narodni
N U dlozisté
1 L Sedé
6 literatury

PBUN, PNEW - A Bundle-Type Algorithms for Nonsmooth Optimization

Luksan, Ladislav
1997

Dostupny z http://www.nusl.cz/ntk/nusl-33721

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 01.10.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33721
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER
SCIENCE

ACADEMY OF SCIENCES OF THE CZECH
REPUBLIC

Prague

PBUN, PNEW - A Bundle-Type

Algorithms for Nonsmooth Optimization

L. Luksan, J. Vlcek

Technical Report No. V-718
September 1997

Akademie véd Ceské republiky
USTAV INFORMATIKY A VYPOCETNI TECHNIKY

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
E-mail: ICS@uivt.cas.cz
Fax: (+422) 8585789 Phone: (4422) 846669, (+422) 66051111

PBUN, PNEW - A Bundle-Type Algorithms for Nonsmooth
Optimization'

L. Luksan and J. Vlcek
Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod vodarenskou veézi 2, 182 07 Prague 8, Czech Republic

Abstract. We present FORTRAN subroutines for minimizing multivariate nonsmooth
functions with simple bounds and general linear constraints by bundle-type algorithms.

Categories and Subject Descriptors:
General Terms: Algorithms

Additional Key Words and Phrases: Nondifferentiable minimization, bundle meth-
ods, general linear constraints

1. Introduction

The double-precision FORTRAN 77 basic subroutines PBUN and PNEW are designed
to find a close approximation to a local minimum of a nonlinear nonsmooth function
f(2) with simple bounds on variables and general linear constraints. Here € R" is a
vector of n variables and f : R* — R is assumed to be a locally Lipschitz continuous
function. We assume that for each © € R" we can compute f(x), an arbitrary subgra-
dient g(x), i.e. one element of the subdifferential df(x) (called the generalized gradient
in [1]). The subroutine PBUN is based on the proximal bundle method desdcribed in
[9] (see also [8] for theoretical foundation), which only uses first order information. The
subroutine PNEW is based on the bundle-Newton method described in [5], which uses
second order information as well, i.e. an n x n symmetric matrix G(x) as a substitute
for the Hessian matrix. Simple bounds are assumed in the form (1, I¢ correspond to
the arrays IX, IC in Section 3)

x; —unbounded , [” =0,

v <ap o, I =1,
v, <z , I7=2,
:1;5»<:1;i§:1;§‘ , I =3,
:1/'2::1;[::1;2‘ 17 =5,

b K3

!This work was supported under grant No. 201/96/0918 given by the Czech Republic Grant Agency

1

where 1 <17 <n. General linear constraints are assumed in the form

alz —unbounded , If =0,
¢ <alw , If=1,

ale <cv I8 =2,

¢ <aje<el | I =3,
a;fr:zj = ci» =c¢ , I; =5,

where 1 <1 < n. and n. is a number of general linear constraints. To simplify user’s
work, six additional easy to use subroutines are added. They call the basic general

subroutines PBUN and PNEW:
PBUNU and PNEWU - unconstrained nonsmooth optimization
PBUNS and PNEWS - nonsmooth optimization with simple bounds

PBUNL and PNEWL - nonsmooth optimization with simple bounds and general
linear constraints

All subroutines contain a description of formal parameters and extensive comments.
Furthermore, two test programs TBUNU and TNEWU are included. They contain 23
standard test problems (see e.g. [8]). These test programs serve as examples for using
the subroutines, verify their correctness and demonstrate their efficiency.

2. The bundle methods

To simplify the description of the bundle methods, we will consider a simpler problem
written in the following compact form

" = arg min(f(x)), (1)

where

L"={z€eR" :ala<b;,jeK}.
It is clear that the application of the methods described below to the general problem
stated in the previous section is straightforward, but this requires to consider each type
of constraint separately as it is realized in the subroutines PBUN and PNEW.

The idea behind the bundle methods is that they use a bundle of information ob-
tained at the points y;, j € Ji, where J, C {1,...,k}. The bundle of information
serves for building a simple nonsmooth model which is utilized for the direction deter-
mination. Having the direction vector d € R", a special line search procedure which
produces either serious or short or null steps is used in such a way that

Thy1 = Tp + tidkv Yke1 = Tp + t%dm (2)

where 0 < t5 <tk < 1. Serious steps, characterized by the relation t% = % i.e. ypp1 =
Tpy1, are typical for classical optimization methods. For nonsmooth minimization,

especially null steps are essential. In short and null steps t% # % holds, i.e. yrp1 #
211 and the bundle information is obtained from a larger domain which can include
points lying on the opposite sides of a possible discontinuity of the objective function.
Difference between the bundle methods described below consists in the choice of the
nonsmooth model. The proximal bundle method uses a piecewise linear function with
a special quadratic penalty term while the bundle-Newton method uses a piecewise
quadratic function.

