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Abstract

Dempster�Shafer theory is an interesting and useful mathematical tool for uncertainty
quanti	cation and processing� From one point of view it can be seen as an alternative
apparatus to probability theory and mathematical statistics based on this probability
calculus� as D��S� theory can be developed in a way quite independent of probability
theory� beginning with a collection of more or less intuitive demands which an uncer

tainty degree calculus should meet� On the other side� however� D��S� theory can be
developed also as a particular sophisticated application of probability theory� using the
notion of non�numerical� in particular� set�valued random variables �random sets� and
their numerical characteristics� This later aspect enables to generalize D��S� theory
beyond its classical scopes using appropriately the apparatus of probability theory and
measure theory�
This report is the 	rst part of a surveyal work cumulating� and presenting in a sys


tematic way� some former authors ideas and achievements dealing with applications of
probability theory and mathematical statistics when de	ning� developing� and gener

alizing various parts of D��S� theory� The more detailed contents of this report can be
understood from the list of the titles of the particular chapters presented just below�
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� Introduction

From a certain point of view� position of every individual human being� every society�
and the mankind as a whole in the surrounding us world can be seen as that of the
subject of a continual sequence of decision making acts� terminated by ones death in
the case of an individual� and perhaps in	nite in the case of a collective agent� Just
a very small portion of the decision problem we have to solve are of the deterministic
nature when the consequences of the accepted decision can be completely� and with
the absolute degree of certainty� foreseen so that we can choose a good� appropriate�
acceptable� the best� or almost the best solution� supposing that the adjectives just
introduced are sensefully� and with a su�cient degree of preciseness de	ned� As good
examples of uncertainty
free decision procedures let us mention those ones applied in an
arti	cial environment when any in�uence of uncertainty is avoided a priori� Decision

making in mathematics� or in formal systems in general� or games like chess can be
remembered here� One common feature of all these cases consists in the fact that if
the decision making fails� e� g�� if the accepted decision is a posteriori proved not to
possess the expected properties� then the only source of this failure can consist in an
error made during the realization of the decision procedure �a computational error or
a wrong step in a mathematical proof� for example��
The situation in scienti	c branches like physics� astronomy� or chemistry is seem


ingly only slightly di�erent from that in the deductive 	elds mentioned above� but
the shift is very important from the methodological and philosophical point of view�
Astronomy� for example� pretends on the same degree of certainty in its decisions and
predictions as the deductive sciences like mathematics� and uses the mathematical tools
in the most wide scope in order to achieve this goal� However� when some decision or
prediction fails� a wrong application of the decision procedure in question� even if it
cannot be a priori avoided as a source of this failure� need not be the only possible
cause� Or� there may exist some circumstance or phenomenon not known before and
not taken� therefore� into consideration when creating the decision procedure� but in

�uencing signi	cantly the correctness or acceptability of the taken decision� E� g�� if a
planet of the Solar system is not situated at the position forecast by the computation
of heaven mechanics� the possibility of an error made during the computations cannot
be� of course� a priori avoided� It is also possible� however� that the di�erence between
the predicted and the actual position of the investigated planet is caused by some not
discovered yet new planet� From the methodological point of view� this phenomenon
can be expressed as follows� the decision about the present position of the planet in
question was charged by some �degree or portion of� uncertainty� and this uncertainty
was caused by the incompleteness of the information used during the process of deci

sion making� As we shall see below� this interpretation will be of crucial importance
in what follows� It is also why we omit a more detailed description of the further
way of entering uncertainties of various kinds and proveniences into our prediction and
decision
making processes terminated in ones everyday decision making charged by all
the uncertainty and vagueness of the real world around us�
Several attempts to build up a consistent and powerful enough mathematical the


ory of probability� taken as a tool for uncertainty quanti	cation and processing� have
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resulted in the well
known and in our days already classical Kolmogorov axiomatic
probability theory ����� This theory admits �and� as a matter of fact� has been mo

tivated by� the interpretation of uncertainty as the lack of complete information� In
other words said� all the dependences and relations among various phenomena and
among values taken by various variables are conditionally deterministic in the sense
that occurrences of all phenomena and values taken by all variables are completely
de	ned by the value of a universal hidden parameter which can be understood as �the
actual state of the Universe�� or �all the history of the Universe since the Big Bang��
or in a similar way� The problem is� however� that the actual value of this parameter
cannot be identi	ed and the only what we have at our disposal is the information that
this value belongs to a subset of possible values of this parameter and that the size of
this subset can be numerically quanti	ed by a number from the unit interval of reals�
or at least the value of this size can be more or less exactly estimated� As all the sets
to which the unknown values of the hidden parameter can be proved to belong are clas

sical crisp sets� and their sizes are quanti	ed by �standard� real numbers� all the tools
developed by the classical mathematics� namely set theory� measure theory and the
theory of real functions were at the disposal when building the axiomatic probability
theory� and they have been� in fact� widely and sophistically used for these purposes�
Let us recall that also the great success of the notion of fuzzy sets has been caused by

the fact that this notion can be almost trivially de	ned and processed using elementary
classical mathematical tools � crisp sets and functions taking these sets into the unit
interval of real numbers� or into a more general but also already classical structure
like Boolean algebra or lattice� On the other side� the theory of semisets� challenged
by the same practical and theoretical problems as the theory of fuzzy set but based
on a deeply going revision of the set
theoretic� logical and methodological foundations
of classical mathematics� has been always situated at the very margins of interest of
specialists dealing with applications of mathematical methods in extra
mathematical
	elds�
Since the moment� sometimes in the middle of the sixtieths� when fuzzy sets

emerged� a number of other formal tools for uncertainty quanti	cation and processing
have appeared� alternative to the probability theory� Dempster�Shafer theory being
one of them� The reasons for which probability theory has lost its position of the
unique and universal tool for the purposes of uncertainty quanti	cation and processing
are at least twofold� philosophical and methodological at the one side� and practical on
the other side�

�i� A more detailed investigation puts into doubts the idea that all the uncertainty
in the world around us is of the same nature and can be successfully processed by the
tools developed in order to treat a rather special case of uncertainty perhaps identi	able
with the notion of statistical or stochastical randomness� The phenomena of vague

ness� ambiguity or nonspeci	city deserve� perhaps� alternative and special tools to be
processed successfully� E� g�� there is a qualitative di�erence between the uncertainty
charging the result of a coin tossing �we are not sure which side of the coin occurs�
and the uncertainty which side of a coin we are observing �head or tail� supposing that
this coin has been digged out in a very damaged state during an archeological investi

gation� so that the original tails on both the sides of the coin can be hardly identi	ed
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and distinguished from each other�
Dempster�Shafer theory can be seen as a mathematical model for uncertainty quan


ti	cation and processing which quanti	es the degrees of uncertainty by real numbers
from the unit interval� Generalizations to values outside this interval are also possi

ble� interesting� and worth being studied� and will be also introduced in this study�
However� the additivity of probabilistic measures is intentionally abandoned and an
intuitive interpretation of degrees of uncertainty justifying such a modi	cation is sub

mitted� From the methodological point of view� one feature of Dempster�Shafer theory
is interesting and important in our context�
Dempster�Shafer theory can be developed quite independently of probability theory

in such a way that a number of more or less natural� intuitive and acceptable demands�
which an uncertainty quanti	cation should satisfy� are stated� mathematically formal

ized� and justi	ed from the point of view of their possible interpretation� Then� the
uncertainty degrees investigated and processed in Dempster�Shafer theory are proved
to satisfy necessarily certain properties� including� in general� also non
additivity sup

posing that the imposed demands hold� playing the role of axioms� say� On the other
side� however� Dempster�Shafer theory can be obtained as a non
traditional and so

phisticated applications of probability theory� when there are not the random events
themselves� but other events induced and de	ned by the original ones� the sizes of
which are probabilistically quanti	ed� This approach enables to apply all the powers
of the mathematical apparatus developed by probability theory and� more generally�
by measure theory� without giving up the possibility of an appropriate non
traditional
interpretation of the processed probabilities� E� g�� the generalization of Dempster�
Shafer theory to the case when uncertainty degrees are beyond the unit interval of real
numbers� mentioned above� can be obtained as immediate generalizations of the results
obtained for probability measures to more general measures or set functions� Also the
generalization of Dempster�Shafer theory to in	nite sets and various approximations
of uncertainty degrees processed by this theory can be easily developed and processed
in the terms of probability theory due to the generalizations of certain methods and
results of probability theory and measure theory�
Since several years� the author of this study has published a number of papers and

conference contributions dealing with applications of probability theory in order to
de	ne� analyze and perhaps generalize and enrich various particular parts or aspects
of Dempster�Shafer theory� This work does not bring too many new results when
compared with these former papers� but it has been motivated by the aim to present
the ideas and results systematically and without any preliminaries which are more or
less necessary and tacitly assumed in any special� thematically and�or by its extent
limited paper� Hence� this text should be readable for each reader on a more or less
elementary level of mathematical education and culture� It is why the work begins with
introductory chapters dealing with the elements of probability theory and probabilistic
and statistical approaches to decision making under uncertainty� On the other side�
the study has been conceived as a mathematical and theoretical one� so that the reader
seeking for� say� numerical and practical examples� should consult a more practically
oriented book or paper dealing with Dempster�Shafer theory�
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Cf� also ��� ��� and ���� for the philosophical bakcgrounds of mathematics in general
and uncertainty quanti	cation and processing in particular�
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� TheMost Elementary Preliminaries on Axiomatic

Probability Theory

This work has been conceived as a purely theoretical and mathematical study dealing
with the subject of its interest at a highly abstract and formalized level� Probability
theory will serve as one and� as a matter of fact� the most important and the most
powerful formal tool used below in order to achieve this goal� Therefore� beginning
with a brief survey of the most elementary notions of probability theory� just the most
elementary abstract ideas and construction of the axiomatic probability theory� as set

tled by Kolmogorov in ���� are presented in this chapter� intentionally leaving aside all
the informal discussions� motivations� and practical examples preceding the formalized
explanations of probability theory in the greatest part of textbooks and monographs
dealing with this theory� The reader interested in these informal parts of probability
theory is kindly invited to consult an appropriate textbook or monograph� let us men

tion explicitly the already classical textbooks ��� and ����� where just these informal
parts are explained very carefully� in detail� and with a lot of various examples� On
the other side� ���� treates probability theory at an exclusively abstract and formalized
level�
Let us begin our explanation with the basic notions of �
	eld� probability measure

and probability space�

De�nition ���� Let � be a nonempty abstract set� let P��� � fA � A � �g denote
the power
set of all subsets of the set �� also denoted by �� �this system of sets is
taken as set due to the axiomatics of set theory in its Zermelo�Fraenkel as well as
in the Goedel�Bernays setting� cf� ���� or ����� A nonempty system A � P��� of
subsets of � is called sigma��eld ����eld or �
algebra�� if for each sets A� A�� A�� � � �
from A also the sets � �A �the complement of A� and

S�
i��Ai �the union of the sets

A�� A�� � � �� belong to A� In other words� �
	eld is a nonempty system of subsets closed
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with respect to the set
theoretic operations of complement and countable union� �

As can be easily seen� each �
	eld A of a nonempty set � contains the whole space
�� the empty subset � of �� and it is closed with respect to 	nite as well as in	nite
countable unions and intersections as well as with respect to relative complements
A� B for all A� B � A� Or� by de	nition� A is nonempty� hence� for A � �� A � A�
also � �A � A� and � �

S�
i��Ai � A� where A� � A and Ai � � �A for each i � ��

Consequently� � � � � � � A holds� and
Sn
i��Ai �

S�
i��B� where Bi � Ai� if i � n�

and Bi � � otherwise� belongs to A as well� DeMorgan rules� enabling to write
T�

i��Ai

as �� �
S�

i�����Ai��� prove that A is closed with respect to countable �and trivially
also 	nite� intersections� If A� B � A� then A�B � A � ���B� is also in A�

De�nition ���� Let � be a nonempty set� let A � P��� be a �
	eld of subsets of ��
The ordered pair h��Ai is then called the measurable space generated in the set � by
the �
	eld A of its subsets� �

De�nition ���� Let h��Ai be a measurable space� A mapping P ascribing to each
set A � A a real number P �A� from the unit interval of real numbers� in symbols�
P � A 	 h�� �i� is called ���additive� probability measure de	ned on the measurable
space h��Ai� if

�i� P ��� � �� and

�ii� P �
S�

i��Ai� �
P�

i��P �Ai�P for each sequence A�� A�� � � � of mutually disjoint
�i� e�� Ai �Aj � � for all i� j � �� i 
� j� sets from A�

In more detail� for each such sequence of sets from A the series
P�

i��P �Ai� �

� limn��
Pn

i�� P �Ai� is de	ned and its value equals to P
�
U�
i��
Ai

�
� The ordered triple

h��A� P i is called probability space� �

Let us postpone some interpretation remarks a few lines below� just after having
introduced the other most important notion of the axiomatic probability theory� namely
that of random variable� and its immediate generalization to the notion of generalized
random variable�

De�nition ���� Borel line is the measurable space hR�Bi� where R � ������ is
the space of all real numbers and B is the �
	eld of Borel subsets of R� i� e�� the minimal
�
	eld of subsets of R containing all semi
open intervals ha� b� � fx � R � a � x �
bg� a � b� a� b � R �or� what turns to be the same� the minimal �
	eld containing all
half
lines ���� a�� a � R� a number of equivalent de	nitions is also possible�� �

De�nition ���� Let h��A� P i be a probability space� A total mapping X � � 	
R � ������ is called �real�valued� random variable� if it is measurable with respect
to the �
	eld B of Borel subsets of R� i� e�� if for each Borel set B � B its inverse image
w� r� to X belongs to A� in symbols� if

ff� � � � X��� � Bg � B � Bg � A� �����

�



As can be easily proved� ����� holds i�

ff� � � � X��� � ag � a � Rg � A �����

holds� �

An easy checking of the de	nition just introduced proves that it is just the property
that Borel sets form a �
	eld which is used here� taking abstraction� in the same time�
of all other speci	c properties of real numbers and their sets� So� we can replace the
Borel line in De	nition ��� by a general case of measurable space�

De�nition ���� Let h��A� P i be a probability space� let hY�Yi be a measurable
space� A total mapping X � �	 Y is called generalized �Y �valued� random variable�
if it is measurable with respect to the �
	eld Y of subsets of Y � i� e�� using the notation
as in ������ if

ff� � � � X��� � Zg � Z � Yg � A� �����

�

De�nition ���� Let X be a generalized random variable de	ned on a probability
space h��A� P i and taking its values in a measurable space hY�Yi� The mapping
PX � Y 	 h�� �i� de	ned for each Z � Y by

PX�Z� � P �f� � � � X��� � Zg� �����

is called the induced probability measure �induced by X� on the ���eld Y � If hY�Yi �
hR�Bi� then the distribution function FX of the �real�valued� random variable is the
mapping FX � R	 h�� �i de	ned by FX�a� � P �f� � � � X��� � ag� � PX����� a���
�

