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SCHUR COMPLEMENT SYSTEMS IN THE MIXED-HYBRID FINITE
ELEMENT APPROXIMATION OF THE POTENTIAL FLUID FLOW
PROBLEM *

J. MARYSKA, M. ROZLOZNIK ' AND M. TUMA!

Abstract. The mixed hybrid finite element discretization of Darcy’s law and continuity equation
describing the potential fluid flow problem in porous media leads to a symmetric indefinite linear system
for the pressure and velocity vector components. As a method of solution the reduction to three Schur
complement systems based on successive block elimination is considered. The first and second Schur
complement matrices are formed eliminating the velocity and pressure variables, respectively and the third
Schur complement matrix is obtained by elimination of a part of Lagrange multipliers that come from
the hybridization of a mixed method. The structural properties of these consecutive Schur complement
matrices in terms of the discretization parameters are studied in detail. Based on these results the
computational complexity of a direct solution method is estimated and compared to the computational
cost of the iterative conjugate gradient method applied to Schur complement systems. It is shown that
due to special block structure the spectral properties of successive Schur complement matrices do not
deteriorate and the approach based on the block elimination and subsequent iterative solution is well
justified. Theoretical results are illustrated by numerical experiments.

1. Introduction. Let © be a bounded domain in R? with a Lipschitz continuous
boundary 9€2. The potential fluid flow in saturated porous media can be described by

the velocity u using Darcy’s law and by the continuity equation for incompressible flow
(1.1) Au=-Vp, V-u=g,

where p is the piezometric potential (fluid pressure), A is a symmetric and uniformly
positive definite second rank tensor of the hydraulic resistance of medium with [A(x)];; €
L>*(Q) for all i,57 € {1,2,3} and ¢ represents the density of potential sources in the

medium. The boundary conditions are given by
(1.2) p=pp on 0Qp, u-n=uy on Iy,

where 0Q = 9Qp U 00y are such that 0Qp # 0, 0Qp NI N = () and n is the outward

normal vector defined (almost everywhere) on the boundary 0f2.

Assume that the domain Q is a polyhedron and it is divided into a collection of
subdomains such that every subdomain is a trilateral prism with vertical faces and general
nonparallel bases (see, e.g., [11], [14] or [15]). We will denote the discretization of the
domain by &, and assume an uniform regular mesh with the discretization parameter

h. Denote also the collection of all faces of elements e € &, which are not adjacent
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to the boundary 0€2p by I'j, = Uecg, Oe — 0Qp and introduce the set of interior faces
int(Fh) = Fh - 6QN

We consider the following low order finite element approximation. Let
5
(1.3) RT(e) = {v% v(x) = Ziji(x), Vx = (21, x2,23) € €},
j=1
be the space spanned by the linearly independent basis functions v;?(x), j =1,...,5,
defined on the element e € &, in the form

0 T —af

J
(1.4)  vi(x) = kj 0 , 7=12, vix)=kj| z2—0fy |, =345

J

T3 — Qg Bizs — afs
and such that they are orthonormal with respect to the set of functionals
(1.5) Fu(ve) = /f ng - vedS = S, Gk =1,...,5.

k
Here f denotes the k-th face of the element e € &, and nf = (nj ;,nf 5, nf 3) is the
outward normal vector with respect to the face f;. The velocity function u will be
then approximated by vector functions linear on every element e € &, from the Raviart-

Thomas space
(1.6) RT? (&) = {vi € L2(Q); v,|® € RT(e), Ve € &},

where v, |® denotes the restriction of a function v, onto the element e € &,. Further
denote the space of constant functions on each element e € &, by M°(e) and denote the
space of constant functions on each face f € I';, by M%(f). The piezometric potential p

will be approximated by the space which consists of elementwise constant functions
(1.7) MO, (&) = {¢pn € L*(Q); ¢n|® € M°(e), Ve € &},

where ¢, |¢ is the restriction of a function ¢y, onto element e € &,. The Lagrange multi-
pliers coming from the hybridization of a method will be approximated by the space of

all functions constant on every face from I',
(1.8) MO, (Ty) = {un € L*(Q); Ty, = R; | € MO(f), Vf € Ty}

Here s3]/ denotes the restriction of a function pj, onto the face f € T'y. Analogously we
introduce the spaces M%,(092p) and M, (92y) as the spaces of functions constant on
every face from Ugcg, Oe N 0S2p and T'y, N 0y, respectively. The detailed description of

the spaces that we use can be found in [14] (see also [11] or [15]).

The Raviart-Thomas approximation of the mixed-hybrid formulation for the problem
(1.1) and (1.2) reads as follows (see [4]):

Find (up,pn, An) € RTY (&) x M, (&) x M°,(T}) such that

> {(Aup,vi)oe — (Pr, V- Va)oet < An,n® - Vi >oenr, }
ecéy

(1.9) =< pp,h,N° -V >pen00p;  VVh € RTO_I(Sh).
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(1.10) = (V-un dn)oe = —(an dn)og;  Yon € M2 (E).

ecéy

(1.11) > <0 up, i >0e=< UNp, bh >oerony;  Vin € MO (Th),
ecéy,

where ppj and up,, are approximations to the functions pp and uy on the spaces
M°,(092p) and M, (0Qy), respectively; and where the function ¢ is approximated by
qn € M°,(&,). For other details we refer to [14] or [11].

