses ��s�

Let oi �df jOij� d �df jDj� ri �df jRij� For s an index of a column of the matrix for
J we de�ne Os�i �df Oi �Cs� Ds �df D�Cs� Rs�i �df Ri �Cs and further os�i �df jOs�ij�
ds �df jDsj� and rs�i �df jRs�ij�

We asume w�l�o�g� that each node preceding v in P has out�degree � ��

Proposition ��� Let a � Oj
i � i �� �� ���� t �� j �� �� ����mi ��

Then immediately before v for all inputs from M j
i the bit a is a non�crossed one�

More formally� Let vl be such a node immediately preceding v that all inputs from
M j

i go through vl� Let Xl be the set of all inputs from F which reach vl� Then for all
m �M j

i
w
m� vl�Xl� P ��a � f�� �g�

Proof� By contradiction� There is an input from M j
i which has a� a cross � or b� a

double�cross � on a immediately before v�

��

Case a� On a a cross may be placed if a test on a is expected � but this is impossible
since a � D � or if during the computation from the source to the sink a is not tested �
but this is in contradiction with the fact that the original subcube M j

i is a maximum
one�

Case b� If an m � M j
i would have a double�cross � on a before v� then m is

distributed to a node before v�
�

Let oji be the cardinality of Oj
i � O

j
s�i �df O

j
i � Cs� o

j
s�i its cardinality�

Proposition ���
P

i�j jM j
i j�
oji � oi��f � log� c
n� � n 	 log� f �

Proof� Let us consider our f inputs from F � Immediately before v they reach nodes
v�� ���� vz
each with out�degree � ��� These nodes de�ne a partition of F into classes
X�� ����Xz�

According to the Theorem ��� we have

log�
c
n��
� log� z
 log� f 	 n�

Pz
l��

P
x�Xl

lw
x� vl�Xl� P ���f �
Therefore
log� c
n� � n	 log� f

Pz
l��

P
M j

i�Xl

P
x�M j

i
lw
x� vl�Xl� P ���f

 Pz
l��

P
M j

i �Xl

P
x�M j

i

oji � oi���f according to the previous proposition

�
Pz

l��

P
M j

i �Xl
jM j

i j�
oji � oi��f

�
P

i�j jM j
i j�
oji � oi��f �

�

Corollary ��� d � log� c
n� � n	 log� f � �n����

Proof�
R�� implies that for all i� j oji � d� �

Corollary ��� jW�j � log�c
n� � n	 log�f � �n����

Proposition ��	 If D� � �� then s �� � Ds � ��

Proof� By contradiction� Let us suppose �s �� � Ds �� �� We are able to choose h�� h�
two assignements of Ds given by HF such that or i� a �df
jh�j� 	 jh�j���� 	
jh�j� 	
jh�j���� � � or ii� there is a bit j
 a row j� in Ds on which h�� h� di�er�

Case i��
We know from
R�� that jW�j � � � log�c
n� � n 	 log�f � �n��� and from the

Corollary ��� that jDj � log�c
n� � n	 log�f � �n���� Hence� there is an interval I of
columns without any bit from W� �D containing �
� � log�c
n� � n	 log�f� � ��n���

columns�

��

On SF it is easy to see that for any speci�cation of all bits outside of W�
�D�
there is a number of branches of SF which respect this speci�cation� Some possible
branches may di�er on some bits fromW�� If we choose such a branch b it is clear that
in any case t induced by b is in TF and therefore J
�h�� t�� � J
�h�� t��
according to
the condition
R�� of the de�nition of gentle�� We shall construct a speci�cation which
induces only such t�s � TF that on �h�� t��� �h�� t� the jumps go from C� to I then to Cs

then to the interval Na and such that the positions reached by �h�� t�� �h�� t� di�er by a�
Hence� J
�h�� t�� �� J
�h�� t��� This will be our contradiction�

Outside of I� C�� Cs� we choose an arbitrary assignment� say all zeroes�

For a set X of input bits by R
X� we mean the set of rows containing at least one
bit from X� For a set R of rows and a set C of columns by R�C we mean the set of
input bits which are in a row from R and in a column of C�

We choose a set R� of rows such that R� �
R
W�� � R
D�� � � and jR�j � jIj�
We divide the rows except of R
W� � D� and R� into two sets R�� R� such that

jR�j � jR�j 	 jR�j 	 jR
W� � D�j��� � p� � k

p
n�� where p� is the leftmost posi�

tion of I� We give one�s into R��C��R��C�� zeroe�s into R��C�� R
W��D��C�	W��
For any t induced by this speci�cation it is clear that the �rst jump is to I
via MA�
and that the next memory will be created by ��

On I �rst we give zeroes to I�
R
W��D��� We give one�s to Cp��R�� to Cp�	j�R�

we give jR�j 	 j one�s and j zeroes
we have de�ned the content of I�R���

Further� we choose a set R
 of rows such that R
 � R�� p� �
jR�j � jR� 	 R
j 	
jR�j 	 jR
j 	 jR
W� �D�j��� � s� It is clear that such R
 exists since R� is su�ciently
large� We give ones to
R� 	 R
��I and we give zeroes to R
�I� It is clear that
for any t induced by this speci�cation of bits of I the next jump is to Cs� Explana�
tion Zeroe�s in I�R
W�� eliminate the incertainty about the contents of C��W�� The
speci�cation of I�R� eliminate the di�erence of positions of columns in I� Moreover
zeroe�s in I�R
D� ensure that the memory column incoming to Cs has zeroes on R
Ds��

In any case the memory columnM incoming to Cs has zeroes on R
W��D�� R
� R�

and M has one�s on R� 	R
� The values of M on R� depends on the case� The new
out�going memory column M � is created by ��

First we give some values to Cs�R�� for instance zeroes� For any speci�cation of
Cs�
R��R�� it is clear that for any t � TF induced by any branch of SF which respects
this speci�cation

a� There is an uncertainty concerning the jumped position of the size of at most
jR
W� �D� � R�j � �
� � log�c
n� � n	 log�f� � ��n����

b� The positions for �h�� t�� �h�� t� di�er about a since the incoming memory column
M has zeroes on R
D��

��

So� we specify Cs�
R� � R�� in such a way that M � with supposed zeroes on
R
W� � D� � R� would jump to the leftmost position of the interval Na� In fact� in
R
W� � D� � R� there are some ones in M �� but the jumped position still remains in
Na� Hence �h�� t�� �h�� t� have di�erent values � contradiction�

Case ii�
We proceed in a similar way as in case i� till to the jump on Cs� We choose another

su�ciently large interval K of columns� From Cs we jump via MA to K� On K
we arrange zeroes and one�s in a similar way as in the previous case i� on I with a
substantial change that on the row j � R
Ds� on which h�� h� di�er we don�t give
zeroes but ones� The e�ect of this change is that for any t � TF induced by any branch
of SF which respect our speci�cation the positions jumped by �h�� t�� �h�� t� will di�er
by one� Therefore it su�ces to arrange K in such a way that in any case the next jump
is to the interval N��

�

Proposition ��� D� � �
Proof� By contradiction� Let us suppose D� �� �� We are able to choose h�� h� two
assignements ofD� given byHF such that i� a �df
jh�j�	jh�j����	
jh�j�	jh�j���� � �
or ii� there is a bit j
 a row j� in D� on which h�� h� di�er�

Case i��
Outside of W� and D we specify the bits of C� in such a way that with supposed ze�

roes inW��C� and inD� the �rst jump would be to the leftmost position of the interval
Na� Na is su�ciently large � so for any content of W� �C� and D� the �rst jump must
be in Na� For any t � TF induced by any branch of SF which respect our speci�cation
the positions jumped by �h�� t�� �h�� t� will di�er about a� Hence� J
�h�� t�� �� J
�h�� t���
A contradiction with
R�� of the de�nition of the gentle b�p��s�

Case ii��
We proceed as in the case ii� of the previous proof� We �nd a su�ciently large

interval K of columns
outside of W� � D�� Then we specify the bits in such a way
that the jumps go from C� to K via MA� from K to N��

�

From the last two propositions it follows that D � �� A contradiction� The theorem
is completely proven�

�

� Upper bounds

��� The function f�A�x�

Let us suppose that our n input bits are organized into an
l�m��matrixA and into an

m����vector �x� We de�ne f
A�x� � � i� A�x � ��
 for all j� � � j � l�

Pm
i�� ajixi � ���

��

For appropriate choices of l�m f is superplynomially hard for
���k��branching
programs����� This follows also from ����� From �	� it follows that f is superpolynomi�
ally hard also for nondeterministic syntactic k�branching programs� It is clear that f
is computable within polynomial time� f � P �

Theorem ��� There is a gentle branching program P which computes f and which is
of the size O
n��
Proof�

Let us describe a natural branching program P which computes f � P is a concate�
nation of branching programs P����� Pl where for each j � ����l Pj is responsible for the
multiplication of the j�th row Aj of A with the vector �x� Each Pj has two sinks� in
one of them � with the label � � the computations on inputs for which Ajx � � stop�
the other sink is sticked with the source of Pj	�� Hence� P has l sinks with the label �
and only one with the label ��

Now� let us describe Pj � Pj is a levelled branching program of the width �� Pj has
m levels each with two tracks� In the upper tracks of li � there are two nodes with label
xi
with the only exception of the upper track of l� where only one node exists � the
source of Pj labeled by x��� In the lower track of li there are two nodes labeled by aji�
On the last lm	� level there are only two sinks�

In the upper track of each level li� m
 i
 �� one of the nodes with label xi is
called ��node� the second one is called ��node� In the upper track of the �rst level there
is only the ��node�

The ��node in the upper track of the level i represents the inputs for which
Pi��

s�� ajsxs �
�
i�e� it is reached by computations on these inputs�� A similar rule for ��node�

For a � f�� �g the ��edge outgoing from the a�node on the level i reaches the a�node
of the level i � �� The ��edge reaches one of the two nodes in the lower track of the
level i labeled by aji� The edges out�going from each node in the lower track reach
the ��node or ��node of the level i� �� They are arranged in such a way that the rule
concerning a�nodes is satis�ed�

All Pj �s
and therefore P too� are completely described� We see that P computes
f and that P is of the size of at most ljPjj � l��m � �n�

Now� we shall prove that P is a gentle branching program� Let us concentrate on
P��

De�nition ��� n�� �df �n� for i � �� ����m� a � f�� �g� nia is the number of inputs
which reach the a�node of the level i� nm	�

� is the number of inputs which leave P� by
the sink sticked with the source of P�� n

m	�
� for the other sink of P��

��

Proposition ��� n�� � �n���

Proof� The ��node of the level � is reached by exactly those inputs A�x which have
x� � � or x� � � and a��� � �� �

Proposition ��� For i � �� ����m if ni�
 ni�� then ni	��
 ni	�� �

Proof�

ni	�� � ����ni� � ����ni�
 ���ni� � ���ni� � ni	�� �
The equalities follow from the fact that ��edges from the a�node of the level i go

directly to the a�node of the level i � �
for both a � �� ��� and that ��edge outgoing
from the a�node of the level i goes to a node in the lower track of the level i where a
branching on a�i is performed� �

Corollary ��� nm	�
�
 nm	�

� �

Let us perform the distribution on P � From our point of view the �rst three nodes
with in�degree � � will be interesting � the ��node of level � v��� the ��node v�� and
the ��node v�� of the level �� Let M be the set of inputs such that

Pm
i�� a�ixi � �� We

know that jM j
 �n���

Proposition ��� At v�� no m �M will be distributed there�

Proof� By contradiction� Le us suppose that there is an m � M which is distributed
at v��� All m� which follow m from v�� to a sink are in M too�

For each xi� i � �� ����m in v�� and after it all m� following m go through at least
one node with the test on xi
x� is tested at the source of P��� Hence m has no � on
x�� ���� xm�

For each ai�j di�erent from a��� after v�� all m� following m simultaneously test or
don�t test ai�j� Hence there is no � on ai�j �� a���� The only candidate for � is a����

There are two possibilities �
a� mx� � �
Then for all m� which follow m from v�� to a sink m�

x�
� � holds due to the test on

x� at the source of P�� Hence for all such m� a��� is not tested at all� therefore there is
� on a����

b� mx� � �
Then for all m� which follow m from v�� to a sink m�

x�
� � holds
due to the test

on x� at the source of P��� Since they all have x� � � and they all reach v��� they all
must have a��� � �� Hence� a��� is noncrossed�

We see that there is no � on m at v�� with respect to all inputs reaching v��� A
contradiction�

�

�	

Proposition ��� At v�� there is a unique class of distribution containing all m �
f�� �gn 	M going through v��� the double�crosses � are on bits x�� a���

Proof� If we develop the tree from v�� we see that all inputs� which in P� go to the
��sink� have double�crosses on x�� a��� Therefore they are distributed at v��� �

Proposition ��	 At v�� there is a unique fd�class �of the distribution� F� containing
only inputs from M � These inputs have values x� � �� x� � � and ��a�� � � and
a�� � �� or �a�� � � and a�� � ����

Proof� All inputs from f�� �gn	M which go through v�� and which are not distributed
at v�� have the values x� � �� a�� � �� x� � �� a�� � �� Therefore at v�� there is no �
on these inputs�

Let us develop a tree T from v��� Since in P� x� and x� are tested repeatedly� at
any leaf of T the inputs reaching it have the same values of x�� x��

The case x� � �� x� � �� The bits a��� a�� are not tested at all� therefore on a��� a��
there are ��s
not ���� No double�crosses�

The case x� � �� x� � �� a�� is not tested at all� A cross � on a��� Since v�� is
reached on a�� there must be the value a�� � �� No double�crosses�

The case x� � �� x� � �� a�� is not tested at all � there is a cross on a��� Since v��
is reached� then there must be the value a�� � ��

The case x� � �� x� � �� v�� is reached by inputs from M with the values x� �
�� x� � �� a�� � �� a�� � � or x� � �� x� � �� a�� � �� a�� � �� There are double�crosses

�� on fa��� a��g�

�

Proposition ��� At v�� there are two fd�classes� The �rst one contains inputs from
f�� �gn 	M � the double�crosses are on fx�� a��g� The second one F� contains inputs
from M � the double�crosses are on fa��� a��g� These inputs have values x� � �� x� �
�� a�� � �� a�� � � or x� � �� x� � �� a�� � �� a�� � ��

Proof� Let us develop a tree T from the node v��� We don�t consider the inputs
from f�� �gn 	M which are distributed at v��� Each remaining input which goes to
the ��sink of P� has the values x� � �� a�� � �� Also we see that there are ��s on x�� a���

Now let us consider the inputs from M reaching v��� Since in P� the bits x� and x�
are tested repeatedly� at any leafs of T the inputs from M reaching it have the same
values of x�� x��

��

The case x� � �� x� � �� a�� is not tested� on a�� there is a cross� a�� must be equal
to �� No double�crosses�

The case x� � �� x� � �� a�� is not tested� a � on a��� a�� must be equal to �� No
double�crosses�

The case x� � �� x� � �� For reaching v�� it must hold a�� � �� a�� � � or
a�� � �� a�� � �� There are double�crosses on fa��� a��g�

�

Let F be the largest class from F�� F��

Proposition ���
 The cardinality of F is at least �n����

Proof�

We divide all inputs into the groups G�� ���� G�� according to the equalities x� �
c�� a�� � c�� x� � c�� a�� � c
� ci � f�� �g� Ten of themG�� ���� G�� reach v��� G��� ���� G��

reach v��� For each i� i � �� ���� �� we de�ne G�
i � Gi �M � For i � �� ���� �� all G�

i

have the same cardinality since in and after v�� the computation depends only on
x�� ���� xm� a���� ���� a��m� Similarly for G�

��� ���� G
�
���

Let M�
M�� resp�� be the set of inputs from M which go through v��
v�� �resp���
jM�j� jM�j � jM j
 �n��
see Corollary �����

At v�� the inputs from two groups from G�
�� ���� G

�
�� form F�� At v�� the inputs from

two groups from G�
��� ���� G

�
�� form F��

Hence� jF�j � jM�j��� jF�j � jM�j��� If jM�j
 jM�j then jF�j � jM�j��

jM j���
 �n���� If jM�j
 jM�j then jF�j � jM�j��
 jM j��
 �n���� Hence�
jF j � �n����

�

Corollary ���� At least one of the distribution classes at v�� and v�� is a signi�cant
one�

Now it su�ces to prove that F is a signi�cant fd�class which satis�es
R���
R���
R��
from the de�nition of the gentle programs�

First� let us consider the case F � F�� We see that F� is a signi�cant subclass of
F��

ad
R��� Let us develop the tree SF from v��� We see that x� � �� x� � � are
noncrossed bits on each branch of SF � The other bits which may sometimes be non�
crossed are a��m� xm�

ad
R���

R�� is clearly satis�ed since all t � TF have x� � �� x� � �� Hence� the result does

not depend on a��� � �� a��� � � or a��� � �� a��� � ��

��

ad
R���
Let D be the set of double�crossed bits � We know that all branches of SF have

D � fa���� a���g� From Proposition ��� it is clear that in D there are no original sub�
cubes� Hence� for all i� j Oj

i � D�

Similarly for the case F � F��
The theorem is proven�
�

��� Okolnishnikovova function Fn�s

Let us describe the functions Fn�s� n� s natural numbers� n � s� s divides n� which are
the witness functions for the hierarchy of syntatic k�branching programs with respect
to k
�����������

There are N �
�
n
s

�
variables� each of them is indexed by a subset a� jaj � s� of

the set In � f�� ���� ng� For i � ����n � Wi �df faji � a � In� jaj � sg� We see that

jWij �
�
n��
s��
�
� We de�ne Fn�s �df

Vn
i��

W
a�Wi

xa��

Theorem ���� There is a gentle program P �on N �
�
n
s

�
variables� such that a� P

computes Fn�s� b� jP j � O
N logN��

Proof�

We shall describe a branching program P of the size N logN which computes Fn�s
such that P is a gentle branching program�

Let Pi be a program of a standard form which computes the function
W
a�Wi

xa� Pi
has two sinks� in the source of Pi there is a test on the �rst xa� the ��edge of this test
ends in the ��sink� the ��edge leads to the test of the next variable
or in the case of the
test on the last variable to the ��sink�� On its turn the next variable will be managed

in the same way� We see that jPij �
�
n��
s��
�
� ��

Roughly speaking� P will be a concatenation
a conjunction� of Pi�s with some
additional properties�

We choose a variable x� Let all Pi�s testing x have the tests on x at their sources�
Moreover all Pi�s with tests on x will form the initial sequence of our concatenation of
all Pi�s�
The number of Pi�s with a test on x is s��

From technical reasons after this initial sequence we insert a chain of redundant
tests of all variables di�erent from x into the concatenation of all Pi�s� The tests of
this chain are of speci�c form so that both ��edge and ��edge of a test of a variable go
to the same node where the next variable is tested
 in the case of the last test they
go to the source of the �rst subprogram from the remaining Pi�s��

��

Later we will de�ne a linear ordering on variables tested in the initial sequence of
Pi�s�

Now we see that P computes Fn�s and that jP j � njPij�N � O
N logN��

Let us investigate the distribution on P � Let v�� ���� vs be the sinks of Pi�s from the
initial sequnce such that vi�s are sources of the next parts of P � v�� ���� vs�� are the
unique candidates for a class of distribution before vs
since they are the unique nodes
before vs with indegree � ��� If an input of m � f�� �gN belongs to a class of the
distribution at a node v�� ���� vs��� then m does not have � on x since in v�� ���� vs�� a
test on x follows� Moreover� comp
m� does not reach vs since the tests on all variables
di�erent from x follow� Hence� each m which is distributed at v�� ���� vs�� ends in a

��sink of one of P�� ���� Ps� The number of such m�s is not greater than s��N��

n��

s��
��

The class of the distribution at vs is a larger one� Each input m with mx � � which
reaches vs has a double�cross � on x since vs is also reached by the input m� which
di�er from m only on x� Further� at vs the double�cross � may be only on x � this fol�
lows from the fact that in the next chain there are tests on all variables di�erent from x�

We see that the class of the distribution at vs is a signi�cant proper class which
consists from the unique fd�subclass F �

It is clear that F satis�es
R�� from the de�nition of gentle programs� It remains
to be veri�ed that
R���
R�� are satis�ed� too�

First we shall complete the speci�cation of the construction of P � We de�ne a
linear ordering � on the set of all variables
di�erent from x�� The initial part of
� is given by the
arbitrary� ordering of tests in P�� In P� � �rst the tests on vari�
ables which are tested also in P� respect �� Moreover they precede the tests on the
remaining variables� In �� these remaining variables follow after the previous ones
and they respect the test ordering in P�� In each Pi� the variables from the previous
Pj �s are tested in respect to � at �rst� then new variables are tested and � is extended�

Let y�� ���� ys be the variables which in P�� ���Ps are tested as the last variables� Let
us suppose that we have m � F � For each variable y �� x we shall �nd out whether y
is crossed
�� at vs or not�

If y is not tested during comp
m� between the source of P� and the node vs� then
y is crossed since there is m� � m�

y �� my and m�
��y � m��y� Both comp
m�� comp
m��

reach vs and they must branch on y in the chain after vs�

Now� we have m � F � y �� x� and y is tested during comp
m� between the source
of P� and vs�

We have two cases A� mx � �� B� mx � ��
ad B�� Since mx � � and m � F there is an m� such that m�

x � � and m� reaches

��

vs� From vs comp
m� and comp
m�� follows the same path� hence they have the same
set of crosses ��s� We see that B� is the same as A� for m��

ad A�� We have m � F � mx � �� Let y �� x be a variable tested during comp
m�
before vs�

a� the case my � �� There is an input m� such that m�
y � � and m�

��y � m��y�
We see that m�

x � � and m� reaches vs
m� has more one�s than m�� Therefore�
m� � F
see above�� m and m� branch on y in the chain after vs� Hence� m�m� have �
on y�

b� the case my � �� There is an input m� such that m�
�y � m�y and m�

y � � and
m�

y� is an unary word over f�g� If y �� y�� ���� ys
last variables�� then m� reaches vs�
Since m�

x � � we have m� � F � m and m� branches on y in the chain after vs� Hence�
both m�m� have � on y�

We see that for all input m � F all non�crossed bits are from the set fy�� ���� ysg�
Since s � N����
R�� is satis�ed�

R�� is satis�ed trivially since D � fxg and in any computation on any input x is
tested before vs�

�

��� Multipointer functions

In ���� it was proven for k
n� up to k
n� � ����n����log���
n that multipointer func�
tions fn�k�n� causes the hierarchy for
���k
n���branching programs � it means that
fn�k�n� is polynomially easy for
���k
n���branching programs but superpolynomially
hard for
���k
n� 	 ���branching programs� We shall prove that fn�k�n�
for k
n� till
n���� are polynomially easy for the gentle branching programs�

We de�ne the functions fn�k as follows First we describe them informally� The n
variables are divided into k blocks of length m� For every j � �� �� ���� k� a weighted
sum of the bits of block j determines an index ij of some of the input bits� Then the
value of the function is the parity of the bits determined by ij for j � �� �� ���� k� The
exact de�nition of fn�k requires some technical notation�

For every natural number n� let p
n� be the smallest prime greater than n� Consider
the set f�� �� ���� ng as a subset of Zp�n�� the �eld of the residue classes modulo p
n��
Then for every t � Zp�n� let �
t� � t if t � f�� �� ���� ng and �
t� � � otherwise�

De�nition ���� For every t �
t�� ���� tk� � f�� ���� ngk and every x � f�� �gn� let
Par
x� t� �df xt� � ���� xtk �

De�nition ���� Let k divide n and let m � n�k� Let n�k f�� �gn � f�� �� ���� ngk be
de�ned as follows� For every x let n�k
x� �df
t�� ���� tk� where for every j � �� �� ���� k

��

tj � �

Pm

i�� ix�j���m	i� where the sum is evaluated in Zp�n�� Moreover let fn�k
x� �df

Par
x� n�k
x���

Theorem ���� For k � n��� fn�k is computable on a gentle branching program of the
size O
n���

Proof�

Given k � N we shall construct a branching program P computing fn�k� The struc�
ture of P will re�ect k blocks of input bits with the corresponding pointers�

P will consist from k�parts Pi� i � �� ���� k� Each Pi will have two input nodes
with
the exception of P� which has only one input node � the source of P � and two output
nodes� The output nodes of Pk are the sinks of P � The two output nodes of Pi are
sticked with the input nodes of Pi	� for all i � �� ���� k 	 �� One of the output node of
Pi is called the ��node � the other is called the ��node� For a � f�� �g it is the truth
that the a�node of Pi is reached by all inputs for which the value of the parity of the
�rst i bits pointed out by pointers from the �rst i blocks is equal to a�

P� has m � � levels� On each level from the �rst m ones one bit is tested� Each
output node of the i�th level represents one magnitude of the contribution of the �rst i
bits to the pointer� On the last level
m��� the bits which are pointed out are tested�
The outgoing edges are sticked to the a�nodes of P��

The other Pi�s consist from two copies of P�
labelled by bits from the i�th block��
The only change is on the m� ��st levels where the outgoing edges must point to the
correct a�node�

We see that that P computes fn�k and that the size of P is not greater then

�k 	 ��jP�j � O
n���

It remains to prove that P is a gentle branching program� We assume that at the
top of P� there is a small irregularity� The initial part of P� consists of the full tree of
depth � where at the root of the tree the variable x� is tested� at its successors x� is
tested and the last tests are on x�� The leaves of the branches
x� � �� x� � �� x� � ��
and
x� � �� x� � �� x� � �� are sticked into one node v
they give the same contribu�
tion to the pointer on the �rst block�� Moreover we suppose that at the level m of P�

the variable xm is tested�

Now let us perform the distribution on P � The node v is one of the �rst candi�
dates for nodes at which some clases are distributed� Let us consider an input p going
through v and assume that p� � �� p� � �� p� � �� Let us take the input p� with
p�� � �� p�� � �� p�� � � such that p� follows p to a sink� We see that p� p� have ��s on
x�� x�� x�� Since during the path through P all variables di�erent from x�� x�� x� are
tested p� p� must equal on these variables� Moreover p� p� must avoid possible tests on
x�� x�� x� at the last levels of Pi�s� Let us estimate the number of such p � i�e� the

��

cardinality of the class F of the distribution at v�

We see that from the pair of inputs which di�er only in the last variable of the �rst
block at most one of them goes through a test on one from the variables x�� x�� x� at the
last level of P� since the possible contribution of the last variable to the pointer is very
large� The same fact holds for all remaining blocks� Hence the cardinality of F is at
least
�n���������k��
 �n���n

���
� Therefore F is a signi�cant class of the distribution�

We see that F is also an fd�class� It remains to verify the conditions
R���
R���
R��
from the de�nition of the gentle branching programs�

Ad
R��� In each Pi we want to avoid the tests on x�� x�� x�� This can be ensured by
�xing the last variable in each block� Hence at most these n��� variables are noncrossed
in any computation on input from F �

Ad
R��� Since after v the inputs from F are not tested on x�� x�� x� the reached
sink does not depend on these variables�

Ad
R��� Clearly�
�

� Other upper bounds

��� Parity of triangles in the graph

Let G �
V�E� be a graph�V � fvigmi��� E � V � V � G de�nes a binary matrix
A �
aij�mi���j�� where aij � � i�
vi� vj� � E�

Since G is unoriented� A is symmetric� By a code of G we mean the binary string
e � a�����a�ma�����a�m���aj�j	����ajm���am���m�

Let f be a Boolean function such that f
e� � � i� e is a code of a graph which has
an odd number of triangles�

For f the lower bounds �n�c on the size of ��branching programs have been proven
in ���������

Theorem ��� There is a gentle branching program P of size O
n���� which computes
f �

Proof� In P the following algorithm is implemented�

We consider all possible triangles
on m vertices�� each
possible� triangle is con�
sidered only once�

��

We �x an
possible� edge� say e�� arbitrarily� In the �rst phase of the algorithm we
consider all
possible� triangles over e�� In the second phase� we consider the remaining
triangles�

P will have k levels Pi� i � ����k where k is the number of all possible triangles�
Each level Pi will be responsible for considering a triangle�

Each Pi has two inputs� two outputs and some internal nodes
with exception of P�

with one input node � the source of P �� The output nodes of Pi�� will be sticked with
the input nodes of Pi� The output nodes of Pk are sinks of P �

For i � ����k � one output node of Pi is called ��node� the other one the ��node� The
following rule is ful�lled Starting at the source of P � each input which among the
�rst i considered possible triangles has an even
odd� resp�� number of actual triangles
achieves the ��node
the ��node� resp�� of Pi�

We see that P computes f � It remains to specify the internal nodes of each Pi� For
each i the input nodes of Pi will be the roots of two copies of the full ballanced tree
of depth � with tests on variables which represent the edges of which the i�th triangle
consists� The out�going edges in the depth � point to �� and ��node of Pi in such a
way that the rule concerning the �� and ��nodes is satis�ed�

We see that the size of P is at most O
n�����

Now we are going to prove that P is a gentle b�p� � Let i� be the last level of P
where the edge e� is tested� Let us perform the distribution on P and let us consider
the situation at the ��node and ��node of Pio � In P only the output nodes of Pi�s have
in�degree � �� hence only at the output nodes the double�crosses
�� may arise� From
the construction of P it is clear that in Pi�	�� ���� Pk all computations have tests on all
variables except e��Hence in P�� ���� Pi� the ��s may be at most on e�� Moreover� in
P�� ���� Pi��� the � on e� is impossible since a test on e� follows in Pi� �

Let us investigate the possibility of � on e� at the output nodes of Pi� � Let m be
an input� m has � on m� i� there is m� such that a� m�

� �� m�� b� comp
m�� follows
comp
m� from the node in question to a sink� In the output nodes of Pi� the condition
b� implies that m��� � m�

��� since in the remaining part of P comp
m� tests all variables
di�erent from e��

W�l�o�g� we suppose that m� � ��m�
� � �� We see that m is the code of such a

graph Gm that deleting the edge e� from Gm the parity of the number of triangles
does not change since comp
m�� goes to the same sink as comp
m�� Hence� in Gm� the
number of triangles with the edge e� is even� Hence� � may only be at the ��node of Pi� �

On the other hand� the condition �m� � � and in Gm there is an even number of
triangles with e�� is a su�cient one for a � on m��

��

Let F be the set of all inputs which have a � on e� at the ��node of Pi�� Later we
shall see that F is a signi�cant class of the distribution� It is clear that F is also an
fd�class and that for F the condition
R�� from the de�nition of gentle b�p��s is satis�ed�

For verifying
R��� from the ��node of Pi� let us develop the tree SF induced by F �
Since during each computation each variable di�erent from e� is tested there are

exactly two inputs m�m�� m� �� m�
��m��� � m�

��� in each leaf of SF �

Let us arbitrarily choose a branch b of SF � We shall investigate the set of non�
crossed bits of inputs following b�

What concerns variables which have not been tested in P�� ���� Pi� there will be a
cross on each of them� It is clear since after Pi� each computation goes through nodes
with tests on all
till this moment � non�tested variables�

Let m � F be an input following b� let x �� e� be a variable tested in P�� ���Pi����
Let y be such a variable that the edges represented by e�� x� y form a triangle� W�l�o�g�
we suppose m� � ��

If my � � we de�ne an input m� as follows m�
��x �df m��x and m�

x �� mx� Since
y � � it is clear that m� has the same number of triangles over e� as m does
even� and
therefore m� � F � m� will branch with m on x therefore m has a cross on x�

If my � �� then we choose m� such that

i� m�

e�
�df ��

ii� m�
x ��df mx�

iii� m� equals m on variables which are tested on b before x�

iv� On the other variables with exception of those which represent the i��th triangle

over e� we de�ne m� arbitrarily�

v� On the remaining two variables we de�ne m� in such a way that m� has an even

number of triangles over e��
Now we see that m� � F � m� follows m along b till to the test on x� Hence m has a

� on x�
We see that on each branch b of SF the only candidates for non�crossed bits are the

two bits which are tested at the level i�� Hence
R�� is satis�ed�

By the way we have obtained the fact that the cardinality of F is at least �n���
Hence F is a signi�cant class of the distribution on P �

R�� is satis�ed clearly�
�

��

��� Half�cliques�only

By a half�clique�only we understand an unoriented graph where one half of vertices
form the full graph and the other vertices are isolated�
G �
V�E�� V � V� � V�� jV�j �
jV�j� E � V� � V���

In �	�� ���� it was proven that the Boolean function f which gives � exactly on the
codes of half�cliques�only is subexponentially hard for ��branching programs� In �		�
��� it was proven that f is subexponentially hard even for nondeterministic ��branching
programs�

By a code of a graph we mean the same string e � s�� ���� sm�� as in the previous
subsection where sj � aj�j	�� ���� aj�m�

Let us notice that the code of any half�clique�only has some special properties
a� Exactly m�� 	 � segments si � i � �� ����m� contain at least one symbol � �
b� For i � j if ai�j � � then the segment sj is an su�x of the segment si�

Let us introduce a natural algorithm computing f �
�� Search for the �rst segment si containing a symbol �� si is pointed out�
�� Move � to a counter C�
�� Perform Proc until C � m��	 ��
�� Let sj be the last segment which is pointed out� Check whether the segment sk

is a zero�sequence for each k� k � j�

Proc
a� Let s be the segment which is pointed out� Search for the �rst j�� j� � j such

that aj�j� � �
the leading one��
b� Check whether sk is a zero sequence for each k� j � k�
c� Check whether sj� is a su�x of sj �
d� sj� is pointed out�
e� Add � to C�

It is easy to see that such an algorithm can be implemented in a branching program
P� of the size of at most O
m
� � O
n���

Theorem ��� f is computable on a gentle branching program P of the size O
n���

Proof�

At the top of P there is a tree of the depth � with branching on a���� a���� a���� The
branches a�� � � a��� � � a��� � � and a��� � � a��� � � a��� � � are sticked into one
node v which is a sink of P with the label �� The other branches are sticked to a node
which is the source of P��

�	

It is clear that P computes f and that jP j � O
n��� It remains to prove that P is
a gentle program�

The sink v is reached by �n�� inputs� Each of them has ��s on a���� a���� � on
a��� and ��s on the other bits� Hence� these inputs form a signi�cant proper class of
the distribution� It easy to see that this class is an fd�class full�lling the conditions

R���
R���
R�� from the de�nition of gentle branching programs�

�

��� Ablayev�Karpinski	s function

In �� there is de�ned a function f on words over four�letter alphabet f�� �� ��� ��g as follows
 f
u� � � i� p
u� � �p
u� where p� �p are projections such that p
u�u�� � p
u��p
u��
and p
�� � �� p
�� � � and p
��� � p
��� � �
� the empty word�� Similarly for �p�

In ��� the authors prove that f is superpolynomially hard for nondeterministic four�
letter ��branching programs� We use a variant of f where the four letter alphabet is
encoded by strings of the length two f��� ��� ��� ��g where the �rst bit represents the
value and the second one represents the type�

There is a natural algorithm A computing f which is based on the procedure
�Search for the next value of the �rst type and search for the next value of the second
type� and compare��

Such an algorithm can be implemented in a branching program P� of the size of at
most O
n���

Theorem ��� f is computable on a gentle branching program P of size O
n���

Proof� At the top of P there is a tree on depth four which branches on the �rst
four variables� The branches induced by inputs with pre�xes ����� ����� ����� ���� are
sticked into a node v which is a sink of P with the value �� The other branches are
sticked into the other node which is the source of P��

It is clear that P computes f and that the size of P is at most O
n��� It remains
to prove that P is a gentle program�

The sink v is reached by �n�� inputs� At v each of them has ��s on the �rst four
bits� The other bits of these inputs have ��s� We see that the class of these inputs
is a signi�cant proper class of the distribution� moreover it is also a signi�cant fd�
class full�lling the conditions
R���
R���
R�� from the de�nition of gentle branching
programs�

�

��

��
 Multiplication

S� Ponzio ���� has proven a �c
p
n lower bound for ��branching programs computing a

function f which is closely connected with the multiplication� For the same function
f we shall prove a O
n�� upper bound for gentle branching programs�

Given x� y � f�� �gm� x � xmxm�����x�x�� y � ymym�����y�y� we de�ne f
xy� �df z
m

where zm is the m�th digit
from the right� of the binary number z � x� y � f�� �g�m�
z � z�mz�m�����z�z��

Theorem ��� f is computable on a gentle branching program P of the size O
n���

Proof� In P we will implement the well�known algorithm for the multiplication� The
algorithm sums the rows Ri � rim����ri��i�� for i � ����m where rij �df x

j � yi� We will
consider the columns Cj � c�j���cm�j where cij �df ri�j�i	� for j	 i�� � � and cij �df �
otherwise� The value f
xy� is given as the sum of the last digit of the sum of Cm and
of the last digit of the transition from the previous columns Cm��� ���� C��

The structure of P will re�ects the columns C�� ���� Cm and the magnitude of the
respective transitions�

P will consists of the parts P�� ���� Pm� With exceptiom of Pm� Pj �s are of the regular
form as follows

Each Pj has some input nodes ad some output nodes� Each input node represents
one magnitude of the transition after the sum of the columns C�� ���� Cj��� It means
that all inputs xy having the transition of the same magnitude
after C�� ���� Cj��� go
through the same input node of Pj� We see that P� has only one input node � the
source of P � The output nodes of Pj are sticked with the input nodes of Pj	��

Each Pj� j � �� ����m	 � consists of lj levels� Each level Li� i � ����lj corresponds
to the value cij� Each level Li� i � �� ���� lj has some input nodes and some output
nodes� Each input node represents one magnitude of the sum of the transition after
the columns C�� ���� Cj�� and of c�j� ���� ci���j� The output nodes of Li are input nodes
of Li	��

At the level Li it is necessary to �nd out the value cij � Each input node of Li is the
root of the full tree of the depth �� The tree tests the variable xj�i	� at its root and
the variable yi at the two immediate successors of the root� The leaves of these trees
are sticked into the output nodes of Li�

Now P is described till Pm��� Since the maximal magnitude of the transition is not
larger than �m the inequality

Pm��
j	� jPj j � O
n�� holds�

It remains to describe Pm� Each input node of Pm
�an output node of Pm���
has out�degree � �� In any case the outgoing edge leads to a node a if the last
the

��

rightmost� digit of the transition after C�� ���� Cm�� is zero or to a node b in the other
case� Starting with a� b Pm consists of levels Li � i � �� ���� lm�
We know that lm � m��
Each level Li has two input nodes and two output nodes� Each input node of Li rep�
resents one value of the last digit of the sum of the transition after C�� ���� Cm�� and
of c�m� ���� ci���m� The output nodes of Li are sticked with the input nodes of Li	��The
output nodes of Lm are the sinks of P �

Now we see that P will compute f �

At each input node of Li it is necessary to �nd out the value of cim� This is ensured
by two full trees of the depth � with roots in the input nodes� In both trees at the root
the variable xm�i	� is tested and at the both succesors of the root we test the variable
yi� With exception of L� the leaves of both trees are sticked into the output nodes of Li�

Inside of L� �rstly� in the tree with the root in a
b�resp�� we stick the branches
xm � �� y� � � and xm � �� y� � � to a node c
d� resp��� Then we give edges leading
from c� d and the remaining leaves of both trees to the output nodes of L��

We see hat jP j � O
n��� It remains to prove that P is a gentle branching program�

Let us perform the distribution on P � For all inputs no bit is double�crossed in
P�� ���� Pm�� since each bit is tested in Pm� The nodes c� d in L� of Pm are the �rst
candidates for nodes with a proper class of the distribution�

Proposition ��� Each input xy going through c � d� resp�� has a double�cross ��� on
xm and only on xm at c �d� resp���

Proof� W�l�o�g� let xy be an input going through c� At a there is the �rst test on
xm � Hence also the input �xy goes through c where x and �x di�er only on xm
y� is
non�crossed� y� � ��� Since the test at a is the last test on xm� after c xy and �xy never
branch and therefore they have a � on xm� After c each input goes through tests on
all remaining bits di�erent from xm� y�� Hence on these bits there is no � at c�

�

�n�� inputs go through nodes c� d� Hence at least one of the classes of the distri�
bution at c and at d is a signi�cant one� W�l�o�g� we assume that there is a signi�cant
class F at c� We see that F is also an fd�subclass and therefore it su�ces to prove
that F satis�es the conditions
R���
R���
R�� from the de�nition of gentle branching
programs�

Ad
R��� Let us consider the tree SF induced by F at c�

Proposition ��� Let xy be an input from F following a branch b of SF � Then all bits
di�erent from x�� x�� x�� xm� y�� ym��� ym��� ym are crossed in w
xy� c� F� P ��

��

Proof� By contradiction� Let e be a non�crossed bit of w
xy� c� F� P � di�erent from
x�� ���� ym� We shall construct another input x�y� such that a� x�y� � F � b� in SF x�y�

follows xy till the test on e where xy� x�y� will branch�
Hence xy will have a cross on
e�� This will be our contradiction�

We choose x�m arbitrarily� we put y�� �df �� Then
in P � we follow xy from c to
the test on e � this path de�nes the value of pairs x�m��� y��� x�m��� y�� � � � � � In x�y� on
e we give the opposite value
as in xy�� In any case x��� x��� x��y�m� y�m��� y�m�� remain
unde�ned� If some other bits of x�y� are also unde�ned we de�ne them arbitrarily�
Further we de�ne x�� � �� x�� � �� x�� y�m arbitrarily� y�m�� and y�m�� are de�ned in
such a way that the last digit of the transition after C�� ���� Cm��
on x�y�� is equal to
��

We can argue that this is possible as follows The starting point is to choose
y�m�� � y�m�� � �� If the last digit of the transition for Cm is equal to one we
change y�m��� y�m��� We know that y�m�� is taken into account only in Cm��
the
corresponding bit is x��� and that y�m�� is taken into account only in Cm��
the cor�
responding bit is x��� and in Cm��
the corresponding bit is x���� Let z� �df x� � y��
If under the condition y�m�� � y�m�� � � we have z�m�� � � we change y�m�� to �� If
z�m�� � � and z�m�� � � we put y�m�� � y�m�� � �� If z�m�� � � and z�m�� � � we put
y�m�� � �� y�m�� � ��

Hence x�y� goes through a and moreover since y�� � � x�y� goes through c and it has
� on x�m� Therefore x�y� � F � the condition a� from our plan of the proof is satis�ed�
Also b� is satis�ed� A contradiction�

�

From the proposition it follows that the only candidates for non�crossed bits are
x�� x�� x�� ym��� ym��� ym� Hence
R�� is satis�ed�

Ad
R��� Let us choose h � HF � t � TF � Let us consider comp
�ht�� in P � We shall
prove that �ht� goes through c and after c the computation depends only on t� Since
t � TF there is an input xy � F such that xytF � t
where tF contains all bits except
of xm�� The input xy goes from the source to a� Before a there is no test on xm� Hence
�ht� follows the same path from the source to a� Sice xy � F y� � � holds � therefore
also �ht� goes to c� After c only the bits from tF are tested� hence the computation
depends only on t� We see that
R�� is satis�ed�

Ad
R�� The bit which is double�crossed at c is tested before c at a for all inputs
from F � Hence
R�� is satis�ed�

We see that P is a gentle branching program� The Theorem is proven�
�

��

Acknowledgements�
I thank K� Bendov a� S� Jukna� P� Pudl ak for their discusions� I am grateful to P�

Savick y for his help with the main proofs of Section ��

��

Bibliography

��� F�Ablayev� M� Karpinski � On the power of Randomized Branching Programs �
Proc� of ICALP�	�� Lecture Notes in Computer Science ��		� Springer �		�� ���
� ����

��� L� Babai� P� Hajnal� E� Szemeredi and G� Turan� A lower bound for read�once�only
branching programs� Journal of Computer and Systems Sciences� vol� ��
�	����
��������

��� D� A� Barrington � Bounded�width Polynomial Size Branching Programs Recog�
nize Exactly those Languages in NC�� Proc� ��� ACM STOC� � � ��

��� A� Borodin� A� Razborov and R� Smolensky� On lower Bounds for Read�k�times
Branching Programs� Computational Complexity �
�		��� � � ���

��� P� E� Dunne� Lower bounds on the complexity of one�time�only branching pro�
grams� In Proceedings of the FCT� Lecture Notes in Computer Science� �		
�	����
	� � 		�

��� M� Ft a!cnik� J� Hromkovi!c � Nonlinear lower bound for real�time branching pro�
grams� Comput� Arti�cial Intelligence �
�	���� ��� � ��	�

��� A� G al � A simple function that requires exponential size read�once branching
programs � to appear in Combinatorica�

��� S� Jukna� Entropy of Contact Circuits and Lower Bounds on Their Complexity�
Theoretical Computer Science� ��
�	���� pp� ��� � ��	�

�	� S� Jukna� A Note on Read�k�times Branching Programs� RAIRO Theoretical In�
formatics and Applications� vol� �	� Nr� �
�		��� pp� �� � ���

��

���� S� Jukna� A� A� Razborov� Neither Reading Few Bits Twice nor Reading Illegally
Helps Much� TR	������ECCC� Trier�

���� M�Krause� S� Waack� On Oblivious Branching Program of Linear Length� Berlin�
�	�	

���� K� Kriegel � S� Waack � Exponential lower bounds for real�time branching pro�
grams � Proc� FCT���� Lecture Notes in Computer Science� Vol� ���� Springer
�	��� ��� � ����

���� C� Meinel� S� Waack � Separating Complexity Classes Related to Bounded Alter�
nating ��Branching Programs � Math� Systems Theory ��� �� � �	
�		��

���� E� A� Okolnishnikovova � Lower bounds for branching programs computing char�
acteristic functions of binary codes
in Russian�� Metody diskretnogo Analiza� ��

�		��� �� � ���

���� E� A� Okolnishnikovova � Comparing the complexity of binary k�programs
in Rus�
sian�� Diskretnyj analiz i issledovanije operacij� �		�� Vol� �� No� �� pp� �� � ���

���� E� A� Okolnishnikovova � On the Hierarchy of Nondeterministic Branching k�
Programs� FCT�	�

���� S� J� Ponzio� A lower bound for integer multiplication with read�once branching
programs� Proceedings of ���s Annual ACM Symposium on the Theory of Com�
puting� Las vegas� �		�� pp���� � ��	�

���� P� Savick y� S� !Z ak � A lower bound on branching programs reading some bits
twice� Theoretical Computer Science ���� �		�� pp� �	� � ����

��	� P� Savick y� S� !Z ak � A large lower bound for ��branching programs� TR	������
ECCC� Trier�

���� P� Savick y� S� !Z ak � A hierarchy for
���k��branching programs with respect to
k � Proc� MFCS�	�� Lecture Notes in Computer Science ��	�� Springer �		�� ���
�����

��

���� D� Sieling � New Lower Bounds and Hierarchy Results for Restricted Branching
Programs � TR �	�� �		�� Univ� Dortmund� to appear in JCSS�

���� J� Simon� M� Szegedy � A New Lower Bound Theorem for Read Only Once Branch�
ing Programs and its Applications� Advances in Computational Complexity The�
ory
J� Cai� editor�� DIMACS Series� Vol� ��� AMS
�		��� pp� ��� � �	��

���� I� Wegener� On the Complexity of Branching Programs and Decision Trees for
Clique Functions� JACM ��
�	���� ��� � ����

���� S� !Z ak � An exponential lower bound for one�time�only branching programs� Proc�
MFCS���� Lecture Notes in Computer Science ���� Springer �	��� ��� � ����

���� S� !Z ak � An exponential lower bound for real�time branching programs� Inform�
and Control ��� �	�� � �� �	��

���� S� !Z ak � A superpolynomial lower bound for
�� �k
n���branching programs� Proc�
MFCS�	�� Lecture Notes in Computer Science� Vol� 	�	� Springer �		�� ��	 � ����

��

