narodni
N U dlozisté
1 L Sedé
6 literatury

PMIN - A Recursive Quadratic Programming Variable Metric Algorithm for Minimax
Optimization

Luksan, Ladislav
1997

Dostupny z http://www.nusl.cz/ntk/nusl-33720

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 23.08.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33720
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER
SCIENCE

ACADEMY OF SCIENCES OF THE CZECH
REPUBLIC

Prague

PMIN - A Recursive Quadratic

Programming Variable Metric Algorithm
for Minimax Optimization

L. Luksan, J. Vlcek

Technical Report No. V-717
September 1997

Akademie véd Ceské republiky
USTAV INFORMATIKY A VYPOCETNI TECHNIKY

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
E-mail: ICS@uivt.cas.cz
Fax: (+422) 8585789 Phone: (4422) 846669, (+422) 66051111

PMIN - A Recursive Quadratic Programming Variable
Metric Algorithm for Minimax Optimization '

L. Luksan and J. Vlcek
Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod vodarenskou veézi 2, 182 07 Prague 8, Czech Republic

Abstract. We present FORTRAN subroutines for nonlinear minimax optimization
with simple bounds and general linear constraints based on a recursive quadratic pro-
gramming variable metric algorithm.

Categories and Subject Descriptors:
General Terms: Algorithms

Additional Key Words and Phrases: Minimax optimization, discrete Chebyshev
approximation, recursive quadratic programming methods, variable metric methods,
general linear constraints

1. Introduction

The double-precision FORTRAN 77 basic subroutine PMIN is designed to find a close

approximation to a local minimum of a special objective function

F(x) = ;

() [max. fi(z)

(minimax) with simple bounds on variables and general linear constraints. Here 2 € R"
is a vector of n variables and f; : R* — R, 1 < ¢ < m, are twice continuously
differentiable functions. Simple bounds are assumed in the form (1%, I° correspond to
the arays IX, IC in Section 3)

x; —unbounded ., [¥ =0,

xigxz . A7)

J}ZSJ};L)]Zx_)
:1;l<:1;i<:1;§.‘ , I =3,
T =ah=a¥ 7 =

where 1 <17 < n. General linear constraints are assumed in the form

alz —unbounded , If =0,

!This work was supported under grant No. 201/96/0918 given by the Czech Republic Grant Agency

¢ <alz , If=1,
a;fr:zj <¢c' , ;=2
ci» < a;fr:zj <¢ , I;=3,
a;fr:zj = ci =c¢ , I; =5,

where 1 <1 < n. and n. is a number of general linear constraints. To simplify user’s
work, three additional easy to use subroutines are added. They call the basic general

subroutine PMIN:
PMINU - unconstrained minimax optimization
PMINS - minimax optimization with simple bounds

PMINL - minimax optimization with simple bounds and general linear constraints

All subroutines contain a description of formal parameters and extensive comments.
Furthermore, two test programs TMINU and TMINL are included, which contain 7
and 6 test problems (see e.g. [6]). These test programs serve as examples for using the
subroutines, verify their correctness and demonstrate their efficiency.

2. The method

To simplify the description of the method, we will consider a simpler problem written
in the following compact form

* — : ; 1
z” = arg min(max fi(z)), (1)

where
L"={x € R" :alx <byi€ M}

with My N My = (). Tt is clear that the application of the method described below to
the general problem stated in the previous section is straightforward, but this requires
to consider each type of constraint separately as it is realized in the subroutine PMIN.

2.1 Recursive quadratic programming variable metric method
for nonlinear minimax optimization

If we introduce a new variable z, then the problem (1) can be reformulated as a
nonlinear programming problem

* K\ .
(x*,2%) = arg (Lzlgrel%l“l 2, (2)

where

Nt — {(x,2) € R file) <eiz,i € My UMy}

with ¢; = 1 for + € M; and ¢; = 0, fi(z) = alx — b; for 1 € M,. This nonlinear pro-
gramming problem can be solved by a recursive quadratic programming method that
uses a quadratic approximation of the Lagrangian function and a linear approximation
of the constraints in each iteration. Let 2* € R"™ be a current approximation to the
minimum z*. Then the resulting quadratic programming subproblem has the form

1
(d*,2%) = arg min (§dTde—|— z), (3)

(d,2)eLy*!
where G* is an approximation of the Hessian matrix of the Lagrangian function and
Lt ={(d,z) € R : ff + (af)Td <ez,0 € My UMy}
with e¢; = 1, af = sz(:zjk) for + € My and ¢; = 0, af = a; for ¢« € M,. The solution

of the quadratic programming subproblem (3) has to satisfy the Karush-Kuhn-Tucker
conditions

&= —HrgF
elub = 1,
k Z 07
ko>,
W)t =0,
where u* is the vector of Lagrange multipliers, H* = (G*)=1, A* = [a},...,d"], ¢ =
ler, . oen]t, fE=1fE ..., fE]T, " = A*u* is the gradient of the Lagrangian function

and v* = zFe — fF — (AF)Td" is the vector of constraint violations. Note that if g* = 0,
then we obtain the Karush-Kuhn-Tucker conditions for the nonlinear programming
problem (2) exactly so that the minimax problem (1) is solved. Therefore, the condition
|g%]|lcc <TOLG is used in the subroutine PMIN as the basic stopping criterion (when
it is fulfilled then ITERM=4).

