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1 Introduction

This is a written material for a tutorial to be held at the international conference
[FSA9T at Prague. The major part of the paper is a varied and extended version of [12]
2 written by Héjek; Section 5 was written by Godo. Full elaboration is to be found in
the prepared book [13]. The present introduction is devoted to some informal discussion
on the subject of fuzzy logic. (1) Fuzzy logic is popular. The number of papers dealing,
in some sense, with fuzzy logic and its applications is immense, and the success in
applications is evident, in particular in fuzzy control. From numerous books we mention
at least [50], [11], [24]. As stated in the introduction to [24], in 1991 there were about
1400 papers dealing with fuzzy systems. Naturally, in this immense literature quality
varies; a mathematician (logician) browsing in it is sometimes bothered by papers
that are mathematically poor (and he/she may easily overlook those few that one
mathematically excellent). This should not lead to a quick refusal of the domain.
Let us quote Zadeh, the inventor of fuzzy sets ([24], Preface): “Although some of the
earlier controversies regarding the applicability of fuzzy logic have abated, there are
still influential voices which are critical and/or skeptical. Some take the position that
anything that can be done with fuzzy logic can be done equally well without it. Some
are trying to prove that fuzzy logic is wrong. And some are bothered by what they
perceive to be exaggerated expectations. That may well be the case but, as Jules
Verne had noted at the turn of the century, scientific progress is driven by exaggerated
expectations.”

To get insight into the domain let us first ask three questions: what is logic, what
is fuzziness and what meaning(s) has the term “fuzzy logic”.

(2) Logic studies the notion(s) of consequence. It deals with propositions (sen-
tences), sets of propositions and the relation of consequence among them. The task of
formal logic is to represent all this by means of well-defined logical calculi admitting
exact investigation. Various calculi differ in their definitions of sentences and notion(s)
of consequence (propositional logics, predicate logics, modal propositional/predicate
logics, many-valued propositional /predicate logics etc.). Often a logical calculus has
two notions of consequence: syntactical (based on a notion of proof) and semantical
(based on a notion of truth); then the natural questions of soundness (does provability
imply truth?) and completeness (does truth imply provability?) pose themselves.

(3) Fuzziness is impreciseness (vagueness); a fuzzy proposition may be true in some
degree. The word “crisp” is used as meaning “non-fuzzy”. Standard examples of fuzzy
propositions use linquistic variable [47] as e.g. age with possible values young, medium,
old or similar. The sentence “The patient is young” is true in some degree - the less is
the age of the patient (measured e.g. in years), the more true is the sentence. Truth
of a fuzzy proposition is a matter of degree.

We recommend to everybody interested in fuzzy logic to sharply distinguish fuzzi-
ness from uncertainty as degree of belief (e.g. probability). Compare the last propo-
sition with the proposition “The patient will survive next week”. This may well be
considered as a crisp proposition which is either (absolutely) true or (absolutely) false;

?Thanks are due to the Springer-Verlag for the permission to republish the paper. Partial support
of COST Action 15 is recognized.



but we do not know which is the case. We may have some probability (chance, degree of
belief) that the sentence is true; but probability is not degree of truth. In more details,
the probability of a crisp statement ¢ should not be understood as the truth-value of
@ but may be well understood as the truth-value of the fuzzy statement saying “¢ is
probable”. (This is elaborated in [17].)

(4) The term “fuzzy logic” has two different meanings - wide and narrow. This
is a very useful distinction, made by Zadeh; we again quote from [24], preface: “In
a narrow sense, fuzzy logic, FLn, is a logical system which aims at a formalization
of approximate reasoning. In this sense, FLn is an extension of multivalued logic.
However, the agenda of FLn is quite different from that of traditional multivalued
logics. In particular, such key concepts in FLn as the concept of a linguistic variable,
canonical form, fuzzy if-then rule, fuzzy quantification and defuzzification, predicate
modification, truth qualification, the extension principle, the compositional rule of
inference and interpolative reasoning, among others, are not addressed in traditional
systems. This is the reason why FLn has a much wider range of applications than
traditional systems.

In its wide sense, fuzzy logic, FLw, is fuzzily synonymous with fuzzy set theory,
FST, which is the theory of classes with unsharp boundaries. FST is much broader
than FLn and includes the latter as one of its branches.”

Let me add two comments: first, in the wide sense, everything dealing with fuzziness
may be (and seems to be) called “fuzzy logic”. Second, even if I agree with Zadeh’s
distinction between many-valued logic and fuzzy logic in the narrow sense, I consider
(and hope Zadeh would agree) formal calculi of many-valued logic (including non-
“traditional”, of course) to be the kernel or base of fuzzy logic in narrow sense and the
task to explain things Zadeh mentions by means of these calculi to be a very promising
task (not yet finished).

(5) This paper about the fuzzy logic in the narrow sense. Our main aim is to sur-
vey strictly logical properties of the most important many-valued logics whose set of
truth values is the unit interval [0,1]. In Section 2, we survey propositional calculi;
in Section 3 predicate calculi. We present a basic fuzzy logic and three stronger log-
ics: Lukasiewicz, Gédel, and product logic, as well as a graded form (extension) of
Lukasiewicz logic invented by Pavelka. Section 4 is devoted to a very general notion
of a fuzzy logic. In Section 5 we discuss the notions of equality and similarity in fuzzy
logic.

The reader is asumed to have at least a partial experience with the classical (two-
valued) propositional calculus; some knowledge of predicate calculus is very helpful.

We hope that the reader will agree, after having read the paper, that fuzzy logic is
not (better: need not be) simple-minded poor man’s logic but a powerful and interesting
logical calculus.

Acknowledgemens. Partial support by COST-action 15 “Many valued logics for
computer science applications” is acknowledged.



2 Propositional logics.

2.1 Classical logic.

We quickly review notions and facts assumed to be known to the reader. There are
two truth values:1 and 0 (1 stands for truth, 0 for falsity). The language of the classical
propositional calculus consists of a list of propositional variables p, q, ... and connectives
— (implication and = (negation); each propositional variable is a formula; if ¢ as a
formula then = is a formula; if ¢ and 1 are formulas then ¢ — 1 is a formula. A
truth evaluation is a mapping e assigning to each propositional variable p a truth value
e(p) (0 or 1). Each truth evaluation extends uniquely to an evaluation of all formulas,
using the truth functions of connectives.
It is customary to represent this by truth tables:

— |1
1|1
0|1

— O
_ OO

1
0
Thus e.g. if e(p) = 1 and e(q) = 0 then e(—q) =1, e(p — —¢) =1, e(—g — p) =
L, e(=(=g = p)) =0, e((p = =¢) = ~(=¢ = p)) = 0.

Other connectives may be used as abbrevations: if ¢ and 1 are formulas then

@ & 1) is an abbrevation for ~(¢ — =),
@ V 1 is an abbrevation for = — 1,

@ = 1 is an abbrevation for (¢ — =) — =(=) — ).

It we compute the corresponding truth tables we get

&1 0 Vil 0 =1 0
171 0 111 1 171 0
010 0 011 0 010 1

A formula ¢ is a tautology if e(¢) = 1 for each truth evaluation e (i.e. ¢ isidentically
true).
The following formulas are azioms of the predicate calculus:

p—(q—p) (1)
p—=(g—=r)=((p—=q9) —=(p—r)) (2)
(=p — —q) = (¢ — p) (3)

One easily verifies that for each ¢,, the formulas (1), (2), (3) are tautologies.
Modus ponens is the following deduction rule: from ¢ and @ — 1 derive .

A proofin propositional calculus is an arbitrary sequence @1, .. ., @, of formulas such
that, for each ¢« = 1,...,n, either ¢; is an axiom or ; follows from some preceding
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formulas ¢;,¢r (j,k < ¢) by modus ponens. A formula is provable in propositional
calculus if it is the last element of a proof.