2.1 The proximal bundle method

Piecewise linear function used in the proximal bundle method is based on the cutting-
plane model

fi(w) = max{ f(y) + g} (v —)} = max{f(as) + g] (v = 22) = 47},

where ﬂ]k = flar) — fly;) — g]T(:L‘k —yj), J € Ji, are linearization errors. If the
objective function were convex, then the cutting plane model would underestimate it
ie. fk(:zj) < f(x) for all € L™. This is not valid in general since ﬂ]k may be negative
in a nonconvex case. Therefore, the linearization error ﬂ]k is replaced by the so-called
subgradient locality measure

ozf = max{|ﬂf|,’y(5f)w}, (3)
where
E—1
k
s = |lz; —yjll + Z 2ot — 24|
i=j

is the distance measure approximating || — y;|| without the need to store the bundle
point y;, v > 0 is the distance measure parameter (parameter ETA of the subroutines
PBUN and PNEW) and w is the distance measure exponent (parameter MOS of the
subroutine PNEW). We suppose that w = 2 for the proximal bundle method and
~ = 0 in the convex case. Obviously, now mingeczn» fk(:zj) < f(xx) by oz? > 0. In order
to respect the above considerations, we can define the following local subproblem for
the direction determination

. A 1
dy = arg ggkr&lenm{fk(xk +d) + §uded},

where the regularizing quadratic penalty term (1/2)u,d’d is added to guarantee the
existence of the solution d; and to keep the approximation local enough.

The choice of the weights uy is very important. Weights which are too large imply
a small ||dy||, almost all serious steps and slow descent. Weights which are too small
imply a large ||dx|| and many null steps. The weight updating method depends on the
parameter MET of the subroutine PBUN:

e Quadratic interpolation (MET=1): The idea is based on a simplified case n = 1
and f quadratic, where uy represents the second order derivative of f (see [3]).
By letting ugy1 = min{max{u}ﬁl,uk/l(),umm}, L/ twpmin, 10ug }, where w,;, is a
small positive constant, we safeguard our quadratic interpolation (u}%;) (see [9]

for details).

e Minimum localization (MET=2): The quadratic interpolation is not suitable for
f of the polyhedral type. Since the second order derivative of the single-variable
quadratic function ax?+bx +e¢, b fixed, is inversely proportional to the coordinate
of the minimum, we set ufjl = Up/Tmin, Where @, is the estimation (derived

empirically) of the one-dimensional minimum of f. We again safeguard ufjl

similarly as u}ﬂl

e Quasi-Newton condition (MET=3): If we approximate the Hessian matrix of f
by uiZ" - I, then the quasi-Newton condition with aggregate subgradient got (see
below) can be written in the form u§? ||dy]|* = df (g6 — gf). We safeguard u§?,
by setting w11 = min{max{ug7y,107°},10°}.

The above local subproblem is still a nonsmooth optimization problem. However,
due to the piecewise linear nature it can be rewriten as a (smooth) quadratic program-
ming subproblem

A . ~ 1 T
(dy, 04) = arg min {0+ jurd d}, (4)

where
L=A{(d,0): —a§+ngd§ €0, J € JJy UK}

with oz? given by (3), g; € df(y;), e, = 1 for j € Jx and oz? =b; — af:z;, gi=a;, e =0
for j € K (we suppose that J, N K = (), which can be easily assured in the program
realization). This quadratic programming subproblem can be efficiently solved by the
dual range space method proposed in [4], which is also applied and shortly described
in [6].

The above derivation is slightly simplified since aggregation of constraints is not
included. In fact we add the element {0} to Ji, where af = max{|f(z)— f&|, v(s£)“},

5= f T (06) (wk — wmn),
so = 857+ |we — weoal,
g o= >, MNlg+ATleh
J€Jx_1\{0}
o= Y T (P e (e —) A AT
J€Jx_1\{0}
B =Y A
JE€Jk_1

and eqg = 1, f§ = f(z1), s =0, g5 = ¢g1. The values)\f_l, Jj € Ji_1 are Lagrange
multipliers of the quadratic programming subproblem from the previous iteration.

4

Having the pair (dy,0x) determined as a solution to the quadratic programming
subproblem (4), we can obtain the points (2) using a suitable line search. The line
search consists in the initial setting t§; = 0 and the construction of the sequence t¥ > 0,
i € N (N is the set of natural numbers), ¥ = 1, using an interpolation method
(bisection if MES=1 or two point quadratic interpolation if MES=2, where MES is
the parameter of the subroutines PBUN and PNEW) and a suitable backtracking. Let
0<mp<1/2,mp<mp<land0<t<l1. If

flag +t8dy) < fay) + mpthoy, (5)

where vy = O, + 3 e, Aia? —max{|fF — f(xp)|, 7(385)“}, then we set t§ = 1. If t5 > 1,
then we set t§, = #§ and terminate the line search (serious step). If

— of 11 + gy di > mpvy, (6)
where a1} = max{| B¢, v(spt1)“), Bl = f(arttbdi)—f(er+tide)— (5 —15) gl Ly di,

I;E = H(tL — t]Ydy|| and gry1 € Of(zg + t5dy), then we set t§, = t¥ and terminate the

line search.
The iteration is terminated if —vy, is less than the final accuracy tolerance supplied
by the user.