The direction vector d* € R" obtained as the solution to the quadratic programming

k41 46 the minimum

subproblem (3) is used for the definition of the new approximation
x* by the formula

2= b 4 ok dE,
where 0 < of <1 is a steplength, which is chosen in such a way that
F(at 4 obd) - F(t) < cat(d) o,

where 0 < & < 1 is a tolerance for function decrease in the line search (parameter
TOLS in the subroutine PMIN). The steplength a* is chosen iteratively either by the
bisection (MES=1) or by two point quadratic interpolation (MES=2) or by three point
quadratic interpolation (MES=3) or by three point cubic interpolation (MES=4) (MES
is a parameter of the subroutine PMIN).

Having the new approximation 2**! to the minimum 2*, we can compute the new

matrix AF = [afT Y, Where ak"'l V fi(z**1) for i € My and o™ = a; for
¢ € M,. If we denote s* = zFt! — 2% and y* = A1k — ARyk = AM1y% — g% then the
BFGS ([1], [2], [4], [8]) method consists in the following update

U a8 W50 pg"(9")!

B +7ky’“(y’“)T B G’“S’“(G’“S’“)T) _ L
N e e e A e AR D

Gk-l—l —

where v¥ > 0 is a self scaling parameter. This parameter is usually equal to one
with the exception of the first iteration (or iteration after the restart) where either
7% =1if MET=1 or 4% = (s")TG*s*/(s")Ty* = —ak(s%)T g" /(sF)Ty" if MET=2 (MET
is a parameter of the subroutine PMIN). The BFGS method requires the condition
(s")Ty* > 0 to be satisfied, which guarantees a positive definiteness of the matrix
G*+1. Unfortunately, this condition does not hold in the minimax optimization case
automatically. Therefore, we set G**1 = G* whenever (s*)Ty* < 0.

2.2 Dual range space method for a special quadratic program-
ming subproblem

Consider a quadratic programming problem in which we seek a pair (d*,2*) € R**! in
such a way that

H(d*,z") = min ¢(s,z), (4)

(d,z)eLn+1

where

(s,z) = —dTGd + 2

and

L' ={(d,z) € R™": fi + ald < e;z,i € My U My}

(see (3). The fact that the matrix G is positive definite implies that the the problem (4)
is convex and we can apply the duality theory to obtain a dual quadratic programming
problem which consists in seeking a vector u* € R™ (vector of Lagrange multipliers of

(4)) so that
P(u*) = min P (u), (5)

uelm
where

1
p(u) = §uTATHAu — Ty

and
m={u€e R":elu=1,u>0}

Here H = G™Y A= la1,...,an], f=[fi,- -, fm)T e = [e1, ... e, where f; = fi(x),
e; = 1fori € My and f; = alz — b;, ¢; = 0 for i € M,. The solution of (4) can be
obtained from the solution of (5) by the formulas

d = —HAu" (6)

and
= ffur — (u)TATH Au”, (7)
The solution u* of (5) is the optimum vector of Lagrange multipliers for (4). Since

the problem (5) is convex, u* is its solution if and only if the Karush-Kuhn-Tucker
conditions are valid, i.e. if and only if

efu =1, w >0 (8)
and a number z* exists in such a way that
v = ATHAw — f+2%¢ >0, () u"=0. 9)

Vector v* is the vector of Lagrange multipliers of the problem (5). Conditions (6) and
(9) imply that z* in (9) is identical with z* in (7). This in turn implies that v* is, at
the same time, the vector of constraint values of the problem (4).

Consider any subset I C M = M; U M, and denote the vectors of elements u;, f;,
e, 1t € I by u, f, e, respectively. Similarly, let A be the matrix of columns a;, 2 € I. To
connect two separate cases which can occur in an investigation of a dual range space
method together, we introduce an artificial parameter n > 0 and denote

,g:[H 0].

We will suppose that the subset I C M = M; U M was chosen in such a way that the
columns of A are linearly independent.

—e

If I = I" were the set of active constraints of the problem (4), then we could
compute the dual variables z* and u* from (8)-(9). Unfortunately, this set is not
known a priory. Therefore, we start with the set I = {k}, where k € M; is arbitrary.
Then z = f, — a;{Hak and u = [1]. Suppose that I C M = M; U Mj; is a current subset
and z, u are corresponding dual variables. Then we can proceed in the following way.
First we compute the direction vector d = —H Au and the value of the most violated
primal constraint

T . T
vp = ze; — [—ard = min {ze; — f; —a: d}.
k k= fr—ay Z.GM\I{ i — fi—a; d}

If v > 0 then the set of active constraints has been detected and the solutions of (4)
and (5) have been found. Otherwise, we set uy = 0 and compute the primal and dual
steplengths

Uk
ap = ———
Brve + O
Uy . Uy
ap = —— =mi

n—*
qk; + YEp; i€l Gri + Epi

where p = (ATHA) e, g = (ATHAY A i, By = e — Ty 20 = Gelp"e, b =

EL;{([N{—[N{A(ATHA)_IATH)@ (with ay = [ag, —ek]T) and I = {s € I:qu+~rp;i >0} .