Further denote by NE = |&;,| the number of elements, by NIF' = |int(I'y)| the number
of interior inter-element faces and the number of faces with the prescribed Neumann
boundary conditions in the discretization by NNC' = |0Qy|. Let ¢; € &, i =1,...,NE,
be some numbered ordering of the set of prismatic elements and fi, k = 1,..., NIF +
NNC', be the ordering of the set of non-Dirichlet faces from I',. For every element
e; € &, we denote by NIF,, the number of interior inter-element faces and by NNC¢, the
number of faces with Neumann boundary conditions imposed on the element e;. Let the
finite-dimensional space RT" | (£,) be spanned by NA = 5 x NE linearly independent
basis functions v;, 5 = 1,..., NA from the definition (1.6); let the space M°,(€,) be
spanned by NFE linearly independent basis functions ¢;, ¢ = 1,..., NE and finally the
space M°,(I'y) be spanned by NIF + NNC linearly independent basis functions iy,
k=1,...,NIF + NNC. From this Raviart-Thomas approximation we obtain the system

of linear algebraic equations in the form

A B C U Q1
(1.12) B pl=ax],
CT A q3

)T, p = (p1, ...,pNE)T, A=Ay ANIF+NNC)T are unknowns, the

symmetric positive definite matrix block A € RN4-M i5 given by the terms (Av;, V;i)0,0s
the outdiagonal block B € RNNE by —(V - v;, 1)o,e; and the block C' € RNANIF+NNC
by < ng-v;,1 >y. Here n; is the outward normal vector to with respect to the face
fr € 'y, (see [11] and [14]).

where u = (ug, ..., un4

Let us denote the system matrix in (1.12) by A. The symmetric matrix A is indefinite
due to the zero diagonal block of dimension NBC' = NE + NIF + NNC'. The structure
of nonzero elements in the matrix from a small model problem can be seen in Figure
1. Partition the submatrix C' in A as (C; Cs), where C; € RNNF corresponds to the

e RNANNC is the face-

interior inter-element faces in the discretized domain and C
condition incidence matrix corresponding to the element faces with Neumann boundary
conditions. Note that every column of C} contains only two nonzero entries equal to 1.
The singular values of C are all equal to V2 and the matrix block C5 has orthogonal
columns. Moreover, the whole matrix block C has also singular values equal to v/2 or
1. The matrix B has a special structure. The nonzero elements correspond to the face-
element incidence matrix with values equal to -1. Thus all singular values of the matrix

B are equal to v/5 (the matrix B is, up to the normalization coefficients, orthogonal).

It is easy to see from the definition of approximation spaces (see [14] or [15]) that
the symmetric positive definite block is 5 x 5 block diagonal and it was shown in [15]
3
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Fia. 1. Structural pattern of the matriz obtained from mized hybrid finite element approrimation of
a model problem with h =1/2 (to be discussed in Section 5).

that the spectrum of the matrix block A satisfies
(1.13) 0(A) C [e; VNE, c; V' NE],

where ¢; and ¢y are positive constants independent of the discretization parameters and
dependent on the domain and the tensor A. It is also easy to see that the system matrix
A in (1.12) is non-singular if and only if the block (B C) has a full column rank. Clearly,
if the condition 9Qp = 0 holds (all boundary conditions are Neumann conditions), then
the matrix block (B C) is singular, due to the fact that all sums of row elements are zero.
In other words, the function p is unique up to a constant function in the case 90Qp = 0.
Assuming 0 # 0 it follows from the analysis presented in [15] that there exist positive

constants ¢z and ¢4 such that for the singular values of the matrix block (B C) we have
(1.14) sv(B C) C [c3/ V' NE, c4).

Moreover, for eigenvalues of the whole symmetric indefinite matrix A it follows asymp-
totically (h — 0)

(1.15) o(A) C [—¢5/ V' NE, —cg/NE] U [¢; VNE, cs V' NE),

where cs5, cg, ¢y and cg are positive constants independent of system parameters.

In this paper, for solving the symmetric indefinite systems (1.12), the successive re-
duction to Schur complement systems is proposed. We consider three successive Schur
complement systems arising during the block elimination of unknowns which correspond
to matrix blocks A, B and (s respectively, or in other words, which correspond to the
elimination of the velocity variables u, the pressure variables p and of a part of the
Lagrange multipliers A. While the concept of reduction to the first and second Schur
complement systems is well known as a static condensation (described e.g. in [4], Section
V. or in [11])), the proposed reduction to the third Schur complement system seems to

4



be new. The main contribution of the paper consists in a detailed investigation of the
structure of nonzero entries and the spectral properties of the Schur complement ma-
trices. This enables thorough complexity analysis of the direct or iterative solution of
corresponding Schur complement systems. A brief analysis of the structure of the first
Schur complement matrix can be found in [4] as well as a straightforward observation
that its principal leading block is a diagonal. Here we extend this analysis and discuss
the mutual relation between the number of nonzero entries in the first Schur complement
matrix and the number of nonzeros in the system matrix (1.12). We show further that
no fill-in occurs during the process of reduction to the second and third Schur comple-
ment system. Moreover, we prove that the number of nonzeros in both these two Schur
complements is always less than the number of nonzeros in (1.12). It is shown also that
the spectral properties of matrices in such Schur complement systems do not deteriorate
during the successive elimination. Thus an approach based on the block reduction and

subsequent iterative solution is well justified.

The outline of the paper is as follows. In Section 2, we examine the structural pattern
of resulting Schur complement matrices and give estimates for their number of nonzero
elements in terms of the discretization parameters listed above. Section 3 is devoted to the
solution of the whole indefinite system (1.12) via three Schur complement reductions and
subsequent direct solution. Using the graph theoretical results we give the asymptotic
bound of the computational complexity for the Cholesky decomposition method applied
to the third Schur complement system. In Section 4, we concentrate on the spectral
properties of the Schur complement system matrices. The theoretical convergence rate of
the iterative conjugate gradient-type method in terms of the discretization parameters is
estimated. The asymptotic bounds for the computational work of the iterative solution
are given. Section 5 contains some numerical experiments illustrating the previously
developed theoretical results. Finally, we give some concluding remarks and mention

some open questions for our future work.

2. Structural properties of the Schur complement matrices. In this section
we take a closer look to the discretized indefinite system and corresponding Schur com-
plements and we extend the brief analysis from [4]. There are several possibilities for
the choice of a block ordering in the consecutive elimination. We shall concentrate on
the block ordering which seems to be the most natural and efficient from the point of
view of solving the final Schur complement system by a direct solver or by a conjugate
gradient-type method. The same ordering for the elimination of the first two blocks was
used also in [4], p. 178-181 or in [11]. Note that the static condensation is not the only
way to form the successive Schur complements. E.g., in [17] the case of the Raviart-
Thomas discretization for the closely related nodal methods was studied and reduction

to a different second Schur complement system was discussed.

The following simple result gives the number of nonzero elements in the triangular
part of the matrix A. By the triangular part of a matrix M we mean its upper (lower)
strict triangle 4+ diagonal. We will deal only with the structural nonzero elements here;

we do not take into account accidental cancellations and possible initial zero values of the

5
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F1G. 2. Structural pattern of the Schur complement matriz AJA for A from Figure 1.

tensor of hydraulic permeability. By the structure of a matrix M we mean Struct(M)
{(i,7)|Mi; # 0}.