It is easy to show that if ¢ and ¢ — 1 are tautologies then ¢ is also a tautology:;
we say that modus pones preserves tautologicity. Therefore each provable formula is a
tautology (soundness); conversely, we have completeness: each tautology is provable.
(The completeness theorem says that the calculus is sound and complete, i.e. provable
formulas are exactly all tautologies.)

A theoryis a set T of formulas called special axioms of T'. A proof from T is defined
as above but with the additional possibility that ¢; may be an element of T'. We write
T+ ¢ if ¢ is provable from T' (is the least element of a proof from T'). The deduction
theorem says that for each theory T" and formulas @,¢, T F ¢ — o iff (T'U {¢}) F .

An evaluation is a model of a theory T if it assigns 1 to each special axiom of T
(makes all the axioms true). Strong completeness theorem says that T F ¢ iff ¢ is true
in each model of T'. For details on propositional logic set any textbook of Mathematical

logic, e.g. [25].

2.2 More values and truth-functionality.

We have good reasons to generalize the two-valued logic to logics having more truth
values and undoubtedly this can be done in many ways. To grasp degree of truth let
us decide that our set of truth values will be linearly ordered, with 1 as maximum and
0 as minimum. The most obvious choice is the unit interval [0,1] of reals and this will
be our choice throughout.

Needless to say, other choices are possible; notably one often works will a finite set
of truth values. But this will not be studied here.

As we have seen, the classical propositional logic is truth-functional, i.e. the truth
value of a composed formula can be computed from the truth values of its components,
thanks to the truth functions of connectives.

Should our many-valued logics be also truth-functional? I.e. should the truth-
value of a formula be determined by the truth values of its atoms via truth-functions of
connectives, now assigning, e.g. for implication —, to each pair of the values x,y € [0, 1]
a truth value (z = y) € [0,1]? Most systems of fuzzy logic are truth-functional (e.g.
one may take x Ny = min(x,y) for the truth-function of conjunction). Our main
attention will be paid to truth-functional systems; but note that the systems of Section
4 will not be.

The reader should observe that there is nothing wrong on truth-functionality: the
truth degree of a component formula is just defined by the truth functions. But one
has to be careful: on then cannot interpret truth degrees of formulas e.g. as their
probabilities, since probability is not truth-functional, as everybody knows. It is also
not counter-intuitive that if you interpret conjunction by minimum and negation as
(—)x = 1—ua (also a very popular choice) then e(¢ A=) may be (and often is) positive.
Our favourite example is of ¢ saying “I am old”. It is rather true, but still the truth
degree is (I hope) less than 1. Thus “I am not old” has a (small) positive value. And
the conjunction “I am old and I am not old” (or: “I am old - yes and n0”) has a small
but positive truth degree. This is impossible for crisp propositions, needless to say.



2.3 Where are truth-functions of connectives from?

Obviously, the truth-functions should behave classically on extremal truth values 0,1
and should satisfy some natural monotonicities (the truth function of conjunction (dis-
junction) should be non-decreasing in both arguments; the truth function of implication
should be non-decreasing in the second argument but non-increasing in the first, i.g.
the less true is the antecedent ¢ and the more is true the succedent ¥ the more is true
the implication ¢ — . (—) should be non-increasing.) This leads to the notion of
a t-norm: (cf. [41]) this is an operation * : [0,1]* — [0, 1] which is commutative and
associative, non-decreasing in both arguments and having 1 as unit element and 0 as
zero element, 1.c.

x*y:y*x

rHy)xz=ax*(y*z
¥ ¥
<2 andy <y impliesx xy < 2’ *xy’

lxx=a, 0xx=0.

We shall only work with continuous t-norms as good candidates for truth functions
of a conjunction. Each t-norm ¢ determines uniquely its corresponding implication =
(not necessarily continuous) satisfying, for all ,y, z € [0, 1]

z<z=yiff zxz <y.

For each such system we define an evaluation to be a mapping e assigning to each
atom p its truth degree e(p), 0 < e(p) < 1; a I-tautology is a formula whose value is 1
for each evaluation.

We present three outstanding examples:

(1) Lukasiewicz logic [23] with the conjunction

x * y =max(x+y—1,0) and the corresponding implication

r=>y=1forx <yand r = y=1—x+y otherwise;

(2) Gédel logic [9] will the conjunction

x*y = muin(z,y) and the corresponding implication

r=y=1iff  <yand z = y = y otherwise;

(3) Product logic will the conjunction = *y = z.y (product) and = = y = 1 iff
r <y, x =y =y/x otherwise.

Negation (—) is defined as follows: (—)a =a = 0

One can show (see e.g. [31]) that each t-norm is composed in a certain way from
these three examples. Thus our question reads: what is the logic of these examples?

We show that min and max are definable from % and =-.

For each continuous t-norm *, the following identities are true in L(*):

(i) min(z,y) = * (z = y),

(il) max(z,y) = min((z = y) =y, (y = ¢) = ).



In the next subsection we shall present a basic fuzzy logic BL. Formulas provable
in BLL are 1-tautologies for each continuous f-norm. We shall formulate a complete-
ness theorem formulated with the help of coordinate lattices. Then in three following
sections we shall develop logics of the three main ¢-norms defined above.

2.4 The basic many-valued logic

Fix a continuous t-norm *: you fix a propositional calculus (whose set of truth values
is [0, 1]): This means is the truth function of the (strong) conjunction &, the residuum
= of * becomes the truth function of the implication. Further connectives are defined
as follows:

e A is ol — ),

eV is ((p =) = D)A (¥ — @) = ¢),
- 1S 99—>(j,

p=v is (¢ = P)&(P — ).

An evaluation of propositional variables is a mapping e assigning to each propositional
variable p its truth value e(p) € [0, 1].

This extends to each formula via truth-functions as follows:

e(0) =0,
elp =) = ¢
e(pdeyp) = (elp) * e(v)).

A formula ¢ is a 1-tautology of PC(%) if e(p) = 1 for each evaluation e.
The following formulas are axioms of the basic logic:
) (0 =) = (¢ = x) = (¢ = X))
(A2) (p&t)) — ¢
(A3) (p&tp) — (V&)
(A1) (p&($x) — ((pleth)ex)
(ASa) (¢ = (1 = X)) = ((p&t)) — )
(ABb) (($&) — x) = (9 — (¥ = X))
EAG)(¢—>¢)—>X)—>(((¢—>¢)—>X)—>X)
The deduction rule of BL is modus ponens. Given this, the notions of a proof and
of a provable formula in BL are defined in the obvious way
All axioms of BL are 1-tautologies in each PC (). If ¢ and ¢ — 1 are 1-tautologies
of PC(x) then ¢ is also a 1-tautology of PC(*). Consequently, each formula provable
in BL is a 1-tautology of each PC(x). Let us present a list of some formulas provable
in BL.

BL proves the following properties of implication:
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=@
L proves the following properties of strong conjunction:
) (p&lp — 1)) — o
) o = (P = (p&e))
; (p = 1) = ((p&x) = (V&)
)

(9) (e A) = @, (e A1p) = 1, (p&et) = (@ A1)
(10) (¢ = &) = (¢ = (¢ A D))
(11) ((p = ) A (e = X)) = (¢ = (¥ A X))
(12) (p A1p) = (b A )
L. proves the following properties of max-disjunction:
3) o= (e V), ¥ = (V) (eVi) = (¥ Vo),
(=)= ((pVe) =)
5) (p =)V (¥ — o)
6) (¢ = X)A (b= X)) = (p V) — X
BL proves the following properties of negation.
(17) ¢ — (= — ), in particular, ¢ — ==
(18) (¢ = (&) —
1 stands for 0 — 0.
BL proves the following:
(19) 1.
(20) ¢ — (L&ep).
BL proves the following additional properties of A, V:
(21) (0 A (1 A ) — (9 A ) A X)
(e A) A X) = (@ A AX))
(associativity of A),
(22) analogous associativity for V,
(23) ¢ = @ A (e V)
(P V(pAD)) =
BL proves
2) p=p, (p=1) = =0p)
((p=v)&(v = 1)) — (¢ = 1),

(25) (p =) = (¢ — ),

(p=v) = (¥ — ¢
(26) (p =) = ((p&x) = (P&X)),
(27) (¢ =) = ((¢ = x) = (¥ = X)),
(28) (p=¢) = ((x = ¢) = (x = ¥)),
(29) (p =) = ((p = V)N (¥ — 9)).

o

L proves the following distributive laws:



(30)  ple(yV x;

(31) (AR VX))={pA)VIPAX))
- (VI AX) = VY)A(p VX))
proves:
(32) (e V)&lp V) = ((p&p) V (&)
(e AP)&(p A ) — (&) A (&)

(33) (¢ —= )" V(¢ — )", for each n,

where " is ad&s ... a,n times.

