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Abstract

It is shown that for a well	behaved function T 
n� any nonderministic single	tape o�	
line Turing machine of time complexity T 
n� can be speeded	up by one extra alterna

tion by the factor log log T 
n��
q
log T 
n�� This leads to the separation NTIME��I
T 
n�� �

�� � TIME��I
T 
n�� of the respective complexity classes� Analogous result holds also
for the complementary classes co�NTIME��I
T 
n�� and ��TIME��I
T 
n��� This is the
�rst occasion where such results have been proved for a restricted type of multitape
nondeterministic machines� For the general case of multitape nondeterministic ma
chines similar results are not known to hold�
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� Introduction

The separation of complexity classes within the � hierarchy

DTIME
T 
n�� � NTIME
T 
n�� � ��TIME
T 
n�� � � � �ATIME
T 
n�� � DSPACE
T 
n��

is one of the central problems in complexity theory� The �rst proof that nondeter
minism is stronger than determinism comes probably from Hennie ��� who in ����
proved this result for single tape machines recognizing non	palindroms� For multi
tape machines the separation� DTIME
n� � NTIME
n� has been proved in ���� by
Paul� Pippenger� Szemer�edi� and Trotter ����� In ���� Paterson ��� proved that de
terministic space is more powerful than deterministic time for single	tape machines�
The analogous result for multitape machines DTIME
T 
n�� � DSPACE
T 
n�� followed
in ���� by Hopcroft� Paul and Valiant ���� In ���� Paul� Prauss� and Reischuk ����
proved that unbounded number of alternations can speedup single	tape computations�
The separation for multitape machines ensued in ���� by Dymond and Tompa ����
DTIME
T 
n�� � ATIME
T 
n��� Finally� Kannan in ���� and Maass and Schorr in ����
proved increasingly better results that bounded number of alternations can speedup
deterministic single tape computations 
also with a separate input tape�� For the case
of multitape machines the respective result DTIME
T 
n�� � ��TIME
T 
n�� proved
Gupta ��� in ����� Thus� merely two alternation were enough to separate the latter
complexity classes�
There are two lessons to be taken from the previous short historical excursion in

the context of the present paper� The �rst lesson is that in all cases more general
results for multitape machines always followed only after proving similar results for
simpler types of machines� Thus� results for restricted machines served as inspiration
for looking for similar results on more general models of computing� Second� as a
rule� all the respective results separate deterministic time from some higher complexity
class in the above mentioned hierarchy� This is because it seemed that there were
principal reasons that prevented the application of analogous speed	up techniques also
in the case of nondeterministic time� Roughly� in some cases it was the impossibility
e�ciently rerunning a piece of nondeterministic computation twice along the same
computational path 
cf� ����� or �unavailability� of nondeterminism without adding a
further alternation 
cf� �����
The problem of e�cient speedup of nondeterministic computations has been iden

ti�ed as the major roadblock that prevents any further progress in separating other
complexity classes as before 
cf� �����
Nevertheless� it appears that this problem has a solution� so far at least for restricted

Turing machines� In order to see the key idea of such a solution we have to return to
the idea of the best separation result that separates single	tape o�	line deterministic
time bounded computations from �� single tape o�	line computations ����
This proof� and also other simulation proofs achieving speedup by two alternations


cf� ���� share roughly the same strategy� In the �rst� nondeterministic phase a space
e�cient description of size o
T 
n� of the original deterministic computation is guessed�
The correctness of this guess is in turn veri�ed in the second phase by invoking the

�The inclusion symbol ��� denotes the proper containment�
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parallelism o�ered by co	nondeterminism�
Unfortunately� this natural idea of simulation cannot be straightforwardly trans

ferred to the nondeterministic case� This is because in the above mentioned approach
the veri�cation phase requires replaying of some pieces of the original computation�
Thus� when the original computation was a nondeterministic one it appeared that
there was no way of its e�cient veri�cation during one subsequent alternation�
The �rst solution of the problem of speeding	up single	tape nondeterministic com

putations by one alternation has been devised in ���� in �����
The previously mentioned obstacle was roundabout by reorganizing the above men