As can be easily proved� PX is indeed a probability measure on Y� moreover� in
the particular case of the Borel line� the induced probability distribution PX on B
is uniquely de	ned by the distribution function� Let us also remark� that the most
often investigated generalized random variables� in what follows� will be the set
valued
ones� when Y � P�S� will be the power
set of all subsets of a nonempty set S� and
Y � P�P�S�� will be a �
	eld of families of subsets of S� in the case when S is 	nite
most often Y � P�P�S�� �which is obviously also 	nite��
Even if we promised to present the elementary ideas of probability theory on a

highly abstract level� a small intuitive reconsideration seems to be worth introducing
just now� Many specialists� which are not professionally trained in probability theory
and want to get familiar with its foundations in order to apply them in their own 	elds
of research� take the constructions based on the notion of probability space and �gener

alized� random variable as too complicate and propose to begin our formal processing
of uncertainty with the induced probability measures de	ned on the corresponding
particular spaces of outcomes of their observations or experiments charged by uncer

tainty� E� g�� they begin their probabilistic description of the experiment consisting in a
regular dice tossing by the probability distribution on the six
element set f�� �� � � � � �g
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of possible outcomes ascribing to each result the same probability ���� without tak

ing into consideration an abstract probability space h��A� P i and a random variable
X � �	 R such that P �f� � � � X��� � figg� � ��� for each i � �� �� � � � � �� However�
the idea of probability space enables to pick out or �to put before brackets� our limited
abilities to quantify and process probabilities as something a priori given so that it is
beyond our powers to enrich it and we are able to quantify and process probabilities
of some empirical events just when we are able to express them� through appropriate
random variables� as probabilities of some random events� i� e�� sets belonging to A� of
the 	xed probability space being at our disposal� For example� if � � f��� ��� � � � � ����g
contains ��� elements and A is the 	eld �and obviously also �
	eld� generated by atoms
of the kind f��� ��� � � � � ���g� f���� ���� � � � � ���g� � � � � f���� ���� � � � � ����g with a proba

bility measure P de	ned on A� we are not able� given the probability space h��A� P i�
to describe in detail an experiment the results of which can be positive integers from
� to � ��� with a positive probability pi for each i � � ���� Such a restriction can be
given by our limited abilities to process probabilistic distributions over more than ten

element spaces� to obtain particular values pi for each i � � ���� or our limited abilities
to distinguish from each other the elements in each of the class f�in��� � � � � �i�n��	g for
i � �� � � � � ��� n � �� � � � � �� On the other side� the idea of probability space enables to
de	ne� even if not always to compute e�ectively� the probabilities of combined random
events de	ned by particular results of arbitrarily di�erent extra
mathematical nature
��to add apples and pears��� E� g�� probabilities of combined results obtained when
tossing simultaneously more than one dice can be de	ned on the same probability
space as in the case of a singular tossing�
There are also some intuitive reasons for which just �
	eld was chosen as an ap


propriate structure over the system of random events� It is natural to assume that the
phenomenon consisting in the fact that a random event did not occur should be also
classi	ed as random event� the same being the case of the simultaneous occurrence of
a 	nite collection of random events or of the occurrence of at least one from a 	nite
collection of random events� The condition according to which �
	eld is closed with
respect to in	nite �countable� unions and� consequently� intersections� enables to de	ne
as random events also phenomena de	ned by in	nite sequences of random events like�
e� g�� �in an in	nite sequence of coin tosses sooner or later three immediately following
occurrences of head occur�� Finite additivity of probability measure is naturally mo

tivated by the 	nite additivity of relative frequences of occurrences of disjoint random
events� its supposed strengthening to the case of �
additivity is a matter of rather tech

nical routine enabling to de	ne and compute probabilities of random events de	ned by
in	nite sequences of more elementary random events using the same rules and ideas as
in the 	nite cases�
The following de	nition introduces a very important notion of conditional probabil


ity which is sometimes considered as the axiom of probability theory �from the point of
view of metamathematical principles according to which formalized theories are built
the di�erence between axioms and de	nitions is not principal in general�� We shall see
below in this chapter� that conditional probabilities can be de	ned as very particular
cases of conditional expected values�
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De�nition ��	� Let h��A� P i be a probability space� let A� B � A be random events
such that P �B� � � holds� Then the conditional probability of �the random event�
A given �or� under the condition of the random event� B is de	ned by P �A�B� �
P �A � B��P �B�� P �A�B� being unde	ned otherwise� i� e� if P �B� � �� A slightly
modi	ed and shifted de	nition reads as follows� P �A�B� is a real number satisfying
the equality P �A �B� � P �A�B�P �B�� if P �B� � �� then obviously P �A�B� � � as
well and the equality holds for each value P �A�B� � h�� �i� �

As can be easily seen� for each B � A such that P �B� � �� the mapping P ���B� �
A 	 h�� �i is a probability measure de	ned on the �
	eld A�

Very important and often used numerical characteristics of �real
valued� random
variables are their absolute and central moments� namely the 	rst absolute and the
second central ones�

De�nition ���� Let X be a �real
valued� random variable de	ned on a probability
space� let k � � be a non
negative integer� The k�th absolute moment �or� the absolute
moment of the order k� of �the random variable� X is the number Mk�X� from the
extended real line R� � h����i � R  f��g  f�g de	ned by

Mk�X� �
Z �

��
Xk dPX �����

supposing that this number exists� The k
th central moment �or� the central moment
of the order k� of �the random variable� X is the number M�

k �X� from the extended
real line R� de	ned by

M�
k �X� �

Z �

��
�X �M��X��

k dPX �����

supposing that this number exists� The 	rst absolute moment M��X� is called the
expected value of �the random variable X� and it is denoted by EX or E�X�� the
second central momentM�

� �X� is called the dispersion of �the random variable� X and
it is denoted by D�X or D��X�� Hence�

EX �
Z �

��
X dPX � �����

D��X� �
Z �

��
�X � EX�� dPX � �����

supposing that these two numbers are de	ned �in the extended real line�� �

The most important and most often used characteristics of groups of �generalized�
random variables� or of relations among such variables� are the relations of identical
distribution and of statistical �stochastical� independence�

�



De�nition ���
� Let X be a collection of �generalized� random variables de	ned on
a probability space h��A� P i� each of them taking its values in a measurable space
hY�Yi� �Generalized� random variables from X are called identically distributed �or�
X is a collection of identically distributed �generalized� random variables�� if for each
X�� X� � X and each Z � Y the equality

P �f� � � � X���� � Zg� � P �f� � � � X���� � Zg� �����

holds� �

De�nition ����� Let X � fX��X�� � � � �Xng� n � �� be a 	nite collection of �gen

eralized� random variables� each Xi taking its values in a measurable space hYi�Yii
and being de	ned on the same probability space h��A� P i� The �generalized� random
variables X��X�� � � � �Xn are called statistically �or� stochastically� independent �or� X
is called a collection of statistically or stochastically independent �generalized� random
variables�� if for each sequence hZ�� Z�� � � � � Zni of sets such that Zi � Yi holds for each
i � n� the equality

P
��n

i��
f� � � � Xi��� � Zig

�
�
Yn

i��
P �f� � � � Xi��� � Zig� ������

holds� hX��X�� � � �i is an in�nite sequence of statistically �or� stochastically� indepen�
dent �generalized� random variables� if each 	nite subsequence of hX��X�� � � �i de	nes
a collection of statistically �or� stochastically� independent �generalized� random vari

ables in the sense of ������� Applying these notions to the particular case of character

istic functions �or� identi	ers� �A�

� �A�
� � � � � �An of random events A�� A�� � � � � An � A�

where �A��� � �� if � � A and �A��� � � otherwise� we obtain that random events
A�� A�� � � � � An are statistically �or� stochastically� independent� if the equality

P
��n

i��
Ai

�
�
Yn

i��
P �Ai� ������

holds� the generalization to the case of an in	nite sequenceA�� A�� � � � of random events
is obvious� �

Finite sequences of identically distributed and statistically independent random
variables �i�i�d� sequences� play an important role of a bridge between the empirical
data obtained on the ground of a 	nite empirical experience �observations� results
of experiments� � � � �� and the idealized values of probabilities and expected values
�cf� ����� e� g� for a more detailed philosophical and methodological discussion�� The
role of mathematically formalized counterpart of this bridge� enabling to de	ne� in
which sense and degree a 	nite experience �the average value of a 	nite number of
numerically quanti	ed observations� say� can be taken as a good approximation of an
ideal characteristics �expected value� say�� is played by the laws of large numbers� Let
us introduce here just one such law� the strong law of large number� in the setting
simple enough� but su�cient for our purposes� Its more general formulations consists
in various kinds of weakenings of its conditions and can be found in all more detailed
textbooks or monographs on probability theory� let us recall ���� �� or ���� just as
examples�
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Fact ���� �A simple formulation of the strong law of large numbers� Let hX��X�� � � �i
be an in	nite i�i�d� sequence of �real
valued� random variables de	ned on a probability
space h��A� P i� let jEX�j ��� let D�X� ��� Then

P
�
f� � � � lim

n��
n��

Xn

i��
Xi��� � EX�g

�
� �� ������

�

Informally� the average value taken from a 	nite sequence of realizations of statis

tically independent copies �repetitions� of a random variable X� tends almost surely
�with the probability one� to the expected value of the random variable X�� In other
words� there are rational reasons to take average value of a large enough sequence of
statistically independent realizations as a more or less good approximation or estimate
of the expected value of the random variable in question�
The laws of large number including that one just introduced are assertions of limit

nature� The degree in which a particular average value �average mean� approximates
the expected value in question is quanti	ed by the well
known Chebyshev inequality�
let us present here� again� its simple form su�cient enough for our purposes� referring
the reader to the books already mentioned or to other sources for some more strong
versions of the Chebyshev inequality�

Fact ���� �Chebyshev inequality� Let hX��X�� � � �i be the same sequence as in Fact
���� Then

P
�n
� � � �

���n��Xn

i��
Xi��� �EX�

��� � 	
o�

� �D�X���n 	
� ������

holds for each n � �� �� � � � and each 	 � �� �

In the particular case� when each random variable Xi is identically distributed
with the characteristic function �identi	er� �A of a random event A � A� i� e�� when
P �f� � � � Xi��� � �g� � P �f� � � � �A��� � �g� � P �A� and P �f� � � � Xi��� �
�g� � P �f� � � � �A��� � �g� � ��P �A� hold for each i � �� �� � � �� ������ and ������
reduce to

P
��

� � � � lim
n��

n��mn � P �A�
	�
� �� ������

P �f� � � � jmn�n� P �A�j � 	g� � �D�Xn��n 	
� � ���n 	�� ������

where mn � mn��� is the number of occurrences of the random event A in a sequence
of n statistically independent and identically distributed random experiments each
of them taking as its result either A or nonA �� � A�� The general upper bound
in ������� independent of D�X�� follows from the almost obvious fact that for each
random variable X taking as its values only � or � the inequality D�X � ��� holds�

The reader is warned not to overestimate the meaning of strong laws of large num

bers� being perhaps suggestively fascinated by the wording �almost surely� used in
their formulations� An interesting and more deeply going discussion about the nature
of strong laws of large numbers can be found in ����
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Let us close this chapter by the notion of conditional expected value� as both the
notions of expected value and that of conditional probability� introduced above� can
be obtained as very special cases of this general notion�

De�nition ����� Let h��A� P i be a probability space� let B � A be a nonempty
sub
�
	eld of A� let X be a �real
valued� random variable de	ned on h��A� P i� let PB
be the restriction of P to the sub
�
	eld B� i� e�� PB � P �A� for each A � B� PB�A�
being unde	ned for A � A � B� A real
valued random variable EBX de	ned on the
probability space h��B� PBi and such that the equalityZ

B
�EBX� dPB �

Z
B
X dP ������

holds for each B � B is called the conditional expected value of �the random variable�
X given �or� with respect to� �the sub����eld� B � A� �

The well
known Radon�Nikodym theorem implies �cf� ���� or ������ that the def

inition just introduced is not vacuous and that the conditional expected value EBX
exists� Moreover� it is de	ned uniquely up to a null set from B� in more detail� if EB

� X
and EB

� X both satisfy ������ for all B � B� then there exists B� � �� B� � B� such
that PB�B�� �� P �B��� � � and the inclusionn

� � � � �EB
� X� ��� 
� �E

B
� X� ���

o
� B� ������

holds�
Let B � f���g be the minimal �the most rough� nonemty sub
�
	eld of A� Con


sequently� EBX must be constant on each atomic set of B and there is just one
such set� namely� whole the space �� so that �EB�X� ��� � EX �if EX exists� for
all � � �� EB�X is de	ned unambiguously� as there is no nonempty set of PB

measure zero in B�� Let B � A be such that � � P �B� � �� let X be the char

acteristic function �identi	er� of A� so that X��� � �� if � � A� X��� � � oth

erwise� Let B� � f�� B� � � B� �g� obviously B� is a �sub�
�
	eld of A� Then
������ is satis	ed� if �EB�X� ��� � P �A�B� � P �A � B��P �B� for each � � B� and
�EB�X� ��� � P �A���B� � P �A�B�����P �B�� otherwise� i� e�� for all � � ��B�
As can be easily proved� in this case for each � � �� �� � B and �� � ��B�

EB��EB�X� ��� � �EB�X� ����P �B�  �E
B�X� ���� �� � P �B�� � ������

� P �A�B�P �B�  P �A�� �B�P ���B� � P �A� � �EB�X� ����

as expected�

Some other notions� methods and results of probability theory will be introduced
below in the case of their necessity and in the actual context when their necessity arises�
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� General Probabilistic Model of Decision Making

under Uncertainty

Like the last chapter� also this one could be conceived at a purely formalized level�
speaking about sets� mappings� functions� relations and ordered n
tuples of such objects
satisfying some mathematically formalized demands� The di�erence between the two
chapters consists in the fact that the intuition� interpretation and motivation behind the
axiomatic probability theory can be found in most of the textbooks and monographs
dealing with this theory� on the other side� in the case of general probabilistic and
statistical models of decision making under uncertainty the situation is not so simple�
let us mention here ���� or ��� as good introductory texts� Therefore we begin our
explanation using informal terms charged by some extra
mathematical semantics� but
our intention will be to get back to a formalized mathematical language as soon as
possible�
Consider a system SYST of no matter which technical� medical� ecological or other

nature� At the most general level such a system can be described by a black box
such that a subject �agent� user� observer� � � � � can put some data or values on the
input device of this black box and some output values eventually occur as the reaction
�answer� to� or as the impact of� the input values� E� g�� in the case of a human
being
patient� considered as a medical system� the input values are the applied medical
treatments or medicaments� and the output values are various reactions of the patients
organism in particular or her�his global state of health in general� The exhaustive set
of input values being at the subjects disposal will be denoted by D and its elements�
denoted by d and perhaps indexed� will be called decisions as there is just this choice�
more or less sophistically taken from the space D� in other words� the decision made by
the subject� which enables to intervene into the system SYST with the aim to in�uence
and� in a sense and from the subjects point of view� to optimize the output value by
which the system answers to the chosen decision put on its input�
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Just in the most trivial cases being� in our context� completely beyond the scope of
our interests� the output of the system in question is determined by the input values
themselves� To cover a more general case we shall suppose that the answers of the
system may be di�erent even if the input value is the same and we shall suppose�
in other wording� we shall ontologically interprete this case in such a way� that it is
caused by the fact that the systemmay be situated in various internal states� Denoting
by S the set of all possible internal states of the system SYST we shall suppose that
�i� SYST is situated in just one actual �internal� state s � S and �ii� the output value
of the system is completely determined by the pair hd� si� where d is the decision taken
by the subject and s is the actual state of the system at the time when d was put on
the input device of SYST�
When looking for a formal description of the answers output by the system we

shall limit ourselves to the case when each such particular output value turns into
a numerically quanti	ed gain or pro	t of the subject in question� e� g�� a 	nancial
pro	t� In the case of rather qualitatively than quantitatively classi	ed outputs we can
ascribe the value � to the good� acceptable or adequate replies� and the value � or
�� to the other ones� the solution will always ultimately depend on the particular
properties of SYST and the circumstances in question and it is almost useless to give
some hints on the most general level adopted here� Formally said� we shall suppose
that there is a real
valued function 
 ascribing to each decision d � D and to each
internal state s � S a real number 
�d� s� �in symbols� 
 � D � S 	 R � �������
taken as the numerical pro	t achieved by the subject if she�he applies the decision
d � D and the system is situated in the internal state s � S� Consequently� we can
compare two or more decisions potentially applied in the same state s� saying that the
decision d� is better than d� �not worse than d�� resp�� in the state s� if the inequality