A theoryover Bl is a set of formulas. A proof in a theory T'is a sequence 1, ..., p,
of formulas whose each member is either an axiom of BL or a member of T' (special
axiom) or follows from some preceding members of the sequence using the deduction
rule modus ponens.

T F ¢ means that ¢ is provable in T', i.e. is the last member of of a proof in T'. The
deduction theorem for B L reads as follows:

Deduction theorem: Let T be a theory and let ¢, be formulas.

T U{e} F ¢ iff there is an n such that T' F ¢" — ¢ (where ¢" is & ... &p,n
factors). Now we shall introduce some algebras corresponding to BL similarly as
Boolean algebras correspond to classical logic.

A regular residuated lattice 1s an algebra

(L7 m? U7 *7 j? 07 1)
with four binary operations and two constants such that

(i) (L,N,U,0,1) is a lattice with the largest element 1 and the least element 0 (with
respect to the lattice ordering <),

(i) (L, *, 1) is a commutative semigroup with the unit element 1, i.e. * is commutative,
associative, 1 * x = x for all z.

(iii) the following conditions hold:

(1) z<(x=y)iff zxz <yforall x,y,z.

(2)zNy=xx*(z=y)

B)zUy=(z=y)=y)N(y==2

= )

(W) (2 y)Uly=2)=1.

An L-evaluation of propositional variables is any mapping e assigning to each propo-
sitional variable p an element e(p) of L. This extends in the obvious may to an evalu-
ation of all formulas using the operations on L as truth functions.



The logic BL is sound with respect to L-tautologies: if ¢ is provable in BL then ¢
is an L-tautology for each regular linearly ordered residuated lattice. More generally, if
T is a theory over BL. and T proves ¢ then, for each regular linearly ordered residuated
lattice L and each L-evaluation e of propositional variables assigning the value 1 to all
the axioms of T, e(¢) = 1.

Classes of provably equivalent formulas (w.r.t. a theory T') form a regular residuated
lattice.

Completeness theorem. For each formula ¢ the following there things are equiv-
alent:

(i) ¢ is provable in BL,

(ii) for each linearly ordered regular residuated lattice L, ¢ is an L-tau-tology;

(iii) for each regular residuated lattice L, ¢ is an L- tautology.

We shall generalize this completeness theorem as follows:

(1) An axiom schema given by a formula
®(py,...,pn) is the set of all formulas
O(p1,...,0n,) resulting by the substitution of ; for p;(i =1,...,n) in ®(p1,...,p,).

(2) Alogical calculus C is a schematic extension of BL if it results from BL by adding
some (finitely or infinitely many) axiom schemata to its axioms. (The deduction rule
remains to be modus ponens.)

(3) Let C be a schematic extension of BL and let L be a lattice. L is a C-lattice if
all axioms of C are L-tautologies.

Completeness. Let C be a schematic extension of Bl and let ¢ be a formula. The
following are equivalent:

(i) C proves ¢,

(ii) ¢ is an L-tautology for each linearly ordered C-lattice L,

(iii) ¢ is an L-tautology for each C-lattice L.

Remark. Results of the present section are new; but rely very heavily on related

results of Hohle [21].

2.5 Lukasiewicz logic

This logic results by extending BL by the following axiom (L4):

(P =) =) = (¥ = ») = ¢) (L4)

; Similarly as classical logic, Lukasiewicz logic L. may be alternatively developed from
implication — and negation = (or just from — and 0); the truth function of negation
is (=) =2 =0=1— 2. We can define two different conjunctions and disjunctions:

e &Pis =(p — ), x*xy=max(x+y—1,0)

eV is ~(mp & —p), Uy = min(z +y,1)

eVhis (o =) =1, xUy=maz(x.y)

pAYis (e V), wNy =min(z,y)

The following are the original axioms of Lukasiewicz logic:



= (b —¢) (
(¢ =) = (v = x) = (¢ = X)) (1.2
(7% = =p) = (¢ = ) (
(P =) =) = (¥ = ») = ¢) (L4
The only deduction rule is modus ponens; the definition of a proof is as in classical
logic (relative to our set of axioms).
As mentioned above, this set of axioms is equivalent to BL + (L.4)
Completeness of this set of axioms was conjectured by Lukasiewicz in Thirties, but
first proved by Rose and Rosser [37]; a good proof can be found in [10]. The relevant
algebras are particular regular residuated lattices called MV -algebras.

Needless to say, details are non-trivial and laborious but the structure is the same
in all our three logics.

Completeness. A formula ¢ is provable in Lukasiewicz logic L iff it is a 1-tautology
of Lukasiewicz logic.

Remark. Observe the difference from the completeness theorem for BL: here we
do and work work with all linearly ordered regular residuated lattices but with just
one: the real interval [0,1] with the truth functions of Lukasiewicz logic.

2.6 Godel logic

Kurt Godel (born 1906 in Brno, now Czech Republic), probably the most important
mathematical logician, published in 1932 an extremely short paper [9] concerning intu-
itionistic logic (a subsystem of classical logic with a different meaning of connectives;
e.g. ¢V g is not provable). Godel’s aim was to show that there is no finitely valued
logic for which axioms of intuitionistic logic would be complete. For this purpose he
created a semantics of (possibly infinite-valued) propositional calculus which is now
called Godel logic (. (Needless to say, this was more than three decades before fuzzy
sets have been defined).

Godel logic has the following connectives: —, A, V,— (implication, conjunction,
disjunction, negation; negation may be replaced by 0). The semantics is as follows (cf.
Sect. 2.3):

r=>y=1ifz <y, = y =y otherwise,

r Ny =min(z,y),

r Uy =max(z,y),

(—)x=1forx =0, (—)x=0fora >0.

The axioms are as follows (G1 - G11 are axioms of intuitionistic logic, G12 is an
axiom of “linearity”):

(GL) (¢ =) = (¢ = x) = (¢ = X))

(G2) ¢ = (p V)

(G3) ¥ — (¢ V)

10



(G4) (p = X) = (L = x) = (¢ V) = X))
(G5) (pAp) — ¢

(G6) (p Aep) —

(GT) (x =) = ((x =) = (x = (g A1)
(G8) (p = (¥ = X)) = ((p A) — x)

(G9) ((pAY) = x) = (¢ — (¥ = X))
(G10) (o A =) — 2
ECﬂl)(¢—+(¢/\ﬂ¢))—>ﬂ¢

It is an easy checking to show that all these are 1-tautologies. The deduction rule
is modus ponens; this defines the notion of a proof.

One can show that (7 is equivalently axiomatized by BL plus ¢ — (p&e) — idem-
potence of &. It follows easily that p&1) is equivalent to ¢ A+ so that & is redundant.

Completeness theorem: Each 1-tautology is provable. Again here the proof is
rather non-trivial with a different class of algebras, called Heyting algebras or pseudo-
boolean algebras. We have no room for details; [10] is recommended for a readable
elaborated proof originally given by Dummett [7].