5

If 337k 46 = 0, then we set ap = co. If I = (), then we set ap = co. If simultaneously
ap = oo and ap = oo, then the problem has no feasible solution. Otherwise we set
a = min{ap,ap} and compute z 1= z + ayg, v = v — alqr + Vp), ur = ur + @,
v = (1 — af/ap)vy.

If ap < ap, then the primal step is realized, i.e. we set I := IU{k}, u:= [ul,u]7,
e:=[eT,en]T, A:=[A,ax], A := [A, &), recompute d = —H Au and determine a new
value of the most violated primal constraint and a new index k.

If ap > ap, then the dual step is realized, i.e. we set I := I\{j}, u := v,
e := e, A= AW A .= AU where the upper index in parentheses denotes an
element or column which are deleted. Now, two cases can occur. If I N My #), then
we recompute the primal and dual steplengths and repeat the process with the same
index k. If I N M; =), then we compute z := z — vy, set I := I U{k}, u = [ul,uz]?,
e:=[eT,ep]T, A:=[A, ax), A:= [A,az], recompute d = —H Au and determine the new
value of the most violated primal constraint and the new index k.

In [5], it was proved that the above dual range space finds the solutions of quadratic
programming problems (4) and (5) after a finite number of steps.

3. Description of the subroutines

In this section we describe all subroutines which can be called from the user’s program.
In the description of formal parameters we introduce a type of the argument that spec-
ifies whether the argument must have a value defined on entry to the subroutine (I),
whether it is a value which will be returned (O), or both (U), or whether it is an auxil-
iary value (A). Note that the arguments of the type I can be changed on output under
some circumstances, especially if improper input values were given. Besides formal
parameters, we can use a COMMON /STAT/ block containing statistical information.
This block, used in each subroutine has the following form:

COMMON /STAT/ NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH

The arguments have the following meaning.

Argument Type Significance

NDECF 9] Positive INTEGER variable that indicates the number of matrix
decompositions.

NRES 9] Positive INTEGER variable that indicates the number of restarts.

NRED 9] Positive INTEGER variable that indicates the number of reduc-
tions.

NREM 9] Positive INTEGER, variable that indicates the number of con-
straint deletions during the QP solutions.

NADD 9] Positive INTEGER, variable that indicates the number of con-

straint additions during the QP solutions.

NIT

NFV

NFG

NFH

O

Positive INTEGER variable that indicates the number of itera-
tions.

Positive INTEGER variable that indicates the number of function
evaluations.

Positive INTEGER variable that specifies the number of gradient
evaluations.

Positive INTEGER variable that specifies the number of Hessian
evaluations.

3.1 Subroutines PMINU, PMINS, PMINL

The calling sequences are

CALL PMINU(NF,NA,X,AF,IA,RA,IPAR,RPAR,F,GMAX,IEXT,ITERM)

CALL PMINS(NF,NA,NB,X,IX,XL,XU,AF,IA,RA,IPAR,RPAR,F,GMAX,

& IEXT,ITERM)

CALL PMINL(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,AF,IA,RA,

& IPAR,RPAR,F,GMAX,IEXT,ITERM)

The arguments have the following meaning.

Argument Type Significance

NF I Positive INTEGER variable that specifies the number of variables
of the objective function.

NA I INTEGER variable that specifies the number of functions in the
minimax criterion.

NB I INTEGER variable that specifies whether the simple bounds are
suppressed (NB = 0) or accepted (NB = NF).

NC I INTEGER variable that specifies the number of linear constraints;
if NC = 0 the linear constraints are suppressed.

X(NF) U On input, DOUBLE PRECISION vector with the initial estimate
to the solution. On output, the approximation to the minimum.

IX(NF) I On input (significant only if NB > 0) INTEGER vector containing

the simple bounds types:
IX(I) =0: the variable X(I) is unbounded,
IX(I) =1: the lower bound X(I) > XL(I),

(I)
IX(I) =2: the upper bound X(I) < XU(I),
IX(I) =3: the two side bound XL(I) < X(I) < XU(I),
IX(I) =5: the variable X(I) is fixed (given by its initial esti-

mate).

XL (NF)

XU (NF)

CF (NC)

IC(NC)

CL(NC)

CU(NC)

CG (NF*NC)

AF(NA)

IA(NIA)

RA(NRA)

IPAR(5)

RPAR(7)

GMAX

IEXT

—

O

DOUBLE PRECISION vector with lower bounds for variables
(significant only if NB > 0).