2.2 The bundle-Newton method

The bundle-Newton method is based on the following piecewise quadratic model
1
fel@) = max{f(y;) + g} (v = y;) + 55 = y3) Gl = yj)}

= max{f(es) + (9))" (& — xx) + %m(ﬂf —ax) G — ai) = B},

JE€Jk
where ¢f = g; + p;G(xx — y;) and
1
B = flar) = Flyi) = g7 (@r = w3) = 5pilee = yi) Giln — v;)

for j € Ji. Note that even in the convex case ﬂ]k might be negative. Therefore, we

replace the error ﬂ]k by the locality measure (3) again so that mingezn fk(:zj) < flak).
The local subproblem for the direction determination has now the form

dp = arg m{{bi&n{fk(wk +d)},

where no regularizing penalty term is used since the function fk(:zjk—l—d) already contains
second order information. This local subproblem is in fact a nonlinear minimax problem
which can be solved by the Lagrange-Newton (see [2]). Thus, we obtain the following
(smooth) quadratic programming subproblem

. e
(dy, vi) = arg min {v+ o d"Wd}, (7)

where W = 3.0, |)\f_lijj,)\f_l, J € Jr_1 are Lagrange multipliers of the quadratic
programming subproblem from the previous iteration and

L={(d,v): —ozf + (gf)Td <ev,j € JyUK}

with oz? given by (3), gf =g;+ pjGi(xr —y;), e, = 1 for j € J; and oz? = b; — af:z;,
gf =a;, e; =0 for j € K (we suppose that J; N K = @), which can be easily assured in
the program realization). This quadratic programming subproblem can be efficiently
solved by the dual range space method proposed in [4], which is also applied and shortly
described in [6].

The above derivation is not full since the aggregation of constraints is not included.
Aggregation of constraints is based on the same principle that was used in the proximal
bundle method. We refer to [5] for details.

Having the pair (dy,vi) determined as a solution to the quadratic programming
subproblem (7), we can obtain the points (2) using a line search which is in fact the
same as in the proximal bundle method. Again, conditions (5) and (6) are used,
where now aft! = mas{ |52 (£, Bt = Fley 4+ thdy) — Flan + thd) — (15—
t g di — (pren [2)(t] —) dL Gy + t7di)dy, sty = ||(t] — t)di|| and gift =
g(zp+t5dp) + pryr (15 —t9)G(ap +tEdy)dy. At the same time g(x),+15dy) € Of (v, +1Fd},)
and G(z+t#d}) is a second order matrix computed at the point z;+t¥d),. The stopping
criterion is also the same as in the proximal bundle method.

In the above text we use damping parameters p;, y € Ji. In fact, the value p; =1
is used in most iterations. If many nonserious (short and null) iterations would appear,
then we set p; = 0 since quadratic model is inefficient in this case.

3. Description of the subroutines

In this section we describe all subroutines which can be called from the user’s programs.
In the description of formal parameters we introduce a type of the argument that
specifies whether the argument must have a value defined on subroutine entry (I), or
whether it is a value which will be returned (O), or both (U), or whether it is an
auxiliary value (A). Note that the arguments of the type I can be changed on output
in some circumstances, especially if improper input values were given. Besides formal
parameters, we can use a COMMON /STAT/ block containing statistical information.
This block, used in each subroutine, has the following form

COMMON /STAT/ NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH
The arguments have the following meanings.

Argument Type Significance

NDECF 9] Positive INTEGER variable that indicates the number of matrix
decompositions.
NRES 9] Positive INTEGER variable that indicates the number of restarts.

NRED 9] Positive INTEGER variable that indicates the number of reduc-

tions.

NREM 9] Positive INTEGER, variable that indicates the number of con-
straint deletions during the QP solutions.

NADD 9] Positive INTEGER, variable that indicates the number of con-
straint additions during the QP solutions.

NIT 9] Positive INTEGER variable that indicates the number of itera-
tions.

NFV 9] Positive INTEGER variable that indicates the number of function
evaluations.

NFG 0] Positive INTEGER variable that specifies the number of gradient
evaluations.

NFH 0 Positive INTEGER variable that specifies the number of Hessian
evaluations.

3.1 Subroutines PBUNU, PBUNS, PBUNL, PNEWU, PNEWS, PNEWL
The calling sequences are

CALL PBUNU(NF,NA,X,TIA,RA,IPAR,RPAR,FP,GMAX,ITERM)
CALL PBUNS(NF,NA,NB,X,IX,XL,XU,IA,RA,IPAR,RPAR,FP,GMAX,ITERM)

CALL PBUNL(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,IA,RA,IPAR,RPAR,
& FP,GMAX,ITERM)

CALL PNEWU(NF,NA,X,TA,RA,IPAR,RPAR,FP,GMAX,THES,ITERM)
CALL PNEWS(NF,NA,NB,X,IX,XL,XU,IA,RA,IPAR,RPAR,FP,GMAX,IHES,ITERM)

CALL PNEWL(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,IA,RA,IPAR,RPAR,
& FP,GMAX,IHES,ITERM)

The arguments have the following meanings.

Argument Type Significance

NF I Positive INTEGER variable that specifies the number of variables
of the objective function.

NA I INTEGER variable that specifies the maximum bundle dimen-
sion (NA > 2). The choice NA = 0 causes that the default value
NA =NF+3 will be taken.

NB I INTEGER variable that specifies whether the simple bounds are
suppressed (NB = 0) or accepted (NB = NF).

7

NC

X(NF)

IX(NF)

XL (NF)

XU (NF)

CF (NC)

IC(NC)

CL(NC)

CU(NC)

CG (NF*NC)

IA(NIA)

RA(NRA)

INTEGER variable that specifies the number of linear constraints;
if NC = 0 the linear constraints are suppressed.