LEMMA 2.1. The number of nonzeros in the triangular part of A is given by

|sym(A)| = 20NE + 2NIF + NNC.

Proof. The triangular part of A has 15/NE nonzeros, the block B contributes by 5NE

nonzeros, Cy has 2NIF nonzeros and Cy contains NNC nonzeros. 0

The symmetric positive definite matrix block A in (1.12) is block-diagonal, each 5 x 5
block corresponds to certain element in the discretization of the domain. Therefore it

is straightforward to eliminate the velocity variables u and to obtain the first Schur

A 11
Ay
Al

The structure of the matrix A/A for our example problem is shown in Figure 2. For

details we also refer to [4], p. 180-181 or [11]. For the number of nonzeros in the matrix

LEMMA 2.2. The number of nonzeros in the triangular part of the Schur complement

3 3 1 1
|sym(A/A)| = NE + -NIF + ~NNC + = > (NIF; + NNC;)* + = YY" NIF}.
2 2 2 2 i€, jEAdj(4)

Proof. Clearly, |sym(A11)| = NE and |A12| = |[BTA7'Cy| = 2NIF. Note that the
fill-in for A~'C is considerably higher (it is equal to 10NIF). Further, |A;3| = NNC




and |sym(Ass)| = § Y ice, NNC;(NNC; + 1) = 3NNC + 3 ¥ ;ce, NNC?. The number of
nonzeros in Aoz is equal to Zz‘esh NNC; NIF;. Finally, note that

Struct(Agp) = Struct(CTA™1C) = Struct(CI BBT A=1C)) = Struct(CT BBT C).
Observe that the directed graph of the matrix BT C) has the set of arcs
Egre, = {(i, f) € & xint(L'y)| f is an interior face of 4}.

The undirected graph of C{ BBTC} therefore expresses element-element adjacency rela-
tion based on the connectivity through the interior faces inside the domain. It follows
that

|A| = Y (NIF. 4+ NIFy; —1) = > NIF(NIF;—1)+ > Y NIF},
feint(l'y) €& 1€E jEA) (1)
where e(f) and e(f) are the two elements from &, such that e(f)Ne(f) = {f}. Therefore,
considering the relation 2NIF = 37, NIF; we obtain |sym(Ag)| = 2(|Age| + NIF) =
5 Yice, (NIF;) + 5 3 ce, i agjiiy NIFj — 3 NIF. Putting all the partial sums together
we get the desired result. O

Consider now the second Schur complement matrix
AT, Ago  Ags By1 B
(—A A) AH = — A_1 (A12 A13) —+ = .
/A AT )0 AL, Az B, Ba

The structure of (—A/A)/A;; for our example matrix is shown in Figure 3. The matrix
block Aj; in the first Schur complement matrix A/A is diagonal [4], [11]. The following
result shows that it is worth to form the Schur complement matrix (—A/A)/A;; from
the matrix A/A since no further fill-in appears during the elimination of the block Aj;
corresponding to pressure variables p and so we can further reduce the dimension of the

system.

THEOREM 2.1.
BH Blg A22 A23 )
Struct = Struct .

Proof. We have the following structural equivalences:

Struct(By1) = Struct(Agy) + Struct(AT, A7 Ar)

= Struct(Asy) + Struct(CTA™'BA; BT A7)

= Struct(Agy) + Struct(CT A*BBT A 1C))

= Struct(Agy) + Struct(CT BBTCy) = Struct(Ag).
Struct(Bia) = Struct(Ags) + Struct(AT, A A1)

= Struct(Asz) + Struct(C{ A" BBT A='Cy)

= Struct(Asz) + Struct(C] BBT Cy)

= Struct(Asz) + Struct(CT A™1CY) = Struct(Ass).

7
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F1c. 3. Structural pattern of the Schur complement matriz (—A/A)/A11 for A from Figure 1.

Struct(Boy) = Struct(Asz) + Struct(AT; A7 Ars)
= Struct(As3) + Struct(C3 A"'BA'BTA™'Cy)
= Struct(Asz) + Struct(CT A 1Cy) = Struct(Ass).

O

From previous Theorem it is also easy to see that right lower block Bas is block-diagonal
with blocks of varying size (depending on number of faces with Neumann conditions in
each element) each corresponding to a certain element in the discretization. So in the

following we will consider the third Schur complement matrix
((—A/A)/A11)/Bas = Bui — B12Byy' B,

induced by the block Byy in the matrix (—A/A)/A;;. We can prove a similar result
to the one given in Theorem 2.1. Therefore, the Schur complement system with the
matrix —(A/A)/A1;1 can be reduced to the Schur complement matrix ((—A/A)/A11)/Ba2
of dimension equal to NIF', without inducing any additional fill-in. Moreover, this can

be done using incomplete factorization procedures.

THEOREM 2.2.

StTUCt(BH - Blngleg) == StTUCt(AQZ).

Proof. Using Theorem 2.1 we get

Struct(By1 — BlzBQQIBfZ) = Struct(B11) + Struct(BlzBilBﬂ)
= Struct(Ag) + Struct(Ags Az AL)
= Struct(Ag) + Struct(C{ A~1CLCT A~1CL,CT A~1Cy).



Since Struct(CTA=1CLCT A=1C,CT A=1Cy) C Struct(Asy) (with equality only in the
trivial singular case with |€,| = 1 and NNC = 5) we get the desired result Struct(Bi; —
BlngalB%;) == StTUCt(AQZ). a

The following simple corollary gives the number of nonzero elements in the second and
third Schur complement matrices (—A/A)/A;1 and ((—A/A)/A11)/Bas. We shall use

these results later.