Deduction theorem is valid for G: T U {¢} F ¢ if T'F (¢ — ). Note that
G is the only many-valued logic having the deduction theorem, more precisely: if a
logic contains a conjunction given by a t-norm and the corresponding implication —
, 18 completely axiomatized and satisfies the deduction theorem then the t-norm is
minimum and hence — is Gddel implication.

Godels logic satisfies the following form of strong completeness: Say that a theory
semantically entails ¢ if for each evaluation e there is a conjunction « of finitely many
axioms of T' such that e(a) < e(p). (Observe that in classical logic this is equivalent
to saying that ¢ is true in each model of T'.)

Strong completeness: For each theory T" and formula ., T ¢ iff T semantically
entails .

Note that the easy part of this equivalent (soudness) implies that if 7" F ¢ and
e(a) > r for each axiom « of T then e(a) > r. The difficult part can be obtained by
combining the (normal) completeness of ¢ with the techniques of Takeuti and Titani

[43].

2.7 Product logic.

The logic based on the product t-norm has been considerably less investigated them
the two preceding ones (see [1]). The paper [18] investigates product logic and proves
completeness theorem using a class of algebras called product algebras. There are
several open problems related to this (rather interesting and unjustly overlooked) logic.

We write & instead of &.
The axioms of Il are those of BL plus

(I1) ==x = (¢ O X = ¥ O x) = (¢ = ¥)),

(I12) o A =p — 0.

The axioms are 1-tautologies over the algebra [0,1]p of the truth functions.

IT proves the following formulas:
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(1) ~(p ©¥) = =(pA¢)

(2) (¢ = —p) = 9

(3) ~p V=

The axiom (I12) can be equivalently replaced by each of the following formulas:

(O ) =, (¢ = )= e, 2V e,

Following the general approach we define a Il-algebra (or product algebra) to be a
regular residuated lattice satisfying

S ((wxz =y rz) = (v =),
N —x=0.

Using this notion one proves the following

Completeness theorem.

(1) A formula ¢ is provable in the product logic IT iff it is a 1-tautology of the product
logic.

(2) Let T be a finite theory over II, ¢ a formula. T proves ¢ over the product logic iff
it is true in each model of T' (in the sense of 1I).

2.8 Rational Pavelka logic

Till now we have been interested almost exclusively only in axiomatizing 1-tautologies,
i.e. proving formulas that are absolutely true. But in fuzzy logic we are interested
in deriving consequences from assumptions that are only partially true, true in some
degree. (We met a result of this type at the end of 2.5 - for Godel logic.) Logics
of partial truth were studied, in a very general manner, as early as in the seventies
by the Czech mathematician Jan Pavelka [32] and since then have been substantially
simplified; We refer to [14] but here we describe a still simpler version. It is very
different from the original Pavelka’s version and looks as an “innocent” extension of
Lukasiewicz’s L; but the main completeness result of Pavelka still holds.

The idea is as follows: assume that e(p) = r; then for each ¢, e(v)) > riff e(p —
) = 1. Thus if ¢ is a formula whose value is r in all evaluations then the axiom
@ — 1 would just postulate that ¢ is at least r-true.

Thus we extend the language of L by adding truth constant 7 for some r € [0, 1] as
new atomic formulas, postulating that e(7) = r for each evaluation (we already have
had 0 and T). Our choice will be to add truth constants 7 for each rational r € [0,1]
(thus we have truth constants for a countable dense recursirely representable set of
reals from [0,1], this is all we need).

Thus for example if ¢, are formulas then (p — 0.7) & (0.4 — =) is a formula.
We have some obvious tautologies like =0.7 = 0.3 and 0.7 — 0.5 = 0.8; in general, for
each rational r,s € [0, 1] we have

12



(P1) -7 = (=)r,

(P2) T—35)=r=s3

We add these schemas as new logical axioms; the resulting logic (with the language
extended by truth constants and axioms extended by (P1), (P2)) will by called RPL
(rational propositional logic or rational Pavelka logic). The only deduction rule is
modus ponens.

If ¢ is a formula and r € [0,1] is rational then (¢,r) denotes just the formula
(7 — ) (saying that ¢ is at least r-true). We have same derived deduction rules.

Lemma. Let T be a theory in RPL (a set of special axioms); for each formula
«, T'F a means that « is provable in T

() T F (p,r) and T+ (p — ¢, s), then T F (¢, 7 * s).

2) I TF (p,r)then TH (53— p,s =r).

Definition. Let T be a theory in RPL. (1) The truth degree of ¢ in T is ||¢||; =
inf{e(p) | eisamodel of T'}.

(2) The provability degree of ¢ in T is

| lr=sup{r | T'F (@, 7)}.

Thus || ¢ ||z is the infimum of values of ¢ in models of T'; | ¢ |7 is the supremum of
rationals r such that T'F 7 — .

Completeness theorem for RPL: Let T' be a theory in RPL; then, for each formula
o lellr=lelr.

This is a very pleasing and elegant result (invented originally by Pavelka); the proof
is moderately difficult (much easier than the proof of completeness of L, but using the
fact that we have the Rose-Rosser’s complete axiom system for L).

Remarks. (1) A fuzzy theoryis a fuzzy set of formulas, i.e. a mapping T' associating
to each formula ¢ the degree T'(p) of being an axiom. An evaluation e is a model of
T of for each ¢, e(p) >,T(p), i.e. each formula is at least as much true, as the theory
demands. It is natural to assume that each T'(¢) is a rational number. The notion
of a fuzzy theory is central in Pavelka’s approach but we see that it is superfluouns;
if you define 7" = {(¢,T(¢)) | ¢ formula} (thus for each ¢, if T(¢) = r we put
(7 — ) into T") then T" is a (crisp) theory having the same models as T'.

(2) The set of all formulas is a recursive set and the syntax is recursive; thus we
may call a theory T recursive if T'is a recursive set of formulas. Note that | |r may
be irrational; on the other hand, if » > 0 is rational then we can construct a recursive
theory T such that the set of all ¢ such that | ¢ [7> r is “badly” non-recursive (for
experts: it may be Ily-complete; see [14] for details).

(3) We can similarly other logics, e.g. Godel logic or product logic but unfortunately
we cannot hope for Pavelka style completeness (as Pavelka himself tells us) since the
truth function of implication is not contuous in these logics. To see this take the theory
T ={p— (%) | nnatural }; then

lp — 0]|z=1 for each of L, GG, P;

|lp — 0|z =1 for L but |p — 0|p= 0 for both G and P (verity).

Note that RPL satisfies the same generalized deduction theorem as L (and of course
does not satisfy the classical deduction theorem).
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3 Predicate calculi

3.1 The classical predicate calculus

In the present section we assume the reader to have some basic knowledge of the
classical predicate calculus. In this subsection we survey the basic notions and facts,
for comparison with their many-valued generalizations. We shall restrict ourselves to
calculi without function symbols. Details may be found e.g. in [25].

A language consists of predicates P, (), ..., object constants c¢,d, ..., object variables
x,Y,.... Bach predicate is assigned a positive natural number as its arity. If P is an
n-ary predicate and tq,...,t, are variables and/or constants then P(t,...,%,) is an
atomic formula. Non-atomic formulas are from atomic ones using connectives —,—
and the universal quantifier V : if ¢, are formulas and = is an object variable then
@ — 1, mp, (Ya)p are formulas. The variable x is bound in (Va)p; other variables
are free/bound in ¢ iff they are free/bound in (Va)p. A variable is free/bound in —¢
iff of is such in ¢; it is free/bound in ¢ — ¢ iff it is such in ¢ or in . A formula is
closed of it has no free variable.

Other connectives are introduced as abbreviations as in propositional quantifier;
the existential quantifies 3 is defined thus: (Jx)p abbreviates =(Va)—¢.

