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Abstract

Interval Gaussian algorithm is a popular method for enclosing solutions of linear inter�
val equations� In this note we show that both versions of the method �preconditioned
and unpreconditioned one	 may yield large overestimations even in case n 
 ��
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� Introduction

As is well known ��� interval Gaussian algorithm for enclosing solutions of a system of
linear interval equations

AIx 
 bI ����	

consists in solving the system ����	 by Gaussian algorithm performed in interval arith�
metic� The method often gives tighter enclosures if the system ����	 is �rst precon�
ditioned by the midpoint inverse ��� In this note we show that even in the case
n 
 � there exist examples with arbitrarily small data widths� arbitrarily large ab�
solute overestimations� and with relative overestimations arbitrarily close to � in the
unpreconditioned case and arbitrarily close to �

�
in the preconditioned one�

� The example

For � � �� � � � and � � �� consider a linear interval system of the form�
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The radii of all interval coe�cients are � � and the interval matrix� if written in the
form Ac ��� Ac ���� satis�es

��jA��
c j�	 
 ��

hence it is strongly regular ��� Systems with matrices satisfying ��jA��
c j�	 	 � are

usually considered �tractable�� Yet it turns out that a system of type ����	 is not well
suited for solving by the interval Gaussian algorithm�

� The result

First we derive some explicit formulae�

Theorem � For each � � �� � � � and � � � the system ����� satis�es�

�i� the exact upper bound on x� is

x� 
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�� � �	�� � �	
� ����	

�ii� the upper bound on x� computed by preconditioned interval Gaussian algorithm
�with or without partial pivoting� is

x� 
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� ����	
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�iii� the upper bound on x� computed by unpreconditioned interval Gaussian algorithm
�with or without partial pivoting� is

x� 
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� ����	

Proof� �i	 Denote

A 


�
B� � � �

� � �
� � �

�
CA �

then A is nonsingular for � � � and satis�es
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�From the form of ����	 it can be easily seen that for the exact bound on x� we have
�with e 
 ��� �� �	T 	

x� 

�

��
maxf�eT jx�j� ��e � Ax� � �eg


 �maxfkA��x��k�� �e � x�� � eg�

which in view of convexity of the norm implies

x� 
 �maxfkA��x��k�� jx
��j 
 eg� ����	

Since A�� is diagonally dominant for � � �� for each x�� satisfying jx��j 
 e �i�e�� a
���vector	 there holds

kA��x��k� 
 �x��	TA��x�� 
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and the bound is achieved e�g� for x�� 
 ��� ����	T � hence ����	 and ����	 imply ����	�
�ii	 Preconditioning ����	 with the midpoint inverse
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and interval Gaussian algorithm applied to it �which consists of the backward step
only	 gives the upper bound ����	�
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�iii	 The forward step of the unpreconditioned interval Gaussian algorithm �which
is the same with or without partial pivoting due to � � �	 results in the system
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and the backward step gives ����	�

Notice that the values of x�� x�� x� do not depend on �� As a result� we obtain�

Theorem � For arbitrary data width � � �	 for the system ����� we have�

�i� for each K � � and r � ��� �
�
	 there exist � � � and � � � such that

x� � x� � K ����	

and
x� � x�

x�
� r� ����	

�ii� for each K � � and r � ��� �	 there exist � � � and � � � such that

x� � x� � K

and
x� � x�

x�
� r�

Proof� �i	 According to ����	 and ����	�
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hence for each r � ��� �
�
	 there exists a � � � such that ����	 holds� and a choice of

� �
�

�
�� � �	�� � �	K

assures ����	 to hold�
The proof of �ii	 is quite analogous since
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and the derivative of the rational function is negative at � 
 ��
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� Concluding remark

We have shown that overestimations ����	 and ����	 are possible for systems of the form
����	� But since x� is the exact bound on the solution of the preconditioned system
����	 �as it can be easily seen from its form	� the result of Theorem �� �i	 also holds
true for any method based on solving a preconditioned linear interval system� as e�g�
Rump�s method in �� or the classical bounds derived via Neumann series� cf� ���
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