COROLLARY 2.1. The number of nonzeros in the triangular part of (—A/A)/A11 is
given by

|8ym(( A/A)/An)| =
(2.17) == Z (NIF; + NNC;)* + Z > NIF; +1 NNC — NIF)
zef,'h zEEh]EAd] ()

and the number of nonzeros in the tri(mgular part of (—A/A)/A11)/Bas is given by

2
(2.18)  |sym(((—A/A)/A11)/Bay)| ZNIF +3 Z > NIF ——NIF
zESh 1€E jEAL) (1)

Apart from explicit assembly of the Schur complement matrices or using them implicitly
there is another possibility which may be considered — keeping the Schur complements

in factorized form. Consider the following decomposition:

AA = —[LN (B G G'LY (B G G
(2.19) = (B ¢ G)'(B ¢ (),
where A = L ALZ. In contrast to the previous case, where the local numbering of the

faces corresponding to the individual elements did not play a role, this is not the case

now.

THEOREM 2.3. Assume that all the elements within the diagonal blocks of the ma-
triz A are nonzero. The fill-in in (B Cy 6’2) 1s minimal if the faces with Dirichlet

boundary conditions are numbered first in the local ordering of each finite element.

Proof. Because of the block structure of A we can consider the individual finite
elements independently. The minimum value of the nonzero count of C1UCs in 5 subse-
quent rows which correspond to the same finite element is 1 >, g, (NIF; + NNC;) (NIF; +
NNC; + 1) and it is easily checked to be minimal in this case. O

Therefore, from now we assume that within each element we have first numbered the faces
corresponding to Dirichlet boundary conditions, then the interior inter-element faces and
finally the faces with Neumann boundary conditions. The matrix (2.19) can be written
in the form

BB BTC, BTC,
(2.20) (B & )T (B & G)=|cTB ¢re, e

CyB CyC G0,
It is clear that it is more advantageous to keep most of the blocks of (2.20) in the

explicit form multiplying the factors directly. A typical example is the block BTB,
9



which is a diagonal matrix. The main question here is whether we can reduce the sys-
tem further as in the previous case and at the same time keep the matrix blocks in a
factorized form. Unfortunately, there is one basic obstacle. Whereas we are able to
embed the structure of AITQAilAlQ into the structure of Ags we cannot in general ex-
press CTC, — CTB(BTB)'BTC, = CT(I — B(BTB)"'BT)C) in the factorized form as
CTL BHLgné’l, where Lp,, is factor which can be easily computed.

We have considered the partially factorized structure (2.20) since it is important from
a computational point of view. Using a structural prediction based on such factors is ex-
actly the way how to obtain the sparsity structure of explicit Schur complement matrices
—A/A, (—A/A)/A1; and ((—A/A)/A11)/ B2 in an efficient way. In our implementations

we used a procedure similar to the one from [16] to get these structures.

3. Direct solution of the Schur complement systems. In the following we will
discuss the direct solution of the Schur complement systems. Namely, we will concentrate
on the system with the matrix ((—=A/A)/A11)/Boz € RMNE | The following theorem
gives a bound on the asymptotic work necessary to solve the linear system (1.12), which
is dominated by the decomposition of the matrix ((—A/A)/A11)/Baa.

THEOREM 3.1. The number of arithmetic operations to solve the symmetric indefi-
nite system (1.12) directly via three consecutive block eliminations and using the Cholesky
decomposition is O(NIF?).

Proof. We will only give a sketch of the proof here. The work is dominated by the

decomposition of By; — B12B2_21Bg, which has the same nonzero structure as Ags.

Our uniform regular finite element mesh is a well-shaped mesh in a suitable sense
(see [19]). The proof of Lemma 2.2 and the statements of Theorem 2.1 and 2.2 imply
that the graph G of ((—A/A)/A11)/ B2z is also the graph of a well-shaped mesh. Namely,
it is a bounded-degree subgraph of some overlap graph (see [18], [19]). It was shown in
[25] that the upper bound on the second-smallest eigenvalue of the Laplacian matrix of
G (the Fiedler value) is of the order O(1/NIF?/3). Then using the techniques from [25]
we obtain that there exists a O(NIF?/3)-size bisector of G.

Therefore, G satisfies the so-called NIF2/3-separator theorem: there exist constants
1/2 < a < 1,8 > 0 such that the vertices of G can be partitioned into sets G4,Gp and
the vertex separator G¢ such that |G4l|,|Gp| < aNIF and |G¢| < BNIF?/3. Moreover,
any subgraph of G satisfies the NIF' 2/3_geparator theorem. The technique of recursive
partitioning of G called generalized nested dissection and used to reorder the considered
Schur complement matrix provides an elimination ordering with an O(NIF?)-bound on

the arithmetic work of Cholesky decomposition (see Theorem 6 in [12]). O

Note that the explicit computation of the matrix ((—A/A)/A11)/Bas is necessary in
the framework of direct methods. Theorem 3.1 provides a theoretical result which is based
on spectral partitioning methods. The reordering algorithms based on the separators
obtained by the spectral partitioning techniques and applied recursively within the nested
dissection need not necessarily be the best practical approach to get a reasonable matrix

reordering. Nevertheless, experimental results with various partitioning schemes show

10



that high quality reorderings can be efficiently computed in this way (see [7]). Also some
other reorderings which combine global procedures (partitioning of large meshes) and
local algorithms (like MMD) can provide reasonable strategies to find a fill-in minimizing

permutation.

4. The conjugate gradient method applied to the Schur complement sys-
tems. In this section we concentrate on the iterative solution of the Schur comple-
ment systems discussed in Section 3. We consider the conjugate gradient method ap-
plied to the symmetric positive definite systems with matrices —A/A, ((—A/A)/A11) and
((=A/A)/A11)/Baa. Tt is well known that the convergence rate of the conjugate gradient
method can be bounded in terms of the condition number of the corresponding Schur
complement matrix [9], [6], [26]. We show that the condition number of the matrix A/A
is asymptotically the same as the conditioning of the negative part of spectrum of the
whole indefinite matrix A. Moreover, we prove that condition numbers of the matrices
((=A/A)/A11) and ((—A/A)/A11)/Bay grow like 1/h? with respect to the discretization
parameter h and they do not deteriorate during the successive eliminations. Based on
these results we estimate the number of iteration steps necessary to achieve the pre-
scribed tolerance in error norm reduction. We show that the number of iteration steps
necessary to reduce the error norm by the factor of € grows asymptotically like 1/h for
all three Schur complement systems. Therefore, the total number of flops in the iterative
algorithm can be significantly reduced due to decrease of the matrix order during the

elimination. First, we consider the following theorem.