�d�� s� � 
�d�� s� �
�d�� s� � 
�d�� s�� resp�� holds� Similarly� the decision d is the
best �one among the best� resp�� in the internal state s of the system SYST� if the
inequality 
�d�� s� � 
�d� s� �
�d�� s� � 
�d� s�� resp�� holds for each d� � D� d� 
� d�
The problem how to choose the decision yielding the maximal pro	t would be very

simple� leaving aside the computational problems� if the subject knew the actual state
s� � S of the system SYST� however� as a rule� this is not the case� The only what the
subject knows are the results of some observations� measurements� tests or experiments
concerning the system and its environment� and only on the grounds of these empirical
values the subject can choose a decision� For the sake of formal simplicity we can
suppose that all such data being at the subjects disposal are described by a value x
from a space E of all possible empirical values� Keeping in mind that E can be also
a Cartesian product of some more elementary spaces or a functional space� we can
easily see that the simpli	cation just introduced does not bring a substantial loss of
generality for our further reasonings� And now it is just the time when the phenomenon
of uncertainty enters our model� it is possible� in general� that there are two di�erent
internal states s�� s� of SYST such that d� � D is the optimal decision� if s� is the
actual state of the system� d� � D� d� 
� d�� is optimal when s� is the case� but in
both the cases x � E is observed� so that the subject is not able to choose the optimal
decision having at her�his disposal nothing else than the empirical value x � E� In
symbols� if � � E 	 D is a mapping called decision function and ascribing the decision
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��x� � D to the observed empirical value x � E� it is impossible to de	ne � in such
a way that ��x� � d�� if s� is the actual state of SYST and ��x� � d� 
� d�� if s� is
the actual state of SYST� as such a demand contradicts the elementary properties of �
taken as a function de	ned on E�
In order to describe this situation formally and� perhaps� to solve it somehow� let us

apply the basic paradigma� already presented in the 	rst chapter� according to which
uncertainty is nothing else than lack of complete knowledge in a deterministic model of
the investigated system and its environment� Hence� we shall suppose that there is a
universal parameter �� taking its values in a nonempty space � such that all the values
concerning SYST and its environment� including the actual internal state s� � S of
this system and the empirical value x � E� are determined by the actual value � � ��
This value can be understood as whole the history of Universe since the Big Bang� or
as a complete description of positions and movements of all the bodies �all the mass
particles� more precisely� in the Universe� Such an interpretation agrees with the idea
that having at her�his disposal such an exhaustive description of Universe� the subject
would be able to predict� without any risk of failure� all the future phenomena in the
Universe in all their details� and it is just the lack of such an exhaustive information
which brings uncertainty into our prediction and decision
making processes�
So� let � � �	 S and X � �	 E be two total mappings such that� if � � � is the

actual value of the universal parameter or the actual elementary state of the Universe�
then ���� � s� � S the actual internal state of the system SYST and X��� � x� � E
is the observed empirical value� The phenomenon of uncertainty introduced in the last
paragraph can be formally described as follows� Let opt � � 	 D be the mapping
ascribing to each � � � the best decision with respect to the actual internal state ����
and to the pro	t function 
� Hence� for each � � � and each d � D the inequality

�d� ����� � 
�opt���� ����� holds� for the sake of simplicity we put aside the problem
with respect to which secondary criterion the value opt��� is de	ned� if there are two
or more values d � D maximizing 
�d� ������ However� it is possible that the subject
observes a value x� � E such that there exist ��� �� � �� �� 
� ��� with the property
that X���� � X���� � x�� but opt���� 
� opt���� �it follows immediately that in this
case ����� 
� ������� How to decide� now� whether to take the decision d� or d�� even
when supposing� for the sake of simplicity� that for each � � � such that X��� � x�
either opt��� � d� or opt��� � d� hold! The occurred phenomenon of uncertainty is
reduced to the subjects lack of information concerning the precise actual value of the
parameter �� the only what the subject knows is that X��� � x�� in other symbols�
that � � f�� � � � X���� � x�g� but this information does not enable to identify fully
value ��
A possible solution to this decision problem could be as follows� Consider the

subsets A� � f� � � � X��� � x�� opt��� � d�g and A� � f� � � � X��� �
x�� opt��� � d�g and compare them from the point of view of their sizes� importance
or weights of their elements� or according to another numerically quanti	ed criterion�
Consequently� take the decision d�� if the set A� is preferred to A� with respect to this
criterion� take d�� if A� is preferred to A� with respect to the same criterion� and apply
some auxiliary criterion� if the primary criterion ascribes the same value to both the
sets A�� A��
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The reader probably already guesses� and we must admit that it is a good intuition�
that it will be a probability measure� de	ned on an appropriate system of subsets of ��
which will play the role of a general enough numerical characteristic of the size or weight
of the sets A� and A� supposing that they both belong to the system of subsets of � in
question� As a matter of fact we shall suppose� since now� that there is a probability
space h��A� P i de	ned over the space � of all possible values of the universal parameter
� and being at the subjects �users� decision makers� � � � � disposal� The case when P is
replaced by some more general measure� e� g�� by a signed measure� will be investigated
in some of the next chapters� So� the user accepts the decision d� if P �A�� � P �A���
and she�he accepts d�� if P �A�� � P �A��� of course� the case when P �A�� � P �A�� can
be treated also in the opposite way� If the set f� � � � X��� � x�g � A
 belongs to
A and P �A
� is positive� then P �A�� � P �A�� holds i� the inequality

P �A���P �A
� � P �A� �A
��P �A
� � P �A��A
� � �����

� P �f� � � � opt��� � d�g�f� � � � X��� � x�g� �

� P �A���P �A
� � P �A� �A
��P �A
� � P �A��A
� �

� P �f� � � � opt��� � d�g�f� � � � X��� � x�g�

holds� so that the decision function can be de	ned in the intuitively more easy to
understand terms of conditional probabilities�
However� the way of reasoning leading to the solution just introduced is not the

most general one� as it does not re�ect the di�erent situations which can occur� if
a wrong �i� e�� not the optimal� decision is taken� It matters� whether the di�erence
j
�d�� ������
�d�� �����j is more or less negligible or whether it is� in fact� a qualitative
di�erence �life or death for a patient or a prisoner� only very poorly described in
quantitative terms� A more general way of reasoning leads to the following model�
The optimal decision function �opt � E 	 D would be such that �opt�X���� �

opt��� for each � � �� as in this case the inequality



�
�opt�X����� ����

�
� 
���X����� ����� �����

would hold for each decision function � � E 	 D� In general� however� �opt need not
exist� as the partition of � generated by the system of subsets ff� � � � X��� � xg �
x � Eg may be too rough to enable the de	nition of �opt� In the extremal case� when
X��� � x� for each � � �� only constant decision functions can be applied to X����
However� the value

���� �� ��� � j
�opt���� ������ 
���X����� �����j � � �����

can be taken as �and will be called� the loss su�ered by the subject applying the
decision function �� if � is the actual value of the universal parameter� and an intuitively
reasonable subjects e�ort will be to minimize this loss to the degree as small as possible�
It is very easy to see that up to trivial cases it does not exist a decision function

�� � E 	 D such that ����� �� ��� � ���� �� ��� would hold uniformly for all � � ��
Or� for a 	xed �� � � and for the constant decision function ����x� � opt���� for all
x � E� the value

������ �� ���� � j
�opt����� ������� 
�����X������ ������j � � �����

��



is minimal� however� ������ �� ��� can be very high for � 
� ��� �It does not matter�
in this context� that the subject is perhaps unable to compute e�ectively the value
opt���� and to de	ne e�ectively� which is the decision function ��� in question�� The
two most frequently used solutions here are the minimax and the Bayes ones�
The minimax solution is based on the �pessimistic� or �safety 	rst� principle so

that we take the value

��� �� � supf���� �� ��� � � � �g �����

as the numerical characteristic of the quality of the decision function � and the subjects
aim is to choose �� in such a way that ���� �� � ��� �� holds for each decision function
�� It is possible� in general� that such �� does not exists� in other words� there exists
a sequence ��� ��� � � � of decision function such that ���� �� � ���� �� � � � � holds� but
there is no �� such that ���� �� � limi�� ��i� ��� But� in this case there exists� for
each 	 � �� a decision function ���� such that

������ �� � inff��� �� � � � Dg  	 �����

holds� where D � DE is the set of all mappings from E to D�
The often used argument against the minimax principle takes this principle as too

pessimistic in the sense that the choice of the decision function �� may be ultimately
in�uenced by the behaviour of the loss function ���� �� ��� for a singular value of �� or
for �s belonging to a subset of non
typical� degenerated� very rarely occurring� useless
from the practical point of view� etc�� values of the universal parameter� Accepting
this argument we have to classify particular decision functions rather with respect to
the expected value of the loss function ���� �� ��� de	ned with respect to some apriori
probability distribution P de	ned on a �
	eld A of subsets of �� Hence� leaving aside�
for the moment� the problem connected with the existence of the integrals in question�
we choose such a decision function �� � E 	 D that the inequality

EP ������ ��� �
Z
�
����� �� ��� dP �

Z
�
���� �� ��� dP � �����

� EP ����� ���

holds for each � � D � DE � Again� due to the properties of the in	mum operation in
the space of non
negative real numbers there always exists� for each 	 � �� a decision
function ���� � D such that

EP �������� ��� � inffEP ����� ��� � � � Dg  	 �����

holds� This is the so called Bayes solution corresponding to �or� de	ned by� the a priori
probability measure P on the �
	eld A�
As it is not the aim of this work in general and this chapter in particular to inves


tigate decision problems under uncertainty and statistical decision functions in more
detail at such a general and abstract level as presented above� let us describe� in more
detail� the particular case when
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�i� D � S� hence� the space of decisions is identical with that of possible internal
states of the investigated system SYST� below we shall investigate also the case
when D � fA� S �Ag for a subset A � S �� 
� A 
� S� to avoid trivialities�� and

�ii� 
�d� s� � �� if d � s� 
�d� s� � � otherwise�

Hence� the subjects goal is to identify the actual internal state s� � ���� of SYST and
if she�he identi	es the state correctly� she�he obtains a unit pro	t �su�ers no or zero
loss� in the dual wording�� If the identi	cation is wrong� she�he does not obtain any
pro	t �su�ers a unit loss�� Let h��A� P i be a probability space over �� let us suppose�
for the sake of simplicity� that both the spaces D �� S� and E are 	nite or countable
and that X ��� resp�� is a random variable taking h��A� P i into the measurable space
hE� P�E�i �hS� P�S�i� resp��� Let us try to 	nd the Bayes solution to the decision
problem just de	ned� i� e�� let us try to 	nd a decision function �� � E 	 D �� S�
satisfying ����� for the given random variables X and ��
We can suppose� without any loss of generality in the case when E is 	nite or

countable� that P �f� � � � X��� � xg� � � holds for each x � E �we can reduce E
to such elements� if it is not a priori the case�� Consequently� for mappings � � E 	
D �� S� and � � �	 S we obtain that

EP ����� ��� � �����

�
X

x�E
�� � P �f� � � � ���� �� ��� � �� X��� � xg�  

 � � P �f� � � � ���� �� ��� � �� X��� � xg�� �

�
X

x�E
�P �f� � � � ���� �� ��� � �g�f� � � � X��� � xg� �

�P �f� � � � X��� � xg���

as ���� �� ��� takes only the values � or ��
Let �� � E 	 S be de	ned in this way� For each x � E� ���x� � sx � S i�

P �f� � � � ���� � sxg�f� � � � X��� � xg� � ������

� P �f� � � � ���� � sg�f� � � � X��� � xg�

holds for each s � S� in other terms� sx is �the or a� value maximizing the conditional
probability P �f� � � � ���� � sg�f� � � � X��� � xg� taken as a function of s� Now�
for each decision function � � E 	 D �� S�� and for each x � E� due to ������ the
following equalities and inequalities hold�

P �f� � � � ���� �� ��� � �g�f� � � � X��� � xg� � ������

� P �f� � � � ��X���� 
� ����g�f� � � � X��� � xg� �

� P �f� � � � ��x� 
� ����g�f� � � � X��� � xg� �

� P �f� � � � sx 
� ����g�f� � � � X��� � xg� �

� P �f� � � � ���X���� 
� ����g�f� � � � X��� � xg� �

� P �f� � � � ����� �� � �g�f� � � � X��� � xg� �

Hence� combining ����� and ������ we obtain that �� minimizes EP ����� ���� so that ��
is a Bayes solution to the decision problem in question� This result is quite intuitive�
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obtaining the empirical value x � E� the subject takes as her�his estimation of the
actual internal state of SYST this value s � S� which is the most probable under the
condition that x was observed� If there are two or more values from S with the same
conditional probabilities� it is a matter of a secondary criterion not so important in our
context� which of the possible candidates will be chosen�
When trying to apply the Bayes decision function �� just de	ned in a practical case

we arrive at the following problem� how to obtain the values� or at least good and
reliable estimations� of the conditional probabilities P �f� � � � ���� � sg�f� � � �
X��� � xg� for s � S and x � E! The problem is that the dependence between internal
states of SYST and the empirical results� even if symmetric from the mathematical
point of view� is more intuitively seen as going rather from the actual internal state
of the system to the empirical value x than in the opposite sense� E� g�� it is quite
natural to ask� and not so di�cult to compute� which is the probability that just six
heads occurs in a sequence of ten statistically independent and equally distributed coin
tosses �empirical observation �X��� � ��� under the condition that the probability
with which head occurs in each toss is ��� �i� e�� supposing that ���� � s� � �����
than to ask for the probability that ���� � ��� under the condition that X��� � ��
The well
known Bayes formula �cf� ��� ��� or any elementary textbook on probability
theory� reads that

P �f� � � � ���� � sg�f� � � � X��� � xg� � ������

P �f� � � � ���� � s� X��� � xg�

P �f� � � � X��� � xg�

P �f� � � � X��� � xg�f� � � � ���� � sg�P �f� � � � ���� � sg�P
s�S P �f� � � � X��� � xg�f� � � � ���� � sg�P �f� � � � ���� � sg�

�

Let us recall that the sets S and E are supposed to be 	nite or countable for the sake
of simplicity� more general versions of Bayes formula can be found in the textbooks
mentioned above or elsewhere�
Hence� we have escaped from the problem to have at our disposal directly the

values or good estimates of conditional probabilities P �f� � � � ���� � sg�f� �
� � X��� � xg�� but only supposing that we know� besides the probabilities P �f� �
� � X��� � xg�f� � � � ���� � sg�� also the values of the apriori probabilistic
distribution P �f� � � � ���� � sg� for each s � S� And it is one of the basic problems
of the Bayes approach to statistical decision making to obtain this apriori distribution
or even to justify the point of view that it is reasonable to assume that the actual
state of the system is a random value� E� g�� when estimating the probability of life
on the surface of Mart given some indirect empirical indices obtained by cosmic sonds
and using the Bayes rule� we have to know the apriori probability that the life on
Mart exists� However� the life on Mart either exists or not� it is an individual and
isolated phenomenon in the Universe� but in order to interprete the probability of life
on Mart somehow� we have to suppose that there exist a great number of planets with
conditions identical as those on the surface of Mart� and we have to de	ne the apriori
probability of life on the surface of Mart by the relative frequence of those �identical
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copies of Mart� where the life exists� Such a construction seems to be rather arti	cial
and counter
intuitive� And still another problem remains� even if the existence of
an apriori distribution can be justi	ed somehow� how to obtain the particular values
ascribed by this distribution to various internal states of the system SYST! Happy
enough� it is not our aim in this work to discuss this problem in more detail� let
us just remark� that there exist a lot of papers� monographs� conference proceedings
volumes� etc� dealing with this problem� and many related ones� on various levels and
from various points of view� What is important in our context� one of the sources of
inspiration for the Dempster�Shafer theory� or rather the Dempster�Shafer approach to
�or� model of� uncertainty quanti	cation and processing� consists just in the fact that
this approach enables to avoid from our considerations the problem of existence and
identi	cation of apriori probability distribution� as will be shown in the next chapter�
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� Basic Elements of Dempster�Shafer Theory

The greatest part of works dealing with the fundamentals of Dempster�Shafer theory
is conceived either on the combinatoric� or on the axiomatic� but in both the cases on a
very abstract level� The 	rst approach begins by the assumption that S is a nonempty
	nite set� that m is a mapping which ascribes to each A � S a real number m�A�
from the unit interval h�� �i in such a way that

P
A�S m�A� � � �m is called a basic

probability assignment on S�� and that the �normalized� belief function induced by m
is the mapping belm � P�S� 	 h�� �i de	ned� for each A � S� by belm�A� � �� �
m������

P
���B�Am�B�� if m��� � �� belm being unde	ned otherwise ������� The other

�axiomatic� approach begins with the idea that belief function on a 	nite nonempty
set S is a mapping bel � P�S� 	 h�� �i� satisfying certain conditions �obeying certain
axioms� in other terms�� If these conditions �axioms� are strong and reasonable enough�
it can be proved that it is possible to de	ne uniquely a basic probability assignment
m on S such that the belief function induced by m is identical with the original belief
function de	ned by axioms� so that both the approaches meet each other and yield the
same notion of belief function ������� The problems how to understand and obtain the
probability distribution m over P�S� in the 	rst case� or how to justify the particular
choice of the demands imposed to belief functions in the other case� are put aside or are
�picked before brackets� and they are not taken as a part of Dempster�Shafer theory
in its formalized setting�
The basic stone of the probabilistic approach to Dempster�Shafer theory consists in

a de	nition and interpretation of belief functions� as the basic quantitative characteris

tic of uncertainty in this theory� using appropriate terms and tools of probability theory�
Like as in the more general case introduced above� we shall begin with some intuitive
interpretation of the presented notions� putting this interpretation aside and returning
to a purely mathematical formalized style of explanation as quickly as possible�
So� let S be a nonempty� but not necessary 	nite� set of all possible internal states

of an investigated system SYST� As in the particular case of decision making under
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uncertainty explained in the closing part of Chapter �� our aim is not to optimize a
general statistical decision function with respect to a given loss function and to a global
decision strategy �the minimax� a Bayes� or another one�� but rather to identify the
actual internal state s� of the system SYST or at least to decide� whether s� � A holds
or does not hold for a �proper� to avoid the trivial case� subset A of S� The hidden
assumption behind such a simpli	cation is that if the decision about the internal state
of SYST is correct� also the consecutive activity of the subject concerning in her�his
intervention into the system will be the best possible� More generally� the better is the
decision about the actual internal state of SYST� the better will be the consecutive
operation executed by the subject�
Again� as in the general case above� the subject is not supposed to be able to

observe immediately the actual state of SYST or to draw this information simply
and beyond any risk of error from her�his knowledge concerning the system and its
environment� The only what the subject knows are the results of some observations�
measurements� experiments� etc�� cumulated into a value x from a nonempty �and
possibly vector� space E� At the general level the 	niteness of E also need not be
assumed� However� in order to be sure that there is at least some degree of sensefulness
and rationality when taking some decisions concerning the actual state of SYST on the
ground of empirical values from E� some relation between the states from S and values
from E must be assumed to exist and to be known to the subject� In the case of
statistical decision functions such relations are given by the conditional probabilities
P �f� � � � X��� � xg�f� � � � ���� � sg� for x � X and s � S in the case
when the spaces E and S are at most countable� or by the conditional probabilities
P �f� � � � X��� � Fg�f� � � � ���� � Tg� for at least some subsets F � E and
T � S in the general case� If the Bayes approach is to be applied also the apriori
probability distribution P �f� � � � ���� � sg� or P �f� � � � ���� � Tg� must be
known� When developing the Dempster�Shafer theory� such a basic relation between
states and observations is de	ned by the so called compatibility relation�

De�nition ���� Compatibility relation over a state space S and an observational
space E is a subset of the Cartesian product S �E or� what obviously turns to be the
same� a binary function  � S � E 	 f�� �g� i� e�� for each s � S and x � E� either
�s� x� � � or �s� x� � �� �

The intuition behind this de	nition is as follows� The case �s� x� � � denotes�
for a particular state s � S and a particular empirical value x � E� that the subject
knows� or is able to deduce� using her�his knowledge and within the frameworks of
her�his deductive abilities� that s cannot be the actual internal state of the system
under consideration supposing that the empirical value x was obtained� The state s
and the value x are then called �mutually� incompatible� E� g�� a doctor can eliminate
certain diagnoses on the ground of the medical data obtained during an examination of
a patient� even if this doctor is still not able to say exactly� which is the true diagnosis�
Consequently� the case when �s� x� � � describes the situation when the subject is
not able to avoid the possibility that s is the actual internal state of SYST when x
was observed� s and x are then called �mutually� compatible� Two assumptions are
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imposed to this interpretation of compatibility relation� namely�

�i� If �s� x� � �� then it is taken as granted and objectively valid� that s and x are
incompatible� hence� this case describes the objectively true state of a�airs� no matter
of the obvious fact that subjects knowledge and deductive abilities must be limited�
This condition will be abandoned� in what follows� only locally� when introducing and
discussing the so called dual �or� pessimistic� Dempster combination rule�

�ii� On the other side� if �s� x� � �� it is possible that� according to some laws of
nature or other rules governing the system and its environment� s and x are incompati

ble� but the subject does not know about this fact because of her�his limited knowledge
base and deductive abilities� E� g�� a young doctor lacking a su�cient experience is not
able to avoid a diagnosis which her�his older colleague eliminates almost immediately
having seen the results of the patients examinations� This condition plays an impor

tant role in the Dempster combination rule �cf� the next chapter�� as this rule enables
to improve one subjects knowledge �i� e�� to enlarge the set of pairs hs� xi known by
her�him to be incompatible� by sharing knowledge with another subject
specialist in
the 	eld of discourse�

Given an empirical value x � E� De	nition ��� enables to de	ne the set U��x� �
fs � S � �s� x� � �g of states compatible with this empirical value� The phenomenon
of uncertainty will be embedded into our model when supposing that empirical values
are charged by uncertainties which can be de	ned� quanti	ed and processes using the
tools of classical Kolmogorov axiomatic probability theory� In other terms� we shall
suppose that x � E is the value taken by a �generalized� random variable X de	ned
on an abstract probability space h��A� P i and taking its values in a measurable space
hE� Ei generated over the observational space E when choosing a �
	eld E of subsets of
E� Now� the composed mapping U��X���� takes the space � into the power
set P�S�
of all subsets of the space S and we may ask� given � � � and A � S� whether the
inclusion U��X���� � A holds or does not hold� If f� � � � U��X���� � Ag belongs to
the �
	eld A of subsets of �� we may quantify the size of this set using the probability
measure P and we can de	ne the value P �f� � � � U��X���� � Ag�� If this is the
case also for the empty set � � S� i� e�� if f� � � � U��X���� � �g � A holds� we may
de	ne the value

bel���A� � P �f� � � � � 
� U���� � Ag� �����

and we can call it the non�normalized degree of belief �or� the value of non�normalized
belief function� de	ned by the compatibility relation  and random variableX� ascribed
to the subset A of S ������� If� moreover� bel����� � � holds� then the normalized degree
of belief �or� the value of normalized belief function� de	ned by the compatibility
relation  and random variable X� ascribed to the subset A of S� is de	ned by the
conditional probability

bel��A� � P �f� � � � U��X���� � Ag�f� � � � U��X���� 
� �g� � �����

A slightly more formalized de	nition reads as follows�
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De�nition ���� Let S be a nonempty state space� let E be a nonempty observational
space� let E � P�E� be a �
	eld of subsets of E� let h��A� P i be a probability space�
let X � h��A� P i 	 hE� Ei be a �generalized� random variable� let  � S � E be a
compatibility relation� Let U��X � �	 P�S� be a mapping de	ned� for each � � �� by

U��X��� � fs � S � �s� X���� � �g� �����

let S � P�P�S�� be a �
	eld of systems of subsets of S such that U��X is a �generalized
set
valued� random variable taking h��A� P i into hP�S�� Si �such S always exists� at
least S � f�� P�S�g will do�� Then non�normalized degree of belief �belief function�
bel���X is the �partial� in general� mapping which takes P�S� into h�� �i in such a way
that

bel���X�A� � P �f� � � � � 
� U��X��� � Ag� � �����

ifA � S� f�g � S and P�A� � S� bel���X�A� being unde	ned otherwise� If bel
�
��X��� � �

holds for the empty subset � of S� then normalized degree of belief �belief function�
bel��X is the �partial� in general� mapping which takes P�S� into h�� �i in such a way
that

bel��A� � P �f� � � � U��X��� � Ag�f� � � � U��X��� 
� �g� � �����

if A � S and P�A� � S� bel��X�A� being unde	ned otherwise� If bel
�
��X��� � �� the

normalized degree of belief �belief function� bel��X is unde	ned� �

Belief functions� just de	ned� are the basic numerical quanti	cations or character

istics of uncertainty in the Dempster�Shafer theory and it is why their de	nition needs
several more detailed comments and remarks to which the greatest part of the rest of
this chapter will be devoted�
According to De	nition ���� belief functions bel� and bel depend on the compati


bility relation � hence� also on the spaces S and E� on the probability space h��A� P i�
and on the random variable X� In symbols� bel� � bel�S�E���h��A�P i�X� and similarly for
the normalized version� However� in what follows� only  and X will be� occasionally�
introduced explicitly� namely in the cases when belief functions induced by di�erent
compatibility relations �� �� say� and�or by di�erent random variables� X�� X�� say�
will be considered and perhaps combined with each other� as it will be the case of the
Dempster combination rule� introduced and investigated in the next chapter� All the
other parameters will be either taken as 	xed �e� g�� the probability space h��A� P i��
or assumed to be clear from the context� The author believes that the resulting sim

pli	cation in the used notation is worth accepting the perhaps possible risk of a mis

understanding�
A very important property of De	nition ��� consists in its compatibility with the

usual combinatoric de	nition of belief function for 	nite spaces S� brie�y mentioned
at the very beginning of this chapter� In other words� De	nition ��� generalizes this
elementary de	nition in a natural conservative way� Let the space S and� consequently�
also the power
set P�S�� be 	nite� let S � P�P�S�� be the maximal �the 	nest� �
	eld
of subsets of P�S�� let the random variable X � h��A� P i 	 hE� Ei be such that the
composed mapping U��X���� � � 	 P�S� is a random variable de	ned on the proba

bility space h��A� P i and taking its values in the measurable space hP�S�� P�P�S��i�

��



Such a measurability of U��X���� can be easily achieved� e� g� when also the observa

tional space E is 	nite� E � P�E� is the �
	eld of all subsets of E� and X is a random
variable taking h��A� P i into hE� P�E�i� Then we can de	ne and denote� for each
A � S�

m�A� � P �f� � � � U��X���� � Ag� � �����

It is obvious that m is a probability distribution over P�S�� in other words� a basic
probability assignment on S� as

P
A�S m�A� � �� Now�

bel�m�A� � P �f� � � � � 
� U��X���� � Ag� �
X

���B�A

m�B�� �����

and

belm�A� � P �f� � � � U��X���� � Ag�f� � � � U��X���� 
� �g� � �����

�
P �f� � � � � 
� U��X���� � Ag�

P �f� � � � � 
� U��X����g�
�

� ���m������
X

���B�A
m�B��

if m��� � � holds� according to the combinatoric de	nition� Obviously� in this special
case the values bel�m�A� �and bel�A�� if m��� � �� are de	ned for each A � S�

In our reasonings above we have not avoided the case when U��X���� � � or even
when P �f� � � � U��X���� � �g� is positive� only the case when this probability
equals one has been eliminated from our considerations when de	ning the normalized
belief function� On the other side� it is clear that when U��X���� 
� � holds for each
� � � or� in a weaker setting� if P �f� � � � U��X����g� � �� then bel���A� � bel��A�
for each A � S for which bel��A� is de	ned� We shall write� in what follows� m� �
m� �belm�

� belm�
� resp��� if m��A� � m��A� �belm�

�A� � belm�
�A�� resp�� holds for

each A � S for which the value in question are de	ned� The case U��X���� � � occurs�
if there is no state s � S compatible with the observed value X���� Such a situation
seems to be contradictory at the 	rst sight� as all empirical results should be compatible
at least with the actual internal state of the system SYST and SYST is supposed to
be situated in just one internal state s� � S� An explication or interpretation of this
phenomenon can be twofold�

�i� Our assumption that S contains all the possible internal states of SYST is true
�the so called closed world assumption�� but X��� is not immediately the value of
the observation�s� and�or experiment�s� in question� but the value obtained through a
communication channel in which the original empirical value could have been subjected
to a deformation� E� g�� if X��� � hx�� x�i� where x� says �there is a snow covering
all the countryside� and x� says �there is a temperature  ��	C in the open air�� so
that X��� is incompatible with any state of a�airs supposing that the compatibility
relation describes the usual meteorological laws� it is possible that the original version
of x� was �there is a temperature ���	C in the open air�� the sign ��� being lost
during the transcription or other communication of this message� The result would be�
of course� that there is no state of nature compatible with hx�� x�i� at least under the
usual physical conditions�
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�ii� Another possible explication reads as follows� The obtained empirical data
are correct� but our assumption that the actual internal state s� of the system under
consideration must be in S was wrong �the so called open world assumption�� Under
this interpretation the seemingly inconsistent data say to the subject� that the actual
internal state of SYST is beyond the space S� so that her�his assumption about the
exhaustive character of S has proved to fail� Considering the example just introduced�
the simultaneous observation of snow outside the windows and the thermometer show

ing  ��	 C imply� that the atmospheric pressure outside is much more higher than the
normal one� even if this possibility has not been �wrongly� taken into consideration
when de	ning the space S� It is obvious� but perhaps important to say explicitly� that
it is impossible to decide� using only the mathematical apparatus being at the subjects
disposal� which of the two possibilities �inconsistent deformation of data vs� an a priori
unconsidered state of the system� took place in the real world�

In order to discuss the sense of the random event � 
� U��X���� � A� the probability
of which is quanti	ed by the belief functions bel� and bel� let us adopt the basic idea
of Bayes decision making under uncertainty and suppose that the actual internal state
s� of SYST is de	ned as the value of a random variable �� which takes the probability
space h��A� P i into a measurable space hS�S�i� Here S� is a �
	eld of subsets of S�
Suppose that the following condition of semantical correctness is satis	ed� namely� that
������ X���� � � holds for each � � �� Hence� we suppose that each empirical value
is compatible with the actual internal state of the system by which this value has been
generated� Consequently� ���� � U��X���� and U��X���� 
� � hold for each � � ��
Hence� for each � � � and A � S� U��X���� � A implies that ���� � A �but not vice
versa� in general� so that the inequality

bel��A� � bel�A� � P �f� � � � � 
� U���� � Ag� � �����

� P �f� � � � ���� � Ag�

hold for each A � S for which the values in question are de	ned� Only under this
condition of semantical correctness it is possible to take the value bel�A� as a prob

abilistically reasonable characteristic of the random event occurring when the actual
state of the system under investigation belongs to the subset A of S� namely� bel�A� is
a lower bound of the a priori probability that ���� � A holds� On the other side� if the
condition of semantical correctness does not hold� then it is possible that the actual
state s� of SYST is not in U��X���� �in a particular case it may trivially follow from
the fact that U��X���� is empty�� so that from the inclusion U��X���� � A the con

clusion s� � A cannot be drawn� It is just for this reason� and not only because of the
resulting technical and computational simpli	cations� why the assumption m��� � �
�i� e�� a weakened version of the condition of semantical correctness� is often supposed
to be valid in works dealing with the Dempster�Shafer theory� We should keep in mind�
however� that in this weakened version this condition does not imply that the actual
state of SYST is in U��X���� so that the conclusion s� � A drawn from the inclusion
U��X���� � A is not justi	ed� It is evident that the case U��X���� � � must be�
somehow� avoided from our considerations� as � � A holds trivially for each A � S no
matter whether s� � A or not� It is a matter of continued discussions� whether such an
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elimination should be realized by a simple erasing of � from the 	eld of subsets of A� as
it is the case when de	ning the non
normalized version of belief functions� or whether
to re
normalize the obtained values to the case when U��X���� 
� �� In our work we
shall follow both the patterns� but the non
normalized version will be preferred because
of the �at least� three following reasons� �i� it is more adequate for the generalizations
investigated below� �ii� it is more compatible with the minimax idea on which belief
functions are �perhaps implicitly� based and� what follows partially from �ii�� �iii� the
properties of non
normalized belief functions are more close to some intuitive demands
behind�
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� Elementary Properties of Belief Functions

In this chapter we shall survey the most elementary properties of belief functions and
some other characteristics derived from them �cf� ����� e� g�� for more detail�� We
shall suppose� throughout this chapter� that the probability space h��A� P i and the
measurable spaces hP�S��Si and hE� Ei are 	xed� the dependence of belief functions
on possible variations or modi	cations of these basic stones of our constructions will be
investigated in some of the following chapters� We shall also suppose that if the state
space S is 	nite� then the �
	eld S is the maximal one� i� e�� S � P�P�S��� so that
the values m�A�� bel��A� �and bel�A�� if m��� � �� are de	ned for each A � S and
obeys the usual combinatoric de	nitions� The properties of belief functions concerning
their possible combinations and actualizations will be investigated in the next chapter
dealing with the Dempster combination rule�

De�nition ���� Let the notations and conditions of De	nition ��� hold� Nonnor�
malized plausibility function induced by the compatibility relation  is the mapping
pl�� � P�S�	 h�� �i de	ned� for each A � S for which bel��S �A� and m��� � P �f� �
� � U��X���� � �g� are de	ned� by the relation

pl���A� �
�
� � bel���S �A�

�
�m���� �����

If� moreover� m��� � � holds� then the normalized plausibility function pl� is de	ned
by the relation

pl��A� � � � bel��S �A�� �����

�

An easy calculation yields that� if pl���A� is de	ned� then

pl���A� �
�
� � bel���S �A�

�
�m��� � �����
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� ��� P �f� � � � � 
� U��X���� � S �Ag���m��� �

� P �f� � � � U��X���� � A 
� �g� �

Hence� if S is 	nite and m�A� is de	ned� for each A � S� by ������ then evidently

pl��A� �
X

B�S�B
A���
m�B�� �����

For the normalized version we obtain that

pl�A� � �� P �f� � � � U��X���� � S �Ag�f� � � � U��X���� 
� �g� � �����

� P �f� � � � U��X���� �A 
� �g�f� � � � U��X���� 
� �g� �

so that� if S is 	nite�

pl��A� � ���m������
X

B�S�B
A���
m�B�� �����

The relation between bel� �bel� resp�� and pl� �pl� resp�� is dual in both the direction�
as for each A � S such that pl��S �A� and m��� are de	ned� bel��A� is also de	ned
and ����� yields that

pl���S �A� � ��� bel���A���m���� �����

hence�
bel���A� � �� � pl��A���m���� �����

For the normalized case we obtain easily that

bel��A� � � � pl��S �A�� �����

The simpli	ed forms of ����� and ����� in the case when m��� � � are obvious�

The interpretation of the values of plausibility functions is also dual to that in
the case of belief functions� Under the condition of semantical correctness the value
bel��A� can be taken as the probability with which such empirical values �data� have
been obtained� that the subject is able to decide or deduce� within the framework of
her�his deductive abilities given by the compatibility relation � that the actual internal
state of the system under investigation is �must be� in a sense� in the subset A of the
state space S� The value bel�A� can be interpreted in the same way just considering
the probability normalized to the case when the obtained data are consistent �under
the closed world assumption�� The value pl��A� can be taken as the probability with
which such empirical data are obtained that the subject is not able �by proving the
contrary� to disprove the hypothesis that the actual internal state of SYST is in A�

Fact ���� For each A � B � S for which the values under consideration are de	ned
the following relations hold�

� � bel����� � bel���� � bel���A� � bel���B� � bel���S� � ������

� bel��S� � ��

��



bel��A� � bel��A�� bel��A� � bel��B�� ������

� � pl����� � pl���� � pl���A� � pl���B� � pl���S� � ������

� pl��S� � ��

pl���A� � pl��A�� pl��A� � pl��B�� ������

bel���A� � pl���A�� bel��A� � pl��A�� ������

�

Proof� ������ � ������ follow immediately from the de	nitions of the values in ques

tion� ������ follows from the fact that if U�X���� � B 
� � and B � A� then
U�X���� �A � B 
� � holds as well� �

If the basic space S is 	nite �and S � P�P�S���� then there is a one
to
one relation
between non
normalized belief functions and basic probability assignments �b�p�a�s��
Or� if m�� m� are b�p�a�s on S such that m� � m�� i� e� m��A� � m��A� for all A � S�
then bel�m�

� bel�m�
obviously holds due to ������ On the other side� let m� 
� m�� i� e��

let there exist A � S such that m��A� 
� m��A�� Obviously� there must exist A 
� �
with this property� as if m���� 
� m���� and m��A� � m��A� for all � 
� A � S� then
the equality

P
A�S m��A� �

P
A�S m��A� � � cannot hold� Let A � S be such that

� 
� A� m��A� 
� m��A�� but m��B� � m��B� for all � 
� B � S� card�B� � card�A��
such A � S obviously exists� Then� however�

bel�m�
�A� �

X
���B�A

m��B� �
X

���B�A�B ��A
m��B�  m��A� 
� ������


�
X

���B�A�B ��A
m��B�  m��A� � bel�m�

�A��

as m��B� � m��B� for all � 
� B � A� B 
� A� so that bel�m�

� bel�m�

�

In the case of normalized belief functions the situation is as follows�

Fact ���� Let m�� m� be b�p�a�s de	ned on a 	nite set S� Then belm�
� belm�

holds
i� m���� � �� m���� � �� and

m��A� � ���m����� �� �m�����
��m��A� ������

holds for each � 
� A � S� �

Proof�

X
A�S

m��A� �
X

���A�S

���m����� �� �m�����
��m��A�  m���� � ������

� �� �m����� �� �m�����
��
X

���A�S
m��A�  m���� �

� �� �m����� �� �m�����
�� �� �m�����  m���� � ��

hence� if m� is a b�p�a� on S� then m� is also b�p�a� on S and vice versa� The equality
� � belm�

��� � belm�
��� holds due to ������ as each sum over the empty set of items

��



equals zero� If � 
� A � S� then

belm�
�A� � ���m�����

��
X

���B�S
m��B� � ������

� ���m�����
��
X

���B�A
���m����� �� �m�����

��m��B� �

� ���m�����
��
X

���B�A
m��B� � belm�

�A��

hence� ������ implies that belm�
� belm�

holds� To prove the inverse implication� let
there exist � 
� A � S such that ������ does not hold� We can suppose� without any
loss of generality� that ������ holds for each B � S such that card�B� � card�A�� Then

belm�
�A� � ���m�����

��
X

���B�A
m��B� � ������

� ���m�����
��
X

���B�A�B ��A
m��B�  ���m�����

��m��A� �

� ���m�����
��
X

���B�A�B ��A
���m����� �� �m�����

��m��B�  

�� �m�����
��m��B� 
�


� ���m�����
��
X

���B�A�B ��A
���m����� �� �m�����

��m��B�  

 �� �m�����
�� �� �m����� ���m�����

��m��A� �

� ���m�����
��
X

���B�A
m��B� � belm�

�A��

so that belm�
� belm�

does not hold� The assertion is proved� �

Another important property of belief functions consists in their super
additivity�

Fact ���� Let the notations and conditions of De	nition ��� hold� let S� � P�S� be
a nonempty� 	nite or countable� system of mutually disjoint sets� i� e�� T�� T� � S� and
T� 
� T� implies that T� � T� � �� such that bel���T �� bel��T � for each T � S� as well
as bel�� �

S
T�S� T � and bel� �

S
T�S� T � are de	ned� Then the inequalities

bel��
�


T�S�
T
�
�
X

T�S�
bel���T � ������

and
bel�

�

T�S�

T
�
�
X

T�S�
bel��T � ������

hold� �

Proof� If � 
� U��X���� � T� holds for some � � � and T� � S�� it is obviously
impossible that the same nonempty set U��X���� is a subset of some T� � S�� T� 
� T��
as T� � T� � �� In other terms� for each T�� T� � S�� T� 
� T�� the relation

f� � � � � 
� U��X���� � T�g � f� � � � � 
� U��X���� � T�g � � ������

is valid� At the same time the inclusion

f� � � � � 
� U��X���� � Tg �
n
� � � � � 
� U��X���� �



T�S�

T
o

������

��



also holds for each T � S�� so thatX
T�S�

P �f� � � � � 
� U�X���� � Tg� �
X

T�S�
bel���T � � ������

� P
�
f� � � � � 
� U�X���� �



T�S�

Tg
�
� bel��

�

T�S�

T
�

also holds and ������ is proved� Dividing all the values in ������ by P �f� � � �
U��X���� 
� �g�� we obtain ������� �

In particular� for T�� T� � S� T� � T� � �� bel���T�  T�� � bel���T��  bel���T�� and
analogously for bel�� This property generalizes the usual �
additivity of probabilistic
measures� when Pr �

S
T�S� T � �

P
T�S� Pr�T � holds for each nonempty 	nite or count


able system S� such that the probabilities in question are de	ned� The generalization
goes still farther� as for each T�� T� � S for which the values of belief functions are
de	ned� the inequalities

bel���T�  T�� � bel���T��  bel���T��� bel���T� � T�� ������

and
bel��T�  T�� � bel��T��  bel��T��� bel��T� � T�� ������

hold� These inequalities can be generalized to any 	nite system S� � fT�� T�� � � � � Tng
of subsets of S for which� and for their union� bel�� and bel� are de	ned� Namely� we
obtain that

bel��
�
n

k��
Tk
�
� ������

�
Xn

k��
����k��

X
fi� �i������ikg�f��������ng

cardfi��i� �����ikg�k

bel��

��k

m��
Tim

�

and similarly for bel�� In general� belief functions� share many properties with the
so called inner measures induced by probabilistic measures �cf� ����� e� g�� for more
detail�� and we shall take pro	t of these relations in one of the following chapters�
when we shall look for an appropriate approximation of belief functions in the cases
when they are not de	nable by the set
valued random variable U��X����� i� e�� in the
case of such subsets A � S for which the power
set P�A� does not belong to the �
	eld
S � P�P�S���
Some particular cases of belief functions and �if S is 	nite� the corresponding basic

probability assignments �b�p�a�s� are perhaps worth being introduced explicitly� For
the sake of simplicity we shall consider only the case when the state space S is 	nite
and S � P�P�S��� even if� as will be evident� some of the notions can be extended also
to the case when S is in	nite� supposing that m�A� � P �f� � � � U��X���� � Ag�
is de	ned for each A � S occurring in the de	nition of the particular notion� i� e��
supposing that fAg � S holds in such cases�
Let m be a b�p�a� on a 	nite set S� A subset A � S is called a focal element of m�

if m�A� � � holds� A b�p�a� mS on S is called vacuous� if mS�S� � �� consequently�
mS�A� � � for all A � S� A 
� S� The corresponding belief functions bel�mS

and belmS

are obviously identical with each other and are called vacuous belief functions on S�

��



evidently� belmS
�S� � � and belmS

�A� � � for all A � S� A 
� S� A b�p�a� mA is called
singular in A � S� if mA�A� � �� hence� mA�B� � � for all B � S� B 
� A� so that
vacuous belief function mS is singular in S� For the belief functions bel

�
mA
and belmA

�
which are also identical� if A 
� �� we obtain that belmA

�B� � �� if A � B� belmA
�B� �

� otherwise� �Totally� inconsistent b�p�a� is the b�p�a� m� singular in the empty set ��
In this case bel�m�

�A� � � for all A � S and belm�
is not de	ned� A b�p�a� m is called

partially �in�consistent� if � � m��� � � holds and it is called �totally� consistent�
if m��� � �� The intuition behind the adjectives ��in�consistent� just introduced is
based on the interpretation preferring the closed world assumption and explained in
the foregoing chapter� A b�p�a� mA�� on S is called 	
quasi
singular in A � S� for a
given real number � � 	 � �� if mA���A� � �� 	� mA���S� � 	� and mA���B� � � for all
B � S� B 
� A� B 
� S� Hence� mA � mA�� and mA�� � mS hold for each A � S� In
���� the author introduces the exponential form of notation for 	
quasi
singular b�p�a�s�
when he writes A� for mA��� The fact that it is not the probability � � 	 ascribed to
A but the complementary probability 	 left to the whole state space S which plays
the role of the exponent� is motivated by the resulting simpli	ed form of the Dempster
combination rule�
The following special case of b�p�a�s and belief functions should be also mentioned

explicitly� If m is such a b�p�a� on a 	nite set S that all focal elements of m are
singletons of S� i� e�� if m�A� � � for all A � S such that card�A� 
� �� then the
induced belief function belm� obviously identical with bel�m�

� as it is the case for all
totally consistent b�p�a�s� is a probability measure on S� Or� for each A� B � S such
that A � B � � we obtain that A �B � � we obtain that

belm�A B� �
X

���C�A�B
m�C� �

X
s�A�B

m�fsg� � ������

�
X

s�A
m�fsg�  

X
s�B

m�fsg� � belm�A�  belm�B��

In the same case� i� e�� when m�A� � � implies card�A� � �� also the identities
belm�A� � plm�A� and bel�m�A� � plm�A� hold for each A � S� so that also the
plausibility function is a probability measure on P�S�� Or� for each A � S and each
s � S� fsg �A 
� � i� fsg � A i� s � A� so that

belm�A� � bel�m�A� �
X

���B�A
m�B� �

X
s�A

m�fsg� � ������

�
X

fsg
A���
m�fsg� �

X
B
A���

m�B� � pl�m�A� � plm�A��

When the focal elements of a b�p�a� m de	ned on a 	nite state space S are nested�
belief function bel�m converts into the so called possibilistic measure ������ In its most
simple setting� and if the state space S is 	nite� possibilistic �or� possibility� measure
on S is a mapping � � P�S�	 h�� �i such that ��AB� � maxf��A�� ��B�g for each
A� B � S� Possibilistic measure in normalized� if ���� � �� Focal elements of a b�p�a�
m on S are nested� if for each A� B � S such that m�A� � � and m�B� � � holds�
either A � B or B � A� It follows that there exists� in such a case� a 	nite �and
uniquely determined� sequence A� � A
 � A
 � � � � � An of subsets of S such that
m�A� � � i� A � fA�� A�� � � � � Ang holds for each A � S� So�

bel�m�A� �
X

���C�A
m�C� �

Xi�A	

i��
m�Ai�� ������

��



bel�m�B� �
X

���C�B
m�C� �

Xi�B	

i��
m�Ai�� ������

where integers i�A� and i�B� � n are uniquely de	ned� Moreover�

bel�m�A  B� �
Xmaxfi�A	�i�B	g

i��
m�Ai� � ������

� max
�Xi�A	

i��
m�Ai��

Xi�B	

i��
m�Ai�

	
� maxfbel�m�A�� bel

�
m�B�g�

Obviously� in the same case belm is a normalized possibilistic measure�

There is perhaps the best time and place� now� to mention explicitly one of the
important di�erences between the Dempster�Shafer theory and probability theory or�
to be more correct� between belief functions and probability measures� favourizing
basic probability assignments and belief functions when describing the case of total
ignorance� As already mentioned� the Bayes approach to statistical decision making
under uncertainty requests the a priori probability distribution on the state space S to
be de	ned and known to the subject� If this distribution is completely unknown and
if the set S is 	nite� the Bayes approach often applies the so called Laplace principle�
the lack of any reason for which we have to prefer one possibility to another can be
taken as a su�cient reason to take both the possibilities as equivalent� Taking the
words �to prefer one alternative to another� in the sense �to ascribe greater a priori
probability to the 	rst alternative than to the other one�� we arrive at the solution
to ascribe the same a priori probability �card�S���� to each s � S� If S is in	nite� a
generalization of this principle results in the so called principle of maximal entropy�
the uniform �equiprobable� probability distribution on a 	nite S being its special case�
Within the framework of Dempster�Shafer theory the uniform probability distri


bution on 	nite S can be easily de	ned by the b�p�a� meq on S such that meq�fsg� �
�card�S���� for all singletons fsg� s � S� consequently� meq�A� � � for each A �
S� card�A� 
� �� However� the case of total ignorance� as far as the actual internal
state of the system SYST under consideration is concerned� is better de	ned by the
vacuous b�p�a� mS� when mS�S� � �� hence� mS�A� � � for all A � S� A 
� S� This
vacuous b�p�a� corresponds to the situation when there are absolutely no arguments�
neither of uncertain or stochastic nature� in favour of the hypothesis that the actual
internal state of SYST belongs to some proper subset of S� The only fact which is
taken as granted is the closed world assumption according to which the space S is the
exhaustive list of all possible internal states of SYST� On the other side� the �equiprob

able� b�p�a� meq describes the situation when every data item brings an argument in
favour of one particular s � S� and the numbers or weights of arguments for partic

ular values s � S are the same or at least are not distinguishable from each other
within some reasonable tolerance bounds� The fact that probability theory works only
with equiprobable distributions as mathematical models of total ignorance is caused
by historical reasons� Probabilistic models were based on games and bets ideas and
the estimation that there was the probability ��� that head occurs and the same prob

ability ��� that tail occurs when tossing a fair coin was based on the results of the
past tosses when approximately ��� of results were heads� i� e�� arguments in favour of
the hypothesis that head occurs also in the next toss� and approximately ��� of the

��



results were tails� i� e�� arguments in favour of the hypothesis that tail occurs again in
the next toss� The possibility of splitting the coin in such a way that both the sides
occur simultaneously� or the possibility of disappearing of the coin during the toss so
that no side occurs� was taken as a priori avoided due to the accepted tossing rules�
In the case of b�p�a�s we can admit also the possibility that the coin splits� setting
m�fT�Hg� � �� and�or the possibility that the coin disappears� setting m��� � ��
Let us also discuss� very brie�y� the often posed question whether Dempster�Shafer

theory is a generalization or an application of the probability theory� The answer
can be a�rmative in both the cases� having very carefully re
formulated the question�
So� Dempster�Shafer theory is a generalization of the probability theory in the sense
that belief function� as a measure of uncertainty� is a generalization of probability
measure� In other words� probabilitymeasure results as a special case of belief functions
�degrees or measures of belief� under some additional conditions imposed� namely
that m�A� � � for each A � S with card�A� 
� �� On the other side� Dempster�
Shafer theory is an application of probability theory in the sense that all notions and
characteristics used in Dempster�Shafer theory can be de	ned by appropriate notions of
probability theory� including the degrees of beliefs which are de	ned by the probabilities
with which certain random sets �values of set
valued random variables� satisfy some
relation of set
theoretic inclusion� The situation is similar to that with the inner
and outer �probabilistic� measures �cf� ����� which are generalizations of the original
�probabilistic� measures� as they are de	ned also for non
measurable sets and their
values agree with those of the original �probabilistic� measures for measurable sets
�random events�� but at the same time inner and outer �probabilistic� measures are
applications of probability or measure theory� as they are de	ned by �probabilistic�
measures through appropriate supremum or in	mum operations�

��



� Probabilistic Analysis of Dempster Combination

Rule

In the real world around us� a subjects knowledge concerning this world in general�
and investigated system�s� and their �its� environments in particular� are not of static�
but rather of dynamic nature� In other words� this knowledge is subjected to changes
involved by the time passing� These changes can be caused either by the changes
taking places either in the world itself� or by changes of the body of evidence and laws
of the nature known to the subject� The changes should be applied to the knowledge
of sure deterministic nature �more correctly� the knowledge taken as sure in the given
context and under the given circumstances�� as well as to the knowledge charged by
uncertainty� In this work we focus our attention to the knowledge expressed in the terms
of compatibility relations� basic probability assignments and belief functions� so that
our aim will be� in this chapter� to investigate the ways in which one compatibility
relation� b�p�a�� or belief function can and should be modi	ed when obtaining some
more information described by another compatibility relation� b�p�a�� or belief function�
As a rule� in Dempster�Shafer theory such a modi	cation �actualization� is realized
applying the so called Dempster combination rule� In this chapter we shall introduce
this rule using the probabilistic model and terms presented above and we shall discover
and formalize explicitly the usually only tacitly assumed hidden assumptions behind
this combination rule� As in the foregoing chapters� we shall begin with an informal
intuition behind our explanation� leaving this intuition aside and and returning to a
formalized mathematical level of presentation as soon as possible�
Let us consider� as above� the system SYST with the space S of possible internal

states� The task is� again� to identify the actual internal state of SYST or at least
to decide� whether this state belongs to a �proper� to avoid trivialities� subset A of
S� However� the problem is solved� now� by two subjects� SUB� and SUB�� For both
of them� the actual state of the system is not directly observable� so that SUB�� as
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well as SUB�� must solve the problem� whether the internal state of SYST is in A�
indirectly� using some observations or other empirical data concerning the system and
its environment� These data can be� in general� not only di�erent� but even of di�erent
nature for both the subjects� hence� we shall assume that the empirical data being at
the disposal of SUB�� take values in a nonempty space E�� the empirical data of SUB�

belong to an E� 
� �� As before� the empirical data of both the subjects are supposed
to be of random character� and because of the general abstract nature of the notion
of probability space we can assume� that the empirical data being at the disposal of
SUB� are formally described by a random variable X�� de	ned on a 	xed probability
space h��A� P i and taking its values in a measurable space hE�� E�i de	ned over the
set E�� Analogously� X� is a random variable de	ned on the same probability space
h��A� P i and taking its values in hE�� E�i� where E� is an appropriate �
	eld of subsets
of E�� X� describes the empirical data being at the disposal of SUB�� The bodies
of a priori knowledge of both the subjects are de	ned by corresponding compatibility
relations� � � S � E� for SUB� and � � S � E� for SUB�� The degrees of beliefs of
both the subjects can be quanti	ed by basic probability assignments m�� m�� and by
belief functions bel��� bel

�
� or bel�� bel�� namely� as before� for each A � S and for both

i � �� ��

U�Xi���� � fs � S � i�s� Xi���� � �g� �����

mi�A� � P �f� � � � U�Xi���� � Ag� � �����

bel�i �A� � P �f� � � � � 
� U�Xi���� � Ag� � �����

beli�A� � P �f� � � � U�Xi���� � Ag�f� � � � U�Xi���� 
� �g� � �����

supposing that the probabilities in question are de	ned�
Both the subjects� however� can arrive at the decision to co
operate with each other

and to combine sophistically their a priori knowledge and empirical data in order to
obtain better �in a sense to be explicitly de	ned later� results concerning the actual
internal state of SYST than the results achievable by each of them separately� Another
interpretation can read that there is a third �meta� subject SUB�� who has at her�his
disposal the apriori knowledge �i� e�� the compatibility relations� and the empirical data
of both SUB� and SUB� and combines them sophistically together�

First of all� the empirical spaces E�� E� are combined into their Cartesian product
E�� � E� � E� and the �
	eld E�� � P�E� � E�� is de	ned by the minimal �
	eld
containing all the rectangles F� � F� such that F� � E�� F� � E�� Random variables
X� and X� are combined into the vector random variable X�� � hX��X�i de	ned on
the probability space h��A� P i and taking its values in hE��� E��i� The well
known
theorem about the extension of measure �cf�� e� g� ����� yields that for each F�� � E��
the probability

P �f� � � � hX����� X����i � F��g� �����

is correctly and unambiguously de	ned� so that X�� is� in fact� a random variable�
The next step consists in a combination of compatibility relations � � S �E� and

� � S � E� into a new compatibility relation �� � S � E��� Dempster combination
rule is based on the assumption that

���s� hx�� x�i� � minf��s� x��� ��s� x��g �����
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for all s � S� x� � E�� x� � E�� Hence� a state s � S is taken as incompatible with
the empirical values x�� x�� if it is taken as incompatible by at least one of the two
�or more� as can be immediately generalized� subjects in question� The interpretation
behind is that the pieces of knowledge� according to which one of the subject is able to
refuse a state s � S on the ground of a data item x� � E�� are objectively valid beyond
any doubts and they are� therefore� accepted by the other subject�s�� In other words�
the situation when ��s� x� � � and ��s� x� � � for some s � S and x � E� � E� must
be caused by the fact that the knowledge of SUB� is only fragmental so that she�he
does not know that s and x are incompatible� even if it is objectively true� Having been
informed about this fact by SUB�� SUB� immediately accepts this fact and modi	es
her�his compatibility relation � into ���s� hx� xi� � ��s� x� � �� So� the phenomenon
of subjectivity of compatibility relations concerning the same system reduces� for two
or more subjects� to their partial knowledge �or ignorance� of one common objectively
valid compatibility relation ��s� hx�� x�i�� The combination of compatibility relations
de	ned by ����� can be called the optimistic one as there are the beliefs in validity of
data which are shared by other subject�s�� not the doubts concerning this validity� The
condition of optimistic combination of compatibility relations is one of the two basic
assumptions of Dempster combination rule �the other will be introduced a few
lines
below�� even if these conditions are often only tacitly assumed and not explicitly stated�
An alternative approach� based on the dual idea that there are just the doubts which
are shared and that a state s is taken as incompatible i� it is taken as incompatible by
all the subjects separately� in symbols� the approach when the combined compatibility
relation " is de	ned by

"���s� hx�� x�i� � maxf��s� x��� ��s� x��g� �����

will be brie�y investigated at the end of this chapter�
Relation ����� immediately implies that for each hx�� x�i � E���

U����hx�� x�i� � fs � S � ���s� hx�� x�i� � �g � �����

� fs � S � ��s� x�� � �g � fs � S � ��s� x�� � �g �

� U���x�� � U���x���

Applying ����� to the case when x� � X���� and x� � X���� are values of random
variables� and supposing that all the probabilities in question are de	ned� we can de	ne
the b�p�a� m�� and belief functions bel

�
�� and bel��� for A � S� by

m���A� � P �f� � � � U���X����� � U���X����� � Ag� � �����

bel����A� � P �f� � � � � 
� U����� � U���X����� � Ag� � ������

bel���A� � P �f� � � � U���X����� � U���X����� � Ag� ������

f� � � � U���X����� � U���X����� 
� �g� �

The other basic assumption on which Dempster combination rule relies is that of
statistical �stochastical� independence of the random variables X� and X�� Hence� we
suppose that for each F� � E�� F� � E� and F� � E�� F� � E�� the equality

P �f� � � � hX����� X����i � F� � F�g� ������

P �f� � � � X���� � F�g� P �f� � � � X���� � F�g�

��



holds� Suppose� moreover� that S is 	nite and that both the mappings U���X����� and
U���X����� are set
valued random variables de	ned on the probability space h��A� P i
and taking their values in the measurable space hP�S�� P�P�S��i� Then� for each
B� C � S such that

U��
��
�B� � fx� � E� � U���x�� � Bg � E�� ������

U��
��
�B� � fx� � E� � U���x�� � Cg � E� ������

hold� we obtain that

P �f� � � � U���X����� � B� U���X����� � Cg� � ������

� P �f� � � � U���X����� � Bg � f� � � � U���X����� � Cg� �

� P
�
f� � � � X���� � U��

��
�B�g � f� � � � X���� � U��

��
�C�g

�
�

� P
�
f� � � � X���� � U��

��
�B�g

�
� P

�
f� � � � X���� � U��

��
�C�g

�
�

� P �f� � � � U���X����� � Bg� � P �f� � � � U���X����� � Cg� �

Consequently� also the set
valued random variables U���X����� and U���X����� are sta

tistically independent� Due to the condition that the state space S is 	nite the following
factorization holds true� For each A � S� ����� yields that

m���A� � P �f� � � � U���X����� � U���X����� � Ag� � ������

�
X

B�C�S�B
C�A
P �f� � � � U���X����� � B� U���X����� � Cg� �

�
X

B�C�S�B
C�A
P �f� � � � U���X����� � Bg� � P �f� � � � U���X����� � Cg� �

�
X

B�C�S�B
C�A
m��B�m��C��

Analogously� the relations ������ and ������ yield that

bel����A� � P �f� � � � � 
� U���X����� � U���X����� � Ag� � ������

�
X

D�S� ���D�A
P �f� � � � U���X����� � U���X����� � Dg� �

�
X

B�C�S� ���B
C�A
P �f� � � � U���X����� � B� U���X����� � Cg� �

�
X

B�C�S� ���B
C�A
m��B�m��C��

and

bel���A� � P �f� � � � U���X����� � U���X����� � Ag� ������

�f� � � � U���X����� � U���X����� 
� �g� �

�
P �f� � � � � 
� U���X����� � U���X����� � Ag�

P �f� � � � � 
� U���X����� � U���X�����g�
�

�

P
���D�Am���D�P

���D

�

P
B�C�S� ���B
C�Am��B�m��C�P
B�C�S� ���B
Cm��B�m��C�

�

��



supposing that the conditional probability in ������ is de	ned� i� e�� supposing that
there exist B� C � S such that B � C 
� � and m��B� � �� m��C� � � hold� The
relations ������� ������ and ������ are the well
known combinatoric formulas for the
b�p�a� m�� and the belief functions bel��� and bel��� The b�p�a� m�� is called the
Dempster product of the b�p�a�s m� and m� and is usually denoted by m��m�� bel