On input, DOUBLE PRECISION vector with the initial estimate

to the solution. On output, the approximation to the minimum.

INTEGER vector which contains the simple bounds types (signif-
icant only if NB > 0):
IX(I) =0: the variable X(I) is unbounded,

IX(I) =1: the lower bound X(I) > XL(I),

IX(I) =2: the upper bound X(I) < XU(I),

IX(I) =3: the two side bound XL(I) < X(I) < XU(I),

IX(I) =5: the variable X(I) is fixed (given by its initial esti-

mate).

DOUBLE PRECISION vector with lower bounds for variables
(significant only if NB > 0).

DOUBLE PRECISION vector with upper bounds for variables
(significant only if NB > 0).

DOUBLE PRECISION vector containing values of the constraint
functions (only if NC > 0).

INTEGER vector containing the constraints types (significant only
if NC > 0):

IC(K) = 0: the constraint CF(K) is not used,

IC(K) = 1: the lower constraint CF(K) > CL(K),

IC(K) =2: the upper constraint CF(K) < CU(K),

IC(K) =3: the two side constraint CL(K) < CF(K) < CU(K),
IC(K) =5: the equality constraint CF(K) = CL(K).

DOUBLE PRECISION vector with lower bounds for constraint
functions (significant only if NC > 0).

DOUBLE PRECISION vector with upper bounds for constraint
functions (significant only if NC > 0).

DOUBLE PRECISION matrix whose columns are normals of the

linear constraints (significant only if NC > 0).

INTEGER working array of the dimension of at least
NIA=NF4NA+1.

DOUBLE PRECISION working array of the dimension NRA,
where at least NRA=NF*(NF+1)/24NF*(NA+5)4+ 5*NA+4 for
the subroutines PBUNU, PBUNS, PBUNL and at least
NRA=NF*(NF+1)*(NA+3)/24+NF*(NA+6)+ 6*NA+4 for the subrou-
tines PNEWU, PNEWS, PNEWL.

IPAR(T)

RPAR(9)

FP

GMAX

THES

ITERM

INTEGER parameters. IPAR(1)=MET for the subroutines
PBUNU, PBUNS, PBUNL, IPAR(1)=MO0S for the subroutines
PNEWU, PNEWS, PNEWL, IPAR(2)=MES, IPAR(3)=MTESX,
IPAR(4)=MTESF, IPAR(5)=MIT, IPAR(6)=MFV, IPAR(7)=IPRNT.
These parameters (MET, MOS, MES, MTESX, MTESF, MIT, MFV, IPRNT)
are described in Section 3.2.

DOUBLE PRECISION parameters. RPAR(1)=TOLX, RPAR(2)
=TOLF, RPAR(3)=TOLB, RPAR(4)=TOLG, RPAR(5) =TOLD, RPAR(6)
=TOLS, RPAR(7)=TOLP, RPAR(8) =ETA, RPAR(9)=XMAX. These pa-
rameters (TOLX, TOLF, TOLG, TOLB, TOLD, TOLS, TOLP, ETA, XMAX)
are described in Section 3.2.

DOUBLE PRECISION value of the objective function at the so-

lution X.

DOUBLE PRECISION maximum absolute value of a partial

derivative of the Lagrangian function.

INTEGER variable that specifies a way for computing second

derivatives:
IHES = (: numerical computation,
THES = 1: analytical computation by the user supplied subrou-

tine HES.
INTEGER variable that indicates the cause of termination:

ITERM = 1: if | — a44| was less than or equal to TOLX in MTESX

subsequent iterations,
ITERM = 2: if |F' — F,;4| was less than or equal to TOLF in MTESF

subsequent iterations,
ITERM = 3: if |F| is less than or equal to TOLB,

ITERM = 4: if a standard termination criterion (see Section 2) is

satisfied,
ITERM = 11: if NFV exceeded MFV,

ITERM = 12: if NIT exceeded MIT,
ITERM < 0: if the method failed.

Subroutines PBUNU, PBUNS, PBUNL, PNEWU, PNEWS, PNEWL require the
user supplied subroutine FUNDER that defines the objective function and its subgra-
dient and has the form

SUBROUTINE FUNDER(NF,X,F,G)

The subroutines PNEWU, PNEWS, PNEWL require the additional user supplied sub-
routine HES that defines a matrix of the second order information (usually the Hessian
matrix) and has the form

SUBROUTINE HES(NF,X,H)

The arguments of user supplied subroutines have the following meaning.

Argument Type Significance

NF I Positive INTEGER variable that specifies the number of variables
of the objective function.

X (NF) I DOUBLE PRECISION an estimate to the solution.

F 0 DOUBLE PRECISION value of the objective function at the point
X.

G(NF) 0 DOUBLE PRECISION subgradient of the objective function at
the point X.

H(NFx* 0 DOUBLE PRECISION matrix of the second order information at

(NF+1)/2) the point X.

It THES=0, then the user supplied subroutine HES can be empty.

3.2 Subroutines PBUN, PNEW
The general subroutine PBUN is called from the subroutines PBUNU, PBUNS, PBUNL

described in Section 3.1. The calling sequence is

CALL PBUN(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,AF,IA,AFD,AG,
& IAA,AR,AZ,G,H,5,X0,G0,X5,GS,TOLX,TOLF,TOLB,TOLG,TOLD,TOLS,TOLP,
& ETA,XMAX,GMAX,FP ,MET,MES,MTESX ,MTESF,MIT,MFV,IPRNT,ITERM) .

