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Lukšan, Ladislav
1997
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� Introduction

The double�precision FORTRAN �� basic subroutines PBUN and PNEW are designed
to �nd a close approximation to a local minimum of a nonlinear nonsmooth function
f�x� with simple bounds on variables and general linear constraints� Here x � Rn is a
vector of n variables and f � Rn � R is assumed to be a locally Lipschitz continuous
function� We assume that for each x � Rn we can compute f�x�� an arbitrary subgra�
dient g�x�� i�e� one element of the subdierential �f�x� �called the generalized gradient
in ����� The subroutine PBUN is based on the proximal bundle method desdcribed in
��� �see also �	� for theoretical foundation�� which only uses �rst order information� The
subroutine PNEW is based on the bundle�Newton method described in ���� which uses
second order information as well� i�e� an n� n symmetric matrix G�x� as a substitute
for the Hessian matrix� Simple bounds are assumed in the form �Ix� Ic correspond to
the arrays IX� IC in Section ��

xi � unbounded � Ixi � 
�

xli � xi � Ixi � ��

xi � xui � Ixi � ��

xli � xi � xui � Ixi � ��

xi � xli � xui � Ixi � ��
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where � � i � n� General linear constraints are assumed in the form

aTi x� unbounded � Ici � 
�

cli � aTi x � Ici � ��

aTi x � cui � Ici � ��

cli � aTi x � cui � Ici � ��

aTi x � cli � cui � Ici � ��

where � � i � nc and nc is a number of general linear constraints� To simplify user�s
work� six additional easy to use subroutines are added� They call the basic general
subroutines PBUN and PNEW�

PBUNU and PNEWU � unconstrained nonsmooth optimization

PBUNS and PNEWS � nonsmooth optimization with simple bounds

PBUNL and PNEWL � nonsmooth optimization with simple bounds and general
linear constraints

All subroutines contain a description of formal parameters and extensive comments�
Furthermore� two test programs TBUNU and TNEWU are included� They contain ��
standard test problems �see e�g� �	��� These test programs serve as examples for using
the subroutines� verify their correctness and demonstrate their e�ciency�

�� The bundle methods

To simplify the description of the bundle methods� we will consider a simpler problem
written in the following compact form

x� � arg min
x�Ln

�f�x��� ���

where
Ln � fx � Rn � aTj x � bj� j � Kg�

It is clear that the application of the methods described below to the general problem
stated in the previous section is straightforward� but this requires to consider each type
of constraint separately as it is realized in the subroutines PBUN and PNEW�

The idea behind the bundle methods is that they use a bundle of information ob�
tained at the points yj� j � Jk� where Jk � f�� � � � � kg� The bundle of information
serves for building a simple nonsmooth model which is utilized for the direction deter�
mination� Having the direction vector d � Rn� a special line search procedure which
produces either serious or short or null steps is used in such a way that

xk�� � xk � tkLdk� yk�� � xk � tkRdk� ���

where 
 � tkL � tkR � �� Serious steps� characterized by the relation tkR � tkL� i�e� yk�� �
xk��� are typical for classical optimization methods� For nonsmooth minimization�
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especially null steps are essential� In short and null steps tkR �� tkL holds� i�e� yk�� ��
xk�� and the bundle information is obtained from a larger domain which can include
points lying on the opposite sides of a possible discontinuity of the objective function�
Dierence between the bundle methods described below consists in the choice of the
nonsmooth model� The proximal bundle method uses a piecewise linear function with
a special quadratic penalty term while the bundle�Newton method uses a piecewise
quadratic function�

��
 The proximal bundle method

Piecewise linear function used in the proximal bundle method is based on the cutting�
plane model

�fk�x� � max
j�Jk

ff�yj� � gTj �x� yj�g � max
j�Jk

ff�xk� � gTj �x� xk�� �k
j g�

where �k
j � f�xk� � f�yj� � gTj �xk � yj�� j � Jk� are linearization errors� If the

objective function were convex� then the cutting plane model would underestimate it
i�e� �fk�x� � f�x� for all x � Ln� This is not valid in general since �k

j may be negative
in a nonconvex case� Therefore� the linearization error �k

j is replaced by the so�called
subgradient locality measure

�k
j � maxfj�k

j j� ��skj �
�g� ���

where

skj � kxj � yjk�
k��X
i�j

kxi�� � xik

is the distance measure approximating kxk � yjk without the need to store the bundle
point yj� � � 
 is the distance measure parameter �parameter ETA of the subroutines
PBUN and PNEW� and � is the distance measure exponent �parameter MOS of the
subroutine PNEW�� We suppose that � � � for the proximal bundle method and
� � 
 in the convex case� Obviously� now minx�Ln �fk�x� � f�xk� by �k

j � 
� In order
to respect the above considerations� we can de�ne the following local subproblem for
the direction determination

dk � arg min
xk�d�Ln

f �fk�xk � d� �
�

�
ukd

Tdg�

where the regularizing quadratic penalty term ��	��ukdTd is added to guarantee the
existence of the solution dk and to keep the approximation local enough�

The choice of the weights uk is very important� Weights which are too large imply
a small kdkk� almost all serious steps and slow descent� Weights which are too small
imply a large kdkk and many null steps� The weight updating method depends on the
parameter MET of the subroutine PBUN�
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	 Quadratic interpolation �MET���� The idea is based on a simpli�ed case n � �
and f quadratic� where uk represents the second order derivative of f �see �����
By letting uk�� � minfmaxfuintk��� uk	�
� uming� �	umin� �
ukg� where umin is a
small positive constant� we safeguard our quadratic interpolation � uintk�� � �see ���
for details��

	 Minimum localization �MET���� The quadratic interpolation is not suitable for
f of the polyhedral type� Since the second order derivative of the single�variable
quadratic function ax��bx�c� b �xed� is inversely proportional to the coordinate
of the minimum� we set ulock�� � uk	xmin� where xmin is the estimation �derived
empirically� of the one�dimensional minimum of f � We again safeguard ulock��

similarly as uintk���

	 Quasi�Newton condition �MET���� If we approximate the Hessian matrix of f
by uconk�� 
I� then the quasi�Newton condition with aggregate subgradient gk��� �see
below� can be written in the form uconk��kdkk

� � dTk �gk��� � gk��� We safeguard uconk��

by setting uk�� � minfmaxfuconk��� �
��g� �
�g�

The above local subproblem is still a nonsmooth optimization problem� However�
due to the piecewise linear nature it can be rewriten as a �smooth� quadratic program�
ming subproblem

�dk� �vk� � arg min
�d��v	�L

f�v �
�

�
ukd

Tdg� ���

where
L � f�d� �v� � ��k

j � gTj d � ej�v� j � Jk �Kg

with �k
j given by ���� gj � �f�yj�� ej � � for j � Jk and �k

j � bj � aTj x� gj � aj� ej � 

for j � K �we suppose that Jk �K � � which can be easily assured in the program
realization�� This quadratic programming subproblem can be e�ciently solved by the
dual range space method proposed in ���� which is also applied and shortly described
in ����

The above derivation is slightly simpli�ed since aggregation of constraints is not
included� In fact we add the element f
g to Jk� where �k

� � maxfjf�xk��fk� j� ��sk��
�g�

fk� � �fk��� � �gk��T �xk � xk����

sk� � �sk��� � jxk � xk��j�

gk� �
X

j�Jk��nf�g


k��j gj � 
k��� gk��� �

�fk��� �
X

j�Jk��nf�g


k��j

�
f�yj� � gTj �xk�� � yj�

�
� 
k��� fk��� �

�sk��� �
X

j�Jk��


k��j sk��j �

and e� � �� f�� � f�x��� s�� � 
� g�� � g�� The values 
k��j � j � Jk�� are Lagrange
multipliers of the quadratic programming subproblem from the previous iteration�
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Having the pair �dk� �vk� determined as a solution to the quadratic programming
subproblem ���� we can obtain the points ��� using a suitable line search� The line
search consists in the initial setting tkL � 
 and the construction of the sequence tki � 
�
i � N �N is the set of natural numbers�� tk� � �� using an interpolation method
�bisection if MES�� or two point quadratic interpolation if MES��� where MES is
the parameter of the subroutines PBUN and PNEW� and a suitable backtracking� Let

 � mL � �	�� mL � mR � � and 
 � t � �� If

f�xk � tki dk� � f�xk� � mLt
k
i vk� ���

where vk � �vk �
P

j�Jk 

k
j�

k
j �maxfj �fk� �f�xk�j� ���sk��

�g� then we set tkL � tki � If tkL � t�
then we set tkR � tkL and terminate the line search �serious step�� If

� �k��
k�� � gTk��dk � mRvk� ���

where �k��
k�� � maxfj�k��

k�� j� ��sk��k���
�g� �k��

k�� � f�xk�tkLdk��f�xk�tki dk���tkL�t
k
i �g

T
k��dk�

sk��k�� � k�tkL � tki �dkk and gk�� � �f�xk � tki dk�� then we set tkR � tki and terminate the
line search�

The iteration is terminated if �vk is less than the �nal accuracy tolerance supplied
by the user�

��� The bundle	Newton method

The bundle�Newton method is based on the following piecewise quadratic model

�fk�x� � max
j�Jk

ff�yj� � gTj �x� yj� �
�

�
j�x� yj�

TGj�x� yj�g

� max
j�Jk

ff�xk� � �gkj �T �x� xk� �
�

�
j�x� xk�

TGj�x� xk�� �k
j g�

where gkj � gj � jGj�xk � yj� and

�k
j � f�xk�� f�yj�� gTj �xk � yj��

�

�
j�xk � yj�

TGj�xk � yj�

for j � Jk� Note that even in the convex case �k
j might be negative� Therefore� we

replace the error �k
j by the locality measure ��� again so that minx�Ln �fk�x� � f�xk��

The local subproblem for the direction determination has now the form

dk � arg min
xk�d�Ln

f �fk�xk � d�g�

where no regularizing penalty term is used since the function �fk�xk�d� already contains
second order information� This local subproblem is in fact a nonlinear minimax problem
which can be solved by the Lagrange�Newton �see ����� Thus� we obtain the following
�smooth� quadratic programming subproblem