�
��

is called the �nonnormalized� Dempster product of the nonnormalized belief functions
bel�� and bel�� and is denoted by bel�� � bel��� Finally� bel�� is called the �normalized�
Dempster product of �normalized� belief functions bel� and bel� and is denoted by
bel� � bel��
As can be easily proved� the Dempster operation � is commutative and associative

in the space of b�p�a�s as well as in the space of belief functions� In symbols� the
equalities

�m� �m�� �A� � �m� �m�� �A�� �������
bel�m�

� bel�m�

�
�A� �

�
bel�m�

� bel�m�

�
�A��

�belm�
� belm�

� �A� � �belm�
� belm�

� �A��

��m� �m���m
� �A� � �m� � �m� �m
�� �A���
�bel�m�

� bel�m�
�� bel�m�

�
�A� �

�
bel�m�

� �bel�m�
� bel�m�

�
�
�A��

��belm�
� belm�

�� belm�
� �A� � �belm�

� �belm�
� belm�

�� �A�

holds for each A � S� supposing that the values on one side of the corresponding
equality are de	ned� The validity of these equalities follows from the commutativity
and associativity of the set
theoretic operation of intersection� E� g��

�m� �m�� �A� � P �f� � � � U����� � U����� � Ag� � ������

� P �f� � � � U����� � U����� � Ag� � �m� �m�� �A��

��m� �m���m
� �A� � P �f� � � � �U����� � U������ � U����� � Ag� �������

� P �f� � � � U����� � �U����� � U������ � Ag� � �m� � �m� �m
�� �A��

Replacing the equalities �� � � � A� by �� 
� � � � � A� we obtain the proofs for bel��
the modi	cation for bel is obvious� Relations for belief functions follow also from the
fact that bel�m�

�bel�m�
is de	ned by bel�m��m�

� so that commutativity and associativity
follow from ������ and ������� the case of bel is the same� If the state space S is 	nite�
all the equalities in ������ can be proved also in a purely combinatoric way descending
from the combinatoric de	nition of the Dempster operation� cf� ������� ������ and
�������
The vacuous b�p�a� mS �i� e��mS � �� and the induced vacuous belief function belmS

�� bel�mS
� are the unit elements with respect to the Dempster operation � understood

as product �of course� we can call mS and belmS
the zero elements� if � is understood

as addition�� In symbols�

m�mS � mS �m � m� ������

bel�m � bel�mS
� bel�mS

� bel�m � bel�m� ������

��



hold for each b�p�a� m� if belm is de	ned� ������ holds also for belm� Preferring the
terminology under which � is taken as product� the role of the zero element is played
by the absolutely inconsistent b�p�a� m� �i� e�� m���� � �� in the sense that

m�m� � m� �m � m� ������

holds for each b�p�a� m� The relation

bel�m � bel�m�
� bel�m�

� bel�m � � ������

holds trivially� but belm�
obviously is not de	ned� The only what we have to take into

consideration when proving ������ to ������ is that mS is de	ned by the compatibility
relation S � S � E� so that U�S��� � S for each � � �� and m� is de	ned by the
compatibility relation � � � � S �E� so that U����� � � for each � � ��

Perhaps the most trivial problem arising almost immediately� but unsolvable within
the framework developed till now� is that of invertibility of b�p�a�s �and� consequently�
also of belief functions�� Given a b�p�a� m on a state space S� does there exist a b�p�a�
m�� on S such that m�m�� � mS �the vacuous b�p�a�� would hold! In other terms�
does there exist an inverse b�p�a�� with respect to the Dempster combination rule� for
a given b�p�a� on S! A simple reasoning proves that such an inverse b�p�a� exists only
when m � mS� and in this case m

��
S � mS holds� Or� if m�� m� are b�p�a�s on S

generated by compatibility relations �� �� then

�m� �m�� �S� � P �f� � � � U����� � U����� � Sg� � ������

so that �m� �m�� �S� � � implies that

P �f� � � � U����� � Sg� � P �f� � � � U����� � Sg� � �� ������

as U�i��� � S holds for both i � �� �� Hence� m��S� � m��S� � � follows� conse

quently� �m� � m�� �S� � � implies that m� � m� � mS� A nontrivial solution to
the invertibility problem� enabling to de	ne� at least partially� an inverse operation to
the Dempster combination rule �� can be achieved when generalizing appropriately
the notion of basic probability assignment� This problem will be investigated� in more
detail� in one of the following chapters�
The dual combination "�� of compatibility relations � and �� de	ned by ������ can

be processed like �� above in order to obtain dual combinations m� "�m�� bel�� "�bel
�
��

and bel� "�bel� of b�p�a�s m�� m� and belief functions bel
�
�� bel

�
� �bel�� bel�� resp��� As

can be easily seen� for each hx�� x�i � E�� � E� � E��

U�����hx�� x�i� � fs � S � "���s� hx�� x�i� � �g � ������

� fs � S � ��s� x�� � �g  fs � S � ��s� x�� � �g � U���x��  U���x���

If x�� x� are values taken by random variables X�� X� as above� we can de	ne

�m� "�m�� �A� � P �f� � � � U���X�����  U���X����� � Ag� � ������

�bel�� "�bel
�
�� �A� � P �f� � � � � 
� U���X�����  U���X����� � Ag� � ������

�bel� "�bel�� �A� � P �f� � � � U���X�����  U���X����� � Ag � ������

f� � � � U��X�����  U���X����� 
� �g� �

��



As the inclusion

U���X����� � U���X����� � U���X�����  U���X����� ������

trivially holds for each � � �� the inequality

�bel�� "�bel
�
�� �A� � �bel

�
� � bel��� �A� ������

is also obvious for each A � S� For the case of normalized belief functions the situation
is not so simple�
Again� as in the case of Dempster combination rule de	ned above� let us assume that

the random variables X�� X� and� consequently� also the set
valued random variables
U���X������ U���X������ are statistically independent� and that the basic space S is
	nite� Due to the same factorization as in ������� also the dual combination rule "� can
be de	ned in a combinatoric way dual to the formulas for Dempster products� Namely�

�m� "�m�� �A� �
X

B�C�S�B�C�A
m��B�m��C�� ������

�bel�� "�bel
�
�� �A� �

X
B�C�S� ���B�C�A

m��B�m��C�� ������

�bel� "�bel�� �A� �

P
B�C�S� ���B�C�Am��B�m��C�P
B�C�S� ���B�Cm��B�m��C�

������

supposing� in the case of ������� that there exist B � S� C � S such that B 
� �
or C 
� �� m��B� � � and m��C� � � hold� Again� the dual combination rule "� is
commutative and associative for b�p�a�s as well as for both the kinds of belief functions�
due to the obvious commutativity and associativity of the set
theoretic operation of
union�
As could be expected� the roles of the vacuous b�p�a� mS and the totally inconsistent

b�p�a� m� are also dually interchanged so that� for each b�p�a� m� the identities

m"�mS � mS "�m � mS� ������

m"�m� � m� "�m � m ������

hold� Corresponding relations for belief functions can be easily obtained�

An interpretation behind the dual combination rule can be as follows� Let the orig

inal compatibility relation � represent the basic undergraduate textbook knowledge of
a young and just graduated physician� so that this compatibility relation re�ects the
typical medical cases and does not take into consideration non
typical and rare exam

ples� On the other side� compatibility relation � may describe the knowledge base of
an older experienced physician who has met and examined a number of non
typical
cases� so that she�he takes into account also the compatibility of some observations
and diagnoses not explicitly stated as compatible by undergraduate medical textbooks�
E� g�� a young physician� having examined a patient� concludes that the patient does
not su�er from an in�ection disease on the ground of the observation that she�he is
not feverish� An older experienced physician knows� however� that in certain� even if

��



very rare cases� an infection disease need not be combined with a fewer� so that the
possibility of such a diagnosis cannot be ultimately avoided�

In the next chapter we shall see that the dual combination rule possesses some
properties dual to those possessed by the Dempster rule also from the point of view of
an explicit numerical criterion measuring the qualities of b�p�a�s or of corresponding
belief functions�

��



� Nonspeci	city Degrees of Basic Probability As


signments

As we have already de	ned� in the case of a 	nite basic space S� basic probability
assignment �BPA� on S is a probability distribution on the power
set P�S� �set of
all subsets of S�� In this chapter we shall de	ne and investigate the nonspeci	city
degree of a BPA given by the normalized expected value of the size �cardinality� of
subsets of S with respect to the probability distribution de	ning the BPA in question�
This notion enables to express formally and to prove the intuitive feelings of improving
ones basic probability assignment and belief function when combining it with another
one by the Dempster combination rule� It enables also to de	ne a basic probability
assignment which can play the role� at least in certain relations� of the BPA inverse to
the original one with respect to the Dempster combination rule� even if we know that
such an inverse BPA cannot be de	ned up to the most trivial case of the vacuous BPA
mS�mS�S� � ��� Analogous properties of the combination rule dual to the Dempster
one will be also brie�y investigated�

De�nition ���� Let m be a BPA on a 	nite set S� The �degree of� nonspeci�city
W �m� of m is the real number from the unit interval de	ned by

W �m� �
X

A�S
m�A� �kAk�kSk�� �����

where kAk denotes the cardinality� i� e�� in our case of 	nite sets� simply the number of
elements of a subset A of S� �

The intuition behind the substantive �nonspeci	city� consists in the intuition ac

cording to which we take a BPA m� as less speci	c than m�� if the same probabilities
are ascribed to larger sets in the case of m� than in the case of m�� Hence� the �degree
of� nonspeci	city of m should increase with the average size of focal elements increasing

��



�a subset A � S is called a focal element of m� or with respect to m� if m�A� � ��� In
agreement with this intuition we obtain that W �mS� � kSk�kSk � � is the maximal
value taken by the functionW in the space of BPAs� on the other side� W �m�� � � for
the �totally� inconsistent BPA m� ascribing all the probability � to the empty subset
� of S� In this case� the intuition behind the term �minimal degree of nonspeci	city��
i� e�� the �maximal degree of speci	city� does not intuitively correspond to m�� as m�

does not contain any speci	cation of the actual value s� � S� Moreover� m� is the only
BPA on S for which the nonspeci	city takes the zero value� in other words� m 
� m�

implies that W �m� � � holds� If m de	nes a probability distribution on singletons of
P�S�� i� e�� if m�A� � � for A � � and for each A � S such that kAk � � �conse

quently� the corresponding belief function belm is a probability distribution on P�S���
then obviously W �m� � ��kSk� if m is �totally� consistent� i� e�� if m��� � �� then
W �m� � ��kSk holds� If m is the uniform probability distribution on P�S�� hence� if
m�A� � ���kSk for each A � S� then W �m� 	 ��� with kSk 	 �� Or� due to the
strong law of large numbers �cf� ��� or any textbook on elementary probability theory��
for each 	 � �� � � �� there exists n � N� � f�� �� � � �g such that� for all S with
kSk � n� the relation

�kP�S�k��� kfA � S � ����� � 	 � kAk�kSk � �����  	gk � � � � �����

holds� so that� for the uniform probability distribution m on S� the inequalities

����� � 	� � � W �m� � �����  	 � �����

are satis	ed�
Instead of deducing somemore or less interesting properties of nonspeci	city degrees

for particular BPAs let us focus our attention to the manner in which nonspeci	city
degrees re�ect the model of combination of two or more BPAs or belief functions called
Dempster combination rule� introduced and analyzed in the last chapter� Let us recall
that for two BPAs m�� m� on a 	nite set S� their non
normalized Dempster product
m� �m� is de	ned by

�m� �m�� �A� �
X

B�C�S�B
C�A
m��B�m��C� �����

for each A � S� and their normalized product m� �n m� by

�m� �n m�� �A� � ��� �m� �m�� ����
�� �m� �m�� �A� � �����

�

P
B�C�S�B
C�Am��B�m��C�P
B�C�S�B
C ���m��B�m��C�

for each � 
� A � S� and by �m� � m�� ��� � �� supposing that �m� � m�� ��� � �
holds� The expressions for the Dempster products of the corresponding belief functions
can be found in the last chapter and we do not recall them here as only BPAs will be
investigated throughout this chapter�

Let us introduce and prove the following statement postponing a discussion con

cerning its sense and importance to an appropriate place below�
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Theorem ���� Let m�� m� be BPAs on a 	nite set S� Then

W �m� �m�� � minfW �m��� W �m��g� �����

�

Proof� Set� for each A � S� CA � fhB�Ci � B � S� C � S� B � C � Ag� so that
����� can be written as

�m� �m�� �A� �
X

hB�Ci�CA
m��B�m��C�� �����

For each hB�Ci� B � S� C � S� the inclusion hB�Ci � CB
C trivially holds� IfA� 
� A�

are subsets of S� then hB�Ci � CA�
implies that B � C � A�� hence� B � C 
� A� and

hB�Ci �� CA�
� so that CA�

� CA�
� �� Hence� fCA � A � Sg is a disjoint covering �i� e��

partition� of the Cartesian product P�S��P�S�� De	nition ��� now yields that

W �m� �m�� �
X

A�S
�m� �m�� �A� �kAk�kSk� �����

�
X

A�S
�kAk�kSk�

�
� X
hB�Ci�CA

m��B�m��C�


A �

�
X

A�S

�X
hB�Ci�CA

m��B�m��C� �kAk�kSk�
�
�

By the same de	nition�

W �m�� �
X

B�S
m��B� �kBk�kSk� � �����

�
X

B�S

hX
C�S

m��C�
i
m��B� �kBk�kSk��

as
P

C�S m��C� � �� Hence�

W �m�� �
X

B�S

�X
C�S

m��B�m��C�
�
�kBk�kSk� � ������

�
X

hB�Ci�B�S�C�S
�m��B�m��C� �kBk�kSk�� �

�
X

A�S

�X
hB�Ci�CA

m��B�m��C� �kBk�kSk�
�
�

�
X

A�S

�X
hB�Ci�CA

m��B�m��C� �kAk�kSk�
�
� W �m� �m��

by ������ as for all hB�Ci � CA� B � C � A� hence� B � A� so that kBk � kAk holds�
As both the Dempster combination rules �the non
normalized as well as the normalized
one� are commutative� we obtain that