The general subroutine PNEW is called from the subroutines PNEWU, PNEWS,
PNEWL described in Section 3.1. The calling sequence is

CALL PNEW(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,AF,IA,AFD,AG,
& TIAA,AR,AZ,G,H,HF,AH,S,50,X0,G0,TOLX,TOLF,TOLB,TOLG,TOLD,TOLS,TOLP,
& ETA,XMAX,GMAX,FP,M0OS,MES,MTESX ,MTESF,MIT,MFV,IPRNT,IHES,ITERM) .

The arguments NF, NA, NB, NC, X, IX, XL, XU, CF, IC, CL, CU, CG, GMAX, FP, IHES, ITERM
have the same meaning as in Section 3.1. Other arguments have the following meanings.

Argument Type Significance

AF (NAF) A DOUBLE PRECISION vector of bundle function values; NAF=4*NA
in the case of the subroutine PBUN or NAF=5%NA in the case of the
subroutine PNEW.

TA(NA) A INTEGER vector which contains types of bundle functions.
AFD(NA) A DOUBLE PRECISION vector of bundle functions increments.
AG(NF*NA) A DOUBLE PRECISION matrix whose columns are bundle gradi-

ents.

10

TAA(NA)

AR((NF+1)
*(NF+2)/2)

AZ (NF+1)
G(NF)

H(NH)

HF (NF*
(NF+1)/2

AH (NA*NF*
(NF+1)/2

S(NF+1)
SO(NF)
X0 (NF)
GO(NF+1)
XS (NF)
GS(NF)

TOLX

TOLF

TOLB

TOLG

TOLD

TOLS

A
A

A

B =

INTEGER vector which contains indices of active functions.

DOUBLE PRECISION matrix which contains triangular decom-

position of kernel of the orthogonal projection.

DOUBLE PRECISION vector of Lagrange multipliers.
DOUBLE PRECISION subgradient of the objective function.

DOUBLE PRECISION diagonal matrix of weight parameters
(NH=NF) in the case of the subroutine PBUN or aggregate Hessian
matrix (NH=NF* (NF+1)/2) in the case of the subroutine PNEW.

DOUBLE PRECISION Hessian matrix of the objective function.

DOUBLE PRECISION Bundle of Hessian matrices.

DOUBLE PRECISION direction vector.

DOUBLE PRECISION auxiliary vector.

DOUBLE PRECISION vector containing increments of variables.
DOUBLE PRECISION gradient of the Lagrangian function.
DOUBLE PRECISION auxiliary vector.

DOUBLE PRECISION auxiliary vector.

DOUBLE PRECISION tolerance for the change of the coordinate
vector X; the choice TOLX = 0 causes that the default value 1076
will be taken.

DOUBLE PRECISION tolerance for the change of function values;
the choice TOLF = 0 causes that the default value 107® will be
taken.

DOUBLE PRECISION minimum acceptable function value; the
choice TOLB = 0 causes that the default value —10°° will be taken.

DOUBLE PRECISION tolerance for the gradient of the La-
grangian function; the choice TOLG = 0 causes that the default
value 107° will be taken.

DOUBLE PRECISION tolerance for a descent direction; the choice
TOLD = 0 causes that the default value 10=* will be taken.

DOUBLE PRECISION tolerance parameter for a function decrease
in the line search; the choice TOLS = 0 causes that the default value
1072 will be taken.

11

TOLP

ETA

XMAX

MET

MOS

MES

MTESX

MTESF

MIT

MFV

IPRNT

DOUBLE PRECISION tolerance parameter for a significant mod-
ification of the next line search direction; the choice TOLP = 0
causes that the default value 0.5 will be taken.

DOUBLE PRECISION distance measure parameter.

DOUBLE PRECISION maximum stepsize; the choice XMAX = 0
causes that the default value 102 will be taken.

INTEGER variable that specifies the weight updating method:

MET = 1: quadratic interpolation,
MET = 2: local minimization,
MET = 3: quasi-Newton condition.

The choice MET = 0 causes that the default value MET = 1 will be
taken.

INTEGER distance measure exponent (MOS = 1 or MOS = 2).

The choice MOS = 0 causes that the default value MOS = 1 will be
taken.

INTEGER variable that specifies the interpolation method selec-
tion in a line search (until a sufficient function decrease is reached;
then only bisection will be used):

MES = 1: bisection,

MES = 2: two point quadratic interpolation.

The choice MES = 0 causes that the default value MES = 2 will be
taken.

INTEGER variable that specifies the maximum number of itera-
tions with changes of the coordinate vector X smaller than TOLX;
the choice MTESX = 0 causes that the default value 20 will be taken.

INTEGER variable that specifies the maximum number of iter-
ations with changes of function values smaller than TOLF; the
choice MTESF = 0 causes that the default value 2 will be taken.

INTEGER variable that specifies the maximum number of itera-
tions; the choice MIT = 0 causes that the default value 200 will be
taken.

INTEGER variable that specifies the maximum number of function
evaluations; the choice MFV = 0 causes that the default value 500
will be taken.