THEOREM 4.1. Let p1 > po > ... > una > 0 be the eigenvalues of the positive
definite block A € RNA’NA, o1 > 092 > ... > ongc > 0 be the singular values of the
matriz block (B C) € RNANBC  Then for the eigenvalues of the Schur complement
matriz —AJA = (B C)TA=Y(B C) we have

(4.21) o(=A/A) C [opo/ 1,01 /1nal.

A A
Moreover, for the eigenvalues of the positive definite matriz blocks <A;2 A23> =
23 33

(01 02)TA71(01 02) and A1 = BTA'B it fOllO’wS

Ay A
(4:22) ((AT A§§)> C [1/p1, 2/ pva)
(423) 7(An) C [8/p1,5/1al

The condition number of the Schur complement system matriz —A/A then can be bounded

by the expression

2
o1

(4.24) k(—=A/A) < —
O NBCHNA

= k2((B O))k(A).
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Proof. The positive definite matrix A~! has the spectrum 0 < 1/ < 1/py < ... <

1/una. The first inclusion in the theorem follows from the following two inequalities

L((B C)a,(B C)a) < (B O)TA™/(B C)a,) < (B O)z, (B O)a),
e (1) < (B O)(B C)a,) < o2z, ).

Similarly, from the inequalities

1 T g1 1
2 (Cz,Cx) < (CT A7 Cz,2) < - ~(Cx,Cx),

(z,7) < (CTCx,z) < 2(7,7)

we obtain the second inclusion. The third part of the proof is completely analogous to

the second part. O

COROLLARY 4.1. There exist positive constants cog and c1y such that for the spectrum

of the Schur complement matriz —A/A we have
(4.25) o(—A/A) C [cy/NE, c19/ V' NE],

where cog = c3/cy and c19 = c3/ci. The condition number of the matriz —A/A can be

bounded as

(4.26) ﬁ(—A/A) S C11 v3 NEZ, Cl1 = 010/09.

The Schur complement system with positive definite matrix —A/A can be solved iter-
atively by the conjugate gradient method [9] or the conjugate residual method [6]. It
is well known that the conjugate gradient method generates the approximate solutions
which minimize the energy norm of the error at each iteration step [26], [6]. The closely
related conjugate residual method that differ only in the definition of innerproduct, on
the other hand, generates the approximate solutions which minimize their residual norm
at every iteration [6]. It is also well known fact that there exists so-called peak/plateau
connection between these methods [5] showing that there is no significant difference in
the convergence rate of these methods when measured by the residual norm of an ap-
proximate solution. In our paper we use the conjugate gradient method together with
the minimal residual smoothing procedure applied on its top to get monotonic resid-
ual norms [28]. Applying such technique allows better monitoring of the convergence
by residual norm and it is mathematically equivalent to the residual minimizing conju-
gate residual method [6]. The computational cost of this technique is minimal and it
costs only two inner products and one vector update per iteration. In the framework
of iterative methods the number of operations in matrix-vector products is what is usu-
ally the most important. These products, performed repeatedly in each iteration loop,
contribute in a substantial way to the final efficiency of iterative solver. When solving
the system with Schur complement matrix —A/A the number of flops per iteration for
an unpreconditioned method is dominated by the matrix vector multiplication with the

matrix —A/A. Its number of nonzeros was given by Lemma 2.2. Moreover, using the

12



estimates (1.13) and (1.14), the condition number of the Schur complement matrix —A/A
can be bounded by the term O(v/NE?2). Consequently, the number of flops for conjugate

gradients necessary to achieve a reduction by ¢ is of order

of

Assuming overestimates (NIF; + NNC;) < 5 and NIF; < 5, we obtain the asymptotic
estimate of order O(NEV/ NE).

NE + NIF + NNC + Y (NIF; + NNC;)* + >~ )" NIF,
1€Ey 1€E JEAL) (i)

The previous considerations did not take into account the Schur complement systems
with matrices ((—A/A)/A11) and (((—A/A)/A11)/B22). The convergence rate of the
iterative conjugate gradient method applied to the second and third Schur complement
systems depend analogously on the condition number of the Schur complement matrices
[9], [6], [26]. The analysis of the spectrum of the matrix ((—A/A)/A11) is given in the

following theorem.

THEOREM 4.2. Let p1 > po > ... > una > 0 be the eigenvalues of the positive
definite block A € RNA’NA, o1 > 092 > ... > ongc > 0 be the singular values of the
matriz block (B C) € RNANBC | Then for the spectrum of the Schur complement matriz
(—A/A) /A1 we have

(4.27) o((=AJA) /A1) C [okpe/p, 2/ 1) -
Consequently, the condition number of the matriz (—A/A)/A11 can be bounded as follows

(4.28) R((—AJA)JA1) < %n(—A/A»

Proof. From the definition of the Schur complement matrix (—A/A)/A1; and the

statement of Theorem 4.1 we have

(=AJA)/A11z,7) = ((iz :Z)x,x)—(A;f(Au Ars) z, (Ars A13) 7)

< 2/puna(z, x).

The bound for the minimal eigenvalue can be obtained considering the following result
(see [20], p.201):

Ay A A\ !
(=AJA) = | AL, Ay Ay =
Aly Al Asg

T
AT+ AT (Ar Arg)[(—A/A)JAn] (j?) AL —AT (A A)[(—A/A) /AN
13

AT
—[(=A/4)/An]™! <A1TZ> Arl [(—A/A)/An]™!
13
Then from the interlacing property of the eigenvalue set of symmetric matrix —A/A (see
e.g. [8]) it follows
- - M1
|i=Azay /a0 < || (A7) < 5
9NBC
13



Considering the previous inequalities we get the lower bound for the minimal eigenvalue
of the matrix (—A/A)/A11, which completes the proof. D

We have shown that the condition number of the Schur complement system matrix
(—A/A)/A11 is bounded by a multiple of the condition number of the matrix —A/A.
Therefore the number of iteration steps for the conjugate gradient method necessary to
reduce the error norm(or after smoothing the residual norm) by some factor is asymp-
totically the same as before. The complexity of the matrix-vector multiplication is lower

and according to Corollary 2.1 is of the order

0 (Z (NIF; + NNC;)* + >~ Y~ NIF; + (NNC — NIF)) .
i€ i€E, jEA) (1)

Assuming again the overestimates (NIF; + NNC;) < 5 and NIF; < 5, we obtain the
asymptotic estimate O(NE). The total number of flops for the conjugate gradients
or the conjugate residual method necessary to achieve a reduction by the factor e is
then again of order O(NE+/NE). From the statements of Theorem 4.1 and Theorem
4.2 it is clear that the reduction to the Schur complement systems does not affect the
asymptotic conditioning of the positive definite matrices —A/A and (—A/A)/A11. The
same is true for the spectral properties of the third Schur complement system with
the matrix ((—A/A)/A11)/B2g. Since the proof is completely analogous to the proof of
Theorem 4.2 we shall present only the following statement (cf. [10], p. 256).

THEOREM 4.3.  The condition number of ((—A/A)/A11)/Baa is bounded by the
condition number of the matriz (—A/A)/A11

(4.29) k(((—=A/A)/A11)/B22) < k((=A/A)/A11).

In the following we present two additional results concerning the the matrix-vector
multiplications with Schur complement matrices. Theorem 4.4 compares the number of
nonzeros in the Schur complement matrices (—A/A)/A;1 and ((—A/A)/A11)/Bas to the

number of nonzeros in the original matrix A.

THEOREM 4.4. The number of nonzero entries in the matriz ((—A/A)/A11) or the
matriz (((—A/A)/A11)/Ba2) is smaller than the number of nonzeros in the matriz A.

Proof. Using the fact that 2NIF = }7,c. NIF; < 5NE and also 3¢ (NIF; +
NNC;) < 5NE, it follows from Lemma 2.1 and Theorem 2.1 that
|[(=A/A)/Au] = |A]
=Y NIFf —2NIF + % %" NIF;+ »_ NNC}

icE i€ER jEAd)(i) i€E
+2 Y NIF;NNC; — 35NE — 4NIF — 2NNC
€&,
= > (NIF; + NNC;)> =5 NIF; —4 Y NNC;— » Y NNC,
€&y i€& i€Ep i€EL jEAL)(i)
+2 ) (NIF; + NNC;)+ Y Y (NIFj + NNC;) — 35NE
1€, 1€E JEAL) (i)
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<2 (NIF; + NNC;) + > Y (NIF; + NNC;) — 35NE < 0.
€&y 1€EL jE AL (1)

Clearly, the number of nonzeros in the matrix (((—A/A)/A11)/Bs2) is even smaller. O

Note that the number of nonzeros in the original matrix A can be smaller or larger
than the corresponding number of nonzeros in the matrix —A/A. Consider now the fac-
torized Schur complement in the form (2.20). It can be shown also that there is no clear
winner between the number of floating-point operations to multiply a dense vector by the
matrix (B €1 )" (B €, Cy) or the number of operations to get a product of
a matrix ((—A/A)/A11)/Bs22 with a dense vector of appropriate dimension, respectively.
The result depends on the shape of the domain and its boundary conditions. Never-
theless, the following Theorem 4.5 shows that if we do not form the Schur complement
explicitly it is worth to use the factorized form (2.19) and the reordering of the Schur

complement from Theorem 2.3 instead of its implicit form.

THEOREM 4.5. Let v be a dense vector. The number of floating-point operations
to compute (B C Oy )T(B Ci Gy ) v is smaller than the number of floating-point

operations to compute

BT
CIT A_l ( B 01 C2 ) V.
c7

Proof. Taking into account the local ordering from Theorem 2.3 the difference be-

tween these two quantities can be bounded by

10NE + Y (NIF; + NNC;)(NIF; + NNC; + 1) — 35NE — 4NIF — 2NNC
1€E,
< —2NIF — NNC < 0.

5. Numerical experiments. In the following we present numerical experiments

which illustrate the results developed in the theoretical part of the paper.

Two model potential flow problems (1.1) and (1.2) in a rectangular domain with
Neumann conditions prescribed on the bottom and on the top of the domain have been
considered. Dirichlet conditions that preserve the nonsingularity of the whole system
matrix A were imposed on the rest of the boundary. The choice of boundary conditions
in these examples is motivated by our application and it comes from a modelling of a

confined aquifer (see [3]) between two impermeable layers.

In order to verify the theoretical results derived in previous sections we will restrict
our attention first to the simplest geometrical shape - cubic domain and report the results
obtained from a uniformly regular mesh refinement. In practical situations, however, rel-
atively thin aquifers with possible cracks in the rock are frequently modelled, and so the
number of Neumann conditions may represent a big portion of the whole boundary. As
our second model example, we consider a rectangular domain discretized by 6 layers of

15



TABLE 1
Model potential fluid flow problem - cubic domain

Discretization parameters Matrix dimensions

h, NE NIF | NNC A —A/A | (-AJA)/A11 | (AJA)/A11)]/Baa

1/5, 250 525 100 2125 875 625 925
1/10, 2000 4600 400 17000 7000 5000 4600
1/15, 6750 15975 900 57375 23625 16875 15975
1/20, 16000 | 38400 | 1600 | 136000 | 56000 40000 38400
1/25, 31250 | 75625 | 2500 | 265625 | 109375 78125 75625
1/30, 54000 | 131400 | 3600 | 459000 | 189000 135000 131400
1/35, 87750 | 209475 | 4900 | 728875 | 300125 214375 209475
1/40, 128000 | 313600 | 6400 | 1088000 | 448000 320000 313600

TABLE 2

Model potential fluid flow problem - realistic domain

Discretization parameter Matrix dimension
NE NIF | NNC A —A/A | (-AJA)/A11 | (AJA)/A11)]/Baa
35x35x6 33880 | 4900 | 126980 | 53480 38780 33880
45x45x6 56160 | 8100 | 210060 | 88560 64260 56160
55xb5x6 84040 | 12100 | 313940 | 132440 96140 84040
65x60x6 | 117520 | 16900 | 438620 | 185120 134420 117520
7Hx75x6 | 156600 | 22500 | 584100 | 246600 179100 156600
85x85x6 | 201280 | 28900 | 750380 | 316880 230180 201280
95x95x6 | 251560 | 36100 | 937460 | 395960 287660 251560
105x105x6 | 307440 | 44100 | 1145340 | 483840 351540 307440

elements in the mesh. As we will see later, the reduction to the third Schur complement
proposed in this paper can become even more significant than for the cubic domain.
Prismatic discretizations of domains with NE elements were used [14], [11]. For the
cubic domain we have then NE = 2/h3. Discretization parameters h, NE, NIF, NNC,
dimension N of the resulting indefinite system matrix A and the dimensions of the cor-
responding Schur complement matrices —A/A, (—A/A)/A11 and ((—A/A)/A11)/Bag are
given in Table 1 for a cubic domain and in Table 2 for a more realistic domain. We note
again that the difference between dimensions of the second and third Schur complement
matrix is significantly larger in the case of modelling of thin layers that arise regularly
in our application.

