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� Introduction

The double�precision FORTRAN �� basic subroutine PMIN is designed to nd a close
approximation to a local minimum of a special objective function

F �x� � max
��i�na

fi�x�

�minimax� with simple bounds on variables and general linear constraints� Here x � Rn

is a vector of n variables and fi � Rn � R� � � i � m� are twice continuously
di�erentiable functions� Simple bounds are assumed in the form �Ix� Ic correspond to
the arays IX� IC in Section ��

xi � unbounded � Ixi � 
�

xli � xi � Ixi � ��

xi � xui � Ixi � ��

xli � xi � xui � Ixi � ��

xi � xli � xui � Ixi � ��

where � � i � n� General linear constraints are assumed in the form

aTi x� unbounded � Ici � 
�
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cli � aTi x � Ici � ��

aTi x � cui � Ici � ��

cli � aTi x � cui � Ici � ��

aTi x � cli � cui � Ici � ��

where � � i � nc and nc is a number of general linear constraints� To simplify user�s
work� three additional easy to use subroutines are added� They call the basic general
subroutine PMIN�

PMINU � unconstrained minimax optimization

PMINS � minimax optimization with simple bounds

PMINL � minimax optimization with simple bounds and general linear constraints

All subroutines contain a description of formal parameters and extensive comments�
Furthermore� two test programs TMINU and TMINL are included� which contain �
and � test problems �see e�g� ����� These test programs serve as examples for using the
subroutines� verify their correctness and demonstrate their e�ciency�

�� The method

To simplify the description of the method� we will consider a simpler problem written
in the following compact form

x� � arg min
x�Ln

�max
i�M�

fi�x��� ���

where
Ln � fx � Rn � aTi x � bi� i �M�g

with M� �M� � �� It is clear that the application of the method described below to
the general problem stated in the previous section is straightforward� but this requires
to consider each type of constraint separately as it is realized in the subroutine PMIN�

��
 Recursive quadratic programming variable metric method
for nonlinear minimax optimization

If we introduce a new variable z� then the problem ��� can be reformulated as a
nonlinear programming problem

�x�� z�� � arg min
�x�z��Nn��

z� ���

where
Nn�� � f�x� z� � Rn�� � fi�x� � eiz� i �M� �M�g
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with ei � � for i � M� and ei � 
� fi�x� � aTi x � bi for i � M�� This nonlinear pro�
gramming problem can be solved by a recursive quadratic programming method that
uses a quadratic approximation of the Lagrangian function and a linear approximation
of the constraints in each iteration� Let xk � Rn be a current approximation to the
minimum x�� Then the resulting quadratic programming subproblem has the form

�dk� zk� � arg min
�d�z��Ln��

k

�
�

�
dTGkd� z�� ���

where Gk is an approximation of the Hessian matrix of the Lagrangian function and

Ln��
k � f�d� z� � Rn�� � fki � �aki �

Td � eiz� i �M� �M�g

with ei � �� aki � rfi�x
k� for i � M� and ei � 
� aki � ai for i � M�� The solution

of the quadratic programming subproblem ��� has to satisfy the Karush�Kuhn�Tucker
conditions

dk � �Hkgk

eTuk � ��

uk � 
�

vk � 
�

�vk�Tuk � 
�

where uk is the vector of Lagrange multipliers� Hk � �Gk���� Ak � �ak�� � � � � a
k
m�� e �

�e�� � � � � em�T � fk � �fk� � � � � � f
k
m�

T � gk � Akuk is the gradient of the Lagrangian function
and vk � zke� fk � �Ak�Tdk is the vector of constraint violations� Note that if gk � 
�
then we obtain the Karush�Kuhn�Tucker conditions for the nonlinear programming
problem ��� exactly so that the minimax problem ��� is solved� Therefore� the condition
kgkk� � TOLG is used in the subroutine PMIN as the basic stopping criterion �when
it is fullled then ITERM����

The direction vector dk � Rn obtained as the solution to the quadratic programming
subproblem ��� is used for the denition of the new approximation xk�� to the minimum
x� by the formula

xk�� � xk � �kdk�

where 
 � �k � � is a steplength� which is chosen in such a way that

F �xk � �kdk�� F �xk� � ��k�dk�Tgk�

where 
 � � � � is a tolerance for function decrease in the line search �parameter
TOLS in the subroutine PMIN�� The steplength �k is chosen iteratively either by the
bisection �MES��� or by two point quadratic interpolation �MES��� or by three point
quadratic interpolation �MES��� or by three point cubic interpolation �MES��� �MES
is a parameter of the subroutine PMIN��
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Having the new approximation xk�� to the minimum x�� we can compute the new
matrix Ak�� � �ak��� � � � � � ak��m �� where ak��i � rfi�xk��� for i � M� and ak��i � ai for
i �M�� If we denote sk � xk�� � xk and yk � Ak��uk �Akuk � Ak��uk � gk� then the
BFGS ����� ���� ���� �	�� method consists in the following update