INTEGER variable that specifies PRINT:

IPRNT = 0: print is suppressed,

IPRNT = 1: Dbasic print of final results,

IPRNT = —1: extended print of final results,

IPRNT = 2: basic print of intermediate and final results,

12

IPRNT = —2: extended print of intermediate and final results,

Subroutines PBUN and PNEW have a modular structure. The following list con-

tains their most important subroutines.

UF1HS1
PDDBQ1

PDDBQ2

PLQDF1

PS1L05

Numerical computation of the Hessian matrix.

Determination of the descent direction using quadratic programming rou-
tines and bundle updating for the subroutine PBUN.

Determination of the descent direction using quadratic programming rou-
tines and bundle updating for the subroutine PNEW.

Dual range space method for solving the quadratic programming problem
with linear constraints (see [4]) and [6].

Line search using function values and derivatives.

Subroutines PBUN, PNEW require the user supplied subroutine FUNDER. Sub-
routine PNEW requires the additional user supplied subroutine HES. User supplied

subroutines FUNDER and HES are described in Section 3.1.

3.3 Form of the printed results

The form of the printed results is specified by the parameter IPRNT as is described
above. Here we demonstrate individual forms of printed results by the simple use of the

program TNEWU described in the next section (with NEXT=12). If we set [IPRNT=1,

then the printed results will have the form

NIT= 12

NFV=

14

NFG=

14 F=

-.84140833D+00 G=

.6734D-06 ITERM=

It we set IPRNT=-1, then the printed results will have the form

EXIT FROM PNEW :

NIT= 12

NFV=

14

NFG=

14 F=

.7421866D-01

.1385240D+00

-.84140833D+00 G=
X= -.1262566D+00 -.3437830D-01 -.6857198D-02
-.2783995D+00

.2636066D-01
.8403122D-01

.6734D-06 ITERM=

It we set IPRNT=2, then the printed results will have the form

ENTRY TO
NIT= 0
NIT= 1
NIT= 2
NIT= 3
NIT= 4
NIT= 5
NIT= 6
NIT= 7

PNEW :

NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=

©W 00 N O O W

NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=

©W 00 N O O W

.00000000D+00
.53370664D+04
.66499712D+02
.33934270D+02
.12040341D+01
.51324695D+00
-.76915236D+00
-.83859100D+00

13

.1000D+61
.1200D+05
.2610D+02
.3771D+02
.3214D+01
.1459D+01
.2347D+01
.2683D+00

4

.6729492D-01
.38568031D-01

NIT=
NIT=
NIT=
NIT=
NIT=
EXIT
NIT=

If we

8 NFV= 10
9 NFV= 11
10 NFV= 12
11 NFV= 13
12 NFV= 14
FROM PNEW :
12 NFV= 14

NFG=
NFG=
NFG=
NFG=
NFG=

NFG=

10
11
12
13
14

14

.84140726D+00
.84140726D+00
.84140726D+00
.84140726D+00
.84140833D+00

.84140833D+00

.2491D-02
.3213D-03
.4862D-03
.5265D-05
.6734D-06

.6734D-06

set IPRNT=-2, then the printed results will have the form

ENTRY TO PNEW :

NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
EXIT
NIT=

X= -.1262566D+00 -.3437830D-01 -.
.2783995D+00

4. Verification of the subroutines

0 NFV= 1
1 NFvVv= 3
2 NFV= 4
3 NFV= 5
4 NFV= 6
5 NFv= 7
6 NFV= 8
7 NFV= 9
8 NFV= 10
9 NFV= 11
10 NFV= 12
11 NFV= 13
12 NFV= 14
FROM PNEW :
12 NFV= 14

NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=

NFG=

©OW 00 N O Gk W

L e a
B w NN~ O

14

.7421866D-01

.00000000D+00
.53370664D+04
.66499712D+02
.33934270D+02
.12040341D+01
.51324695D+00
.76915236D+00
.83859100D+00
.84140726D+00
.84140726D+00
.84140726D+00
.84140726D+00
.84140833D+00

.84140833D+00
6857198D-02
.1385240D+00

.2636066D-01
.8403122D-01

.1000D+61
.1200D+05
.2610D+02
.3771D+02
.3214D+01
.1459D+01
.2347D+01
.2683D+00
.2491D-02
.3213D-03
.4862D-03
.5265D-05
.6734D-06

.6734D-06
.6729492D-01
.38568031D-01

ITERM=

ITERM=

4

4

In this section we introduce the main programs TBUNU and TNEWU, which serve as
demonstration, verification and testing of the subroutines PBUNU and PNEWU.

4.1 Program TBUNU

The following main program demonstrates the usage of the subroutine PBUNU.