For the example of a cubic domain the spectral properties of the matrix blocks A
and (B C) as well as of the whole symmetric indefinite matrix A have been investigated.
The extremal positive and negative eigenvalues of the matrix A and the extremal singu-
lar values of the block (B C) (squared roots of the extremal eigenvalues of the matrix
(B C)T(B C)) were approximated by a reduction to the symmetric tridiagonal form of
the matrix using 1500 steps of the symmetric Lanczos algorithm [8] and by a subsequent
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Spectral properties of the system matriz and its blocks -

TABLE 3

problem with a cubic domain

matrix blocks spectral properties eigenvalues of the matrix A
NE spectrum of A | sing. values of (B|C) negative part positive part
250 [0.16e-2, 0.1e-1] [0.181€0, 2.63] [-2.63 , -0.180e0] | [0.166e-2, 2.63]
2000 | [0.33e-2, 0.2e-1] [0.927e-1, 2.64] [-2.64, -0.898e-1] | [0.335e-2, 2.64]
6750 | [0.50e-2, 0.3e-1] [0.622e-1, 2.64] [-2.64, -0.354e-1] | [0.509e-2, 2.65]
16000 | [0.66e-2, 0.4e-1] [0.467e-1, 2.64] [-2.64, -0.413e-1] | [0.679e-2, 2.65]
31250 | [0.83e-2, 0.5e-1] [0.374e-1, 2.65] [-2.64, -0.311e-1] | [0.861e-2, 2.65]
54000 | [0.99e-2, 0.6e-1] [0.312e-1, 2.65] [-2.64, -0.241e-1] | [0.104e-1, 2.65]
87750 | [0.11e-1, 0.7e-1] [0.268e-1, 2.65] [-2.64, -0.190e-1] | [0.120e-1, 2.65]
128000 | [0.13e-1, 0.8e-1] [0.234e-1, 2.65] [-2.64, -0.152e-1] | [0.136e-1, 2.65]

eigenvalue computation of the resulting tridiagonal matrix using the LAPACK double
precision subroutine DSYEV [1].
were computed directly by the LAPACK eigenvalue solver element by element. It can

Extremal eigenvalues of the diagonal matrix block A

be seen that the computed extremal eigenvalues of the block A are in perfect agreement
with the theory (see Table 3). Similarly, we can observe approximately a linear decrease
of the computed minimal singular value of the matrix block (B C) with respect to the
mesh discretization parameter hA. From the computed extremal eigenvalues of the whole
indefinite system A we can conclude that even if our mesh size parameters h are rather
small and give rise to very large system dimensions (see Table 1), they are outside of
the asymptotic inclusion set (1.15). Indeed for our example and our mesh size interval
we have ¢;/h < ¢4, ca/h < ¢4 and with the exception of h = 1/35 and h = 1/40 also
ca/h < c3h. Then using Lemma 2.1 in [22], pp. 3-4 (see also [15]) we obtain the inclusion

set in the form

(5.30) o(A) C [—cs, —%(cﬂzﬁ — V(2 VNE2 + 4(cs) YNE)2)] U [er VNE, cal,

which is in good agreement with the results in Table 3.

Using the same technique we have approximated the extremal eigenvalues of the
Schur complement matrices —A/A, (—A/A)/A;; and ((—A/A)/A11)/Ba2 coming from
a problem on a cubic domain. From Table 4 it can be seen that the inclusion set for
the extremal eigenvalues of the first Schur complement matrix —A/A coincides with the
bounds given in Theorem 4.1. We can see that the extremal eigenvalues of the second
Schur complement matrix (—A/A)/A11 are bounded by the extremal eigenvalues of the
matrix —A/A. Similarly, the extremal eigenvalues of the third Schur complement matrix
((=A/A)/A11)/Baa are bounded by the extremal eigenvalues of the matrix (—A/A)/A11.
This behaviour is in accordance with the asymptotic bounds given in Theorem 4.2 and
Theorem 4.3.

The smoothed conjugate gradient method has been applied to the resulting three
Schur complement systems (see also the discussion in previous section). Unprecondi-
tioned and also preconditioned versions with the IC(0) preconditioner [23], [24] for the
solution of these symmetric positive definite systems have been used. For the solution of
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Spectral properties of Schur complement matrices -

TABLE 4

problem with a cubic domain

spectral properties of Schur complement matrices
NE —A/A (=A/A)/An ((=A/A)[A11)/ B2
250 [0.138e2, 0.343e4] | [0.187e2, 0.117e4] [0.220e2, 0.117e4]
2000 [0.182el, 0.173e4] | [0.251el, 0.596€3] [0.272el, 0.596e3]
6750 [0.547€0, 0.115e4] | [0.760e0, 0.399e3] [0.801e0, 0.399e3]
16000 | [0.232€e0, 0.868e3] | [0.323e0, 0.299e3] [0.336€0, 0.299e3]
31250 | [0.119e0, 0.694e3] | [0.166e0, 0.239e3] [0.171e0, 0.239e3|
54000 | [0.693e-1, 0.579e3] | [0.966e-1, 0.199e3] | [0.992e-1, 0.199e3]
87750 | [0.437e-1, 0.496e3] | [0.610e-1, 0.171e3] | [0.624e-1, 0.171e3]
128000 | [0.293e-1, 0.434e3] | [0.409e-1, 0.149e3] | [0.417e-1, 0.149e3]

the whole indefinite system the minimal residual method has been used. For the precon-
ditioned version the positive definite block-diagonal preconditioning with ILUT(0,20) for
the decomposition of the block corresponding to constraints (see e.g. [22], [21]) was used.
The choice of ILUT(0,20) was motivated by our effort to obtain rather precise factoriza-
tion with restricted memory requirements which should be close to the full decomposition
of the block (B C)*(B C). This preconditioner was found generally better than the in-
definite block-diagonal preconditioning with the same ILUT(0,20) decomposition or than

the indefinite preconditioner discussed in [13] or [21]. The initial approximation zy was

||
7ol

For the implementation details of iterative solvers we refer to [6]. Our experiments were
performed on an SGI Origin 200 with processor R10000. In Table 5 and Table 6 we

consider iteration counts and CPU times in the minimal residual method (unprecondi-

set to zero, the relative residual norm = 10~® was used as the stopping criterion.