An interpretaion of a language L is given by the following:

e a non-empty domain M,

e for each n-ary predicate P, an n-ary relation rp C M"™ (set of n-tuples of elements

of M)

e for each constant ¢, an element m, € M.

The interpretation is witnessed if each element m € M is the meaning of a constant
¢, m = me. (This can be achieved by extending the language by some additional
constants.) For each closed formula ¢ and each interpretation

M = <M7 (TP)P predicates (mc)c constant >7

The truth value of p in M is defined as follows:

o If P(c,...,d) is a closed atomic formula then || P(e,...,d)||lm= 1 iff
(Mey...,mq) € rp (the tuple of meanings of ¢,...,d is in the relation r, which is
the meaning of P); otherwise || P(c,...,d)|m= 0;

o o= dlm=llellm= ¢lm, [[melim= (=) [[¢llm;

o | (Va)e |[m= min. || ¢(c) ||m, where p(c) results from ¢ by substituting the
constant ¢ for (free occurences of) x.

We write M |= ¢ for ||¢|lm= 1 and read: ¢ is true in M. If ¢ is not closed then
M = ¢ means that M | (Vaq) ... (Ya,)e, where 4,...x, are the variables free in ¢.
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A theory is a set of formulas (special axioms). M is a model of a T if each ¢ € T
is true in M.

Logical axioms: axioms of classical propositional calculus plus
(A1) (Va)p — (1)

where t is either a constant or an object variable free for = in ¢ (this is a simple
condition preventing “clash of free and bound variables”) - the substitution axiom,
(A2) (Vo) — ¢) — (v — (F2)p)

where v is a formula in which = is not free.

Deduction rules: Modus ponens and generalization: from ¢ derive (Va)e.

A proofin a theory T is a sequence ¢1,. .., p, of formulas (not necessarily closed)
such that each ¢, either is a logical axiom or belongs to T' (is a special axiom) or
results from some previous formulas(s) using one of the deduction rules. A formula ¢
is provable in T (notation: T F ) if ¢ is the last member of a proof in 7.

Godel’s completeness theorem: T &= o iff ¢ is true in each model of T'. In particular,
@ is a tautology (true in all interpretations) iff F ¢ (¢ is provable using only logical
axioms).

3.2 The basic many-valued predicate logic

A predicate language consists of predicates P, (), ..., each together with its arity and

object constants. c,d,.... Logical symbols are object variables x,vy,..., connectives

b
&, —, truth constants 0,1 and quantifiers V,3. Other connectives (A, V, =, =) are
defined as in propositional calculus. Terms are object variables and object constants.

Atomic formulas have the form P(t1,...,t,) where P is a predicate of arity n and
t1,...,t, are terms. If @, are formulas and = is an object variable then ¢ — 1,
e&rb, (Va )b, (Fx)p, 0, 1 are formulas; each formula results from atomic formulas by

iterated use of this rule.

Let J be a predicate language and let L be a regular residuated lattice. An L-
structure M = (M, (rp)p, (m.).) for J, M # (), for each n-ary predicate P a L-fuzzy
n-ary relation rp : M"™ — L on M and for each object constant ¢, m. is an element of
M.

An M-evaluation of object variables is a mapping v assigning to each object variable
x an element v(x) € M. Values of terms and formulas are defined as follows: |||/, =

o(@); llellare = me.

1Pt s t)llfr, = rollltallare, - el );

le = ¢l = llellin. = 190

lo&eib|lir, = el * 1211703

101 a7,05 [[1][az,05

(Ve )llir, = inf{llolliglv = 0');

132) el 31,0 = supdllellirlv =- v}

provided the infimum/supremum exists in the sense of L;
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The structure M is L-safe if all the needed infima and suprema exist, i.e. Hc,oH%h]
is defined for all ¢, v

llellar = inf{||¢]|me] v M — evaluation}.

A formula ¢ of a language J is an L-tautology if |||l = 11, for each safe L-
structure M.

The following are logical axioms on quantifiers:
(V1) (Va)p(x) — @(t) (¢ substitutable for « in p(x))
(31) p(t) — (Fx)e(x) (¢ substitutable for x in p(x))
(V2) (Va) (v — ¢) = (¥ — (Ya)p) (z not free in v)
(32) (Va)(¢ — v) — ((Fx)p — v) (x not free in v)
(V3) (Va)(r V) — (v V (Va)p) (x not free in v)

The predicate calculus CV (over a given predicate language J) has the following
axioms:

o all formulas resulting from the axioms of C by substituting arbitrary formulas of
J for propositional variables, and

e the axioms (V1),(v2),(31),(32), (V3) for quantifiers

and deduction rules
e modus ponens (from ¢, ¢ — @ infer ) and

e generalization (from ¢ infer (Va)e).

In particular, we are interested in BLY and three stronger logics: LV (Lukasiewicz),
GY (Godel), IIV (product). Also note in passing that if C is the classical propositional
calculus (as described above) then in CV the axioms (¥3),(31),(32) are redundant
(provable from the rest); (V1),(V2) are the usual axioms of the classical predicate
logic.

The axioms (¥1)—(V3), (31)-(32) are L-tautologies for each regular residuated lat-
tice L.

(Soundness of provability.) Let C be a schematic extension of BL, let T' be a theory
in the language of T over CV, let ¢ be a formula of T. If T'F ¢ (¢ is provable in T')
then ||p||%; = 1 for each C-lattice L and each L-model M of T,

Let ¢ be an arbitrary formula, v a formula not containing = freely. Then BLV
proves the following:

(1) (Vo) (v — ¢) = (v = (Vo)p)
(2) (Va)(p —v) =((Be)p = v)
(3) B2)(v — w) = (v = (32)p)
(4) F2)(p = v) = (Va)p — v)

The converse implications in (3), (4) are not provable in BL. We shall see later that
neither of them is a tautology of GY; the converse of (3) is but the converse of (4) is
not a tautology of 11V; and both converses are tautologies of LV.
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For arbitrary formulas ¢, 1, BLV proves the following:

(5) (V& )(p = ¢) = (Ve)p — (Vz)i)

(6) (V2) e — ) — ((3o)p — (3u))

(1) (V)ple(30)) — (32) (o)

For arbitrary ¢ and for v not containing z freely, BLY proves
(9) (Fe)(pler) = ((Fr)pler),

(10) (Fz)(wplep) = ((Fz)p&(Fx)p).

BLYV proves the following:

(11) (Be)g — (V)¢

(12) ~(30)p — (Vo)

Completeness. Let T be a theory over CV.

(1) T is consistent if there is a formula ¢ unprovable in 7.
(2) T is complete if for each pair ¢, 1 of closed formulas, T F (¢ — ¥)or T F (¢b — o).

(3) T'is Henkin if for each closed formula of the form (Va)p(x) unprovable in T there
is a constant ¢ in the language of T' such that ¢(¢) is unprovable in 7.

3.3 Lukasiewicz predicate logic

LY proves

Bep) = (Vo).
(Vo )(pdev) — ((Va)plov).
Axioms (31)(32)(V3) are redundant (provable from the others).
Lemma. LV proves the following:
(v — (o)) — (Go)(v — o),
(V2)p — ) = B)lp = »).
Theorem. There is no recursive axiomatic system complete with respect to LV-
tautologies (over [0,1] ). Moreover, the last set is Il;-complete.[34, 35, 40]

3.4 Rational Pavelka quantification logic

We extend Lukasiewicz predicate logic by propositional constants 7 for each rational
r € [0,1]; for each M, ||7||pg = r- The azioms of RPLV are those of RPL plus (Al),
(A2) from 3.1 plus

We introduce (@,r) as abbreviation of (T — ) as above; given a theory T, we
define the provability degree and truth degree as above:

[olr=sup{r | T'F (r = ©)},
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l¢lly = inf{ll [l | M amodel of T'}.

