
Interactive System for Universal Functional Optimization (UFO) - Version 1996

Lukšan, Ladislav
1996

Dostupný z http://www.nusl.cz/ntk/nusl-33692

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 28.09.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33692
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Prague

Interactive System for Universal Functional
Optimization �UFO� � Version ����

L� Luk�san� M� T�uma� M� �Si�ska� J� Vl�cek� N� Rame�sov�a

Technical Report No� V����

December ����

This work was supported under the grant ����������� given by the Czech Republic Grant Agency

Akademie v�d �esk� republiky

�STAV INFORMATIKY A V�PO	ETN
 TECHNIKY

Institute of Computer Science� Academy of Sciences of the Czech Republic

Pod vod�renskou v��� 	�
�	 � Prague �� Czech Republic

E�mail� ICS�uivt�cas�cz

Fax� ���		� ������ Phone� ���		� ������� ���		� ����

Contents

�� Introduction to the UFO system �
���� Philosophy of the UFO system �
���� Execution of the UFO system �
���� Input language ��
���� Problem description and method selection using the input language ��
���� The UFO environment ��

�� Problems solved using the UFO system �	
���� Speci
cation of variables ��
���� Speci
cation of the model function �dense problems� ��
���� Speci
cation of the model function �sparse problems� ��
���� Objective functions for discrete approximation ��
���� Speci
cation of the approximating functions �dense problems� �
���� Speci
cation of the approximating functions �sparse problems� �	
��� Objective functions for optimization of dynamical systems ��
���� Speci
cation of the state functions ��
��	� Speci
cation of the initial functions ��
�����Speci
cation of the subintegral function ��
�����Speci
cation of the terminal function ��
�����Optimization with general constraints ��
�����Speci
cation of the constraint functions �dense problems� ��
�����Speci
cation of the constraint functions �sparse problems� �
�����Additional speci
cations concerning optimization problems �	

�� Optimization methods in the UFO system ��
���� Heuristic methods ��
���� Conjugate direction methods ��
���� Variable metric methods ��
���� Modi
ed Newton methods ��
���� Modi
ed Gauss�Newton methods for nonlinear least squares and nonlinear equations � � � � � � � � � � �
���� Quasi�Newton methods for nonlinear least squares and nonlinear equations ��
��� Quasi�Newton methods with limited storage for nonlinear equations ��
���� Biconjugate direction methods for nonlinear equations ��
��	� Modi
ed Brent method for nonlinear equations ��
�����Methods for linear programming problems ��
�����Methods for quadratic programming problems ��
�����Proximal bundle methods for nonsmooth optimization ��
�����Bundle�Newton methods for nonsmooth optimization ��
�����Methods for minimax problems ��
�����Recursive quadratic programming methods for nonlinear programming problems � � � � � � � � � � � � � � ��
�����Recursive minimax optimization methods for nonlinear programming problems � � � � � � � � � � � � � � � � �
����Inexact recursive quadratic programming methods for large sparse equality constrained

nonlinear programming problems �
�����Methods for initial value problems for ordinary di�erential equations ��
���	�Methods for direction determination �	
�����Methods for stepsize selection ��
�����Methods for numerical di�erentiation ��
�����Methods for objective function evaluation in the case of dynamical systems optimization � � � � � � ��
�����Global optimization methods ��

�

�� Output speci
cations in the UFO system ��
���� Basic screen output ��
���� Extended screen output ��
���� Graphical screen output �
���� Text
le output �
���� User supplied output �
���� Storing
nal results �
��� Tracing in the UFO control program �
���� Error messages �

�� Special tools of the UFO system �
���� Checking external subroutines �
���� Testing optimization methods �

�� Applications of the UFO system �examples� �
���� Optimization with simple bounds �
���� Minimization of the sum of squares � 	
���� Minimax approximation ��
���� Nonsmooth optimization ��
���� Optimization with linear constraints ��
���� Minimax approximation with linear constraints ��
��� Optimization with nonlinear constraints �nonlinear programming� ��
���� Global optimization ��
��	� Large�scale optimization �sparse Hessian matrix� �	
�����Large�scale optimization �sparse Jacobian matrix� 	�
�����Large�scale sum of squares optimization �sparse Jacobian matrix� 	�
�����Large�scale nonlinear equations � 	�
�����Large�scale linear programming � 	�
�����Large�scale quadratic programming � 	�
�����Large�scale optimization with linear constraints � 		
�����Large�scale optimization with nonlinear equality constraints ���
����Optimization of dynamical systems � general integral criterion ���
�����Optimization of dynamical systems � special integral criterion ��
���	�Initial value problem for ordinary di�erential equations ���

� Model examples for demonstration of graphical output ���
��� Nonlinear regression ���
��� Nonlinear minimax optimization ���
��� Transformer network design ���
��� Global optimization ���
��� Nonsmooth optimization ���
��� Nonlinear equations ���
�� Ordinary di�erential equations ��
��� The Lorenz attractor ���

References ��	

Appendix� Graphical screen output ���

�

�� Introduction to the UFO system

The universal functional optimization �UFO� system is an interactive modular system for solving both
dense medium�size and sparse large�scale optimization problems� The UFO system can be used for the
following applications�

�� Formulation and solution of particular optimization problems that are described in chapter ��

�� Preparation of specialized optimization routines �or subroutines� based on the methods described
in chapter ��

�� Design and testing new optimization methods� The UFO system is a very useful tool for optimiza�
tion algorithms development�

The special realization of the UFO system� which is described in the subsequent text� makes this
system portable and extensible and we continue with its further development�

�
� Philosophy of the UFO system

The UFO system is an open software system for solving a broad class of optimization problems� An
optimization problem solution is processed in four phases� In the
rst phase the optimization problem is
speci
ed and an optimization method is selected� This can be made in three di�erent ways�

�� The full dialogue mode� The problem speci
cation and the method selection are realized using a
conversation between the user and the UFO system�

�� The batch mode� The problem speci
cation and the method selection are realized using the input
language� An input
le� written in the input language� has to be prepared and stored�

�� The combined mode� Only the part of the speci
cation is written in the input
le� The rest of the
speci
cation is obtained as in the dialogue mode� This possibility is usually the best one since the
problem functions can be de
ned beforehand using a convenient text editor�

The second phase is realized using the UFO macroprocessor� This macroprocessor is written in the Fortran
 language and its output is a Fortran control program� This conception is very advantageous for
the following reasons�

�� The Fortran �full ANSI norm� is a su�ciently high and portable programming language� More�
over� this language is very suitable for numerical computations� and a broad class of subroutines is
available in this
eld�

�� A control program� generated by the UFO macroprocessor� calls for necessary modules only and
its speci
cation is very easy� Moreover� control program global declarations are determined by
the problem size� which decreases storage requirements� This way overcomes an impossibility of
dynamical declarations in the Fortran language�

�� The UFO system is open� When a new class of optimization problems or optimization methods
have to be included� one only needs to change the system templates and prepare new modules� The
control program is composed of individual modules by using speci
cations in the
rst phase� This
fact allows us to create a great number of various optimization methods�

In the third phase� the control program is translated by using a Fortran compiler and a
nal program
is linked by using library modules� In the fourth phase� a
nal program is executed and results which
can be viewed by using extensive output means are obtained�

The above conception is enabled by a special form of source modules� These modules usually consist
of two parts� the interface template and the Fortran realization� The interface template is used by the

�

UFO macroprocessor only and it serves for the control program generation �the part of control program
corresponding to a given module is coded in the template�� These templates also contain knowledge
bases for an automatic selection of the optimization method� If the UFO system has to be extended then
usually only templates� which need not be compiled� are changed� Besides interface templates� which
are a part of source modules� special templates controlling the UFO macroprocessor exist� An input
le
written in the input language is one of these special templates�

The UFO macroprocesor works with two stages� In the
rst pass� the
le P�TMP is created� This
le
is a control program ancestor containing some macroinstructions and macrovariables which are replaced
in the second pass� The control program P�FOR is the result of the second pass�

�	� Execution of the UFO system

The UFO system contains three basic procedures GENER�BAT� UFOGO�BAT and COMPIL�BAT�
The UFO macroprocessor is called if the statement

GENER input name

is typed� Then the control program� which has to be compiled and loaded using the procedure COM�
PIL�BAT� is obtained� Furthermore� all the UFO system phases are performed if the statement

UFOGO input name

is typed� Finally� the compilation of the control program P�FOR� which was obtained by the procedure
GENER�BAT� followed by its loading and executing is started if the statement

COMPIL output name

is typed� Here input name is the
rst part of the batch
le name that is used as an batch input for
the control program generation and output name is the
rst part of the text
le that is used as an text
output from the UFO system� The batch
le name must always have the form input name�UFO with
the extension UFO and the text
le name must have the form output name�OUT with the extension
OUT� If GENER� UFOGO statements do not contain batch
le speci
cation then a full dialogue mode
is considered �the batch
le name is STANDARD�UFO in this case�� If COMPIL statement does not
contain text
le speci
cation then the standard text
le name is P�OUT� The UFOGO statement has the
same meaning as the two statements GENER and COMPIL�

First we show how the full dialogue mode proceeds� We suppose that the model function has the form

fF �x� � ����x�� � x��
� � �x� � ���

�the Rosenbrock function� and the starting point is x� � ���� and x� � ���� If we type the statement
UFOGO �without batch
le speci
cation�� then the following questions appear� These we supplement
together with answers�

�

UFO PREPROCESSOR V�����

AND OTHER INPUT DATA HAVE TO BE SPECIFIED�

TYPES OF CONSTRAINTS� THE STRUCTURE OF SPARSE PROBLEM�

HERE THE STARTING POINT� BOUNDS FOR VARIABLES�

USER SUPPLIED INPUT�

� INPUT � 	 �

X��	
 ����D� X��	
 ��D
� MODEL �FF	 �

TYPE OF OBJECTIVE FUNCTION

FF � GENERAL FUNCTION

FL � LINEAR FUNCTION

FQ � QUADRATIC FUNCTION

AF � SUM OF FUNCTIONS

AQ � SUM OF SQUARES

AP � SUM OF POWERS

AM � MINIMAX

DF � DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION

DQ � DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO � MODEL IS NOT SPECIFIED

� NF �	 �

NUMBER OF VARIABLES

�
� IEXT �	 �

TYPE OF EXTREMUM

 � MINIMUM

� � MAXIMUM

� FMODELF ��	 �

MODEL OF OBJECTIVE FUNCTION

FF
 �FORTRAN EXPRESSION�

FF
 ��D���X��	��� � X��		��� � �X��	 � ��D	���

�

GF�NF	
 �FORTRAN EXPRESSION�

�

�

GF��	
 �FORTRAN EXPRESSION�

GF��	
 �FORTRAN EXPRESSION�

MODEL OF GRADIENT OF OBJECTIVE FUNCTION

� GMODELF ��	 �

HF�M	
 �FORTRAN EXPRESSION�

�

�

HF��	
 �FORTRAN EXPRESSION�

HF��	
 �FORTRAN EXPRESSION�

MODEL OF HESSIAN MATRIX

� HMODELF ��	 �

� KCF ��	 �

COMPLEXITY OF THE OBJECTIVE FUNCTION

� � EASY COMPUTED FUNCTION

� � REASONABLE BUT NOT EASY COMPUTED FUNCTION

� � EXTREMELY COMPLICATED FUNCTION

� KSF ��	 �

SMOOTHNESS OF THE OBJECTIVE FUNCTION�

� � SMOOTH AND WELL�CONDITIONED FUNCTION

� � SMOOTH BUT ILL�CONDITIONED FUNCTION

� � NONSMOOTH FUNCTION

� HESF �D	 �

TYPE OF HESSIAN MATRIX�

D � DENSE

S � SPARSE WITH KNOWN �GENERAL	 STRUCTURE

NO � HESSIAN MATRIX IS NOT USED

� KBF �	 �

TYPE OF SIMPLE BOUNDS�

 � NO SIMPLE BOUNDS

� � ONE SIDED SIMPLE BOUNDS

� � TWO SIDED SIMPLE BOUNDS

�

� KBC �	 �

TYPE OF GENERAL CONSTRAINTS�

 � NO GENERAL CONSTRAINTS

� � ONE SIDED GENERAL CONSTRAINTS

� � TWO SIDED GENERAL CONSTRAINTS

� EXTREM �L	 �

TYPE OF OPTIMIZATION

L � LOCAL OPTIMIZATION

G � GLOBAL OPTIMIZATION

� NORMF �	 �

SCALING SPECIFICATION FOR VARIABLES�

 � NO SCALING IS PERFORMED

� � SCALING FACTORS ARE DETERMINED AUTOMATICALLY

� � SCALING FACTORS ARE SUPPLIED BY USER

� INPUTDATA �NO	 �

READ INPUT VALUES OF X �YES OR NO	

� TEST �NO	 �

STANDARD TEST OF EXTERNAL SUBROUTINES�

NO � NO TEST

YES � PERFORM TEST AND CONTINUE

ONLY � PERFORM ONLY TEST

� GRAPH �NO	 �

SPECIFICATION OF GRAPHICAL OUTPUT

NO � GRAPHICAL OUTPUT SUPPRESSED

YES � GRAPHICAL OUTPUT REQUIRED

� DISPLAY �NO	 �

SPECIFICATION OF EXTENDED SCREEN OUTPUT

NO � EXTENDED SCREEN OUTPUT SUPPRESSED

YES � EXTENDED SCREEN OUTPUT REQUIRED

� KOUT �	 �

LEVEL OF TEXT FILE OUTPUT�

ABS�KOUT	
 � NO PRINT OR PAPER SAVING PRINT

ABS�KOUT	
� � STANDARD PRINT OF ITERATIONS

ABS�KOUT	