�dk� vk� � arg min
�d�v	�L

fv �
�

�
dTWdg� ���
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where W �
P

j�Jk�� 

k��
j jGj � 


k��
j � j � Jk�� are Lagrange multipliers of the quadratic

programming subproblem from the previous iteration and

L � f�d� v� � ��k
j � �gkj �Td � ejv� j � Jk �Kg

with �k
j given by ���� gkj � gj � jGj�xk � yj�� ej � � for j � Jk and �k

j � bj � aTj x�
gkj � aj� ej � 
 for j � K �we suppose that Jk �K � � which can be easily assured in
the program realization�� This quadratic programming subproblem can be e�ciently
solved by the dual range space method proposed in ���� which is also applied and shortly
described in ����

The above derivation is not full since the aggregation of constraints is not included�
Aggregation of constraints is based on the same principle that was used in the proximal
bundle method� We refer to ��� for details�

Having the pair �dk� vk� determined as a solution to the quadratic programming
subproblem ���� we can obtain the points ��� using a line search which is in fact the
same as in the proximal bundle method� Again� conditions ��� and ��� are used�
where now �k��

k�� � maxfj�k��
k��j� ��sk��k���

�g� �k��
k�� � f�xk � tkLdk�� f�xk � tki dk�� �tkL �

tki ��g
k��
k���Tdk � �k��	���tkL � tki �

�dTkG�xk � tki dk�dk� s
k��
k�� � k�tkL � tki �dkk and gk��k�� �

g�xk�tki dk��k���tkL�t
k
i �G�xk�tki dk�dk� At the same time g�xk�tki dk� � �f�xk�tki dk�

and G�xk�tki dk� is a second order matrix computed at the point xk�tki dk� The stopping
criterion is also the same as in the proximal bundle method�

In the above text we use damping parameters j� j � Jk� In fact� the value j � �
is used in most iterations� If many nonserious �short and null� iterations would appear�
then we set j � 
 since quadratic model is ine�cient in this case�

�� Description of the subroutines

In this section we describe all subroutines which can be called from the user�s programs�
In the description of formal parameters we introduce a type of the argument that
speci�es whether the argument must have a value de�ned on subroutine entry �I�� or
whether it is a value which will be returned �O�� or both �U�� or whether it is an
auxiliary value �A�� Note that the arguments of the type I can be changed on output
in some circumstances� especially if improper input values were given� Besides formal
parameters� we can use a COMMON �STAT� block containing statistical information�
This block� used in each subroutine� has the following form

COMMON �STAT� NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

The arguments have the following meanings�

Argument Type Signi�cance

NDECF O Positive INTEGER variable that indicates the number of matrix
decompositions�

NRES O Positive INTEGER variable that indicates the number of restarts�
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NRED O Positive INTEGER variable that indicates the number of reduc�
tions�

NREM O Positive INTEGER variable that indicates the number of con�
straint deletions during the QP solutions�

NADD O Positive INTEGER variable that indicates the number of con�
straint additions during the QP solutions�

NIT O Positive INTEGER variable that indicates the number of itera�
tions�

NFV O Positive INTEGER variable that indicates the number of function
evaluations�

NFG O Positive INTEGER variable that speci�es the number of gradient
evaluations�

NFH O Positive INTEGER variable that speci�es the number of Hessian
evaluations�

��
 Subroutines PBUNU� PBUNS� PBUNL� PNEWU� PNEWS� PNEWL

The calling sequences are

CALL PBUNU�NF�NA�X�IA�RA�IPAR�RPAR�FP�GMAX�ITERM�

CALL PBUNS�NF�NA�NB�X�IX�XL�XU�IA�RA�IPAR�RPAR�FP�GMAX�ITERM�

CALL PBUNL�NF�NA�NB�NC�X�IX�XL�XU�CF�IC�CL�CU�CG�IA�RA�IPAR�RPAR�

� FP�GMAX�ITERM�

CALL PNEWU�NF�NA�X�IA�RA�IPAR�RPAR�FP�GMAX�IHES�ITERM�

CALL PNEWS�NF�NA�NB�X�IX�XL�XU�IA�RA�IPAR�RPAR�FP�GMAX�IHES�ITERM�

CALL PNEWL�NF�NA�NB�NC�X�IX�XL�XU�CF�IC�CL�CU�CG�IA�RA�IPAR�RPAR�

� FP�GMAX�IHES�ITERM�

The arguments have the following meanings�

Argument Type Signi�cance

NF I Positive INTEGER variable that speci�es the number of variables
of the objective function�

NA I INTEGER variable that speci�es the maximum bundle dimen�
sion �NA � ��� The choice NA � 
 causes that the default value
NA �NF�� will be taken�

NB I INTEGER variable that speci�es whether the simple bounds are
suppressed �NB � 
� or accepted �NB � NF��
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NC I INTEGER variable that speci�es the number of linear constraints 
if NC � 
 the linear constraints are suppressed�

X�NF� U On input� DOUBLE PRECISION vector with the initial estimate
to the solution� On output� the approximation to the minimum�

IX�NF� I INTEGER vector which contains the simple bounds types �signif�
icant only if NB � 
��

IX�I� � 
� the variable X�I� is unbounded�
IX�I� � �� the lower bound X�I� � XL�I��
IX�I� � �� the upper bound X�I� � XU�I��
IX�I� � �� the two side bound XL�I� � X�I� � XU�I��
IX�I� � �� the variable X�I� is �xed �given by its initial esti�

mate��

XL�NF� I DOUBLE PRECISION vector with lower bounds for variables
�signi�cant only if NB � 
��

XU�NF� I DOUBLE PRECISION vector with upper bounds for variables
�signi�cant only if NB � 
��

CF�NC� A DOUBLE PRECISION vector containing values of the constraint
functions �only if NC � 
��

IC�NC� I INTEGER vector containing the constraints types �signi�cant only
if NC � 
��

IC�K� � 
� the constraint CF�K� is not used�
IC�K� � �� the lower constraint CF�K� � CL�K��
IC�K� � �� the upper constraint CF�K� � CU�K��
IC�K� � �� the two side constraint CL�K� � CF�K� � CU�K��
IC�K� � �� the equality constraint CF�K� � CL�K��

CL�NC� I DOUBLE PRECISION vector with lower bounds for constraint
functions �signi�cant only if NC � 
��

CU�NC� I DOUBLE PRECISION vector with upper bounds for constraint
functions �signi�cant only if NC � 
��

CG�NF�NC� I DOUBLE PRECISION matrix whose columns are normals of the
linear constraints �signi�cant only if NC � 
��

IA�NIA� A INTEGER working array of the dimension of at least
NIA�NF�NA���

RA�NRA� A DOUBLE PRECISION working array of the dimension NRA�
where at least NRA�NF!�NF������NF!�NA���� �!NA�� for
the subroutines PBUNU� PBUNS� PBUNL and at least
NRA�NF!�NF���!�NA������NF!�NA���� �!NA�� for the subrou�
tines PNEWU� PNEWS� PNEWL�

	



IPAR��� A INTEGER parameters� IPAR�	��MET for the subroutines
PBUNU� PBUNS� PBUNL� IPAR�	��MOS for the subroutines
PNEWU� PNEWS� PNEWL� IPAR�
��MES� IPAR����MTESX�
IPAR����MTESF� IPAR���MIT� IPAR����MFV� IPAR����IPRNT�
These parameters �MET� MOS� MES� MTESX� MTESF� MIT� MFV� IPRNT�
are described in Section ����

RPAR��� A DOUBLE PRECISION parameters� RPAR�	��TOLX� RPAR�
�

�TOLF� RPAR����TOLB� RPAR����TOLG� RPAR���TOLD� RPAR���
�TOLS� RPAR����TOLP� RPAR����ETA� RPAR����XMAX� These pa�
rameters �TOLX� TOLF� TOLG� TOLB� TOLD� TOLS� TOLP� ETA� XMAX�
are described in Section ����

FP O DOUBLE PRECISION value of the objective function at the so�
lution X�

GMAX O DOUBLE PRECISION maximum absolute value of a partial
derivative of the Lagrangian function�

IHES I INTEGER variable that speci�es a way for computing second
derivatives�
IHES � 
� numerical computation�

IHES � �� analytical computation by the user supplied subrou�
tine HES�

ITERM O INTEGER variable that indicates the cause of termination�

ITERM � �� if jx � xoldj was less than or equal to TOLX in MTESX

subsequent iterations�
ITERM � �� if jF � Foldj was less than or equal to TOLF in MTESF

subsequent iterations�
ITERM � �� if jF j is less than or equal to TOLB�

ITERM � �� if a standard termination criterion �see Section �� is
satis�ed�

ITERM � ��� if NFV exceeded MFV�

ITERM � ��� if NIT exceeded MIT�

ITERM � 
� if the method failed�

Subroutines PBUNU� PBUNS� PBUNL� PNEWU� PNEWS� PNEWL require the
user supplied subroutine FUNDER that de�nes the objective function and its subgra�
dient and has the form

SUBROUTINE FUNDER�NF�X�F�G�

The subroutines PNEWU� PNEWS� PNEWL require the additional user supplied sub�
routine HES that de�nes a matrix of the second order information �usually the Hessian
matrix� and has the form

SUBROUTINE HES�NF�X�H�

�



The arguments of user supplied subroutines have the following meaning�

Argument Type Signi�cance

NF I Positive INTEGER variable that speci�es the number of variables
of the objective function�

X�NF� I DOUBLE PRECISION an estimate to the solution�

F O DOUBLE PRECISION value of the objective function at the point
X�

G�NF� O DOUBLE PRECISION subgradient of the objective function at
the point X�

H�NF�

�NF�	��
�
O

DOUBLE PRECISION matrix of the second order information at
the point X�

If IHES�
� then the user supplied subroutine HES can be empty�

��	 Subroutines PBUN� PNEW

The general subroutine PBUN is called from the subroutines PBUNU� PBUNS� PBUNL
described in Section ���� The calling sequence is

CALL PBUN�NF�NA�NB�NC�X�IX�XL�XU�CF�IC�CL�CU�CG�AF�IA�AFD�AG�

� IAA�AR�AZ�G�H�S�XO�GO�XS�GS�TOLX�TOLF�TOLB�TOLG�TOLD�TOLS�TOLP�

� ETA�XMAX�GMAX�FP�MET�MES�MTESX�MTESF�MIT�MFV�IPRNT�ITERM��

The general subroutine PNEW is called from the subroutines PNEWU� PNEWS�
PNEWL described in Section ���� The calling sequence is