C
C
C

TEST PROGRAM FOR THE SUBROUTINE PBUNU

INTEGER NF,NA,TA(100),IPAR(7),ITERM
REAL*8 X(30),RA(2000) ,RPAR(9) ,GMAX,F

REAL*8 FMIN

14

Q

Q

Q

Q

Q

INTEGER NEXT,IERR,I

COMMON /PROB/ NEXT

INTEGER NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH
COMMON /STAT/ NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH

LOOP FOR 23 TEST PROBLEMS
DO 3 NEXT=1,23
CHOICE OF INTEGER AND REAL PARAMETERS

DO 1 I=1,7

IPAR(I)=0

CONTINUE

DO 2 I=1,9

RPAR(I)=0.0D 0

CONTINUE

IF (NEXT.LE.8.0R.NEXT.EQ.17.0R.NEXT.GE.21) RPAR(8)=0.25D 0
IF (NEXT.EQ.1.0R.NEXT.EQ.6.0R.NEXT.EQ.8.0R.NEXT.EQ.15) IPAR(1)=2
IF (NEXT.GE.17) IPAR(1)=2

IF (NEXT.EQ.14) IPAR(4)=7

IPAR(7)=1

PROBLEM DIMENSION

NF=30
NA=0

INITIATION OF X AND CHOICE OF RPAR(9)

CALL TIUD19(NF,X,FMIN,RPAR(9),NEXT,IERR)
IF (IERR.NE.O) GO TO 3

SOLUTION

CALL PBUNU(NF,NA,X,IA,RA,IPAR,RPAR,F,GMAX,ITERM)
CONTINUE

STOP

END

USER SUPPLIED SUBROUTINE (CALCULATION OF F AND G)

SUBROUTINE FUNDER(NF,X,F,G)

15

Q

Q

INTEGER NF
REAL*8 X (%) ,F,G(*)
INTEGER NEXT

COMMON /PROB/ NEXT

FUNCTION EVALUATION
CALL TFFU19(NF,X,F,NEXT)
GRADIENT EVALUATION
CALL TFGU19(NF,X,G,NEXT)

RETURN
END

This main program uses subroutines TIUD19 (initiation), TFFU19 (function evalu-
ation) and TFGU19 (subgradient evaluation) containing 21 standard test problems,
which have at most 30 variables, taken from the UFO system [7]. Results obtained by
this main program have the following form.

NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=

42 NFV= 45 NFG= 45
18 NFV= 20 NFG= 20
31 NFvV= 33 NFG= 33
14 NFV= 16 NFG= 16
17 NFV= 19 NFG= 19
13 NFV= 15 NFG= 15
11 NFV= 12 NFG= 12
66 NFV= 68 NFG= 68
13 NFV= 15 NFG= 15
43 NFV= 45 NFG= 45
27 NFV= 29 NFG= 29
74 NFV= 75 NFG= 75
150 NFV= 151 NFG= 1b1
39 NFV= 40 NFG= 40
92 NFV= 93 NFG= 093
43 NFV= 46 NFG= 46
18 NFV= 19 NFG= 19
19 NFV= 20 NFG= 20
160 NFV= 162 NFG= 162
104 NFV= 113 NFG= 113
60 NFV= 62 NFG= 62

.38117068D-06
.22292495D-15
.19522245D+01
.20000000D+01
.30000000D+01
.72000015D+01
.14142136D+01
.99999941D+00
.10000000D+01
.43999999D+02
.22600162D+02
.84140829D+00
.16712381D-06
.27274665D-12
.55981567D+00
.80000000D+01
.42366324D-08
.98993016D-09
.97857723D+01
.16703883D+02
.32348679D+02

.1135D-02
.6552D-08
.3085D-03
.1921D-06
.5564D-08
.2212D-02
.1437D-04
.1089D-02
.9859D-07
.3734D-02
.1451D-03
.7236D-03
.7782D-04
.1000D+01
.8266D-03
.1282D-02
.9986D-07
.1024D-07
.1618D-03
.8670D-02
.2190D-02

ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=

DN B DN RPN NN RN R RN N DN

The rows corresponding to individual test problems contain the number of iterations
NIT, the number of function evaluations NFV., the number of gradient evaluations

16

NFG, the final value of the objective function F, the value of the criterion for the
termination G and the cause of termination ITERM.

4.2 Program TNEW

The following main program demonstrates the usage of the subroutine PNEWU.

c
c TEST PROGRAM FOR THE SUBROUTINE PNEWU
c
INTEGER NF,NA,IA(100),IPAR(7),ITERM
REAL*8 X(40),RA(19000) ,RPAR(9),F,GMAX
REAL*8 FMIN
INTEGER NEXT,IERR,I
COMMON /PROB/ NEXT
INTEGER NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH
COMMON /STAT/ NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH
c
c LOOP FOR 23 TEST PROBLEMS
c
DO 3 NEXT=1,23
c
c CHOICE OF INTEGER AND REAL PARAMETERS
c
DO 1 I=1,7
IPAR(I)=0
1 CONTINUE
DO 2 I=1,9
RPAR(I)=0.0D 0
2 CONTINUE
IPAR(1)=2
IPAR(2)=4

RPAR(8)=1D-10

IF(IPAR(1) .EQ.1)THEN
IF(NEXT.EQ.1) RPAR(8)=0.5D 0
IF(NEXT.EQ.3.0R.NEXT.EQ.21) RPAR(8)=0.25D 0
IF(NEXT.EQ.5.0R.NEXT.EQ.8) RPAR(8)=1.0D-1
IF(NEXT.EQ.4.0R.NEXT.EQ.22) RPAR(8)=1.0D-2
IF(NEXT.EQ.2.0R.NEXT.EQ.12.0R.NEXT.EQ.18) RPAR(8)=1.0D-4
IF (NEXT.EQ.23) RPAR(8)=4.0D-2
IF(NEXT.EQ.24) RPAR(8)=5.0D-2

ELSE
IF(NEXT.EQ.1) RPAR(8)=1.3D 0
IF(NEXT.EQ.5.0R.NEXT.EQ.18.0R.NEXT.EQ.21.0R.NEXT.EQ.23)