� � ADDITIONAL PRINT OF STEPSIZE SELECTION

ABS�KOUT	
� � ADDITIONAL PRINT OF DIRECTION DETERMINATION

AND VARIABLE METRIC UPDATE

ABS�KOUT	
� � ADDITINAL PRINT OF CONSTRAINT HANDLING

ABS�KOUT	
� � ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION

KOUT� � ADDITIONAL PRINT OF DATA AND OPTIONS IN THE HEADING

� LOUT ��	 �

LEVEL OF TEXT FILE OUTPUT�

 � NO PRINT

� � COPY OF THE BASIC SCREEN OUTPUT

�� � PAPER SAVING PRINT

� MOUT ��	 �

LEVEL OF BASIC SCREEN OUTPUT�

ABS�MOUT	
 � NO OUTPUT

ABS�MOUT	
� � FINAL OUTPUT

ABS�MOUT	
� � ADDITIONAL OUTPUT IN EACH ITERATION

ABS�MOUT	
� � ADDITIONAL FINAL OUTPUT OF LINEAR OR

QUADRATIC PROGRAMMING

ABS�MOUT	
� � ADDITIONAL OUTPUT IN EACH ITERATION

OF LINEAR OR QUADRATIC PROGRAMMING

MOUT� � FINAL OUTPUT WITH TERMINATION CRITERION

� NOUT �	 �

LEVEL OF BASIC SCREEN OUTPUT�

 � BASIC FINAL OUTPUT

� � EXTENDED FINAL OUTPUT

�
� MSELECT ��	 �

SELECTION OF OPTIMIZATION METHOD

� � AUTOMATICAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS

� � MANUAL SELECTION OF METHOD AND ALL PARAMETERS

SPECIFIC OUTPUT�

CAN BE USED FOR ADDITIONAL COMPUTATIONS AND FOR A

HERE THE RESULTS OBTAINED IN THE OPTIMIZATION PROCESS

USER SUPPLIED OUTPUT�

� OUTPUT � 	 �

� OUTPUTDATA �NO	 �

WRITE OUTPUT VALUES OF X �YES OR NO	

UFO PREPROCESSOR STOP

Each question is represented by one frame that contains the contents of the question �name of the
macrovariable which has to be de
ned�� the default value �in the brackets� and an explanation of the
requirement� If no default value is wanted then the corresponding value or text has to be typed� The
dialogue can be ended by pressing the key �� � �

The result of the UFO macroprocessor action is the following control program �reported in a slightly
shortened form� consisting of global declarations� input speci
cations� problem de
nition� method real�

�

ization and control variables adjustement�

�

� �������������������

� GLOBAL DECLARATIONS

� �������������������

�

INTEGER ITIME

INTEGER IX���

REAL�� UXVDOT

REAL�� GF���

REAL�� X���

REAL�� HD���

REAL�� HF��������	��

REAL�� S���

REAL�� XO���

REAL�� GO���

INTEGER IMB

�

� commons placed here were omitted

� since they require a large space

�

CALL UYCLEA

�

� �������������������

� END OF DECLARATIONS

� �������������������

�

CALL UYINTP

�

� ����������

� METHOD ���

� ����������

�

CALL UYINT�

X���
����D�

X���
���D�

M
NF��NF���	�

CALL UYTIM��ITIME�

CALL UYCLST

NDECF
�

CALL UO�FU�

����� CONTINUE

CALL UYPRO��UXFU���

CALL UYPRO�

����� CONTINUE

����� CALL UF�F���GF�GF�

GOTO ������������������� ISB��

����� CONTINUE

ASSIGN ����� TO IMB

����� CONTINUE

	