DOUBLE PRECISION vector with upper bounds for variables
(significant only if NB > 0).

DOUBLE PRECISION vector which contains values of constraint
functions (only if NC > 0).

On input (significant only if NC > 0) INTEGER vector which con-
tains constraint types:

) =0: the constraint CF(K) is not used,

)=1: the lower constraint CF(K) > CL(K),
IC(K) =2: the upper constraint CF(K) < CU(K),

) =3: the two side constraint CL(K) < CF(K) < CU(K),
IC(K) =5: the equality constraint CF(K) = CL(K).

DOUBLE PRECISION vector with lower bounds for constraint
functions (significant only if NC > 0).

DOUBLE PRECISION vector with upper bounds for constraint
functions (significant only if NC > 0).

DOUBLE PRECISION matrix whose columns are normals of the

linear constraints (significant only if NC > 0).

DOUBLE PRECISION vector which contains values of functions
in the minimax criterion.

INTEGER working array of the dimension of at least
NIA=NF4NA+1.

DOUBLE PRECISION working array of the dimension of at least
NRA=(NF+NA+8)*NF+2*NA+4.

INTEGER parameters. IPAR(1)=MET, IPAR(2)=MES, IPAR(3)=
MIT, IPAR(4)=MFV, IPAR(5) =IPRNT. These parameters (MET, MES,
MIT, MFV, IPRNT) are described in Section 3.2.

DOUBLE PRECISION parameters. RPAR(1)=TOLX, RPAR(2)=
TOLF, RPAR(3)=TOLB, RPAR(4)=TOLG, RPAR(5)=TOLD, RPAR(6)=
TOLS, RPAR(7) =XMAX. These parameters (TOLX, TOLF, TOLB, TOLG,
TOLD, TOLS, XMAX) are described in Section 3.2).

DOUBLE PRECISION value of the objective function at the so-

lution X.

DOUBLE PRECISION maximum absolute value of a partial

derivative of the Lagrangian function.

INTEGER variable that specifies the minimax criterion:

ITERM O

IEXT < 0: maximum of positive values,
IEXT = 0: maximum of absolute values,
IEXT > 0: maximum of negative values,

INTEGER variable that indicates the cause of termination:

ITERM = 1: if | — a44| was less than or equal to TOLX in MTESX

subsequent iterations,
ITERM = 2: if |F' — F,;4| was less than or equal to TOLF in MTESF

subsequent iterations,
ITERM = 3: if F is less than or equal to TOLB,

ITERM = 4: if GMAX is less than or equal to TOLG,
ITERM = 11: if NFV exceeded MFV,
ITERM = 12: if NIT exceeded MIT,
ITERM < 0: if the method failed.

The subroutines PMINU, PMINS, PMINL require the user supplied subroutines
FUN and DER that define the values and the gradients of the functions in the minimax
criterion and have the form

SUBROUTINE FUN(NF,KA,X,FA)

SUBROUTINE DER(NF,KA,X,GA)

The arguments of user supplied subroutines have the following meaning.

Argument Type Significance

NF I
KA I
X(NF) I
FA O
GA(NF) O

Positive INTEGER variable that specifies the number of variables
of the objective function.

Positive INTEGER variable that specifies the index of a function
in the minimax criterion.

DOUBLE PRECISION an estimate to the solution.

DOUBLE PRECISION value of a function with the index KA at
the point X.

DOUBLE PRECISION gradient of a function with the index KA
at the point X.

3.2 Subroutine PMIN

This general subroutine is called from all the subroutines described in Section 3.1. The

calling sequence is

CALL PMIN(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,AF,IA,AFO,AFD,
& GA,AG,IAA,AR,AZ,G,H,S,X0,G0,TOLX,TOLF,TOLB,TOLG,TOLD,TOLS,
& XMAX,GMAX,F,IEXT,MET,MES,MIT,MFV,IPRNT,ITERM).

The arguments NF, NA, NB, NC, X, IX, XL, XU, CF, IC, CL, CU, CG, AF, GMAX, F, IEXT,
ITERM, have the same meaning as in Section 3.1. Other arguments have the following

meaning.

Argument Type Significance

TA(NA) A INTEGER vector containing types of functions in the minimax
criterion.

AFO(NA) A DOUBLE PRECISION vector of saved values of functions in the
minimax criterion.

AFD(NA) A DOUBLE PRECISION vector of increments of functions in the
minimax criterion.

GA(NF) A DOUBLE PRECISION gradient of the selected function in the
minimax criterion.

AG(NF*NA) A DOUBLE PRECISION matrix whose columns are gradients of
functions in the minimax criterion.

IAA(NA) A INTEGER vector containing indices of active functions.

AR((NF+1) A DOUBLE PRECISION matrix containing triangular decomposi-

*(NF+2)/2) tion of the orthogonal projection kernel.

AZ(NF+1) A DOUBLE PRECISION vector of Lagrange multipliers.

G(NF) A DOUBLE PRECISION gradient of the Lagrangian function.