Gk�� �
�

�k
�Gk � �k

yk�yk�T

�sk�Tyk
�
Gksk�Gksk�T

�sk�TGksk
� �

�

�k
�Gk � �k

yk�yk�T

�sk�Tyk
� �k

gk�gk�T

�sk�T gk
��

where �k � 
 is a self scaling parameter� This parameter is usually equal to one
with the exception of the rst iteration �or iteration after the restart� where either
�k � � if MET�� or �k � �sk�TGksk	�sk�Tyk � ��k�sk�T gk	�sk�Tyk if MET�� �MET
is a parameter of the subroutine PMIN�� The BFGS method requires the condition
�sk�Tyk � 
 to be satised� which guarantees a positive deniteness of the matrix
Gk��� Unfortunately� this condition does not hold in the minimax optimization case
automatically� Therefore� we set Gk�� � Gk whenever �sk�Tyk � 
�

��� Dual range space method for a special quadratic program	
ming subproblem

Consider a quadratic programming problem in which we seek a pair �d�� z�� � Rn�� in
such a way that


�d�� z�� � min
�d�z��Ln��


�s� z�� ���

where


�s� z� �
�

�
dTGd � z

and
Ln�� � f�d� z� � Rn�� � fi � aTi d � eiz� i �M� �M�g

�see ���� The fact that the matrixG is positive denite implies that the the problem ���
is convex and we can apply the duality theory to obtain a dual quadratic programming
problem which consists in seeking a vector u� � Rm �vector of Lagrange multipliers of
���� so that

��u�� � min
u�Lm

��u�� ���

where

��u� �
�

�
uTATHAu� fTu

and
Lm � fu � Rm � eTu � �� u � 
g�

Here H � G��� A � �a�� � � � � am�� f � �f�� � � � � fm�T � e � �e�� � � � � em�T � where fi � fi�x��
ei � � for i � M� and fi � aTi x � bi� ei � 
 for i � M�� The solution of ��� can be
obtained from the solution of ��� by the formulas

d� � �HAu� ���

�



and
z� � fTu� � �u��TATHAu�� ���

The solution u� of ��� is the optimum vector of Lagrange multipliers for ���� Since
the problem ��� is convex� u� is its solution if and only if the Karush�Kuhn�Tucker
conditions are valid� i�e� if and only if

eTu� � �� u� � 
 �	�

and a number z� exists in such a way that

v� � ATHAu� � f � z�e � 
� �v��Tu� � 
� ���

Vector v� is the vector of Lagrange multipliers of the problem ���� Conditions ��� and
��� imply that z� in ��� is identical with z� in ���� This in turn implies that v� is� at
the same time� the vector of constraint values of the problem ����

Consider any subset I 	 M � M� �M� and denote the vectors of elements ui� fi�
ei� i � I by u� f � e� respectively� Similarly� let A be the matrix of columns ai� i � I� To
connect two separate cases which can occur in an investigation of a dual range space
method together� we introduce an articial parameter � � 
 and denote

�A �

�
A
�eT

�
� �H �

�
H 


 �

�
�

We will suppose that the subset I 	M � M� �M� was chosen in such a way that the
columns of �A are linearly independent�

If I � I� were the set of active constraints of the problem ���� then we could
compute the dual variables z� and u� from �	������ Unfortunately� this set is not
known a priory� Therefore� we start with the set I � fkg� where k � M� is arbitrary�
Then z � fk�aTkHak and u � ���� Suppose that I 	M � M��M� is a current subset
and z� u are corresponding dual variables� Then we can proceed in the following way�
First we compute the direction vector d � �HAu and the value of the most violated
primal constraint

vk � zek � fk � aTk d � min
i�MnI

fzei � fi � aTi dg�

If vk � 
 then the set of active constraints has been detected and the solutions of ���
and ��� have been found� Otherwise� we set uk � 
 and compute the primal and dual
steplengths

�P � �
vk

k�k � �k

�D �
uj

qkj � �kpj
� min

i�I

ui
qki � �kpi

�

where p � � �AT �H �A���e� qk � � �AT �H �A��� �AT �H�ak� k � ek � eTqk� �k � k	p
T e� �k �

�aTk � �H� �H �A� �AT �H �A��� �AT �H��ak �with �ak � �ak��ek�T � and I � fi � I � qki��kpi � 
g �

�



If k�k��k � 
� then we set �P �
� If I � �� then we set �D �
� If simultaneously
�P � 
 and �D � 
� then the problem has no feasible solution� Otherwise we set
� � minf�P � �Dg and compute z �� z � ��k� u �� u � ��qk � �kp�� uk �� uk � ��
vk �� �� � �	�P �vk�

If �P � �D� then the primal step is realized� i�e� we set I �� I �fkg� u �� �uT � uk�T �
e �� �eT � ek�T � A �� �A� ak�� �A �� � �A� �ak�� recompute d � �HAu and determine a new
value of the most violated primal constraint and a new index k�

If �P � �D� then the dual step is realized� i�e� we set I �� Infjg� u �� u�j��
e �� e�j�� A �� A�j�� �A �� �A�j�� where the upper index in parentheses denotes an
element or column which are deleted� Now� two cases can occur� If I �M� �� �� then
we recompute the primal and dual steplengths and repeat the process with the same
index k� If I �M� � �� then we compute z �� z � vk� set I �� I � fkg� u �� �uT � uk�T �
e �� �eT � ek�T � A �� �A� ak�� �A �� � �A� �ak�� recompute d � �HAu and determine the new
value of the most violated primal constraint and the new index k�

In ���� it was proved that the above dual range space nds the solutions of quadratic
programming problems ��� and ��� after a nite number of steps�

�� Description of the subroutines

In this section we describe all subroutines which can be called from the user�s program�
In the description of formal parameters we introduce a type of the argument that spec�
ies whether the argument must have a value dened on entry to the subroutine �I��
whether it is a value which will be returned �O�� or both �U�� or whether it is an auxil�
iary value �A�� Note that the arguments of the type I can be changed on output under
some circumstances� especially if improper input values were given� Besides formal
parameters� we can use a COMMON �STAT� block containing statistical information�
This block� used in each subroutine has the following form�

COMMON �STAT� NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

The arguments have the following meaning�

Argument Type Signicance

NDECF O Positive INTEGER variable that indicates the number of matrix
decompositions�

NRES O Positive INTEGER variable that indicates the number of restarts�

NRED O Positive INTEGER variable that indicates the number of reduc�
tions�

NREM O Positive INTEGER variable that indicates the number of con�
straint deletions during the QP solutions�

NADD O Positive INTEGER variable that indicates the number of con�
straint additions during the QP solutions�

�



NIT O Positive INTEGER variable that indicates the number of itera�
tions�

NFV O Positive INTEGER variable that indicates the number of function
evaluations�

NFG O Positive INTEGER variable that species the number of gradient
evaluations�

NFH O Positive INTEGER variable that species the number of Hessian
evaluations�

��
 Subroutines PMINU� PMINS� PMINL

The calling sequences are

CALL PMINU�NF�NA�X�AF�IA�RA�IPAR�RPAR�F�GMAX�IEXT�ITERM�

CALL PMINS�NF�NA�NB�X�IX�XL�XU�AF�IA�RA�IPAR�RPAR�F�GMAX�

� IEXT�ITERM�

CALL PMINL�NF�NA�NB�NC�X�IX�XL�XU�CF�IC�CL�CU�CG�AF�IA�RA�

� IPAR�RPAR�F�GMAX�IEXT�ITERM�

The arguments have the following meaning�

Argument Type Signicance

NF I Positive INTEGER variable that species the number of variables
of the objective function�

NA I INTEGER variable that species the number of functions in the
minimax criterion�

NB I INTEGER variable that species whether the simple bounds are
suppressed �NB � 
� or accepted �NB � NF��

NC I INTEGER variable that species the number of linear constraints�
if NC � 
 the linear constraints are suppressed�

X�NF� U On input� DOUBLE PRECISION vector with the initial estimate
to the solution� On output� the approximation to the minimum�

IX�NF� I On input �signicant only if NB � 
� INTEGER vector containing
the simple bounds types�

IX�I� � 
� the variable X�I� is unbounded�
IX�I� � �� the lower bound X�I� � XL�I��
IX�I� � �� the upper bound X�I� � XU�I��
IX�I� � �� the two side bound XL�I� � X�I� � XU�I��
IX�I� � �� the variable X�I� is xed �given by its initial esti�

mate��
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XL�NF� I DOUBLE PRECISION vector with lower bounds for variables
�signicant only if NB � 
��

XU�NF� I DOUBLE PRECISION vector with upper bounds for variables
�signicant only if NB � 
��

CF�NC� A DOUBLE PRECISION vector which contains values of constraint
functions �only if NC � 
��

IC�NC� I On input �signicant only if NC � 
� INTEGER vector which con�
tains constraint types�

IC�K� � 
� the constraint CF�K� is not used�
IC�K� � �� the lower constraint CF�K� � CL�K��
IC�K� � �� the upper constraint CF�K� � CU�K��
IC�K� � �� the two side constraint CL�K� � CF�K� � CU�K��
IC�K� � �� the equality constraint CF�K� � CL�K��

CL�NC� I DOUBLE PRECISION vector with lower bounds for constraint
functions �signicant only if NC � 
��

CU�NC� I DOUBLE PRECISION vector with upper bounds for constraint
functions �signicant only if NC � 
��

CG�NF�NC� I DOUBLE PRECISION matrix whose columns are normals of the
linear constraints �signicant only if NC � 
��

AF�NA� O DOUBLE PRECISION vector which contains values of functions
in the minimax criterion�

IA�NIA� A INTEGER working array of the dimension of at least
NIA�NF�NA���

RA�NRA� A DOUBLE PRECISION working array of the dimension of at least
NRA��NF�NA�	� NF�� NA���

IPAR��� A INTEGER parameters� IPAR�	��MET� IPAR�
��MES� IPAR����
MIT� IPAR����MFV� IPAR����IPRNT� These parameters �MET� MES�
MIT� MFV� IPRNT� are described in Section ����

RPAR�� A DOUBLE PRECISION parameters� RPAR�	��TOLX� RPAR�
��
TOLF� RPAR����TOLB� RPAR����TOLG� RPAR����TOLD� RPAR����
TOLS� RPAR���XMAX� These parameters �TOLX� TOLF� TOLB� TOLG�
TOLD� TOLS� XMAX� are described in Section �����

F O DOUBLE PRECISION value of the objective function at the so�
lution X�

GMAX O DOUBLE PRECISION maximum absolute value of a partial
derivative of the Lagrangian function�

IEXT I INTEGER variable that species the minimax criterion�

	



IEXT � 
� maximum of positive values�

IEXT � 
� maximum of absolute values�
IEXT � 
� maximum of negative values�

ITERM O INTEGER variable that indicates the cause of termination�

ITERM � �� if jx � xoldj was less than or equal to TOLX in MTESX

subsequent iterations�
ITERM � �� if jF � Foldj was less than or equal to TOLF in MTESF

subsequent iterations�
ITERM � �� if F is less than or equal to TOLB�

ITERM � �� if GMAX is less than or equal to TOLG�

ITERM � ��� if NFV exceeded MFV�

ITERM � ��� if NIT exceeded MIT�

ITERM � 
� if the method failed�

The subroutines PMINU� PMINS� PMINL require the user supplied subroutines
FUN and DER that dene the values and the gradients of the functions in the minimax
criterion and have the form

SUBROUTINE FUN�NF�KA�X�FA�

SUBROUTINE DER�NF�KA�X�GA�

The arguments of user supplied subroutines have the following meaning�

Argument Type Signicance

NF I Positive INTEGER variable that species the number of variables
of the objective function�

KA I Positive INTEGER variable that species the index of a function
in the minimax criterion�

X�NF� I DOUBLE PRECISION an estimate to the solution�

FA O DOUBLE PRECISION value of a function with the index KA at
the point X�

GA�NF� O DOUBLE PRECISION gradient of a function with the index KA

at the point X�

��	 Subroutine PMIN

This general subroutine is called from all the subroutines described in Section ���� The
calling sequence is

CALL PMIN�NF�NA�NB�NC�X�IX�XL�XU�CF�IC�CL�CU�CG�AF�IA�AFO�AFD�

� GA�AG�IAA�AR�AZ�G�H�S�XO�GO�TOLX�TOLF�TOLB�TOLG�TOLD�TOLS�

� XMAX�GMAX�F�IEXT�MET�MES�MIT�MFV�IPRNT�ITERM��

�



The arguments NF� NA� NB� NC� X� IX� XL� XU� CF� IC� CL� CU� CG� AF� GMAX� F� IEXT�
ITERM� have the same meaning as in Section ���� Other arguments have the following
meaning�

Argument Type Signicance

IA�NA� A INTEGER vector containing types of functions in the minimax
criterion�

AFO�NA� A DOUBLE PRECISION vector of saved values of functions in the
minimax criterion�

AFD�NA� A DOUBLE PRECISION vector of increments of functions in the
minimax criterion�

GA�NF� A DOUBLE PRECISION gradient of the selected function in the
minimax criterion�

AG�NF�NA� A DOUBLE PRECISION matrix whose columns are gradients of
functions in the minimax criterion�

IAA�NA� A INTEGER vector containing indices of active functions�

AR��NF�	�

��NF�
��
�

A DOUBLE PRECISION matrix containing triangular decomposi�
tion of the orthogonal projection kernel�

AZ�NF�	� A DOUBLE PRECISION vector of Lagrange multipliers�

G�NF� A DOUBLE PRECISION gradient of the Lagrangian function�

H��NF�	�

�NF�
�
A DOUBLE PRECISION Hessian matrix of the Lagrangian function�

S�NF�	� A DOUBLE PRECISION direction vector�

XO�NF� A DOUBLE PRECISION vector which contains increments of vari�
ables�

GO�NF�	� A DOUBLE PRECISION vector which contains increments of partial
derivatives�

TOLX I DOUBLE PRECISION tolerance for the change of the coordinate
vector X� the choice TOLX � 
 causes that the default value �
���

will be taken�

TOLF I DOUBLE PRECISION tolerance for the change of function values�
the choice TOLF � 
 causes that the default value �
�� will be
taken�

TOLB I DOUBLE PRECISION minimum acceptable function value� the
choice TOLB � 
 causes that the default value ��
�� will be taken�

�




TOLG I DOUBLE PRECISION tolerance for the Lagrangian function gra�
dient� the choice TOLG � 
 causes that the default value �
�� will
be taken�

TOLD I DOUBLE PRECISION tolerance for a descent direction� the choice
TOLD � 
 causes that the default value �
�	 will be taken�

TOLS I DOUBLE PRECISION tolerance parameter for a function decrease
in a line search� the choice TOLS � 
 causes that the default value
�
�� will be taken�

XMAX I DOUBLE PRECISION maximum stepsize� the choice XMAX � 

causes that the default value �

 will be taken�

MET I INTEGER variable that species self scaling for variable metric
updates�

MET � �� self scaling is suppressed�

MET � �� self scaling is used only in the rst iteration �initial
self scaling��

The choice MET � 
 causes that the default value MET � � will be
taken�

MES I INTEGER variable that species the interpolation method selec�
tion in a line search�
MES � �� bisection�

MES � �� two point quadratic interpolation�

MES � �� three point quadratic interpolation�

MES � �� three point cubic interpolation�

The choice MES � 
 causes that the default value MES � � will be
taken�

MIT I INTEGER variable that species the maximum number of itera�
tions� the choice MIT � 
 causes that the default value �

 will be
taken�

MFV I INTEGER variable that species the maximumnumber of function
evaluations� the choice MFV � 
 causes that the default value �


will be taken�

IPRNT I INTEGER variable that species PRINT�

IPRNT � 
� print is suppressed�

IPRNT � �� basic print of nal results�

IPRNT � �� extended print of nal results�

IPRNT � �� basic print of intermediate and nal results�

IPRNT � �� extended print of intermediate and nal results�

The subroutine PMIN has a modular structure� The following list contains its most
important subroutines�

��



PA	MX
 Minimax criterion evaluation�

PDDXQ	 Determination of the descent direction using quadratic programming sub�
routine�

PLQDF	 Dual range space method for solving the quadratic programming problem
with linear constraints �see �����

PS�LA
 Line search using only function values�

PUDBG	 The BFGS variable metric update applied to the Choleski decomposition
of the approximate Hessian matrix�

The subroutine PMIN requires the user supplied subroutines FUN and DER� User
supplied subroutines FUN and DER are described in Section ����

��� Subroutine PLQDF


Since the dual range space method for special quadratic programming subproblems
arising in nonlinear minimax optimization can be used separately in many applications
�e�g� in bundle�type methods for nonsmooth optimization�� we describe the subroutine
PLQDF� in more details� The calling sequence is

CALL PLQDF	�NF�NA�NC�X�IX�XL�XU�AF�AFD�IA�IAA�AG�AR�AZ�

� CF�IC�CL�CU�CG�G�H�S�MFP�KBF�KBC�IDECF�ETA��ETA
�ETA��

� EPS�EPS��XNORM�UMAX�GMAX�N�ITERQ�

The arguments NF� NA� NC� X� IX� XL� XU� AF� CF� IC� CL� CU� CG have the same meaning
as in Section ��� �only with the di�erence that the arguments X and AF are of the type
�I�� i�e� they must have a value dened on entry to PLQDF� and they are not changed��
The arguments AFD� IA� IAA� AG� AR� AZ have the same meaning as in Section ��� �only
with the di�erence that the arguments AFD� IAA� AR� AZ are of the type �O�� i�e� their
values can be used subsequently�� Other arguments have the following meaning�

Argument Type Signicance

G�NF�	� O DOUBLE PRECISION gradient of the Lagrangian function�

H��NF�	�

�NF�
�
U DOUBLE PRECISION Choleski decomposition of the approxi�

mate Hessian matrix�

S�NF�	� O DOUBLE PRECISION direction vector�

MFP I INTEGER variable that species the type of the computed feasible
point�

MFP � �� computation is terminated whenever an arbitrary fea�
sible point is found�

MFP � �� computation is terminated whenever an optimum fea�
sible point is found�

��



MFP � �� computation starts from the previously reached point
and is terminated whenever an optimum feasible
point is found�

KBF I INTEGER variable that species simple bounds on variables�

KBF � 
� simple bounds are suppressed�

KBF � �� one sided simple bounds�

KBF � �� two sided simple bounds�

KBC I INTEGER variable that species general linear constraints�

KBC � 
� linear constraints are suppressed�

KBC � �� one sided linear constraints�

KBC � �� two sided linear constraints�

IDECF U INTEGER variable that species the type of matrix decomposi�
tion�
IDECF � 
� no decomposition�

IDECF � �� Choleski decomposition�

IDECF � �� inversion�

IDECF � �
� diagonal matrix�

ETA� I DOUBLE PRECISIONmachine precision �the recommended value
is �
�����

ETA
 I DOUBLE PRECISION tolerance for positive deniteness in the
Choleski decomposition�

ETA� I DOUBLE PRECISION maximum !oating point number�

EPS I DOUBLE PRECISION tolerance for linear independence of con�
straints �the recommended value is �
�����

EPS� I DOUBLE PRECISION tolerance for the denition of active con�
straints �the recommended value is �
����

XNORM O DOUBLE PRECISION value of the linearized minimax function�

UMAX O DOUBLE PRECISION maximum absolute value of the negative
Lagrange multiplier�

GMAX O DOUBLE PRECISION innity norm of the gradient of the La�
grangian function�

N O INTEGER dimension of a manifold dened by active constraints�

ITERQ O INTEGER variable that indicates the type of the computed feasible
point�
ITERQ � �� an arbitrary feasible point was found�
ITERQ � �� the optimum feasible point was found�

��



ITERQ � ��� an arbitrary feasible point does not exist�
ITERQ � ��� the optimum feasible point does not exist�

��� Form of printed results

The form of printed results is specied by the parameter IPRNT as is described above�
Here we demonstrate individual forms of printed results by the simple use of the pro�
gram TMINL described in the next section �with NEXT���� If we set IPRNT��� then
the printed results will have the form