CALL PNEW�NF�NA�NB�NC�X�IX�XL�XU�CF�IC�CL�CU�CG�AF�IA�AFD�AG�

� IAA�AR�AZ�G�H�HF�AH�S�SO�XO�GO�TOLX�TOLF�TOLB�TOLG�TOLD�TOLS�TOLP�

� ETA�XMAX�GMAX�FP�MOS�MES�MTESX�MTESF�MIT�MFV�IPRNT�IHES�ITERM��

The arguments NF� NA� NB� NC� X� IX� XL� XU� CF� IC� CL� CU� CG� GMAX� FP� IHES� ITERM
have the same meaning as in Section ���� Other arguments have the following meanings�

Argument Type Signi�cance

AF�NAF� A DOUBLE PRECISION vector of bundle function values NAF���NA
in the case of the subroutine PBUN or NAF��NA in the case of the
subroutine PNEW�

IA�NA� A INTEGER vector which contains types of bundle functions�

AFD�NA� A DOUBLE PRECISION vector of bundle functions increments�

AG�NF�NA� A DOUBLE PRECISION matrix whose columns are bundle gradi�
ents�
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IAA�NA� A INTEGER vector which contains indices of active functions�

AR��NF�	�

��NF�
��
�

A DOUBLE PRECISION matrix which contains triangular decom�
position of kernel of the orthogonal projection�

AZ�NF�	� A DOUBLE PRECISION vector of Lagrange multipliers�

G�NF� A DOUBLE PRECISION subgradient of the objective function�

H�NH� A DOUBLE PRECISION diagonal matrix of weight parameters
�NH�NF� in the case of the subroutine PBUN or aggregate Hessian
matrix �NH�NF��NF�	��
� in the case of the subroutine PNEW�

HF�NF�

�NF�	��

A DOUBLE PRECISION Hessian matrix of the objective function�

AH�NA�NF�

�NF�	��

A DOUBLE PRECISION Bundle of Hessian matrices�

S�NF�	� A DOUBLE PRECISION direction vector�

SO�NF� A DOUBLE PRECISION auxiliary vector�

XO�NF� A DOUBLE PRECISION vector containing increments of variables�

GO�NF�	� A DOUBLE PRECISION gradient of the Lagrangian function�

XS�NF� A DOUBLE PRECISION auxiliary vector�

GS�NF� A DOUBLE PRECISION auxiliary vector�

TOLX I DOUBLE PRECISION tolerance for the change of the coordinate
vector X the choice TOLX � 
 causes that the default value �
��


will be taken�

TOLF I DOUBLE PRECISION tolerance for the change of function values 
the choice TOLF � 
 causes that the default value �
�� will be
taken�

TOLB I DOUBLE PRECISION minimum acceptable function value the
choice TOLB � 
 causes that the default value ��

� will be taken�

TOLG I DOUBLE PRECISION tolerance for the gradient of the La�
grangian function the choice TOLG � 
 causes that the default
value �
�
 will be taken�

TOLD I DOUBLE PRECISION tolerance for a descent direction the choice
TOLD � 
 causes that the default value �
�� will be taken�

TOLS I DOUBLE PRECISION tolerance parameter for a function decrease
in the line search the choice TOLS � 
 causes that the default value
�
�� will be taken�

��



TOLP I DOUBLE PRECISION tolerance parameter for a signi�cant mod�
i�cation of the next line search direction the choice TOLP � 

causes that the default value 
�� will be taken�

ETA I DOUBLE PRECISION distance measure parameter�

XMAX I DOUBLE PRECISION maximum stepsize the choice XMAX � 

causes that the default value �
� will be taken�

MET I INTEGER variable that speci�es the weight updating method�

MET � �� quadratic interpolation�

MET � �� local minimization�

MET � �� quasi�Newton condition�

The choice MET � 
 causes that the default value MET � � will be
taken�

MOS I INTEGER distance measure exponent �MOS � � or MOS � ���

The choice MOS � 
 causes that the default value MOS � � will be
taken�

MES I INTEGER variable that speci�es the interpolation method selec�
tion in a line search �until a su�cient function decrease is reached 
then only bisection will be used��

MES � �� bisection�

MES � �� two point quadratic interpolation�

The choice MES � 
 causes that the default value MES � � will be
taken�

MTESX I INTEGER variable that speci�es the maximum number of itera�
tions with changes of the coordinate vector X smaller than TOLX 
the choice MTESX � 
 causes that the default value �
 will be taken�

MTESF I INTEGER variable that speci�es the maximum number of iter�
ations with changes of function values smaller than TOLF the
choice MTESF � 
 causes that the default value � will be taken�

MIT I INTEGER variable that speci�es the maximum number of itera�
tions the choice MIT � 
 causes that the default value �

 will be
taken�

MFV I INTEGER variable that speci�es the maximumnumber of function
evaluations the choice MFV � 
 causes that the default value �


will be taken�

IPRNT I INTEGER variable that speci�es PRINT�

IPRNT � 
� print is suppressed�

IPRNT � �� basic print of �nal results�
IPRNT � ��� extended print of �nal results�

IPRNT � �� basic print of intermediate and �nal results�

��



IPRNT � ��� extended print of intermediate and �nal results�

Subroutines PBUN and PNEW have a modular structure� The following list con�
tains their most important subroutines�

UF	HS	 Numerical computation of the Hessian matrix�

PDDBQ	 Determination of the descent direction using quadratic programming rou�
tines and bundle updating for the subroutine PBUN�

PDDBQ
 Determination of the descent direction using quadratic programming rou�
tines and bundle updating for the subroutine PNEW�

PLQDF	 Dual range space method for solving the quadratic programming problem
with linear constraints �see ���� and ����

PS	L� Line search using function values and derivatives�

Subroutines PBUN� PNEW require the user supplied subroutine FUNDER� Sub�
routine PNEW requires the additional user supplied subroutine HES� User supplied
subroutines FUNDER and HES are described in Section ����

��� Form of the printed results

The form of the printed results is speci�ed by the parameter IPRNT as is described
above� Here we demonstrate individual forms of printed results by the simple use of the
program TNEWU described in the next section �with NEXT����� If we set IPRNT���
then the printed results will have the form

NIT� 	
 NFV� 	� NFG� 	� F� ����	�����D��� G� �����D��� ITERM� �

If we set IPRNT���� then the printed results will have the form

EXIT FROM PNEW �

NIT� 	
 NFV� 	� NFG� 	� F� ����	�����D��� G� �����D��� ITERM� �

X� ��	
�
��D��� ���������D��	 �����	��D��
 �
������D��	 ���
���
D��	

��
�����D��� ���
	���D��	 �	��
��D��� �����	

D��	 ������	D��	

If we set IPRNT��� then the printed results will have the form

ENTRY TO PNEW �

NIT� � NFV� 	 NFG� 	 F� ���������D��� G� �	���D��	

NIT� 	 NFV� � NFG� � F� ��������D��� G� �	
��D��

NIT� 
 NFV� � NFG� � F� �������	
D��
 G� �
�	�D��


NIT� � NFV�  NFG�  F� ������
��D��
 G� ����	D��


NIT� � NFV� � NFG� � F� �	
�����	D��	 G� ��
	�D��	

NIT�  NFV� � NFG� � F� �	�
���D��� G� �	��D��	

NIT� � NFV� � NFG� � F� �����	
��D��� G� �
���D��	

NIT� � NFV� � NFG� � F� ������	��D��� G� �
���D���

��



NIT� � NFV� 	� NFG� 	� F� ����	���
�D��� G� �
��	D��


NIT� � NFV� 		 NFG� 		 F� ����	���
�D��� G� ��
	�D���

NIT� 	� NFV� 	
 NFG� 	
 F� ����	���
�D��� G� ����
D���

NIT� 		 NFV� 	� NFG� 	� F� ����	���
�D��� G� �
�D��

NIT� 	
 NFV� 	� NFG� 	� F� ����	�����D��� G� �����D���

EXIT FROM PNEW �

NIT� 	
 NFV� 	� NFG� 	� F� ����	�����D��� G� �����D��� ITERM� �

If we set IPRNT���� then the printed results will have the form

ENTRY TO PNEW �

NIT� � NFV� 	 NFG� 	 F� ���������D��� G� �	���D��	

NIT� 	 NFV� � NFG� � F� ��������D��� G� �	
��D��

NIT� 
 NFV� � NFG� � F� �������	
D��
 G� �
�	�D��


NIT� � NFV�  NFG�  F� ������
��D��
 G� ����	D��


NIT� � NFV� � NFG� � F� �	
�����	D��	 G� ��
	�D��	

NIT�  NFV� � NFG� � F� �	�
���D��� G� �	��D��	

NIT� � NFV� � NFG� � F� �����	
��D��� G� �
���D��	

NIT� � NFV� � NFG� � F� ������	��D��� G� �
���D���

NIT� � NFV� 	� NFG� 	� F� ����	���
�D��� G� �
��	D��


NIT� � NFV� 		 NFG� 		 F� ����	���
�D��� G� ��
	�D���

NIT� 	� NFV� 	
 NFG� 	
 F� ����	���
�D��� G� ����
D���

NIT� 		 NFV� 	� NFG� 	� F� ����	���
�D��� G� �
�D��

NIT� 	
 NFV� 	� NFG� 	� F� ����	�����D��� G� �����D���

EXIT FROM PNEW �

NIT� 	
 NFV� 	� NFG� 	� F� ����	�����D��� G� �����D��� ITERM� �

X� ��	
�
��D��� ���������D��	 �����	��D��
 �
������D��	 ���
���
D��	

��
�����D��� ���
	���D��	 �	��
��D��� �����	

D��	 ������	D��	

�� Veri�cation of the subroutines

In this section we introduce the main programs TBUNU and TNEWU� which serve as
demonstration� veri�cation and testing of the subroutines PBUNU and PNEWU�

��
 Program TBUNU

The following main program demonstrates the usage of the subroutine PBUNU�

C

C TEST PROGRAM FOR THE SUBROUTINE PBUNU

C

INTEGER NF�NA�IA�	����IPAR����ITERM

REAL�� X�����RA�
�����RPAR����GMAX�F

REAL�� FMIN

��



INTEGER NEXT�IERR�I

COMMON �PROB� NEXT

INTEGER NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

COMMON �STAT� NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

C

C LOOP FOR 
� TEST PROBLEMS

C

DO � NEXT�	�
�

C

C CHOICE OF INTEGER AND REAL PARAMETERS

C

DO 	 I�	��

IPAR�I���

	 CONTINUE

DO 
 I�	��

RPAR�I�����D �


 CONTINUE

IF �NEXT�LE���OR�NEXT�EQ�	��OR�NEXT�GE�
	� RPAR������
D �

IF �NEXT�EQ�	�OR�NEXT�EQ���OR�NEXT�EQ���OR�NEXT�EQ�	� IPAR�	��


IF �NEXT�GE�	�� IPAR�	��


IF �NEXT�EQ�	�� IPAR�����

IPAR����	

C

C PROBLEM DIMENSION

C

NF���

NA��

C

C INITIATION OF X AND CHOICE OF RPAR���

C

CALL TIUD	��NF�X�FMIN�RPAR����NEXT�IERR�

IF �IERR�NE��� GO TO �

C

C SOLUTION

C

CALL PBUNU�NF�NA�X�IA�RA�IPAR�RPAR�F�GMAX�ITERM�

� CONTINUE

STOP

END

C

C USER SUPPLIED SUBROUTINE �CALCULATION OF F AND G�

C

SUBROUTINE FUNDER�NF�X�F�G�

��



INTEGER NF

REAL�� X����F�G���

INTEGER NEXT

COMMON �PROB� NEXT

C

C FUNCTION EVALUATION

C

CALL TFFU	��NF�X�F�NEXT�

C

C GRADIENT EVALUATION

C

CALL TFGU	��NF�X�G�NEXT�

RETURN

END

This main program uses subroutines TIUD�� �initiation�� TFFU�� �function evalu�
ation� and TFGU�� �subgradient evaluation� containing �� standard test problems�
which have at most �
 variables� taken from the UFO system ���� Results obtained by
this main program have the following form�

NIT� �
 NFV� � NFG� � F� ���		����D��� G� �		�D��
 ITERM� 


NIT� 	� NFV� 
� NFG� 
� F� �


�
��D�	 G� ��
D��� ITERM� 


NIT� �	 NFV� �� NFG� �� F� �	�


�D��	 G� ����D��� ITERM� 


NIT� 	� NFV� 	� NFG� 	� F� �
�������D��	 G� �	�
	D��� ITERM� 


NIT� 	� NFV� 	� NFG� 	� F� ����������D��	 G� ���D��� ITERM� �

NIT� 	� NFV� 	 NFG� 	 F� ��
����	D��	 G� �

	
D��
 ITERM� �

NIT� 		 NFV� 	
 NFG� 	
 F� ��	�	�
	��D��	 G� �	���D��� ITERM� �

NIT� �� NFV� �� NFG� �� F� ���������	D��� G� �	���D��
 ITERM� �

NIT� 	� NFV� 	 NFG� 	 F� ��	�������D��	 G� ����D��� ITERM� �

NIT� �� NFV� � NFG� � F� ����������D��
 G� �����D��
 ITERM� 


NIT� 
� NFV� 
� NFG� 
� F� �

���	�
D��
 G� �	�	D��� ITERM� �

NIT� �� NFV� � NFG� � F� ����	���
�D��� G� ��
��D��� ITERM� 


NIT� 	� NFV� 		 NFG� 		 F� �	��	
��	D��� G� ����
D��� ITERM� 


NIT� �� NFV� �� NFG� �� F� �
�
����D�	
 G� �	���D��	 ITERM� 


NIT� �
 NFV� �� NFG� �� F� ���	��D��� G� ��
��D��� ITERM� �

NIT� �� NFV� �� NFG� �� F� ����������D��	 G� �	
�
D��
 ITERM� �

NIT� 	� NFV� 	� NFG� 	� F� ��
����
�D��� G� �����D��� ITERM� 


NIT� 	� NFV� 
� NFG� 
� F� �������	�D��� G� �	�
�D��� ITERM� 


NIT� 	�� NFV� 	�
 NFG� 	�
 F� ������
�D��	 G� �	�	�D��� ITERM� �

NIT� 	�� NFV� 		� NFG� 		� F� �	�������D��
 G� �����D��
 ITERM� �

NIT� �� NFV� �
 NFG� �
 F� ���
������D��
 G� �
	��D��
 ITERM� 


The rows corresponding to individual test problems contain the number of iterations
NIT� the number of function evaluations NFV� the number of gradient evaluations

��



NFG� the �nal value of the objective function F� the value of the criterion for the
termination G and the cause of termination ITERM�

��	 Program TNEW

The following main program demonstrates the usage of the subroutine PNEWU�

C

C TEST PROGRAM FOR THE SUBROUTINE PNEWU

C

INTEGER NF�NA�IA�	����IPAR����ITERM

REAL�� X�����RA�	������RPAR����F�GMAX

REAL�� FMIN

INTEGER NEXT�IERR�I

COMMON �PROB� NEXT

INTEGER NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

COMMON �STAT� NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

C

C LOOP FOR 
� TEST PROBLEMS

C

DO � NEXT�	�
�

C

C CHOICE OF INTEGER AND REAL PARAMETERS

C

DO 	 I�	��

IPAR�I���

	 CONTINUE

DO 
 I�	��

RPAR�I�����D �


 CONTINUE

IPAR�	��


IPAR�
���

RPAR����	D�	�

IF�IPAR�	��EQ�	�THEN

IF�NEXT�EQ�	� RPAR������D �

IF�NEXT�EQ���OR�NEXT�EQ�
	� RPAR������
D �

IF�NEXT�EQ��OR�NEXT�EQ��� RPAR����	��D�	

IF�NEXT�EQ���OR�NEXT�EQ�

� RPAR����	��D�


IF�NEXT�EQ�
�OR�NEXT�EQ�	
�OR�NEXT�EQ�	�� RPAR����	��D��

IF�NEXT�EQ�
�� RPAR�������D�


IF�NEXT�EQ�
�� RPAR������D�


ELSE

IF�NEXT�EQ�	� RPAR����	��D �

IF�NEXT�EQ��OR�NEXT�EQ�	��OR�NEXT�EQ�
	�OR�NEXT�EQ�
��

��



� RPAR������
D�

IF�NEXT�EQ���OR�NEXT�EQ��� RPAR����	��D�	

IF�NEXT�EQ�
�� RPAR������D�


IF�NEXT�EQ���OR�NEXT�EQ�	
�OR�NEXT�EQ�

� RPAR����	��D�


IF�NEXT�EQ�
�OR�NEXT�EQ�	�� RPAR����	��D��

ENDIF

IPAR����	

C

C PROBLEM DIMENSION

C

NF���

NA��

C

C INITIATION OF X AND CHOICE OF RPAR���

C

CALL TIUD	��NF�X�FMIN�RPAR����NEXT�IERR�

IF�NEXT�EQ���OR�NEXT�EQ��OR�NEXT�EQ�
	� RPAR����	��D�

IF�NEXT�EQ�	�� RPAR����	��D	

IF �IERR�NE��� GO TO �

IHES�	

C

C SOLUTION

C

CALL PNEWU�NF�NA�X�IA�RA�IPAR�RPAR�F�GMAX�IHES�ITERM�

� CONTINUE

STOP

END

C

C USER SUPPLIED SUBROUTINE �CALCULATION OF F AND G�

C

SUBROUTINE FUNDER�NF�X�F�G�

INTEGER NF

REAL�� X����F�G���

INTEGER NEXT

COMMON �PROB� NEXT

C

C FUNCTION EVALUATION

C

CALL TFFU	��NF�X�F�NEXT�

C

C GRADIENT EVALUATION

C

CALL TFGU	��NF�X�G�NEXT�

�	



RETURN

END

C

C USER SUPPLIED SUBROUTINE �CALCULATION OF H�

C

SUBROUTINE HES�NF�X�H�

INTEGER NF

REAL�� X����H���

INTEGER NEXT

COMMON �PROB� NEXT

C

C HESSIAN EVALUATION

C

CALL TFHD	��NF�X�H�NEXT�

RETURN

END

This main program uses subroutines TIUD�� �initiation�� TFFU�� �function evalu�
ation�� TFGU�� �subgradient evaluation� and TFHD�� �Hessian matrix evaluation�
containing �� standard test problems with at most �
 variables� which were taken
from the UFO system ���� Results obtained by this main program have the following
form�

NIT� � NFV� � NFG� � F� �

��		�D�	 G� ���
�D�� ITERM� 


NIT� � NFV� � NFG� � F� �	�����	D�	� G� ���
D�� ITERM� �

NIT� � NFV� 	� NFG� 	� F� �	�


�D��	 G� �	��D��� ITERM� �

NIT� 		 NFV� 	
 NFG� 	
 F� �
�������D��	 G� �	��D��� ITERM� �

NIT� 	� NFV� 	 NFG� 	 F� ����������D��	 G� ����D��� ITERM� 


NIT� � NFV� � NFG� � F� ��
������D��	 G� �	��D��� ITERM� �

NIT� 	� NFV� 	� NFG� 	� F� ��	�	�
	��D��	 G� ���D��� ITERM� �

NIT� 	
 NFV� 	� NFG� 	� F� ��	�������D��	 G� �
�	D��� ITERM� �

NIT� 	� NFV� 		 NFG� 		 F� ��	�������D��	 G� ���
D��� ITERM� �

NIT� 	� NFV� 	 NFG� 	 F� ����������D��
 G� ��
	D�� ITERM� �

NIT� � NFV� � NFG� � F� �

���	��D��
 G� �	
��D��
 ITERM� �

NIT� 	
 NFV� 	� NFG� 	� F� ����	�����D��� G� �����D��� ITERM� �

NIT� �� NFV� �� NFG� �� F� ��������
D��� G� ���D��� ITERM� 


NIT� 
� NFV� 
 NFG� 
 F� ��
���
�D��� G� �		��D��� ITERM� 


NIT� �� NFV� �	 NFG� �	 F� ���	���D��� G� �	
�D�� ITERM� �

NIT� 
 NFV� 
� NFG� 
� F� ����������D��	 G� ���	�D��
 ITERM� �

NIT� 	� NFV� 	 NFG� 	 F� �������	
D��� G� ���
�D��� ITERM� 


NIT� 	� NFV� 	� NFG� 	� F� �		�����D��� G� ���
D��� ITERM� 


NIT� 
 NFV� � NFG� � F� ������
	D��	 G� �
���D��� ITERM� �

NIT� �� NFV� �
 NFG� �
 F� �	�����D��
 G� �	���D��� ITERM� �

NIT� 

 NFV� 
� NFG� 
� F� ���
������D��
 G� �����D��
 ITERM� �

��



The rows corresponding to individual test problems contain the number of iterations
NIT� the number of function evaluations NFV� the number of gradient evaluations
NFG� the �nal value of the objective function F� the value of the criterion for the
termination G and the cause of termination ITERM�
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