17

Q

Q

Q

Q

Q

Q

& RPAR(8)=0.25D0
IF(NEXT.EQ.3.0R.NEXT.EQ.4) RPAR(8)=1.0D-1
IF(NEXT.EQ.24) RPAR(8)=5.0D-2
IF(NEXT.EQ.8.0R.NEXT.EQ.12.0R.NEXT.EQ.22) RPAR(8)=1.0D-2
IF(NEXT.EQ.2.0R.NEXT.EQ.17) RPAR(8)=1.0D-3
ENDIF
IPAR(7)=1

PROBLEM DIMENSION

NF=30
NA=0

INITIATION OF X AND CHOICE OF RPAR(9)

CALL TIUD19(NF,X,FMIN,RPAR(9),NEXT,IERR)
IF(NEXT.EQ.3.0R.NEXT.EQ.5.0R.NEXT.EQ.21) RPAR(9)=1.0D0
IF (NEXT.EQ.18) RPAR(9)=1.0D1

IF (IERR.NE.O) GO TO 3

THES=1

SOLUTION

CALL PNEWU(NF,NA,X,IA,RA,IPAR,RPAR,F,GMAX,IHES,ITERM)
CONTINUE

STOP

END

USER SUPPLIED SUBROUTINE (CALCULATION OF F AND G)
SUBROUTINE FUNDER(NF,X,F,G)

INTEGER NF

REAL*8 X(*),F,G(%)

INTEGER NEXT

COMMON /PROB/ NEXT

FUNCTION EVALUATION

CALL TFFU19(NF,X,F,NEXT)

GRADIENT EVALUATION

CALL TFGU19(NF,X,G,NEXT)

18

RETURN

END
c
c USER SUPPLIED SUBROUTINE (CALCULATION OF H)
c
SUBROUTINE HES (NF,X,H)
INTEGER NF
REAL*8 X (%) ,H(%)
INTEGER NEXT
COMMON /PROB/ NEXT
c
c HESSIAN EVALUATION
c
CALL TFHD19(NF,X,H,NEXT)
RETURN
END

This main program uses subroutines TIUD19 (initiation), TFFU19 (function evalu-
ation), TFGU19 (subgradient evaluation) and TFHD19 (Hessian matrix evaluation)
containing 21 standard test problems with at most 30 variables, which were taken
the UFO system [7]. Results obtained by this main program have the following

from

form.

NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=
NIT=

58
7
9

11

14
4

16

12

10

13
7

12

36

24

89

25

14

13

52

40

22

NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=

59

8
10
12
15

6
17
14
11
15

8
14
37
25
91
26
15
14
53
42
24

NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=

59

8
10
12
15

6
17
14
11
15

8
14
37
25
91
26
15
14
53
42
24

.225633114D-15
.16765701D-10
.19522245D+01
.20000000D+01
.30000000D+01
.72000000D+01
.14142136D+01
.10000000D+01
.10000000D+01
.44000000D+02
.22600173D+02
.84140833D+00
.38373702D-08
.45289427D-08
.55981330D+00
.79999999D+01
.48008312D-08
.11049975D-08
.97857721D+01
.16703855D+02
.32348679D+02

19

.8624D-05
.5792D-05
.1544D-04
.1560D-03
.5398D-08
.1445D-08
.5653D-07
.2015D-08
.4562D-06
.4215D-05
.1263D-02
.6734D-06
.5758D-08
.1100D-09
.1528D-05
.3813D-02
.7723D-07
.3952D-07
.2964D-03
.1783D+00
.3409D-02

ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=

NN I G I R N N N O N SO O S T N S N

The rows corresponding to individual test problems contain the number of iterations
NIT, the number of function evaluations NFV., the number of gradient evaluations
NFG, the final value of the objective function F, the value of the criterion for the
termination G and the cause of termination I[TERM.

References

[1]
[2]

[3]

Clarke F.H. Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, 1983.

Fletcher R.: Practical Methods of Optimization (second edition). Wiley, New York,
1987.

Kiwiel K.C. Proximity Control in Bundle Methods for Convex Nondifferentiable Mini-
mization, Mathematical Programming 46 (1980), 105-122.

Luksan L. Dual Method for Solving a Special Problem of Quadratic Programming as a
Subproblem at Linearly Constrained Nonlinear Minimax Approximation, Kybernetika
20 (1984), 6, 445-457.

Luksan L., Vl¢ek J. A Bundle-Newton Method for Nonsmooth Unconstrained Minimiza-
tion. To appear in Mathematical Programming.

Luksan L., Vlcek J. Algorithm AAA. PMIN - A Recursive Quadratic Programming
Variable Metric Algorithm for Minimax Optimization. Submitted to ACM Trans. on
Math. Software.

Luksan L., Siska M., Tfima M., Vléek J., Rame$ova N. Interactive System for Universal
Functional Optimization (UFO), Version 1996. Research Report No. V-701, Institute of
Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic,
1996.

Mikeld M.M., Neittaanmiki P. Nonsmooth Optimization. World Scientific Publishing
Co., London, 1992.

Vlcek J. Bundle Algorithms for Nonsmooth Unconstrained Minimization. Research Re-
port V-608, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, Czech Republic, 1995.

20