Iilfngljz;l) A DOUBLE PRECISION Hessian matrix of the Lagrangian function.

S(NF+1) A DOUBLE PRECISION direction vector.

X0 (NF) A DOUBLE PRECISION vector which contains increments of vari-
ables.

GO(NF+1) A DOUBLE PRECISION vector which contains increments of partial
derivatives.

TOLX I DOUBLE PRECISION tolerance for the change of the coordinate
vector X; the choice TOLX = 0 causes that the default value 1076
will be taken.

TOLF I DOUBLE PRECISION tolerance for the change of function values;
the choice TOLF = 0 causes that the default value 108 will be
taken.

TOLB I DOUBLE PRECISION minimum acceptable function value; the

choice TOLB = 0 causes that the default value —10°° will be taken.

10

TOLG

TOLD

TOLS

XMAX

MET

MES

MIT

MFV

IPRNT

DOUBLE PRECISION tolerance for the Lagrangian function gra-
dient; the choice TOLG = 0 causes that the default value 107° will
be taken.

DOUBLE PRECISION tolerance for a descent direction; the choice
TOLD = 0 causes that the default value 10=* will be taken.

DOUBLE PRECISION tolerance parameter for a function decrease
in a line search; the choice TOLS = 0 causes that the default value
1072 will be taken.

DOUBLE PRECISION maximum stepsize; the choice XMAX = 0
causes that the default value 10% will be taken.

INTEGER variable that specifies self scaling for variable metric

updates:

MET = 1: self scaling is suppressed,

MET = 2: self scaling is used only in the first iteration (initial
self scaling),

The choice MET = 0 causes that the default value MET = 2 will be

taken.

INTEGER variable that specifies the interpolation method selec-
tion in a line search:

MES = 1: bisection,
MES = 2: two point quadratic interpolation.
MES = 3: three point quadratic interpolation.

MES = 4: three point cubic interpolation.

The choice MES = (causes that the default value MES = 1 will be
taken.

INTEGER variable that specifies the maximum number of itera-
tions; the choice MIT = 0 causes that the default value 200 will be
taken.

INTEGER variable that specifies the maximum number of function
evaluations; the choice MFV = 0 causes that the default value 500
will be taken.

INTEGER variable that specifies PRINT:

IPRNT = (: print is suppressed,

IPRNT = 1: basic print of final results,

IPRNT = 1: extended print of final results,

IPRNT = 1: basic print of intermediate and final results,
IPRNT = 1: extended print of intermediate and final results,

The subroutine PMIN has a modular structure. The following list contains its most
important subroutines.

11

PA1MX2 Minimax criterion evaluation.

PDDXQ1 Determination of the descent direction using quadratic programming sub-
routine.

PLQDF1 Dual range space method for solving the quadratic programming problem
with linear constraints (see [5]).

PSOLA2 Line search using only function values.

PUDBG1 The BFGS variable metric update applied to the Choleski decomposition
of the approximate Hessian matrix.

The subroutine PMIN requires the user supplied subroutines FUN and DER. User
supplied subroutines FUN and DER are described in Section 3.1.

3.3 Subroutine PLQDF1

Since the dual range space method for special quadratic programming subproblems
arising in nonlinear minimax optimization can be used separately in many applications
(e.g. in bundle-type methods for nonsmooth optimization), we describe the subroutine
PLQDF1 in more details. The calling sequence is

CALL PLQDF1(NF,NA,NC,X,IX,XL,XU,AF,AFD,TA,TAA AG,AR,AZ,
& CF,IC,CL,CU,CG,G,H,S,MFP,KBF,KBC,IDECF,ETAO,ETA2,ETA9,
& EPS7,EPS9,XNORM,UMAX,GMAX,N,ITERQ)

The arguments NF, NA, NC, X, IX, XL, XU, AF, CF, IC, CL, CU, CG have the same meaning
as in Section 3.1 (only with the difference that the arguments X and AF are of the type
(1), i.e. they must have a value defined on entry to PLQDF1 and they are not changed).
The arguments AFD, IA, TAA, AG, AR, AZ have the same meaning as in Section 3.2 (only
with the difference that the arguments AFD, TAA, AR, AZ are of the type (O), i.e. their
values can be used subsequently). Other arguments have the following meaning.

Argument Type Significance

G(NF+1)) DOUBLE PRECISION gradient of the Lagrangian function.

H((NF+1)

«NF/2) DOUBLE PRECISION Choleski decomposition of the approxi-

mate Hessian matrix.

S(NF+1) 0O DOUBLE PRECISION direction vector.

MFP I INTEGER variable that specifies the type of the computed feasible
point.
MFP = 1: computation is terminated whenever an arbitrary fea-

sible point is found,
MFP = 2: computation is terminated whenever an optimum fea-

sible point is found,

12

KBF

KBC

IDECF

ETAO

ETA2

ETAS

EPST

EPS9

XNORM

UMAX

GMAX

ITERQ

MFP = 3: computation starts from the previously reached point
and is terminated whenever an optimum feasible
point is found.