NIT� 	� NFV� 	� NFG� 	 F� ���������D��� G� �
�
D��� ITERM� �

If we set IPRNT���� then the printed results will have the form

EXIT FROM PMIN �

NIT� 	� NFV� 	� NFG� 	 F� ���������D��� G� �
�
D��� ITERM� �

X� ��������D��� ��������D��� ��������D��� ��������D��� ��������D���

��������D��� ��������D��� ��������D��� ��������D��� ��������D���

���	�����D��� ���	�����D��� ���	�����D��� ���	�����D��� ���	�����D���

���	�����D��� ���	�����D��� ���	�����D��� ���	�����D��� ������
��D���

If we set IPRNT��� then the printed results will have the form

ENTRY TO PMIN �

NIT� � NFV� 	 NFG� 	 F� �
	������D��� G� �	���D��	

NIT� 	 NFV� 
 NFG� 
 F� �	������D��� G� �

��D��


NIT� 
 NFV� � NFG� � F� ��������D��� G� �	���D��


NIT� � NFV� � NFG� � F� ������	�
D��� G� �
��D��	

NIT� � NFV� � NFG� � F� �

����	�D��� G� ���	�D���

NIT� � NFV� � NFG� � F� ���	���
�D��
 G� �	���D���

NIT� � NFV�  NFG�  F� �		��
��
D��
 G� �	���D��	

NIT�  NFV� � NFG� � F� �	�����
D��	 G� ���	D��	

NIT� � NFV� � NFG� � F� ��������D��� G� �	���D���

NIT� � NFV� 	� NFG� 	� F� ��	���	�D��� G� �	��D���

NIT� 	� NFV� 		 NFG� 		 F� �
�	���	D��� G� ����D��	

NIT� 		 NFV� 	
 NFG� 	
 F� ���������D��� G� �	��	D���

NIT� 	
 NFV� 	� NFG� 	� F� ���
	
���D��� G� �	���D���

NIT� 	� NFV� 	� NFG� 	� F� ��
����	D��� G� ����	D��	

NIT� 	� NFV� 	� NFG� 	� F� ��		���	�D��� G� �
���D��	

NIT� 	� NFV� 	 NFG� 	� F� ������
��D��� G� �����D���

NIT� 	� NFV� 	� NFG� 	 F� ���������D��� G� �
�
D���

EXIT FROM PMIN �

NIT� 	� NFV� 	� NFG� 	 F� ���������D��� G� �
�
D��� ITERM� �

If we set IPRNT���� then the printed results will have the form

��



ENTRY TO PMIN �

NIT� � NFV� 	 NFG� 	 F� �
	������D��� G� �	���D��	

NIT� 	 NFV� 
 NFG� 
 F� �	������D��� G� �

��D��


NIT� 
 NFV� � NFG� � F� ��������D��� G� �	���D��


NIT� � NFV� � NFG� � F� ������	�
D��� G� �
��D��	

NIT� � NFV� � NFG� � F� �

����	�D��� G� ���	�D���

NIT� � NFV� � NFG� � F� ���	���
�D��
 G� �	���D���

NIT� � NFV�  NFG�  F� �		��
��
D��
 G� �	���D��	

NIT�  NFV� � NFG� � F� �	�����
D��	 G� ���	D��	

NIT� � NFV� � NFG� � F� ��������D��� G� �	���D���

NIT� � NFV� 	� NFG� 	� F� ��	���	�D��� G� �	��D���

NIT� 	� NFV� 		 NFG� 		 F� �
�	���	D��� G� ����D��	

NIT� 		 NFV� 	
 NFG� 	
 F� ���������D��� G� �	��	D���

NIT� 	
 NFV� 	� NFG� 	� F� ���
	
���D��� G� �	���D���

NIT� 	� NFV� 	� NFG� 	� F� ��
����	D��� G� ����	D��	

NIT� 	� NFV� 	� NFG� 	� F� ��		���	�D��� G� �
���D��	

NIT� 	� NFV� 	 NFG� 	� F� ������
��D��� G� �����D���

NIT� 	� NFV� 	� NFG� 	 F� ���������D��� G� �
�
D���

EXIT FROM PMIN �

NIT� 	� NFV� 	� NFG� 	 F� ���������D��� G� �
�
D��� ITERM� �

X� ��������D��� ��������D��� ��������D��� ��������D��� ��������D���

��������D��� ��������D��� ��������D��� ��������D��� ��������D���

���	�����D��� ���	�����D��� ���	�����D��� ���	�����D��� ���	�����D���

���	�����D��� ���	�����D��� ���	�����D��� ���	�����D��� ������
��D���

�� Veri�cation of the subroutines

In this section we introduce the main programs TMINU and TMINL� which serve as
demonstration� verication and testing of the subroutines PMINU and PMINL�

��
 Program TMINU

The following main program demonstrates the usage of the subroutine PMINU�

C

C TEST PROGRAM FOR THE SUBROUTINE PMINU

C

INTEGER NF�NA�IA�
����IEXT�IPAR����ITERM

REAL�� X�����AF�
����RA�������RPAR���F�GMAX

REAL�� FMIN

INTEGER NAL�NEXT�IERR�I

COMMON �PROB� NEXT

INTEGER NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

COMMON �STAT� NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

��



C

C LOOP FOR  TEST PROBLEMS

C

DO � NEXT�	�

C

C CHOICE OF INTEGER AND REAL PARAMETERS

C

DO 	 I�	��

IPAR�I���

	 CONTINUE

DO 
 I�	�

RPAR�I�����D �


 CONTINUE

IPAR����	

C

C PROBLEM DIMENSION

C

NF�
�

NA���

C

C INITIATION OF X AND CHOICE OF RPAR��

C

CALL TIUD���NF�NA�NAL�X�FMIN�RPAR���NEXT�IEXT�IERR�

IF �IERR�NE��� GO TO �

C

C SOLUTION

C

CALL PMINU�NF�NA�X�AF�IA�RA�IPAR�RPAR�F�GMAX�IEXT�ITERM�

� CONTINUE

STOP

END

C

C USER SUPPLIED SUBROUTINE �CALCULATION OF FA�

C

SUBROUTINE FUN�NF�KA�X�FA�

INTEGER NF�KA

REAL�� X����FA

INTEGER NEXT

COMMON �PROB� NEXT

C

C FUNCTION EVALUATION

C

CALL TAFU���NF�KA�X�FA�NEXT�

��



RETURN

END

C

C USER SUPPLIED SUBROUTINE �CALCULATION OF GA�

C

SUBROUTINE DER�NF�KA�X�GA�

INTEGER NF�KA

REAL�� X����GA���

INTEGER NEXT

COMMON �PROB� NEXT

C

C GRADIENT EVALUATION

C

CALL TAGU���NF�KA�X�GA�NEXT�

RETURN

END

This main program uses subroutines TIUD
� �initiation�� TAFU
� �function evalua�
tion� and TAGU
� �subgradient evaluation� containing � standard test problems with
at most �
 variables which were taken from the UFO system ���� The results obtained
by this main program have the following form�

NIT� � NFV� � NFG� � F� �	��


��D��	 G� �
��	D��� ITERM� �

NIT� 	
 NFV� 	 NFG� 	� F� ����������D��
 G� �	
��D�� ITERM� �

NIT� 	� NFV� 	
 NFG� 		 F� �	

�	
�D��� G� �	���D��� ITERM� �

NIT� 	� NFV� 	� NFG� 	� F� �	�
����D��� G� ���	�D�� ITERM� �

NIT� 	� NFV� 
	 NFG� 	� F� ���������D��� G� �	��D��� ITERM� �

NIT� 	� NFV� 
 NFG� 	� F� �
����
��D��
 G� ���
D�� ITERM� �

NIT� 

 NFV� �� NFG� 
� F� �	��
�
�D��� G� �
��D��� ITERM� �

The rows corresponding to individual test problems contain the number of iterations
NIT� the number of function evaluations NFV� the number of gradient evaluations
NFG� the nal value of the objective function F� the value of the criterion for the
termination G and the cause of termination ITERM�

��	 Program TMINL

The following main program demonstrates the usage of the subroutine PMINL�

C

C TEST PROGRAM FOR THE SUBROUTINE PMINL

C

INTEGER NF�NA�NB�NC�IX�����IC�	���IA�
����IEXT�IPAR����ITERM

REAL�� X�����XL�����XU�����CF�	���CL�	���CU�	���CG�
����AF�
����

� RA�������RPAR���F�GMAX

��



REAL�� FMIN

INTEGER NAL�NCL�NEXT�IERR�I

COMMON �PROB� NEXT

INTEGER NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

COMMON �STAT� NDECF�NRES�NRED�NREM�NADD�NIT�NFV�NFG�NFH

C

C LOOP FOR � TEST PROBLEMS

C

DO � NEXT�	��

C

C CHOICE OF INTEGER AND REAL PARAMETERS

C

DO 	 I�	��

IPAR�I���

	 CONTINUE

DO 
 I�	�

RPAR�I�����D �


 CONTINUE

IPAR����	

C

C PROBLEM DIMENSION

C

NF�
�

NA�	��

NB�
�

NC�	�

C

C INITIATION OF X AND CHOICE OF RPAR��

C

CALL TIUD

�NF�NA�NAL�NC�NCL�X�IX�XL�XU�IC�CL�CU�CG�FMIN�RPAR���

� NEXT�IEXT�IERR�

IF �IERR�NE��� GO TO �

C

C SOLUTION

C

CALL PMINL�NF�NA�NB�NC�X�IX�XL�XU�CF�IC�CL�CU�CG�AF�IA�RA�IPAR�

� RPAR�F�GMAX�IEXT�ITERM�

� CONTINUE

STOP

END

C

C USER SUPPLIED SUBROUTINE �CALCULATION OF FA�

C

�	



SUBROUTINE FUN�NF�KA�X�FA�

INTEGER NF�KA

REAL�� X����FA

INTEGER NEXT

COMMON �PROB� NEXT

C

C FUNCTION EVALUATION

C

CALL TAFU

�NF�KA�X�FA�NEXT�

RETURN

END

C

C USER SUPPLIED SUBROUTINE �CALCULATION OF GA�

C

SUBROUTINE DER�NF�KA�X�GA�

INTEGER NF�KA

REAL�� X����GA���

INTEGER NEXT

COMMON �PROB� NEXT

C

C GRADIENT EVALUATION

C

CALL TAGU

�NF�KA�X�GA�NEXT�

RETURN

END

This main program uses subroutines TIUD�� �initiation�� TAFU�� �function evalua�
tion�� TAGU�� �subgradient evaluation� containing � standard test problems with at
most �
 variables which were taken from the UFO system ���� The results obtained by
this main program have the following form�

NIT� � NFV�  NFG�  F� ���������
D��� G� ��	
�D��� ITERM� �

NIT� � NFV� � NFG� � F� �������	�D��� G� �����D��� ITERM� �

NIT� � NFV� � NFG� � F� ������	��D��� G� �
��
D��� ITERM� �

NIT� � NFV� � NFG� � F� ���
�
���	D��� G� ����D�	� ITERM� �

NIT� 	
 NFV� 	� NFG� 	
 F� �	�	�����D��� G� �		��D��� ITERM� �

NIT� 	� NFV� 	� NFG� 	 F� ���������D��� G� �
�
D��� ITERM� �

The rows corresponding to individual test problems contain the number of iterations
NIT� the number of function evaluations NFV� the number of gradient evaluations
NFG� the nal value of the objective function F� the value of the criterion for the
termination G and the cause of termination ITERM�

��
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