tioned /preconditioned) applied to the whole system (1.12) and in the conjugate gradient
method (unpreconditioned/preconditioned) applied to the Schur complement systems
with the matrices —A/A, (—A/A)/A1; and ((—A/A)/A11)/Bao for a model problem with
a cubic and more realistic domain, respectively. The dependence of the iteration counts
presented in all columns of Table 5 corresponds surprisingly well to the theoretical order
O(VNE). The convergence behaviour of the smoothed conjugate gradient method ap-
plied to the third Schur complement system with the matrix ((—A/A)/A11)/Bag for this
case is presented in Figure 4. From the results in Table 5 and Table 6 it follows that while
the gain from the solution of the third Schur complement system is rather moderate in
the case of a cubic domain and in the case of the realistic flat domain it becomes more

significant.

6. Conclusions. Successive block Schur complement reduction for the solution of
symmetric indefinite systems has been considered in the paper. It was shown that due
to the particular structure of matrices which arise from mixed-hybrid finite element dis-
cretization of the potential fluid flow problem, the resulting Schur complement matrices
remain sparse. Moreover, their spectral properties do not deteriorate and the itera-

tive conjugate gradient method can be successfully applied. Theoretical bounds for the
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TABLE 5

Number of iterations of the conjugate gradient method - problem with a cubic domain

unpreconditioned/preconditioned CG applied to matrix
NE A —A/A (=A/A)/A11 | ((=A/A)[A11)/Bas
250 319/44 82/20 48/18 43/18
0.41/0.09 0.05/0.02 0.02/0.01 0.02/0.01
2000 608/76 154/35 87/32 80/32
6.43/1.56 0.76/0.25 0.30/0.16 0.25/0.14
6750 867/113 223/51 126/48 118/48
48.17/11.91 3.86/1.50 1.51/0.92 1.30/1.01
16000 1031/138 288/67 164/63 155/63
161.75/38.86 16.07/5.93 5.59/3.87 5.02/3.43
31250 1195/165 353/82 199/78 192/78
410.45/100.49 45.69/16.75 16.31/9.94 15.13/9.60
54000 1358/188 418/95 234/93 228/93
926.98/218.78 | 104.76/36.92 | 39.88/24.04 37.94/23.13
85750 1503/205 482/108 269/108 263/108
1694.68/396.03 | 216.10/74.42 | 76.21/47.55 72.00/45.71
128000 1637/229 546/122 303/122 298/122
2825.94/675.49 | 389.37/133.10 | 143.28/87.63 138.72/87.28

TABLE 6

Number of iterations of the conjugate gradient method - realistic model ezample

unpreconditioned/preconditioned CG applied to matrix
NE A —A/A (=A/A)/An | (=A/A)/A11)/By
14700 1688/209 444 /97 248/93 233/93
231.51/54.57 22.96/8.12 7.52/5.27 6.89/4.35
24300 2043/265 571/122 316/117 296/117
510.65/123.32 54.46/18.48 20.51/11.69 16.44/10.30
36300 2225/300 692/147 382/142 359/142
919.43/224.74 118.83/37.24 38.93/22.75 31.16/19.57
50700 2053/336 810/172 448/166 421/166
1547.14/370.18 195.08/62.90 73.65/40.68 57.01/34.15
67500 2723/365 927/197 513/190 482/190
2343.57/559.24 | 316.33/103.93 | 116.30/65.70 93.15/56.55
86700 2959/403 1042/222 578/214 543/214
3374.38/814.61 | 495.97/160.23 | 175.55/99.90 138.81/83.85
108300 3211/429 1256 /247 741/254 741/255
4621.81/1086.38 | 821.96/240.74 | 306.28/158.08 253.10/132.33
132300 3420/447 1272/271 706/262 663/262
6012.54/1382.56 | 1009.94/323.72 | 374.90/208.07 299.87/177.34
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unpreconditioned and smoothed conjugate gradient method applied to ((7A/A)/A11)IB22
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FiG. 4. Convergence of the smoothed conjugate gradient method applied to the third Schur complement

system

convergence rate of this method in terms of the discretization parameters have been de-
veloped and tested on a model problem example. Numerical experiments indicate that
the given theoretical bounds on the eigenvalue set are realistic not only for the system
matrix and its blocks, but also for the Schur complement matrices. The iteration counts
for the conjugate gradient method are also in a good agreement with the theoretical
predictions. Direct solution of the third Schur complement system is also a possible al-
ternative. Nevertheless, its comparison with iterative solvers is outside the scope of this
paper.

In case of structured grids, a geometric multigrid solver and/or preconditioner for
solving the final Schur complement system can be used. Namely, the stencil from the first
Schur complement which expresses element-element connectivity in the domain (see proof
of Lemma 2.2) remains unchanged after the subsequent two reduction and an appropriate
method could be based on that.

Another approach for the solution of symmetric indefinite systems seems to be
promising. As was pointed out in [2], the classical null-space algorithm can be imple-
mented. QR factorization of the off-diagonal block (B C) is considered and the solution
of the indefinite system is transformed to the solution of a block lower triangular sys-
tem, where the subproblem corresponding to the diagonal block can be solved using the
Cholesky factorization or an iterative conjugate gradient-type algorithm. This approach
has the advantage of performing the matrix-vector multiplication by the Q factor using
elementary Householder transformations. Although the Q factor may be structurally
full, the elementary Householder vectors may be quite sparse. Moreover, a roundoff error

analysis of the algorithm can be carried out.
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