W �m� �m�� �W �m� �m�� �W �m�� ������

holds as well� so that ����� immediately follows from ������ and ������� �

This result agrees with the intuition behind the way in which the Dempster rule
combines the partial knowledge and degrees of belief of two subjects� The focal el

ements of a BPA m are those subsets of the basic space S which can play� with a
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positive probability� the role of sets of states compatible� up to the subjects knowl

edge� with the random empirical data being at the disposal of this subject� Dempster
rule combines the knowledge of two subjects in such a way that only the states consid

ered as compatible by both the subjects are taken as compatible� Consequently� the
probability values ascribed to the focal elements of the original particular BPAs are
now ascribed to their subsets� hence� in general� to smaller sets� so that the degree of
nonspeci	city decreases� informally said� the degree of speci	city increases�
Let us note that� in general� the inequality in ����� cannot be replaced by equality�

Or� take� e� g� � 
� A� B � S such that A � B � �� then W �mA� � kAk�kSk �
�� W �mB� � kBk�kSk � �� but W �mA �mB� � W �m�� � � �let us recall that mA is
the BPA de	ned by mA�A� � ���
Let S be a nonempty 	nite set taken as the set of all possible states of a system

SYST �other interpretations are also possible�� just one state s� from S being the actual
one� For a BPA m on S� the value m�B� can be interpreted as the probability with
which such random empirical data were obtained that the subject can be sure that
s� � B � S holds� no more speci	cation of s� to a proper subset of B being possible�
Now� the subject obtains a piece of information saying that s� � A holds for a subset
A � S �A 
� S� if we want to avoid the trivial case�� The corresponding modi	cation
of the subjects original BPA m can be formally de	ned by the Dempster product
m�mA �in probability theory� this modi	cation is expressed by replacing an original
probability measure on S by the conditional probability measure P ��jA��� Now� let
us consider the situation when the reliability of the additional information de	ned by
the BPA mA has been put into serious doubts by some next meta
information and
the subject wants to turn back from the modi	ed BPA m �mA to the original BPA
m� Let us emphasize here� that it is the reliability of the information that s� � A
holds� what is taken as doubtful� not the validity of this information� this di�erence is
very important in the context of the Dempster�Shafer theory� Hence� a deconditioning
operation leading from m�mA to m would serve as a useful and desirable tool within
the framework of Dempster�Shafer theory�
Unfortunately� this problem is unsolvable not only within the framework developed

till now� but also within a substantially broader framework de	ned and investigated in
the following chapters� This problem can be transformed into a more general problem
how to de	ne� if even possible� an �inversion� to the Dempster combination rule� i� e��
how to de	ne an operation � such that �m� � m�� � m� � m� would hold for each
BPAs m�� m� on a 	nite set S�
This generalized problem can be solved� within our framework� if there exists� for

each BPA m�� an �inverse� BPA m��
� such that� for each BPA m�� the identity �m� �

m�� � m��
� � m� holds� Due to the associativity of the Dempster rule this identity

implies that m� � m��
� � mS� as m� � mS � mS holds for each BPA m� on S�

However� m� � m��
� � mS implies that �m� � m��

� � �S� � m��S�m
��
� �S� � mS � ��

hence� m��S� � m��
� �S� � �� so that m� � m��

� � mS follows� So� if m� 
� mS�
the �inverse� BPA m��

� does not exist� In particular� m��
A does not exist� if A 
� S�

Let us recall that an analogous deconditioning problem is unsolvable also within the
framework of probability theory� given a probability distribution P on S and A � S�
there is� in general� no B � S such that the conditional probability �P ��jA�jB�� i� e��
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P ��jA�B� would be identical with P on S� In ���� or ���� we can found a partial solution
to the invertibility problem in Dempster�Shafer theory consisting in an appropriate
generalization of the notion of BPA �cf� also the next chapters� Part II of this work��
however� for the particular case of deconditioning the problem remains unsolvable even
within this enriched space of BPAs�
Keeping in mind what we have just quoted� we shall focus our attention� in the rest

of this chapter� to a less pretentious task which can be called quasi�deconditioning�
Instead of an e�ective operation giving� for each input set A � S and input BPA
m�mA on S� as its result the BPA m� we shall seek for a weaker procedure yielding�
for each A � S and each m�mA� a BPA m� satisfying the three following demands�

�i� m� �mA � m�mA�

�ii� m� is e�ectively de	ned given m�mA and A�

�iii� m� takes an extraordinary position �to be speci	ed later� in the set of all BPAs
satisfying �i��

Let us note that �ii� avoids� in general� the BPA m itself from the set of possible
candidates to m��

De�nition ���� Let S be a 	nite set� let A � S� let m be a BPA on S such that
m�B� � � for each B � S� B 
� A� The extension of m from A to S� denoted by
Ext�A�S� �m�� is the BPA m� on S de	ned by m��B� � m�B � A� for each B � S
such that B � �S �A� � S �A� otherwise written� m��C  �S �A�� � m�C� for each
C � A� �

As
P

C�Am
��C�S�A�� �

P
C�Am�C� � �� it follows immediately� that m

��B� �
� for all B � S which cannot be written in the form C  �S � A�� i� e�� for all B � S
such that B � �S �A� 
� S �A�
For each BPAm on a 	nite set S and eachA � S� the BPAm�mA is such that �m�

mA� �B� � � for each B � S� B 
� A� so that� setting m� � Ext�A�S� �m�mA�� m� is
correctly and e�ectively de	ned and satis	es the demand �ii� above� Moreover� given
B � S�

�m� �mA� �B� �
X

hC�Di�C
D�B
m��C�mA�B� �

X
C�S� C
A�B

m��C� �������

� m��B  �S �A�� � �m�mA� �B��

as B  �S �A� is the only subset C of S such that C �A � B and� at the same time�
m��C� can be positive� Hence� m� meets the demand �i� above� Set� for each BPA m
on S and each A � S�

Red�S�A� �m� � fm� � m� is a BPA on S� m� �mA � m�mAg � ������

The following assertion proves that� and in which sense� Ext�A�S� �m�m�� meets also
the demand �iii� above�

��



Theorem ���� For each BPA m on a 	nite set S�

W �Ext�A�S� �m�mA�� � maxfW �m�� � m� � Red�S�A� �m�g � ������

�

Hence� Ext�A�S� �m�mA� can be called the quasi�solution to the deconditioning
problem based on the principle of maximum nonspeci	city�

Proof� Let m� � Red�S�A� �m�� let m� � Ext�A�S� �m�mA�� By de	nition�

�m� �mA� �B� �
X

C�S� C
A�B
m��C� �

X
X�S�A

m��B X�� ������

�m� �mA� �B� �
X

C�S� C
A�B
m��C� �

X
X�S�A

m��B X� �

� m��B  �S �A�� � m�A��

as B�S�A� is the only set C � S such that C��S�A� � S�A and C�A � B� and
only for such C the value m��C� can be positive� We also assume that the summation
over the empty set of items yield zero� as is the case for all B � S� B 
� A� For
m� � Red�S�A� �m� the equalities �m��mA� �B� � �m��mA� �B� �

P
C�S�Am��X� �

m��B  �S�A�� � m�B� hold� Let CA�B� � fC � S � C �A � Bg� Then� for B � A�X
C�CA�B	

m��C� �kCk�kSk� �
X

X�S�A
m��B X� �kB Xk�kSk� �������

�
X

X�S�A
m��B X� �kBk kXk��kSk�� �

�
X

X�S�A
m��B X� ��kBk kS �Ak��kSk� �

as B � A implies that the sets B and X � S�A are disjoint� the last inclusion implies
also that kXk � kS �Ak� Hence�X

C�CA�B	
m��C� �kCk�kSk� � ������

�
�X

X�S�A
m��B X�

�
��kBk kS �Ak��kSk� �

� m�B� ��kBk kS �Ak��kSk� �

� m��B  �S �A�� �kB  �S �A�k�kSk� �

�
X

C�CA�B	
m��C� �kCk�kSk��

As we have already proved �cf� the proof of Theorem ��� above�� the system
fCA�B� � B � Ag is a disjoint covering of the power
set P�S�� i� e�� B�� B� � A� B� 
�
B� implies that CA�B�� � CA�B�� � �� and for each C � S� C � CA�A � C� holds�
Hence� for m� � Red�S�A� �m��

W �m�� �
X

D�S
m��D� �kDk�kSk� � ������

�
X

B�A

�X
C�CA�B	

m��C� �kCk�kSk�
�
�

�
X

B�A

�X
C�CA�B	

m��C� �kCk�kSk�
�
�

�
X

D�S
m��D� �kDk�kSk� � W �m�� � W �Ext�A�S� �m�mA�� �

��



As the set Red�S�A� �m� of BPAs is 	nite� the assertion is proved� �

An assertion dual to Theorem ��� in the sense that Dempster combination rule is
replaced by its dual version "� introduced in the last chapter� can be also stated and
easily proved�

Theorem ���� Let m�� m� be BPAs on a 	nite set S� Then

W �m� "�m�� � maxfW �m��� W �m��g� ������

�

Proof� Also the proof is dual to that of Theorem ���� Set� for each A � S� DA �
fhB�Ci � B � S� C � S� B  C � Ag� so that� after the factorization analogous to that
used for Dempster rule�

�m� "�m�� �A� �
X

hB�Ci�DA

m��B�m��C�� ������

For each hB�Ci� B � S� C � S� the relation hB�Ci � DB�C trivially holds� If A� 
� A�

are di�erent subsets of S� then hB�Ci � DA�
yields that BC � A�� hence� BC 
� A�

and hB�Ci �� DA�
� consequently� DA�

� DA�
� �� Hence� fDA � A � Sg is a disjoint

covering� i� e�� a partition� of the Cartesian product P�S��P�S�� De	nition ��� yields
that

W �m� "�m�� �
X

A�S
�m� "�m�� �A� �kAk�kSk� � ������

�
X

A�S
�kAk�kSk�

X
hB�Ci�DA

m��B�m��C� �

�
X

A�S

�X
hB�Ci�DA

m��B�m��C�
�
�kAk�kSk��

By the same de	nition�

W �m�� �
X
B�S

m��B� �kBk�kSk� � ������

�
X

B�S

�X
C�S

m��C�

�
m��B� �kBk�kSk��

as
P

C�S m��C� � �� Hence�

W �m�� �
X

B�S

�X
C�S

m��B�m��C�
�
�kBk�kSk� � ������

�
X

hB�Ci�B�S�C�S
�m��B�m��C� �kBk�kSk�� �

�
X

A�S

�X
hB�Ci�DA

m��B�m��C�
�
�kBk�kSk� �

�
X

A�S

�X
hB�Ci�DA

m��B�m��C�
�
�kAk�kSk� � W �m� "�m��
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by ������� as for all hB�Ci � DA� B  C � A� hence� B � A� so that kBk � kAk� As
the dual combination rule "� is commutative� we obtain that

W �m� "�m�� �W �m� "�m�� � W �m�� ������

also holds� so that ������ immediately follows from ������ and ������� �

Going on with our investigation of the dual combination rule "�� we shall consider
the dual version of the conditioning operation� i� e�� the dual product m"�mA for a
subset A � S �A 
� S� if we want to avoid the trivial case already investigated above��
Let us recall that mA�A� � �� i� e�� mA�B� � � for each B � S� B 
� A� An easy
calculation yields that

�m"�mA� �B� �
X

C�S� D�S� C�D�B
m�C�mA�D� � ������

�
X

C�S� C�A�B
m�B��

so that �m"�mA� �B� � �� if B 
� A� Let B� � A� B� � A� let B� 
� B�� Then there
exists s � B� �B� or s � B� � B�� If s � B� � B�� then s � B� and s �� B�� so that
s �� A� as B � B�� Consequently� s � B� � A� s �� B� � A� and B� � A 
� B� � A�
The case when s � B� � B� is processed analogously� Hence� B� � A� B� � A� and
B� 
� B� implies that B� �A 
� B� �A� so that there exists a �� � mapping between
the systems fB � S � B � Ag and fB � B � S � Ag of subsets of S� Consequently�
given a BPA m on S and A � S� we can de	ne the BPA m�� on S in such a way that
all the value �m"�mA� �B� for B � A is shifted to B �A� In symbols�

m���B� � �m"�mA� �B  A�� if B � S �A� ������

m���B� � � otherwise� i� e�� if B 
� S �A�

An easy calculation yields that� for each B � S�

�m�� "�mA� �B� �
X

C�S� D�S� C�D�B
m���C�mA�D� � ������

�
X

C�S� C�A�B
m���C��

The only set C � S � A �and only for those sets m�� may take positive values� such
that C  A�B is the set B �A� if B � A� if B 
� A� no such C exists� Hence�

�m�� "�mA� �B� � �� if B 
� A� ������

�m�� "�mA� �B� � m���B �A� � �m"�mA� ��B �A� A� � ������

� �m"�mA� �B��

if B � A� so that the equivalence m�� "�mA � m"�mA is valid� The only we have to
prove in order to show that the duality between m�� and � de	ned above is complete� is
the inequalityW �m��� � W �m�� for each BPA m� such that m� "�mA � m"�mA holds�

Theorem ���� Let m be a BPA on a 	nite set S� let A be a subset of S� let m�� be
the BPA on S de	ned by ������� let m� be any BPA on S such that m� "�mA � m"�mA�
Then W �m��� � W �m�� holds� �

��



Proof� Given B � S� set DA�B� � fC � S � C A � Bg� There is a �� � mapping
between DA�B� and the set P�A� of all subsets of A so that DA�B� can be written as
fC � C � X  �B � A�� X � Ag� Let us consider the case when B � A� An easy
calculation yields that

X
C�DA�B	

m��C� �kCk�kSk� � ������

�
X

X�A
m��X  �B �A�� �kX  �B �A�k�kSk� �

�
X

X�A
m��X  �B �A�� �kXk kB �Ak��kSk� �

�
X

X�A
m��X  �B �A�� �kB �Ak�kSk� �

�
�X

X�A
m��X  �B �A��

�
�kB �Ak�kSk� �

�
�X

C�DA�B	
m��C�

�
�kB �Ak�kSk� �

�
�X

C�S� C�A�B
m��C�

�
�kB �Ak�kSk� �

� �m"�mA� �B� �kB �Ak�kSk� �

� m���B �A� �kB �Ak�kSk� �

�
X

C�DA�B	
m���C� �kCk�kSk��

as B � A is the only set C such that C � S � A and C  A � B� and just for those
subsets of S the value m���C� may be positive� So� for each B � A� the inequality

X
C�DA�B	

m��C� �kCk�kSk� �
X

C�DA�B	
m���C� �kCk�kSk� ������

holds� For each C � S� C � DA�C  A� and C  A � A trivially hold� moreover�
if B� � A� B� � A and B� 
� B� hold� then C � DA�B�� yields that C  A � B��
hence� C  A 
� B�� so that C �� DA�B��� consequently� DA�B�� � DA�B�� � ��
So� fDA�B� � B � Ag is a disjoint covering� i� e�� partition� of the power
set P�S��
Consequently�

W �m�� �
X

D�S
m��D� �kDk�kSk� � ������

�
X

B�A

�X
C�DA�B	

m��C� �kCk�kSk�
�
�

�
X

B�A

�X
C�DA�B	

m���C� �kCk�kSk�
�
�

�
X

D�S
m���D� �kDk�kSk� � W �m����

The assertion is proved� �

The list of references introduced below contains not only the items explicitly referred
to in the text above� but also some books and papers which have served as perhaps
not immediate� but in no case less important sources of inspiration and motivation for
the ideas presented and results achieved in this work� Some of these references will be
explicitly referred to in the forthcoming Part II of this report�
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