INTEGER variable that specifies simple bounds on variables.

KBF = 0: simple bounds are suppressed,
KBF = 2: one sided simple bounds,
KBF = 2: two sided simple bounds.

INTEGER variable that specifies general linear constraints.

KBC = 0: linear constraints are suppressed,
KBC = 1: one sided linear constraints,
KBC = 2: two sided linear constraints.

INTEGER variable that specifies the type of matrix decomposi-

tion.
IDECF = (: no decomposition,

IDECF = 1: Choleski decomposition,

IDECF = 9: 1nversion,
IDECF = 10: diagonal matrix.

DOUBLE PRECISION machine precision (the recommended value
is 1071%).
DOUBLE PRECISION tolerance for positive definiteness in the

Choleski decomposition.

DOUBLE PRECISION maximum floating point number.
DOUBLE PRECISION tolerance for linear independence of con-

straints (the recommended value is 10_10).

DOUBLE PRECISION tolerance for the definition of active con-

straints (the recommended value is 107%).

DOUBLE PRECISION value of the linearized minimax function.
DOUBLE PRECISION maximum absolute value of the negative

Lagrange multiplier.

DOUBLE PRECISION infinity norm of the gradient of the La-

grangian function.

INTEGER dimension of a manifold defined by active constraints.
INTEGER variable that indicates the type of the computed feasible
point.

ITERQ = 1: an arbitrary feasible point was found,
ITERQ = 2: the optimum feasible point was found,

13

ITERQ = —1: an arbitrary feasible point does not exist,
ITERQ = —2: the optimum feasible point does not exist.

3.4 Form of printed results

The form of printed results is specified by the parameter IPRNT as is described above.
Here we demonstrate individual forms of printed results by the simple use of the pro-

gram TMINL described in the next section (with NEXT=6). If we set [IPRNT=1, then

the printed results will have the form

NIT= 16 NFV= 18 NFG= 17 F=

It we set IPRNT=-1, then the printed results will have the form

EXIT FROM PMIN :

.50694800D+00 G= .2872D-06 ITERM= 4

.5000000D+00

NIT= 16 NFV= 18 NFG= 17 F= .50694800D+00 G= .2872D-06 ITERM= 4
X= .5000000D+00 .5000000D+00 .5000000D+00 .5000000D+00
.5000000D+00 .5000000D+00 .5000000D+00 .5000000D+00

.5000000D+00

-.4166693D+00 -.4166693D+00 -.4166693D+00 -.4166693D+00 -.4166693D+00
-.4166693D+00 -.4166693D+00 -.4166693D+00 -.4166693D+00 -.5069240D+00

It we set IPRNT=2, then the printed results will have the form

ENTRY TO
NIT= 0
NIT= 1
NIT= 2
NIT= 3
NIT= 4
NIT= 5
NIT= 6
NIT= 7
NIT= 8
NIT= 9
NIT= 10
NIT= 11
NIT= 12
NIT= 13
NIT= 14
NIT= 15
NIT= 16
EXIT FROM
NIT= 16

PMIN

NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=

PMIN

NFV=

W 0 N O Gl WD

10
11
12
13
15
16
17
18

18

NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=
NFG=

NFG=

W 0 N O Gl WD

L o T o S o S S S N S N
~N O O bW NP O

17

.21899000D+05
.13670000D+05
.35097538D+04
.90439182D+03
.22346618D+03
.39130423D+02
.11062302D+02
.13659872D+01
.79850964D+00
.74156516D+00
.72019631D+00
.69644369D+00
.65212038D+00
.52670051D+00
.51183315D+00
.50695236D+00
.50694800D+00

.50694800D+00

.1000D+61
.2200D+02
.1050D+02
.2478D+01
.5013D+00
.1630D+00
.1489D+01
.6371D-01
.1994D+00
.1780D+00
.8374D-01
.1351D+00
.1845D+00
.4901D-01
.2369D-01
.3043D-03
.2872D-06

.2872D-06 ITERM=

It we set IPRNT=-2, then the printed results will have the form

14

4

ENTRY TO PMIN :

NIT= 0 NFV= 1 NFG= 1 .21899000D+05 .1000D+61

NIT= 1 NFv= 2 NFG= 2 .13670000D+05 .2200D+02

NIT= 2 NFV= 3 NFG= 3 .35097538D+04 .1050D+02

NIT= 3 NFV= 4 NFG= 4 .90439182D+03 .2478D+01

NIT= 4 NFV= 5 NFG= 5 .22346618D+03 .5013D+00

NIT= 5 NFV= 6 NFG= 6 .39130423D+02 .1630D+00

NIT= 6 NFV= 7 NFG= 7 .11062302D+02 .1489D+01

NIT= 7 NFV= 8 NFG= 8 .13659872D+01 .6371D-01

NIT= 8 NFV= 9 NFG= 9 .79850964D+00 .1994D+00

NIT= 9 NFV= 10 NFG= 10 .74156516D+00 .1780D+00

NIT= 10 NFvV= 11 NFG= 11 .72019631D+00 .8374D-01

NIT= 11 NFv= 12 NFG= 12 .69644369D+00 .1351D+00

NIT= 12 NFvV= 13 NFG= 13 .65212038D+00 .1845D+00

NIT= 13 NFvV= 15 NFG= 14 .52670051D+00 .4901D-01

NIT= 14 ©NFvV= 16 NFG= 15 .51183315D+00 .2369D-01

NIT= 15 NFV= 17 NFG= 16 .50695236D+00 .3043D-03

NIT= 16 NFV= 18 NFG= 17 .50694800D+00 .2872D-06

EXIT FROM PMIN :