tioned two phase schema of similar proofs� Namely� the original nondeterministic com
putation was nonderministically split into very small pieces in order to achieve that
among them many pieces were equal� The equal pieces of computations were elimi
nated and only the correctness of remaining di�erent ones was checked� still in the �rst
phase� In the second phase the correctness of split and that of the elimination was
checked�
This has lead to a speedup by factor log T 
n� by one extra alternation� A separation

of the respective time complexity classes followed� NTIME�
T 
n�� � ��TIME�
T 
n���
In its machine category this has been a much stronger result when compared with all
the previous results since it achieves a speed	up by the single alternation and separates
two directly neighbouring complexity classes�
The present paper continues attacking the problem of speeding up nondeterministic

computations by one alternation for the next more powerful type of restricted Turing
machines � viz� Turing machines with one work tape and extra read	only two	way
input tape 
or shortly� single	tape o�	line machines�� Note that this type of machines
is an intermediate type between single tape machines without an input tape� and two
tape o�	line machines� Due to the result of Book et al� ��� in nondeterministic case
the latter machines are time equivalent to multitape o�	line machines�
In Section � a speed	up theorem for single	tape o�	line nondeterministic machines

by one alternation is proved� As compared to previous cases a new simulation strategy
has been developed here in order to re�ect the qualitative change in machine architec
ture given by the addition of input tape as that of the second tape� This has called for
two substantial changes� First� an idea of having a space e�cient representation of a
log of input head movements has been implemented� Second� veri�cation of very short
nondeterministic pieces of computations has been moved back to co	nonderministic
phase where their correctness is checked by their deterministic simulation in exponen
tial time w�r�t� their length� E�cient realization of both ideas leads to a speed	up of

order log log T 
n��
q
log T 
n��

Consequently� in Section � it is shown that for single	tape o�	line machines non
deterministic time T 
n� is strictly contained in ��	time T 
n��
The previous results hold also for the case of complementary machines� Thus�

for deterministic single	tape o�	line machines two alternations lead to more e�cient
computations than a single alternation�
The results presented in this paper have so far no counterpart in the case of non

deterministic multitape machines� Nevertheless� they open the door in the respective
direction by pointing to a proof technique that is strong enough to capture the e�
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ciency di�erence between single	tape and 
restricted� two tape nondeterministic com
putations�

� Speed�up

For the e�cient speed	up simulation we are after it is essential that the nondetermin
istic machine to be simulated works in the small space� Fortunately� it is possible to
make this assumption without any loss of generality due to the following theorem ���
which we shall give without a proof�

Theorem ��� Let
q
T 
n� log n be constructible in time T 
n�� with T 
n� � n�� log n�

Than any T 
n��time bounded single�tape o��line nondeterministic Turing machineM
can be simulated in linear time and in space O


q
T 
n� log n� by a machine of the same

type�

Now we are in a position to formulate and prove our main result� The proof of the
respective theorem has been partly inspired by the proof of a similar theorem that was
proved in ���� for the case of single	tape nonderministic TM without input tape� Thus�
the di�erence in current proof captures the presence of input tape� this� however� leads
to non trivial changes both in simulation strategy� as well as in the respective data
representation�
The idea is as follows� The computation of the machine to be simulated is repre

sented with the help of so	called rectangular representation 
this techniques goes back
to Paterson ����� The positions of input head at selected times are represented in a
compressed way with the help of a so	called log� in which in chronological order the
di�erences between any two subsequent positions of input head are recorded� The size
of rectangles is selected so as to enable deterministic and w�r�t� T 
n� also a sublin
ear time veri�cation of any nondeterministic piece of computation as described by the
given rectangle� with the help of information from the above mentioned log� Thus� the
simulation of the original machineM by the respective ��	machine S consists of two
phases� in the �rst� nondeterministic phase the respective rectangular representation
and the log of input head movement is guessed and recorded and� in the second� co	
nondeterministic 
universal� phase the previous guesses are veri�ed in parallel� More
over� in order to make the veri�cation process e�cient enough� prior to the simulation
the computation of the original machine is �rst transformed into an equivalent one�
with the help of the previous theorem� and then �cut� into certain time segments that
have the property that the contents of working tape is completely rewritten at the end
of each time segment� As a result� the history of cell rewritings 
that is needed to verify
the correctness of rectangular representation� can be completely veri�ed by performing
the respective veri�cation in parallel for each time segment�
In order to avoid worries concerning the time	constructibility of T 
n� we shall make