(We should say that for a non-closed ¢, || ¢ ||ps is defined as
| (Va,) ... (V)¢ analogously as above; M is a model of T' if || ||y = 1 for each
pel.

We have the following Pavelka-style

Completeness theorem (see [16]). For each theory T" and formula ¢,

lelly =lelr,

i.e. the truth degree equals the provability degree. Let T' be a recursive theory. For
each positive r € [0, 1], the set Pr(T,r) of all ¢ such that | ¢ |[p> r is Ily; there is a
recursive theory T such that Pr(T,1) is lly-complete. (See again [16].

Thus RPLY is an elegant fuzzy predicate calculus with truth degree equal to prov-
ability degree; on the other hand, it badly undecidable. For details see [16] and its
predecessors, in particular, [28].

3.5 Godel predicate logic

This logic is, in contradistinction to Lukasiewicz logic, recursively axiomatizable.

One extends the notion of a language to contain propositional variables, thus:
atomic formulas are either of the from P(s,...,t) when s,..., are object variables or
object constants or just z where z is a propositional variable. An other formulas are
built using connectives —, =, A,V and quantifiers V, 3. An interpretation has the form

M = <M7 (TP)P predicates (mc)c constant (tz)z prop.var>

where for each propositional variable z,1,, € [0, 1] (a truth-value).
Clearly, || z ||y = 23 || @], for other formulas is defined in the obvious way, using
truth functions of Godel logic,

(I132)¢ ln = sup [ (e) llng)-

Logical axioms are those of Gddel propositional logic (see 2.5) plus the axioms
(V1),(¥2),(¥3),(31),(32) of BLV (see above) Deduction rules are modus ponens and
generalization. The logic is sound in the following sense: if T' = ¢ then for each M
there is a conjunction « of finitely many elements of 7" such that || a||; < || ¢]lp- It
follows that if all axioms of 1" are 1-true in M (||a||py = 1) and T'F @ then ||¢ ||y =1
too. Moreover, if M is such that ||« |ly; > 7 for some r and all @« € T"and if T'F ¢
then || g = -

Completeness T' = ¢ iff for each M there is a conjunction « of finitely many
elements of 1" such that ||« ||y < || ¢l In particular, ¢ is a 1-tautology (|| ¢ ||y =1
for all M iff - ).

Hence, in contradistinction to Lukasiewicz predicate logic (and Rational Quan-
tification Logic), the set of all 1-tautologies of Godel predicate logic is recursively
enumerable.

18



Historical remark. Recursive axiomatizability of Godel predicate logic was first
shown by Takeuti and Titani [43] using an auxiliary deduction rule. M. Baaz showed
that the rule is superfluous (still unpublished).

We have surveyed two main systems of fuzzy predicate calculus: Lukasiewicz’s
calculus (with its extension RPLY a la Pavelka-Novak) and Godel’s calculus (a la
Takeuti-Titani). The investigation of a predicate calculus based on the product con-
junction remains to be a future task. We know that the set of 1-tautologies of IV is
not recursively enumerable; moreover, it is II,~hard.

4 General fuzzy logics

In this section we describe a very general approach to the syntax and semantics of
fuzzy logics, developed by Pavelka [32]. This approach does not assume any truth
functionality.

4.1 Formulas and models

We have a set Form of formulas. These may be formulas of some propositional logic,
predicate logic, or quite abstract entities. Semantics is given by a set & whose element
are called models. Each model is a mapping M : Form — [0, 1]; thus M assigns to
each formula the degree in which it is true (in the model).

For example, Foorm consists of formulas of Lukasiewicz propositional calculus and
S consists of all ¢ : Form — [0,1] obeying the truth functions of connectives, i.e.
e(p = ¢) = e(p) = e(¥), e(=p) = (—)e(p).

Any T : Form — [0, 1] may be understood as a fuzzy theory; T(p) is the degree in
which ¢ is an axiom. An M € S is a model of T if, for each ¢, M(p) > T(p) (each
formula is at least as true as the theory T demands).

For each fuzzy theory T and formula ¢, let || ¢ ||, = inf{M(p) | M is a model of
T } (the truth degree of ¢ for T').

4.2 Provability

We shall work with graded formulas, i.e. pairs (¢, x) where @ is a formula and = € [0, 1].

An n-ary deduction rule assigns to some n-tuples (@1, 21, . .. (¢n, ) of graded formulas
a graded formula (7'(p1,...,04), r"(x1,...,2,)) (', 7" are appropriate functions).

The function r” is assumed to preserve all (infinite) suprema, i.e. if sup,;(z,) =y
then sup,c;(r"(.. ., 2p,...) =7"(...,5Upcs Ty . . .).

For example, recall the fuzzy modus ponens in Lukasiewicz logic:

(¢, 2), (@ =, y)
(byxxy)

A theory T' is closed under the rule (r',r”) if for each tuple ¢4, ..., ¢, of formulas,
T(r'(ers-osm) 2 7" (T (1), T(pn)), e it T(i) = @i and T(r'(p1,...,0n)) =y

then from (¢1,21),..., (@n, x,) the rule derives
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(r'(@1,. . yon), (x1,...,2,)) and T demands r'(¢1,...¢,) to be at least y-true,
y > r (g, .., x)).

A deductive structure is given by a fuzzy theory A (of logical axioms) and a set R
of deduction rules. For each fuzzy theory T', there is a unique theory 17" O T such that
T 2O A and T is closed under each rule from R. T" is denoted Cnaz(T).

A graded proof in T (given A, R) is a set of graded formulas (1, 21),..., (©n,2s)
such that each (y;,x;) either is a logical axiom (A(g;) = ;) or is an axiom of
T (T(¢i) = x;) or (@i, x;) results by a rule R € R from some previous graded for-
mulas. The provability degree | ¢ |7 is sup{r | T F (¢, 2)} (where T'F (¢, x) obviously
means that (¢, z) is the last member of a proof.

The condition of sup preservation guarrantees that for each ¢
[olr= Cnas(T)(e).

The deductive structure (A, R) is sound for the semantics S if for each theory T
and each formula ¢, |¢ |r<||¢||7 (| ¢ |r being defined using (A, R), ||¢ ||z using S). It
is complete if | @ |r=|| ¢||r-

5 Equality and similarity

5.1 Classical predicate calculus with equality

Classical predicate calculus is often extended with to deal with the relation of equality.
This is achieved by introducing in the language a new predicate E of arity 2 and
adding to the axioms of classical predicate calculus (i.e. the three axioms of classical
propositional calculus plus the two axioms on quantifiers (V1) and (V2)) the following
two axioms for equality:

(E1) E(z,x)

(E2) E(z,y)— (P(...,2,...) = P(...,y,...)
where P is any predicate of the (extended) language. Then any extension of classical
predicate calculus including these axioms is called a PC system with equality. Let T
be such an extension. Then it is easy to show that T proves the following formulas
about the equality predicate:

(Va)E(x, x)

(Vo) (Vy)(E(x, y) — E(y, z))

(V) (F9)(7=) (B, ) — (E(y, ) — Bz, 2))
Thus since each of these must be true in any model of S, the predicate £ has to be
interpreted by an equivalence relation (reflexive, symmetric and transitive), but not
necessarily as an equality =. However it can be also proved that any consistent PC
system with equality has a model where F is interpreted by =.