NIT= 16 NFV= 18 NFG= 17 .50694800D+00 .2872D-06 ITERM= 4

X= .5000000D+00 .5000000D+00 .5000000D+00 .5000000D+00 .5000000D+00
.5000000D+00 .5000000D+00 .5000000D+00 .5000000D+00 .5000000D+00

-.4166693D+00 -.4166693D+00 -.4166693D+00 -.4166693D+00 -.4166693D+00
-.4166693D+00 -.4166693D+00 -.4166693D+00 -.4166693D+00 -.5069240D+00

4. Verification of the subroutines

In this section we introduce the main programs TMINU and TMINL, which serve as
demonstration, verification and testing of the subroutines PMINU and PMINL.

4.1 Program TMINU

The following main program demonstrates the usage of the subroutine PMINU.

C
C
C

TEST PROGRAM FOR THE SUBROUTINE PMINU

INTEGER NF,NA,IA(200),IEXT,IPAR(5),ITERM

REAL*8 X(40),AF(200) ,RA(4000) ,RPAR(7),F,GMAX

REAL*8 FMIN

INTEGER NAL,NEXT,IERR,I

COMMON /PROB/ NEXT

INTEGER NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH
COMMON /STAT/ NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH

15

Q

Q

Q

Q

Q

Q

LOOP FOR 7 TEST PROBLEMS
DO 3 NEXT=1,7
CHOICE OF INTEGER AND REAL PARAMETERS

DO 1 I=1,5
IPAR(I)=0
CONTINUE

DO 2 I=1,7
RPAR(I)=0.0D 0
CONTINUE
IPAR(5)=1

PROBLEM DIMENSION

NF=20
NA=30

INITIATION OF X AND CHOICE OF RPAR(7)

CALL TIUDO6(NF,NA,NAL,X,FMIN,RPAR(7) ,NEXT,IEXT,IERR)
IF (IERR.NE.O) GO TO 3

SOLUTION

CALL PMINU(NF,NA,X,AF,IA,RA,IPAR,RPAR,F,GMAX,IEXT,ITERM)
CONTINUE

STOP

END

USER SUPPLIED SUBROUTINE (CALCULATION OF FA)
SUBROUTINE FUN(NF,KA,X,FA)

INTEGER NF,KA

REAL*8 X (%) ,FA

INTEGER NEXT

COMMON /PROB/ NEXT

FUNCTION EVALUATION

CALL TAFUO6 (NF,KA,X,FA,NEXT)

16

RETURN

END
c
c USER SUPPLIED SUBROUTINE (CALCULATION OF GA)
c
SUBROUTINE DER(NF,KA,X,GA)
INTEGER NF,KA
REAL*8 X(*),GA(*)
INTEGER NEXT
COMMON /PROB/ NEXT
c
c GRADIENT EVALUATION
c
CALL TAGUO6(NF,KA,X,GA,NEXT)
RETURN
END

This main program uses subroutines TIUDO6 (initiation), TAFU06 (function evalua-
tion) and TAGUO6 (subgradient evaluation) containing 7 standard test problems with
at most 20 variables which were taken from the UFO system [7]. The results obtained
by this main program have the following form.

NIT= 8 NFV= 8 NFG= 8 F= .19522245D+01 G= .2841D-08 ITERM=
NIT= 12 NFV= 17 NFG= 13 F= -.44000000D+02 G= .1200D-07 ITERM=
NIT= 10 NFV= 12 NFG= 11 F= .12237125D-03 G= .1883D-08 ITERM=
NIT= 14 NFV= 16 NFG= 15 F= .19729063D+00 G= .3416D-07 ITERM=
NIT= 14 NFV= 21 NFG= 15 F= .68063006D+03 G= .1753D-06 ITERM=
NIT= 18 NFV= 27 NFG= 19 F= .24306209D+02 G= .7582D-07 ITERM=
NIT= 22 NFV= 30 NFG= 23 F= .13372828D+03 G= .2567D-06 ITERM=

O U N N NN

The rows corresponding to individual test problems contain the number of iterations
NIT, the number of function evaluations NFV., the number of gradient evaluations
NFG, the final value of the objective function F, the value of the criterion for the
termination G and the cause of termination I[TERM.

4.2 Program TMINL

The following main program demonstrates the usage of the subroutine PMINL.