use of the following de�nition of time complexity for the alternating machines 
cf� ������
We shall say that an alternating machineM is of time complexity T 
n� if for every
accepted input of length n the respective computation tree ofM stays accepting if it
is pruned at depth T 
n��
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Theorem ��� Let T 
n� � n�� log n� Than any T 
n��time bounded single�tape o��

line nondeterministic Turing machine M can be simulated by a single�tape o��line

���machine S in time O
T 
n� log log T 
n��
q
log T 
n���

Proof Outline� According to the statement of theorem ���� w�l�o�g� we can assume thatM
is of space complexity O�

p
T �n� logn��

Split now the computation of M into O�T ����n�� time segments of length O�T ����n��
each and introduce a so�called sweep at the end of each time segment� A sweep consists of
one complete traversal of M�s working head over the entire rewritten part of M�s working
tape 	 i�e�� the working head moves to the right end of the rewritten part of working tape�
then to the left end and 
nally returns to its marked original position� Make each sweep a
part of the respective time segment� Clearly� this transformation does not in�uence the time
complexity of the resulting machine substantially 	 the resulting machine still works in time
O�T �n���

Now� consider the respective time�space computational diagram �i�e�� the sequence of
instantaneous descriptions of M�s working tape� written one above the other� starting with
the initial and ending with the 
nal accepting instantaneous description�� with the recorded
trajectory of M�s working head movement during the computation� Split this diagram by

vertical lines into slots of equal size b�n� � d
q
log�T �n�� log� T �n��e �the last slot can be

shorter��� Consider the crossing sequence at the boundaries between individual slots �i�e��
the sequence of points where the trajectory of input head crosses the above mentioned vertical
lines�� By shifting all slot boundaries simultaneously along the tape from its origin to the
right� while keeping them equidistant� at some position j� with  � j � b�n�� a situation must
occur that the sum of lengths of crossing sequences at the current slot boundaries does not
exceed ��T �n� � T �n��b�n�� Namely� in the opposite case� if there was not such a position j�
then the total sum of lengths of crossing sequences in between every tape cell would exceed
T �n�� what is impossible�

Fix the 
rst slot boundary at the position j� In the resulting diagram� draw horizontal
lines to denote the boundaries between any two subsequent time segments� This will split
the diagram into T ����n��

p
T �n� logn�b�n� � O�T ����n�� of so�called �rst order rectangles�

Further� split horizontally each 
rst order rectangle into second order rectangles whose size
is maximized� subject to the satisfaction of either of the following two conditions�

� none of the two respective vertical sides is crossed by M�s working head more often
than b�n� times�

� the total time spent by M�s working head in a given second order rectangle must not
exceed b��n��

Clearly� second order rectangles can be created in each 
rst order rectangle� with the
possible exception of �too short� slots� or in remainders of slots that are �arti
cially� cut by
the line separating time segments� Call the respective second order rectangles� that could not
be created in the �full size�� as required by the previous two conditions� as small rectangles�

As a result we obtain at most O�T �n��b��n�� second order full size rectangles �since the
computation within each rectangle �consumes� either b�n� crossing sequence elements� or
time b��n��� plus at most O�T ����n��b�n�� small ones �since the number of small rectangles

�The particular choice of b�n� will be justi�ed at the end of the proof�
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does not exceed that of 
rst order ones�� Thus the total number of second order rectangles
is safely bounded be O�T �n��b��n���

Each second order rectangle will be completely represented by its two horizontal sides
of length b�n�� giving the contents of the corresponding block on M�s working tape at the
respective time steps� and by the description of the history of crossing its two vertical sides
by the working head ofM� For each side the history of crossing is described by the so�called
crossing sequence of length �� for the left side and �� for the right side� respectively� with ���
�� � b�n�� Any crossing sequence consists from so�called crossing sequence elements that are
ordered chronologically in that order in which the head has crossed the respective rectangle
side� Each element of a crossing sequence is represented by a pair fq� dg� Here q denotes the
state ofM when crossing the vertical side at hand and d � fleft� rightg records the direction
of the crossing�

Hence� the size of each second order rectangle representation is ��b�n��� what in a total
gives O�T �n��b�n�� for all rectangles�

The rectangular representation of M�s computation pertinent to the given input that
is written on S�s input tape will be represented on S�s tape in the following order� from
left to right� it is the sequence of individual second order rectangles that is generated for
time segment by time segment� and within each time segment� 
rst order rectangle by 
rst
order rectangle� and within each 
rst order rectangle� second order rectangle by second order
rectangle� in chronological order� Boundaries between individual �
rst and second order�
rectangles� and time segments� respectively� are marked by special symbols on a special track�

To represent the computations of M in accordance with the idea mentioned before the
statement of the theorem ��� we need moreover to record the position of M�s input head
that corresponds to each crossing sequence element in each second order rectangle� Consider
the sequence of crossing sequence elements ordered chronologically 	 i�e�� in that order
in which the boundaries between slots are crossed during M�s computation and consider
also the respective associate sequence of corresponding input head positions� This associate
sequence has as many elements as is the length ��T �n�� of our chronologically ordered crossing
sequence and the respective elements are integers in the range � ���n �� Now� instead of
recording the �absolute� positions of M�s input head on the input tape� record only the
di�erences di � pi � pi�� between any two absolute positions pi and pi��� respectively�
for i � � �� � � � � ��T �n�� and p� � �� Thus� the di�erences are integers from the interval
� �n����n� � �� The size of representation of any jdij is at most log n� Superpose now the
resulting sequence that� starting from p� enables to compute M�s input head positions� with
the above mentioned chronologically ordered crossing sequence and call the resulting merged
sequence a log of M�s head movement� Thus the log elements take the form fq� d� dig of
triples� where q denotes the state ofM� d the direction of M�s working head movement� and
di the di�erence between current and previous position of M�s input head� with all values
within the i�th triple pertinent to the moment whenM�s working head is crossing for the i�th
time a boundary between any two slots� Ignoring items of constant size� for the log elements

it holds that
P��T �n		

i
� jdij � T �n�� Therefore� the length of the corresponding representation
can be bounded by

P��T �n		
i
� dlog jdije � O�log

Q��T �n		
i
� jdij� � O

�
��T �n�� log

P
��T �n��

i��
jdij

��T �n		

�
� O

�
T �n� log logT �n	p

logT �n	

�

The log representation will be also represented on S�s working tape in a natural way from
left to right� with special separators in between the time segments that split the log into
segments that correspond to the computations of M of length T ����n��
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We will insist that both rectangular representation and the log representation will be
written one above the other on two parallel tracks on S�s working tape in such a way that
the respective time segment milestones both in the rectangular representation and in the log
will 
nd themselves at the same positions� This can be achieved by prolonging the length of
rewritten part of S�s tape at most four time� The reason is that the same crossing sequence
elements that are stored in the triples of the log part corresponding to any time segment 
nd
themselves also among the crossing sequence elements represented within the corresponding
part of the rectangular representation� Due to the chosen representation of second order
rectangles each crossing sequence element from the log 
nds itself at most two times in the
rectangular representation �namely� once in the right crossing sequence of some rectangle�
and once in the left crossing sequence of the right adjacent rectangle�� Further� the size of
rectangles has been selected in such a way that to each crossing sequence element there are
at most two elements �tape symbols� in the upper and lower horizontal sides of the respective
rectangle� Thus� the length of the time segment in the rectangular representation is at most
four times greater then is the number of crossing sequence elements in the corresponding time
segment in the log� Since in the triples of the log also the di�erences betweenM�s input head
positions are stored we get the 
nal estimate that the length of one time segment in the log is
not greater than four times the length of the corresponding time segment in the rectangular
representation plus the space needed to represent di�erences in input head positions stored
in the triples�

Thus� data representing the corresponding time segments both in the rectangular repre�
sentation and in the log can indeed be written on two parallel tracks in such a way that all
time segments are separated by common markers that will be called segment separators�

The length of the above data� pertinent to one time segment of the rectangular represen�
tation� is at least ��

p
T �n� logn� �since there must be at least ��

p
T �n� logn�b�n�� second

order rectangles� each of size O�b�n���� and at most O�T ����n�� �since within the time seg�
ment of duration T ����n�� at most O�T ����n��b�n�� di�erent rectangles can be visited byM�s
head�� Thus� the length of any time segment in the joint representation of both rectangles
and log is at most O�T ����n� logn�� This estimate will be important for the complexity es�
timation of actions performed within one time segment� Nevertheless� it is obvious that the
total length of the joint representation of the log and of all second order rectangles is bounded
by the length of the log� i�e�� is of order O�T �n� log log T �n��

p
logT �n���

Now� the idea of simulation is 
rst to guess and record the above rectangular represen�
tation simultaneously with the log of M�s computations and then to verify the correctness
of the above guesses� The veri
cation process consists of two main phases� First� we have to
verify whether the guess of rectangular representation was correct 	 i�e�� whether all rectan�
gles �
t� together and whether the size ant the format of rectangular representation and of the
log have been guessed correctly �a so�called global correctness�� Second� we have to attest
whether each rectangle represents a valid piece of M �s computation� Such a computation
starts in �partial� con
guration as described by the upper horizontal side of the rectangle at
hand and ends in a con
guration as described by the lower side of the rectangle� Moreover�
in such a computation M�s working head must leave and re�enter rectangles in accordance
both with the respective two crossing sequence at both rectangle�s vertical sides and with the
symbol read by M�s input head at that time �so�called local correctness��

This leads to the design of the simulation scheme in whichM is simulated by a single�tape
o��line ���machine S in two main phases� in the 
rst� nondeterministic one� all guesses will
be performed� whereas in the second� universal one� the veri
cation of all previous guesses
will be done�

�



Phase � � existential�

A� Simultaneous generation of the rectangular representation and of the log� On
two special tracks� S guesses and writes down� in a single sweep over its working tape� the
rectangular representation and the log of M�s computation pertinent to the given input that
is written on S�s input tape� Both representations are split into time segments� The shorter
of the two representations that corresponds to one time segment is 
lled by special symbols
up to the length of the longer one� and then a joint segment separator is inserted separating
two consecutive time segments�

In order to be able to verify later the correctness of format and size of the rectangular
representation and of the log we shall further insert so�called milestones at the end of each
time segment� These milestones will contain the guessed values of certain quantities�

The rectangular representation milestones contain the number of second order rectangles
within the individual time segments� The crossing sequence milestones give the partial sum of
the number of crossing sequence elements� starting with the 
rst time segment and ending in
the given time segment� The input head milestones give the absolute address of the 
rst input
head position within given log segments� The working head milestones give the corresponding
number �index� of the slot in which the working head 
nds itself at times pertinent to the
values of input head milestones� In the 
rst segment the last two milestones are set to one�

As explained above� the length of the rewritten part of the tape will be at most equal to
some constant multiple of T �n� log log T �n��

p
log T �n��

Phase � 	 universal�
A� Checking the global correctness� This phase consists in fact of three independent
veri
cation processes that can be run also in parallel�

�� veri�cation of horizontal boundaries in rectangular representation� First� it is veri
ed
whether the upper boundary of any rectangle from the �
rst row�� so to speak� as seen in
the time�space computational diagram ofM� is created by a sequence of blanks� Next�
it is veri
ed whether the respective pairs of rectangles 
t at their common horizontal
boundary� Due to the chosen representation of rectangles on M�s tape �see subphase
����� within the same time interval� the lower and the upper horizontal side of two
neighbouring rectangles within the same slot are at the distance of at most O�b�n���
Their equivalence can be easily veri
ed in time O�b��n�� by invoking a special parallel
process for each rectangle�

When there are two neighbouring rectangles within the same slot� but in di�erent time
segments� then the distance of the corresponding horizontal boundaries� that have to
be compared� is at most O�T ����n���

The last veri
cation is not completely trivial� since except the horizontal boundary of
a rectangle at hand� also a counter of size O�logT �n�� � O�b��n�� must be carried
along each time segment� that �counts� the rectangles and enables thus to identify the
corresponding rectangles that are the neighbours within the same slot in the rectangular
representation�

Thus� parallel time O�T ����n� logT �n�� is enough to perform all the necessary compar�
isons for all time segments�

�� veri�cation of vertical boundaries in rectangular representation� For the kind of veri�

cation at hand it is important to realize that due to the sweeps involved at the end
of each time segment� only crossing sequences between horizontally neighbouring rect�
angles within the same time segment must be compared� Thus� it is enough for each
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crossing sequence element from the right side of some rectangle to 
nd its �companion�
in the left side of a horizontally neighbouring rectangle� this companion will be located
at the distance of at most O�T ����n��� This can be done in parallel� extra for each
element and extra for each time segment� we only must keep track of element�s relative
position on the vertical boundary between the respective slots� within the given time
segment� This amounts to shifting a counter of size O�logT �n�� along the tape� to the
distance of at most O�T ����n���

�� Checking the milestones� by invoking parallel process for each pair of neighbouring
time segments we check by shifting appropriate counters along the S�s working tape�

� whether the value of the next input head milestone corresponds to the sum of
input head di�erences in between this� and the previous milestone�

� whether the value of the next working head milestone corresponds to the working
head movement within the given time segment� This is done as follows� We 
rst
set a special counter to the value of the corresponding working head milestone
in the 
rst time segment of the both in the pair at hand� Then scanning the log
in this segment we keep track on the direction of moves of M�s working head
that are recorded in chronological ordering in crossing sequence elements of the
log� From these information we can infer whether the head traversed across the
respective rectangle from left to right �then we increase the respective counter by
one�� or from right to left �we decrease the counter by one�� or whether the head
only �visited� the rectangle without traversing across it �we do not change the
value of the counter�� When reaching the next working head milestone the value
of counter must coincide with the value of that milestone�

� whether the di�erence between two consecutive crossing sequence milestones is
equal to the number of crossing sequence elements really present in the log and
also in the rectangular representation and whether the total number of crossing
sequence elements does not exceed the prescribed limit�

� whether the number of rectangles in the second time segment of the both is equal
to the di�erence between the respective rectangular representation milestones� In
the case of the last time segment we check whether the total number of rectangles
is within the prescribed limits� At this occasion we also check the format of
rectangles and of log elements�

B� Checking the local correctness� In order to be able to perform the local veri
cation
of each second order rectangle� we 
rst have to assign to each crossing sequence element from
the rectangle�s boundary the respective input head position of M at that moment to which
the crossing sequence element is pertinent�

For such a purpose we will need a unique identi
cation of each rectangle� Within a
given time segment each second order rectangle is uniquely given by its position within
the rectangular representation corresponding to the given time segment� This position is
represented by two coordinates� The 
rst coordinate is the number of slot in which the
rectangle 
nd itself� The second coordinate is the number �index� of the 
rst crossing sequence
element on the left side of the rectangle within the crossing sequence pertinent to the left side
of the respective 
rst order rectangle �i�e�� we are indexing the crossing sequence elements
along the respective slot boundary� in each time segment separately� starting from one�� From
e�ectiveness reasons we shall make use also of a third coordinate that is de
ned in analogous

�



way as the second one� but instead of the left crossing sequence� it concerns the right one in
the rectangle at hand�

For each second order rectangle� the respective three values will be stored as one triple
in the variable called rectangle address� The size of rectangle address is O�logT �n�� �
O�b��n���

The local veri
cation consists thus from three main steps that are described in the se�
quel� For each rectangle these three steps have to be performed in a sequential manner�
but in parallel for all second order rectangles� This is achieved by scanning the rectangular
representation as a whole from left to right and making a universal split after passing each
second order rectangle representation�

�� Computing the address of a second order rectangle� The 
rst coordinate of the rectangle
is computed by shifting a counter along the rectangular representation from the begin�
ning of the respective time segment and counting the crossings of horizontal boundaries
of the �rst order rectangles encountered�

The second coordinate is computed in a similar manner by shifting an appropriate
counter along the respective time segment in the rectangular representation� this time
keeping track of the number of crossing sequence elements at the slot boundary we are
interested in� Thus� the second coordinate �index of the 
rst crossing sequence element
within the rectangle� within rectangle address must be equal to the sum of lengths
of all left crossing sequences of all rectangles that were visited earlier within the same
slot in the given time segment� The third coordinate is computed in a similar way�

�� Assigning input head positions to each crossing sequence element in each rectangle� We
shall describe the respective procedure for the crossing sequence elements from the left
side of a rectangle� For the right side the procedure will be performed in a similar way�

First� similarly as in the previous step we will have to determine the indexes of all
the crossing sequence elements in the left crossing sequence of the rectangle at hand�
This is easy� since we already have the index of the 
rst crossing sequence element
stored in the second coordinate of the respective rectangle address� The indices of the
remaining elements are obtained by subsequently adding one to this initial value�

Now follow the log from the respective milestone �i�e�� in the part pertinent to the given
time segment� and by shifting appropriate counters along it� compute the absolute

position of input head of M on its input tape at the respective times when M�s
working head crosses the boundary between slots� Keep also track which slot boundary
is working head crossing at that time� When the working head is crossing the slot
boundary at �the left side of� which our rectangle 
nds itself� count also the number
of crossings of this boundary� This can be done as follows�

Absolute positions of the input head are determined with the help of di�erences stored
in the log� by adding them to the respective input head milestone as they are encoun�
tered when traversing the log�

Which slot boundary is working head crossing can be inferred in a similar way from
the information about the directions of working head movements when crossing the
respective slot boundaries in much the same way as the correctness of working head
milestones has been veri
ed in Phase ��A���

In this way we move along the log until we reach positions when the working head hits�
one after the other� the crossing sequence elements from our rectangle�s left boundary�
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In such a case the number of current slot that is being crossed by the working head must
match the �
rst coordinate of the� address of our rectangle and the number of crossings
this boundary must equal the index of crossing sequence element from the rectangle�s
left boundary� At this moment the position of the input head can be assigned to this
element�

For all elements from both sides of the rectangle all this can be accomplished by moving
appropriate counters of size at most log T �n� along the respective time segment b�n�
times� in a total time O�T ����n�b�n� logT �n� logn��

�� Verifying individual rectangles� For the second order rectangle at hand� that already
has the input head position assigned to each of its vertical boundary crossing sequences
by the previous process� replay the corresponding piece of the respective nondetermin�

istic computation of M� This means that we have to check that starting from the
�partial� instantaneous description� as described by the upper horizontal side of a rect�
angle� there is a nondeterministic computation of M that after at most b��n� steps
reaches the partial instantaneous description as described by the lower horizontal side
of our rectangle� During this computation� the input head must be at most b�n� times
repositioned at the input tape at each occasion when the working head reaches either
side of the rectangle at hand� Thus� the time complexity of such a nondeterministic
computation is O�b��n� � nb�n�� �the term nb�n� re�ects the complexity of head posi�
tioning�� Note that only b��n� nondeterministic moves are performed within the latter
computation�

However� this computation cannot be done straightforwardly� since there is no longer
any nondeterminism at our disposal� Therefore� we have to deterministically simulate
the respective piece of computation with the help of a suitable modi
cation of the
standard backtrack procedure� This procedure has to try all possible cb

��n	 paths
in the nondeterministic computation at hand� Nevertheless� the total price of input
head repositioning during the veri
cation of all computational paths would be still
asymptotically to high� Therefore� we will implement an other strategy� Namely� we
will save the costs of the repeated input head relocation to the same places�

Note that due to the choice of b��n� as that of the maximal nondeterministic time that
M can spent in each rectangle� the input head� once positioned to a corresponding place
on the input tape� can move to the distance of at most b��n� in either direction during
the respective computation� Thus� at the beginning of the respective deterministic
simulation we will position the input head once for each crossing sequence element in
the respective rectangle and will copy the corresponding parts of the input tape that
can be reached during the simulation to a special track in the vicinity of working head�
This will give rise to the string input where the respective parts of the input of length
b��n� are stored one after the other� separated by suitable separators� Since there are
at most b�n� repositionings needed� there will be at most b�n� of such parts� Therefore�
the length of input will be at most b��n��

Now the simulation proceeds deterministically� but instead of reading the necessary
inputs from the input tape S looks for them in the string input� The current position
of input head in the respective part of input within the string input is marked by an
appropriate mark� Reading of any input symbol requires thus O�b��n�� moves�

This new simulation schema of one path of the nondeterministic computation leads to
the time complexity of order O�b��n�� since b��n� moves ofM are to be simulated� To
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verify all paths we need O�b��n�cb
��n	� � O�T �n��

p
logT �n�� time� Note that in fact

it was the last equality that has lead to 
xing the block size b�n� at the maximal value
that would still enable to perform the deterministic simulation of nondeterministic
computations within rectangles in the time that would not asymptotically a�ect the
complexity of simulation process as a whole�

The simulation ends successfully when all the veri
cations performed in the second simulation
phase terminate successfully and in the universal subphase ��b� an accepting rectangle has
been discovered�

The time complexity of simulation is dominated by the time needed to generate the log
in the existential phase� Therefore its length O�T �n� log log T �n��

p
log T �n�� is at the same

time the bound on the time complexity of the entire simulation�
�

As seen from the above proof� it has been quite complicated 
e�g�� also in comparison
with the similar proof for the case of simulation of deterministicTM ���� due to the quite
peculiar choice of log� in which the input head positions in chronological order have been
encoded� However� the �natural� alternative choice � viz� is the storing of the input
head positions along with each corresponding crossing sequence element� as exploited
also in ��� � would lead to the simulation of time complexity 
T 
n� log n� log T 
n���
as the author persuaded himself� The fact that within polynomial complexity classes
the latter alternative presents no speed	up at all� has lead to the development of the
above mentioned idea of a log�

� Separation Result

In terms of complexity classes the previous theorem says that for a suitable T 
n�
the class of nondeterministic T 
n� time bounded single	tape o�	line computations is a

subset of the T 
n� log log T 
n��
q
log T 
n�time bounded computations on a �� machine

of the same type�

NTIME��I
T 
n�� � ��TIME��I
T 
n� log log T 
n��
q
log T 
n��

To prove a separation result related to the above mentioned complexity classes that
are bounded by the same function we shall need the following hierarchy theorem for
nondeterministic single	tape of	line machines by Lory�s and Li�skiewicz ����

Theorem ��� Let T�
n� be a fully time constructible function� with n log n � o
T�
n��
and such that there exists a deterministic o��line Turing machine which for each input

of length n writes on the work tape the binary representation of T�
n� in time T�
n��
Let T�
n  �� � o
T�
n��� Then

NTIME��I
T�
n�� � NTIME��I
T�
n��

Now we are in a position to prove the separation result we are after�

Theorem ��� Let T�
n� ! T 
n� and T�
n� ! T 
n� log log n ful�ll the assumptions of

Theorem ��� and let T�
n� ful�lls the assumptions of Theorem 	�	� Then

NTIME��I
T 
n�� � ��
TIME��I
T 
n��
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Proof Outline� From Theorem ��� we know the proper inclusion
NTIME��I
T 
n�� � NTIME��I
T 
n� log log T 
n��

According to the Theorem ��� the latter class is contained in

��TIME��I

�
T 
n� log log T 
n� log log�T �n	 log logT �n		p

log�T �n	 log logT �n		

�
� ��TIME��I
T 
n��

�

Thus� for nondeterministic single	tape o�	line time bounded Turing machines one
more alternations leads to provably more powerful machines�
It appears that all the previous theorems can be reworked to hold also for comple

mentary machines� i�e�� for classes co�NTIME��I
T 
n�� and ��TIME��I
T 
n��� How
ever� from space reasons we will abstain from the formulation of the respective proofs

cf� ���� for a similar procedure for case of single tape machines without an input tape��

� Conclusions

It has been shown that for a large class of identically time bounded computations�
adding of one more alternation to a nondeterministic or conondeterministic Turing
machine with one work tape and extra input tape leads to strictly larger complexity
classes� Thus� for such machines the �rst and the second level of the respective al
ternating hierarchy of complexity classes do not collapse� This seems to be the �rst
occasion where such a general result has been achieved for a restricted type of multi
tape nondeterministic Turing machines� We hope that our results will at least serve as
an inspiration for proving similar results also for the general case of nondeterministic
multitape machines� Note that for such a purpose it is enough to consider only two
tape nondeterministic o�	line machines� due to the result by Book et al� ����
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