5.2 Many-valued predicate calculi with fuzzy equality

The fuzzy counterpart of classical equivalence relations is the following notion of fuzzy
similarity relation, also known as fuzzy equality relations.
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Let W be a set and let L be a linearly ordered residuated lattice. A binary L-fuzzy
relation S on W (i.e. a mapping S : W x W — L) is a x-similarity relation if it satisfies
the following properties ([45]):

L. reflexivity: S(w,w) =1
2. symmetry: S(w,w’) = S(w', w)
3. *-transitivity: S(w,w’) * S(w',w"”) < S(w,w")

When S(W x W) = {0,1}, S is clearly an equivalence relation on W. For simplicity
we shall assume that L is the interval [0,1] with the structure given by a t-norm #* and
its residuum =-. Let us discuss our three basic t-norms:

e * = minimum: then S is a similarity relation in the sense of Zadeh [46]). Es-
pecially, each level-cut S, = {(w,w’) | S(w,w’) < a} is an equivalence relation,
and 1 — 5 defines a pseudo-ultrametric;

e + = product: this type of fuzzy relation goes back to Menger [26] and has been
studied by Ovchinnikov [30];

e « = Lukasiewicz conjunction, i.e. @ * b = max(0,a + b — 1). This type of fuzzy
relation is studied by Ruspini [38], Bezdek and Harris [2]) who call it a likeness
relation. Then 1 — S is a pseudo-metric.

A similarity in thus a notion dual to a distance. A *-similarity relation will be called
fuzzy equality if in addition it verifies the following separating property:

S(w,w') =1iff w=1w'

If S is a fuzzy equality, the 1-cut of S (that is, {(w,w’) | S(w,w’) = 1}) is just the
equality on W.

Therefore, in order to define what a many-valued logical system with equality is, it
seems natural to add the following axioms for fuzzy equality to our basic many-valued
predicate logic BLV:

(E1) E(z,x)

(E2) E(z,y)— (P(...,2,...) = P(...,y,...)
where P is any predicate.

Then, analogously to classical predicate logic, in any model of any theory of con-
taining (E1), (E2) the predicate £ must be interpreted by a fuzzy relation which must
be a *-similarity relation and moreover, the interpretations of the rest of predicates
have to be extensional [22]. Indeed, the following formulas

(Va)E(x, x)

(Vo) (Vy)(E(x, y) — E(y, z))

(V) (F9)(7=) (B, ) — (E(y, ) — B(z,2))
directly corresponding to the reflexivity, symmetry and *-transitivity properties of the
similarity relations, are also provable in any theory over BLY containing (E1) and (E2).
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Moreover, if S is the interpretation of £ and pp is the interpretation of the predicate
P (we consider P of arity 1), since (E2) is a 1-tautology, it follows that

S(a.b) < ppla) = pp(b)

that is,
pp(a) x S(a,b) < pp(b),

which is the condition for the fuzzy set up to be extensional [22], which in turn is a
generalization of the classical condition

ifae Aand a=bthen be A

for a subset A to behave well with respect to an equivalence relation =, or in other
words, the condition for A to be a union of equivalence classes.

Finally, let us mention, again analogously to the classical case, that the interpreta-
tion of the equality predicate in models of theories with equality need not be a fuzzy
equality in the above sense. However, for any consistent theory with equality there is
a model where the equality predicate is interpreted as a fuzzy equality relation. The
proof is as follows.

Let T be a consistent theory with equality over CV , and let M = (M, (rp)p, (m.).)
a model for T'. Let S = rg be the interpretation of £ in the model M. It is clear
that S must be a *-similarity relation. Define the equivalence relation on M as follows:
a ~ biff S(a,b) =1, and denote the equivalence class containing a by [a]. Now define
a new structure M’ = (M, (rp)p, (m.).), where M' = M/ ~, rp([a]) = [rp(a)] and

!

m! = [m.]. It can be checked that M’ is a model of T" and S” = r; is a fuzzy equality.

C

5.3 Similarity-based logical systems

One of the possible semantics of fuzzy sets is in terms of similarity, namely a grade
of membership of an item in a fuzzy set can be viewed as the degree of resemblance
between this item and prototypes of the fuzzy set. In such a framework, an interesting
question is how to devise a logic of similarity able to account for the proximity between
interpretations.

A variety of uncertain reasoning models has been captured in the modal framework
by equipping the set of interpretations or possible worlds with a suitable uncertainty
measure (see e.g. [15]). It is thus tempting to model similarity-based reasoning by
equipping a set of possible worlds with a proximity or generalized metric structure.

Similarity relations and fuzzy sets can be closely related. Namely let A C Q be a
non-empty subset of {. Then a similarity relation S allows us to define the non-empty
normalized fuzzy set A* of elements close to A as follows:

pax(w) = mazyeaS(w, w')

Conversely, any non-empty fuzzy set [ on ) can be viewed as deriving from a
*-similarity relation S and a subset A such that

A={w [ pp(w) =1} (#0) S(w,w') = min(pr(w) = pr(w'), pr(w') = pr(w))
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This is due to Valverde’s theorem of representation of similarity relations by fuzzy sets
[45], based on residuation. This result gives a formal justification to the fact that a
degree of membership pr(w) in a fuzzy set can be interpreted as a degree of similarity
of w to prototypes of F', which form the set A.

Moreover it points out that if ¢ is a proposition in a formal propositional language
L, of which € is the (finite) set of interpretations, then the similarity induces a fuzzy
proposition ¢* whose (fuzzy) set of models is [¢*] = [¢]*, defined by means of the fuzzy
relation S, where [¢] denotes the (classical) set of models of ¢ (the set of interpreta-
tions where ¢ is true). Intuitively ¢* means approzimately q, not far from ¢, where
“approximately”, “not far from” is mathematically expressed by the similarity relation
S.

Analogously to what we have said in the introduction on fuzziness and probability,
the similarity-based approach in the frame of truth-functional fuzzy logic has to distin-
guish between a crisp proposition ¢ and its fuzzy counterpart approzimately q, keeping
strictly in mind that approxzimately p&q, i.e. (p&q)* is not equivalent to approxzimately
p and approzimately ¢, i.e. (p*&q*). Then one may be safely truth-functional.

But our aim in this section is to describe another approach that consists in consid-
ering for eac ¢ the corresponding approzimately ¢, i.e. in defining a graded satisfaction
relation on the formulas of the original given propositional language as follows:

w =S ¢ iff ppgg(w) > a

That is, in the finite case, w ¢ ¢ if there exists a model w’ of ¢ which is a-similar
to w. In other words, w belongs to the a-cut of [¢*] that will be denoted by [¢*],. The
degree of approximate satisfaction of ¢ by w in the sense of S has been introduced by

Ruspini [39], and shall be denoted
Is(q | w) = prg(w) = mazye, S(w, w').

Note that, identifying each interpretation w of ) with the conjunction of literals made
true by w , we have that Is(w’ | w) = S(w,w’). Thus, one may have w % w’ for
w' # w. Indeed it means that w and w’ are close enough to each other in the sense
that S(w,w’) > a. Note that w % w’ is equivalent to w’ =% w since S is symmetric.

The graded satisfaction relation can be extended over a graded entailment between
(boolean) propositions in the obvious way:

p ES ¢ iff w S ¢ for each w model of p

In other words, p ¢ ¢ holds if each model of p is similar, at least to the degree
a, to some model of ¢g. An equivalent definition is p S ¢ iff Is(q | p) > «, where
Is(q | p) = mfuepls(q | w) is the Ruspini’s implication measure of ¢ given p. The
graded entailment has been characterized in terms of the following properties [4]:
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Nested: If p =% q then p =7 ¢, for 8 < a.

Extremals: pE'qiffpEqg;pE"q.

- Transitivity: If p =2 ¢ and ¢ |=° r then p =2*F r.
Left Or: pVqgE riff p E®rand ¢ E r.
Right Or: If » has a single model then

r=*pVgiffr E“porr =% g.
Consistency preservation: If p £ T then p E* T only when o = 0.
Continuity from below: If p =7 ¢ for each 3 < «a then p =2 .