C
C TEST PROGRAM FOR THE SUBROUTINE PMINL
C
INTEGER NF,NA,NB,NC,IX(40),IC(10),IA(200),IEXT,IPAR(5),ITERM
REAL*8 X(40),XL(40),XU(40),CF(10),CL(10),CU(10),CG(200) ,AF(200),
& RA(4000) ,RPAR(7),F,GMAX

17

Q

Q

Q

Q

Q

Q

REAL*8 FMIN
INTEGER NAL,NCL,NEXT,IERR,I
COMMON /PROB/ NEXT

INTEGER NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH
COMMON /STAT/ NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH

LOOP FOR 6 TEST PROBLEMS

DO 3 NEXT=1,6

CHOICE OF INTEGER AND REAL PARAMETERS

DO 1 I=1,5
IPAR(I)=0
CONTINUE

DO 2 I=1,7
RPAR(I)=0.0D 0
CONTINUE
IPAR(5)=1

PROBLEM DIMENSION
NF=20
NA=165
NB=20
NC=10

INITIATION OF X AND CHOICE OF RPAR(7)

CALL TIUD22(NF,NA,NAL,NC,NCL,X,IX,XL,XU,IC,CL,CU,CG,FMIN,RPAR(7),

& NEXT,IEXT,IERR)
IF (IERR.NE.O) GO TO 3

SOLUTION

CALL PMINL(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,AF,IA,RA,IPAR,

& RPAR,F,GMAX,IEXT,ITERM)

3 CONTINUE

STOP
END

USER SUPPLIED SUBROUTINE (CALCULATION OF FA)

18

SUBROUTINE FUN(NF,KA,X,FA)

INTEGER NF,KA
REAL*8 X(*),FA
INTEGER NEXT
COMMON /PROB/ NEXT

c
c FUNCTION EVALUATION
c
CALL TAFU22(NF,KA,X,FA,NEXT)
RETURN
END
c
c USER SUPPLIED SUBROUTINE (CALCULATION OF GA)
c
SUBROUTINE DER(NF,KA,X,GA)
INTEGER NF,KA
REAL*8 X(*),GA(*)
INTEGER NEXT
COMMON /PROB/ NEXT
c
c GRADIENT EVALUATION
c
CALL TAGU22(NF,KA,X,GA,NEXT)
RETURN
END

This main program uses subroutines TIUD22 (initiation), TAFU22 (function evalua-
tion), TAGU22 (subgradient evaluation) containing 6 standard test problems with at
most 20 variables which were taken from the UFO system [7]. The results obtained by

this main program have the following form.

NIT= 6 NFVv= 7 NFG=
NIT= 5 NFV= 5 NFG=
NIT= 8 NFvVv= 8 NFG=
NIT= 75 NFV= 75 NFG=
NIT= 12 NFvV= 13 NFG=
NIT= 16 NFvV= 18 NFG=

o o1 N

75
12
17

.38965952D+00
.33035714D+00
.44891078D+00
.42928061D+00
.10183089D+00
.50694800D+00

.6129D-08
.0000D+00
.2632D-09
.4375D-10
.1106D-09
.2872D-06

ITERM=
ITERM=
ITERM=
ITERM=
ITERM=
ITERM=

N N NN N

The rows corresponding to individual test problems contain the number of iterations

NIT, the number of function evaluations NFV., the number of gradient evaluations
NFG, the final value of the objective function F, the value of the criterion for the
termination G and the cause of termination I[TERM.

19

References

[1]

Broyden C.G.: The Convergence of a Class of Double Rank Minimization Algorithms.
Part 1 - General Considerations. Part 2 - the New Algorithm. J. Inst. Math. Appl. 6
(1970) 76-90, 222-231.

Fletcher R.: A New Approach to Variable Metric Algorithms. Computer J. 13 (1970)
317-322.

Goldfarb D.: A Family of Variable Metric Algorithms Derived by Variational Means.
Math Comput. 24 (1970) 23-26.

Han S.P.: Variable Metric Methods for Minimizing a Class of Nondifferentiable Func-
tions. Math. Programming 20 (1981) 1, 1-13 Derived by Variational Means. Math Com-
put. 24 (1970) 23-26.

Luksan L. Dual Method for Solving a Special Problem of Quadratic Programming as

a Subproblem at Linearly Constrained Nonlinear Minimax Approximation, Kybernetika
20 (1984), 6, 445-457.

Luksan L. An Implementation of Recursive Quadratic Programming Variable Metric
Methods for Linearly Constrained Nonlinear Minimax Approximation, Kybernetika 21
(1985), 1, 22-40.

Luksan L., Siska M., Tfima M., Vléek J., Rame$ova N. Interactive System for Universal
Functional Optimization (UFO), Version 1996. Research Report No. V-701, Institute of
Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic,
1996.

Shanno D.F.: Conditioning of Quasi-Newton Methods for Function Minimization. Math.
Comput. 24 (1970) 647-656.

20