One can understand this as a general fuzzy logic in the sense of Section 4. But one
has to be aware of the fact that such a logic cannot be truth-functional. Namely given
S, the truth-value evaluation Is(q | w) of ¢ associated to the interpretation w is truth-
functional neither for the negation nor for the conjunction since only the following
inequalities hold in the general case:

Is(=q [ w) =2 1= 1Is(q | w)
Is(p A g | w) < min(ls(p [ w), Is(q | w))

However for disjunction we do have that [p V ¢]* = [p]* U [¢]*, hence Is(p V ¢ |
w) = max(Is(p | w),Is(q | w)) . This fact stresses the difference between similarity
logic and many other logics underlying fuzzy sets like the truth-functional fuzzy logics
described in Section 2. This lack of truth-functionality has also been noticed in the
theory of rough sets (Pawlak, 1991). Rough sets are a theory of similarity based on
equivalence relations that handles upper and lower approximations of sets. The lack
of truth-functionality is thus not due to the fuzziness of similarity.

A natural logical setting for similarity-based reasoning is the one of modal logics
which is tailored to account for relations on the set of interpretations. The similarity
relation S can be considered as a family of nested accessibility relations R, on the set
of possible worlds € defined as wR,w' iff S(w,w") > a. Therefore, enlarging the logical
language, we can define, for each «, a pair of dual modal operators O, and <, with
the following standard semantics:

w | Oy p iff there exists w’ such that wR,w" and w' = p
w = O,p iff for every v’ such that wR,w’ then it holds w' |= p
If the similarity relation is min-transitive, i.e.

S(w,w") > min(S(w,w”), S(w”,w)),

then the accessibility relations R, are equivalence relations, and therefore, for each «,
O, and <, are a pair of dual 55 modal operators. These types of modal logics generalize
rough set logics (Orlowska, 1984) and have been studied by Nakamura (1992). It is
easy to check that the above defined graded satisfaction |=, is directly related to the
possibility operator <&, in the sense that if ¢ is a non-modal proposition, then w =, ¢
iff w = Cug.

In the following we shall describe the multi-modal system axiomatizing the graded
modal operators O, and <,.

To define the language we fix a range (¢ C [0, 1] of possible similarity values. Further
assumptions on G are that {0,1} C G and that, for the sake of simplicity, we shall
assume that G is denumerable. Then, the multi-modal propositional language is built,
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in the usual way, upon a denumerable set of propositional variables p, ¢, ..., connectives
— (implication) and — (negation), and (unary) modal operators <9 and O¢, for each
a € G. We shall use ¢, 1,... to denote arbitrary formulas. We shall also use the
classical definitions of A and V in terms of — and —, and furthermore 0% and O¢
will stand for abbreviations of =% - and —=Of =g respectively.

A similarity Kripke model is a struture M = (W, S, || ||) where:

1. W is a non empty set of possible worlds,
2. S:W x W — (G is a *-similarity fuzzy relation on W, for some t-norm % on G,

3. || || is a function that given an atomic formula p return the set ||p|| C W where
p 1s considered to be true.

The notion of a formula ¢ being true in a world w in a similarity Kripke model M
= (W, S, ||}, written (M, w) |= ¢ is defined in the usual way, except for the modal
formulas, which is defined as follows:

(M,w) | Oip il IF (¢ | w) > a
(M,w) | Oop il IH (¢ | w) > a

where the implication measure 21 is defined as follows:

I3'(¢ | w) = InfiamueeS(w,w').

Notice that &2 is a normal modal operator in the sense that it has an associated
accessibility relation R2 which provides it with the standard Kripke semantics:

(M, w) |E O%p iff (M, w') | ¢ for some w’ such that (w,w’) € RS,
where the accessibility relation R is defined as

(w,w") € R iff S(w,w') > a.

C

¢, l.e. they do not have, in general,

This is not the general case for the operators <
a corresponding accessibility relation. However they do have it whenever the sup
appearing in the expression of I3!(y | w) is reached for any A and any w, i.e. when
I$'(¢ | w) becomes max(p,uwyzyS(w,w'). In particular, this is the case when either
the range (i is finite or the set of possible worlds W is finite.

Given a range (¢ and a t-norm operation * on (, the class of structures C% is the
set of similarity structures M = (W, S, || ||) where S is a (G, *)-similarity on W. The
notation FCS will denote the subclass of C& consisting of similarity structures with a
finite set of worlds W.

The basic similarity multi-modal logic MS5(G, *) is the smallest set of sentences
containing every instance of the following axiom schemes and closed under the last two
inference rules:
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PL:  Propositional tautologies

Ko By =) = (Bhp — OY), Va e G
Koo (e =) = (Bhp — O0Y), Va e G
Te: 0o — ¢, Vae G

Be: o — 0000, Va el

4¢: OS50 — 03050, Va € G
Ne¢: D399—>Dﬁ<p, for § > «a,
EXc: Ofe,

EXo: =0,

CO: Dcc,o—>D v, Va e G
OC:  O%p — Ogp, for a < j,

RN?: From ¢ infer 0%, Va € (¢
MP: From @ and ¢ — 1 infer

Schemes K*, T', B' and 4°, where i is either ¢ or o, are direct counterpart, for
the graded modal operators, of the well-known axioms of the classical S5 modal logic.
Scheme C'° corresponds to the fact that, under the assumption of finite range G or
finite set of worlds W, I (¢ | w) = 1 only if ¢ is true in w. Schemes N’ stand
for the nested properties of the graded modal operators, while schemes EX* set up
the extremal conditions for them. Finally, schemes OC and C'O establish the obvious
relations between strict and non-strict inequalities.

It is very easy to check that MS5(G,*) is sound with respect to the class of
structures C&, for any GG and *. The question whether, in general, MS5(G, *) has not
been addressed yet. However there is completeness in the following particular cases.

1. For any finite range (7, the system MS5% (G, %) obtained from MS5(G, ) by

adding the axiom:
C° o — Ofp.
is complete with respecte to the class of similarity models CY.
2. For any dense range (7, and * = minimum, the system MS57+ (G, min) obtained
from MS5(G, min) by adding the axioms:

Be: o — 0050, for a >0
C°: ¢ — Ofp, and
47 oz/\ﬁg‘o — 03 Dag‘ov Va S G7

is complete with respect to the class of similarity models FC% . .

Remark that, for the case of (¢ being finite, one can define the set of open modal
operators {02 },ci in terms of the closed ones {O%},cn, and therefore the system
MS5% (G, x) admits the following much simpler axiom system:
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PL: Tautologies of propositional logic,

K: Oa(p = ¥) = (Oap — Dath),
T:  Oap— e,

B: © — 0,040,

4: Da*g@ - DﬁDaS‘Qv

C: A — Oy,

N: Oap — Opp, with 3 > a,
EX: <>0g0,

where we have written O, for O,

As a kind of final remark, notice that it is clear that the similarity-based graded
entailment relation =% introduced at the beginning of this section is fully captured
inside the multi-modal systems. Namely, given a *-similarity S on the set of interpre-
tations () of the propositional sublanguage, if ¢ and ¥ are non-modal formulas, then
we have that

P S i Me =@ — O,
where M = (€, 5, |[).

6 Conclusion
We hope that we have shown the following:

o Fuzzy logic is neither a poor man’s logic nor poor man’s probability. Fuzzy logic
(in the narrow sense) is a reasonably deep theory.

o [uzzy logic is a logic. It has its syntax and semantic and notion of consequence.
It is a study of consequence.

o There are various systems of fuzzy logic, not just one. The main two most
developedp systems are those of Lukasiewicz and of Godel, the first together
with its extension a la Pavelka.

In addition, we claim the following:

o [urther logical investigations of fuzzy logic are possible. In particular, one has
to apply the theory of generalized quantifiers to fuzzy logic and go further in a
strictly logical analysis of things pointed out by Zadeh as “particular agenda of
fuzzy logic”. Cf also [5].

o To construct combined caleuli of vagueness and of uncertainty is possible. See
[19, 20] for information; one gets many-valued modal logics.

o [uzzy logic in the narrow sense is a beautiful logic, but also is important for
applications: 1t offers foundations.
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