NFV
NFV��

FF
���D���X�������X���������X�������D�����

GOTO IMB

����� CONTINUE

IF�TSS�NS��EQ�UFXX� GOTO �����

����� CONTINUE

CALL UF�GS��X�IX�X�GF�HD�

GOTO ������������� ISB��

����� CONTINUE

IF�TSS�NS��EQ�UXFV� GOTO �����

IF�TSS�NS��EQ�UUXX� GOTO �����

IF�TSS�NS��EQ�UXFU� GOTO �����

GOTO �����

����� CONTINUE

CALL UYTRUG�X�GF�GF�

CALL UO�FU��X�GF�HF�X�X�

CALL UYFUT�

IF�ITERM�NE��� GOTO �����

����� CONTINUE

CALL UUDSD��HF�

GOTO ������������� ISB��

����� CONTINUE

IF�ITERM�NE��� GOTO �����

CALL UYCPSD�IX�HF�HD�

CALL UYTRUH�X�HF�

CALL UDDLI��HF�GF�S�

CALL UD�TL��GF�S�

IF�ITERM�NE��� GOTO �����

IF�IREST�NE��� GOTO �����

CALL UYTRUS�X�X�XO�GF�GO�S�S�

����� CONTINUE

CALL US�L��

GOTO ������������� ISB��

����� CONTINUE

CALL UXVDIR�NF�R�S�XO�X�

GOTO �����

����� CONTINUE

IF �ITERS�LE��� THEN

CALL UYZER��X�XO�

IF�IDIR�EQ��� THEN

CALL UYRES��TSXX�

CALL UYSET�

GO TO �����

ELSE IF �MOT��EQ��� THEN

CALL UYSET�

GO TO �����

ELSE

ITERD
�

ENDIF

ENDIF

IF�KD�GT�LD� THEN

TSS�NS�
UXFV

��

GO TO �����

ENDIF

����� CONTINUE

TXFU
TUXX

CALL UYUPSD�X�IX�XO�GF�GO�HD�

CALL UYTRUD�X�X�XO�GF�GO�

CALL UUDBI��HF�S�XO�GO�

IF�IDIR�EQ��� THEN

IF�ITERH�NE��� CALL UYRES��UPDATE �

GOTO �����

ELSE

GOTO �����

ENDIF

����� CONTINUE

IF�ITERM�LT��� TXFU
TDXX

CALL UYEPI����

CALL UO�FU��X�X�X�X�

�

� �����������������

� END OF METHOD ���

� �����������������

�

CALL UYTIM��ITIME�

END

�

� ������������������������

� INITIATION OF METHOD ���

� ������������������������

�

SUBROUTINE UYINT�

�

� commons placed here were omitted

� since they require a large space

�

REAL�� XDELS�RPF�S�RPF�S�RPF�S�RGF�S�RGF�S�RGF�S

COMMON	UMCLST	 XDELS�RPF�S�RPF�S�RPF�S�RGF�S�RGF�S�RGF�S

ETA�
���D���

ETA�
���D ��

ITR
�

IRD
�

IWR
�

�

� many other assignments follows which were

� omitted since they require a large space

�

END

�

� ���������������������

� INITIATION OF PROBLEM

� ���������������������

�

SUBROUTINE UYINTP

��

�

� commons placed here were omitted

� since they require a large space

�

NF
�

IEXT
�

KCF
�

KSF
�

KBF
�

KBC
�

NORMF
�

KDF
�

KDA
��

KDC
��

KDE
��

KDY
��

END

� �����������

The results �screen output� obtained using this control program have the following form�

� NIT
 �� NFV
 ��� NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

FF
 �����������D���

X
 �����������D��� �����������D���

TIME
 ����������

Besides a dialogue� we can use the batch
les written in the input language� This possibility will be
explained in section ���� Here we note that a certain experience can be obtained using the demo�
les
PROB���UFO�� � �� PROB�	�UFO� These demo�
les contain �	 test problems described in chapter �� We
can solve them using the statements UFOGO PROB���� � �� UFOGO PROB�	�

��� Input language

The form of the control program is determined using statements of the input language� The UFO
system input language is based on the batch editing language �BEL� ����� and it contains three types of
instructions�

�� Standard Fortran instructions which can be written in the free format�

�� Fortran instructions containing macrovariables� These instructions get a
nal form after the
rst
pass of the UFO macroprocessor�

�� Special macroinstructions� These macroinstructions control the UFO macroprocessor execution�

Standard Fortran instructions used in the input language have some extensions and limitations�
The main extension is the free format� The instructions do not have a limited length� they can be written
everywhere in the input
le and if they are written in the same line then the character ��� is used to
separate the instructions� The continuation of an instruction is speci
ed by the character �� �� The main
limitation concerns the placement of instructions in the control program� Therefore greater statement
numbers then 				 cannot be used� comments can be introduced by the character ��� only and the only
continuation character can be �� �� Also� it is recommended to use identi
ers beginning with the character
�W� which are not used in the UFO system

Macrovariables used in the UFO system begin with the character ��� and they are supposed to be of
the type character� Their contents are always in the form of a string which can be sometimes interpreted

��

as an integer� The chief signi
cance of the macrovariables is their use in substituting their contents for
their names in the Fortran statements� In this case we place the macrovariable �beginning with ����
in the text� but if it is followed by a letter or digit we have to use brackets� For example if we write

�FLOAT W�����
or

CALL UD�HESF�TYPE�DECOMP�NUMBER
or

X���������P��

and if the contents of �FLOAT� �HESF� �TYPE� �DECOMP� �NUMBER and �P are �REAL��� �it is
standard�� �D�� �L�� �G� ��� and �D� �it is standard� then we get REAL�� W����� or CALL UDDLG� or
X�������D� respectively after the UFO preprocessor application� The contents of macrovariables can be
de
ned by substitutions as will be shown later�

The macroinstructions are very important for the input language since they make the substitution of
texts� change of macrovariables� branching� loops� etc�� possible� We brie�y describe the most useful of
them� The more detailed description is given in ������

�� Substitution� The substitution of a string for a macrovariable is speci
ed by the macroinstruction
�MACRO��contents�� For example we have to set �HESF��D�� �TYPE��L�� �DECOMP��G��
�NUMBER�� �the integers need not to be substituted as strings� to obtain the result given above�

�� Substitution of a text� If we write

�SET�MACRO� or �ADD�MACRO�

text text

�ENDSET �ENDADD

then a given text �that can contain a large number of Fortran statements� is inserted into the
macrovariable �MACRO� The macroinstruction �SET is used for the de
nition of a new macrovari�
able� The macroinstruction �ADD can� moreover� append a new text to the old one so that it can
be used repeatedly�

�� Logical macrovariables� The macrovariable �DEF has logical contents� If we write �DEF�MACRO�
then the contents of �DEF is either �TRUE�� if the macrovariable �MACRO was previously de
ned
�by the substitution �MACRO��contents� or using macroinstructions �SET and �ADD�� or �FALSE�
in the oposite case� This possibility can be used for branching� If we use the macroinstruction
�ERASE�MACRO� then the previously de
ned macrovariable �MACRO becomes unde
ned �so
that �DEF�MACRO���FALSE���

�� Branching� This possibility is very similar to the branching in the Fortran language�

�IF�MACRO��string���

statements

�ELSEIF�MACRO��string���

statements

�ELSE

statements

�ENDIF

Besides the relation � �� we can also use the other relations � ��������������������� and the logical
values �TRUE�� �FALSE� and �DEF�MACRO�� The branching is used in the UFO macroprocessor
stage and it has an in�uence in the form of the control program�

��

�� Loops� The basic looping macroinstruction has the form �similarly as in the Fortran language��

�DO�MACRO�INDEX��INDEX��INDEX��

statements

�ENDDO

For example if �NF��� �NC�� and if we write

�DO�I���NF���

�DO�J���NC���

CALL UKMCI���I��J��I��D���J��D��ICG�JCG�CG�

�ENDDO

�ENDDO

then the UFO macroprocessor creates the sequence

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

�� Substitution of a
le� Suppose we have a
le with a name
le name�extension� Then we can include
it into the control program using the macroinstructions

�INCLUDE��
le name�extension��

or

�SUBST��
le name�extension��

The main di�erence between these possibilities is that the macroinstruction �INCLUDE includes a
text without change �it has to be a regular Fortran text with a
xed format� while the macroin�
struction �SUBST substitutes a text executed consecutively by the UFO macroprocessor �so it
can contain the macrovariables and macroinstructions and it can be written in the free format��
Moreover� if this text contains a template� then the macroinstruction �SUBST substitutes only
this template� This possibility is widely used for control program generation by using interme�
diate templates� If the included
le has the name
le name�I then we can use a simpler form
without extension� For example the
le UZLINS�I can be substituted using the macroinstruction
�SUBST��UZLINS���

� Special macroinstructions� Besides macroinstructions of the batch editing language BEL� the in�
put language contains special macroinstructions which control the UFO macroprocessor� These
macroinstructions are the switches �DIALOGUE and �BATCH that de
ne the dialogue mode and
the batch mode respectively �an initial status is �DIALOGUE�� as well as the special substitutions
�GLOBAL� �INITIATION� �INPUT� �OUTPUT� �METHOD� �TSTART� �TSTOP and �STAN�
DARD� At the same time� �GLOBAL includes the global declarations� �INITIATION substitutes
an initiation of common variables� �INPUT and �OUTPUT insert user speci
ed input and output
respectively� �METHOD substitutes the part of control program corresponding to the optimization
method� �TSTART or �TSTOP insert initial or
nal timing procedures respectively and �STAN�
DARD includes the sequence�

��

�GLOBAL

�INITIATION

�INPUT

�METHOD

�IF��DEF�OUTPUT�� �OUTPUT

�END

The macroinstruction �END
nishes the UFO macroprocessor execution�

�� Standard macrovariables� The macrovariables �FLOAT or �P have standard contents �REAL��� or
�D� respectively� This possibility has a meaning for a precision free notation� If we write

�FLOAT WA�WB

WA������P��

WB������P��

then after the UFO macroprocessor execution we have

REAL�� WA�WB

WA����D�

WB����D�

The macrovariables �FLOAT and �P are de
ned in the installation template and they can be
changed when we wish to use single precision computations

We have described the basic possibilities of the input language that are su�cient for preparing the batch
mode input
le� More details are given in ����� and ������

��� Problem description and method selection using the input language

If we want to process either the batch mode or the mixed mode we have to prepare an input
le
written in the input language� This input
le prescribes the structure of the control program� If some
macrovariable is used� it has to have been previously de
ned� Therefore de
nitions of macrovariables
usually lie in the beginning of the input
le� Many macrovariables are used for a de
nition of the
optimization problem� The most important among them are macrovariables de
ning problem functions�

�FMODELF � de
nition of a model function value
�GMODELF � de
nition of a model function gradient
�HMODELF � de
nition of a model function Hessian matrix
�DMODELF � de
nition of a model function derivatives �with respect to state space variables�

�FMODELA � de
nition of approximating functions values
�GMODELA � de
nition of approximating functions gradients
�HMODELA � de
nition of approximating functions Hessian matrices
�DMODELA � de
nition of approximating functions derivatives �with respect to state space variables�

�FMODELC � de
nition of constraint functions values
�GMODELC � de
nition of constraint functions gradients
�HMODELC � de
nition of constraint functions Hessian matrices

�FMODELE � de
nition of state space functions values
�GMODELE � de
nition of state space functions gradients
�DMODELE � de
nition of state space functions derivatives �with respect to state space variables�

��

�FMODELY � de
nition initial value functions values
�GMODELY � de
nition initial value functions gradients

First we show a simple example which corresponds to the problem already used for a full dialogue mode
demonstration �the Rosenbrock function��

�SET�INPUT�

X���
����D�� X���
���D�

�ENDSET

�SET�FMODELF�

FF
�����D���X�������X���������X�������D�����

�ENDSET

�NF
�

�MOUT
�

�BATCH

�STANDARD

Using the macrovariable �INPUT� we specify initial values of variables� Using the macrovariable �FMOD�
ELF we specify the model function value �the model function gradient is not speci
ed and it will be com�
puted numerically�� The macrovariable �NF de
nes the number of variables and �KOUT and �MOUT
are print speci
cations� The macroinstruction �BATCH switches a mode to the batch one� The macroin�
struction �STANDARD de
nes a standard form of the control program� Descriptions of more complicated
problems are shown in chapter ��

In the above example� a direct de
nition of a model function value is used� We can also use indirect
speci
cations by means of the Fortran subroutines or the
les prepared beforehand� Suppose that the
model function value is de
ned using the subroutine EFFU�� or it is speci
ed in the
le FVAL�FOR�
Then we can write�

�SET�FMODELF�
CALL EFFU���NF�X�FF�NEXT�

�ENDSET
or

�SET�FMODELF�
�INCLUDE��FVAL�FOR��

�ENDSET
or

�SET�FMODELF�
�SUBST��FVAL�FOR��

�ENDSET

The last possibility is useful if the model function value speci
cation is written in a free format or it
contains the BEL macroinstructions�

If we have to utilize user supplied subroutines we can include them into the control program using
the macrovariable �SUBROUTINES�

�SET�SUBROUTINES�
user supplied subroutines

�ENDSET

In this case� two exceptions in writing source text� forced by the UFO macroprocessor� must be satis
ed�
All comments have to begin by the character ��� and the continuation line character have to be always
����

��

��� The UFO environment

The UFO environment can be used on personal computers �PC� with processors ����������������
with the operating system MS DOS version ��� or higher and with the Microsoft FORTRAN compiler
version ��� or higher�

The UFO environment is called by using the statement UFO �program UFO�EXE�� It is controlled
by using the pull�down! menu� The main menu is activated by pressing the key �F��� � The UFO
environment contains a source program editor whose control is similar to the Word Star editor and�
therefore� to the most commonly used source program editors under the MS DOS system �for example
Turbo Pascal�� All signi
cant statements of the source program editor are available from the UFO
environment menu�

Since the UFO environment menu is clearly understood we do not describe it �the description is given
in ������ � We only show the usual way for operating input
les� When the batch mode input
le is
prepared by using the source program editor we press the key �F��� and
nd the command Run� in
the UFO environment menu� This command starts the UFO preprocessor and its action corresponds
to the statement UFOGO �with the present input
le�� An easier possibility is pressing the keys �Alt�
�� � Similarly� pressing the keys �Alt�	� has the same e�ect as the statement GENER� Furthermore�
if the control program P�FOR is loaded in the source program editor� pressing the keys �Alt��� has
the same e�ect as the statement COMPIL and pressing the keys �Alt��� causes an exit from the UFO
environment�

�

�� Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an
objective function F � Rn � R over a set X � Rn� The objective function can have several forms
determined using the macrovariable �MODEL�

�MODEL��FF� � general optimization� In this case

F �x� � �fF �x�

where fF � Rn � R is a real valued� so�called model function

�MODEL��FL� � linear optimization� In this case

F �x� � � �fF �
nX
i��

gFi xi�

where fF � gFi � � � i � n� are real coe�cients�

�MODEL��FQ� � quadratic optimization� In this case

F �x� � � �fF �
nX
i��

�gFi �
�

�

nX
j��

hFijxj�xi�

where fF � gFi � � � i � n�� hFij� � � i � n� � � j � n� are real coe�cients�

�MODEL��AF� � sum of functions minimization� In this case

F �x� �
nAX
k��

fAk �x�

where fAk � Rn � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��AQ� � Sum of squares minimization� In this case

F �x� �
nAX
k��

jfAk �x�j�

where fAk � Rn � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��AP� � sum of powers minimization� In this case

F �x� �
nAX
k��

jfAk �x�jr

where fAk � Rn � R� � � k � nA� are real valued� so�called approximating functions
and � � r �� is a real exponent�

�MODEL��AM� � minimization of maximum �minimax�� In this case

F �x� � max
��k�nA

jfAk �x�j

where fAk � Rn � R� � � k � nA� are real valued� so�called approximating functions�

��

�MODEL��DF� � minimization of general integral criterion with respect to the state equations� In this
case

F �x� �

Z tmax
A

tmin
A

fA�x� yA�x� tA�� tA� dtA � fF �x� yA�x� t
max
A �� tmax

A �

and

dyA�x� tA�
dtA

� fE �x� yA�x� tA�� tA�� y
A�x� tmin

A � � fY �x�

where fA � Rn�nE�� � R is a real valued� smooth� so�called subintegral function� fF �
Rn�nE�� � R is a real valued� smooth� so�called terminal function� fE � Rn�nE�� �
RnE is a real valued� smooth� so�called state function and fY � Rn � RnE is a real
valued� smooth� so�called initial function�

�MODEL��DQ� � minimization of sum of squares integral criterion with respect to the state equations�
In this case

F �x� �
�
�

Z tmax
A

tmin
A

nEX
i��

wE
i �tA��y

A
i �x� tA�� yEi �tA��

� dtA �
�
�

nEX
i��

wE
i �y

A
i �x� t

max
A �� yEi �

�

and

dyA�x� tA�
dtA

� fE �x� yA�x� tA�� tA�� y
A�x� tmin

A � � fY �x�

where fE � Rn�nE�� � RnE is a real valued� smooth� so�called state function and
fY � Rn � RnE is a real valued� smooth� so�called initial function�

�MODEL��NO� � solving an initial value problem for a system of ordinary di�erential equations� In
this case

dyA�tA�
dtA

� fE �yA�tA�� tA�� y
A�tmin

A � � ymin
A

where fE � RnE�� � RnE is a real valued� smooth� so�called state function�

The objective function de
ned by the choice �MODEL��AQ� can be used for the solution of a system
of nonlinear equations

fAk �x� � �� � � k � nA

In this case we suppose nA � n� This case is considered separately� since for nA � n special methods for
systems of nonlinear equations can be used�

The model function fF � Rn � R can have several types of Hessian matrices speci
ed by the
macrovariable �HESF�

�HESF��D� � dense Hessian matrix�
�HESF��S� � sparse Hessian matrix with a general pattern�
�HESF��NO� � Hessian matrix is not used�

The default option is �HESF��D�� The approximating functions fAk � Rn � R� � � k � nA� can have
several types of Jacobian matrices speci
ed by the macrovariable �JACA�

�JACA��D� � dense Jacobian matrix�
�JACA��S� � sparse Jacobian matrix with a general pattern�

�	

�JACA��NO� � Jacobian matrix is not used�

If the approximating functions are used then we can choose several types of the Hessian matrix represen�
tation� These types are again speci
ed by the macrovariable �HESF�

�HESF��D� � dense Hessian matrix�
�HESF��S� � sparse Hessian matrix with a general pattern�
�HESF��B� � sparse Hessian matrix with a partitioned pattern
�HESF��NO� � Hessian matrix is not used�

If �JACA��D�� then it must be either �HESF��D� or �HESF��NO�� If �JACA��S�� then we can specify
all types of Hessian matrices ��HESF��D�� �HESF��S�� �HESF��B�� �HESF��NO��� The representation
�HESF��B� usually leads to more expensive matrix operations� Therefore� we recommend to prefer the
choice �HESF��S� against the choice �HESF��B��

The subintegral function� terminal function� state function and initial function� appeared in the case
of dynamical systems optimization� are considered to be dense� Therefore we cannot use the speci
cations
�HESF��S� or �HESF��B� in this case�

The set X � Rn can be whole Rn �unconstrained case� or it can be de
ned by box constraints

xLi � xi if i � I�

xi � xUi if i � I�

xLi � xi � xUi if i � I�

xLi � xi if i � I�

where I� 	 I� 	 I� 	 I� � fi � N � � � i � ng� by general linear constraints

cLk �
nX
i��

gCkixi if k � L�

nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi if k � L�

where gCki� � � k � nC � � � i � n� are real coe�cients and L� 	 L� 	 L� 	 L� � fk � N � � � k � nCg�
or by general nonlinear constraints

cLk � fCk �x� if k � N�

fCk �x� � cUk if k � N�

cLk � fCk �x� � cUk if k � N�

cLk � fCk �x� if k � N�

��

where fCk � Rn � R� � � k � nC� are real valued� smooth� so�called constraint functions and N� 	 N� 	
N� 	N� � fk � N � � � k � nCg� The constraint functions fCk � Rn � R� � � k � nC � can have several
types of Jacobian matrices speci
ed by the macrovariable �JACC�

�JACC��D� � dense Jacobian matrix�
�JACC��S� � sparse Jacobian matrix with a general pattern�

If �JACC��D�� then must be �HESF��D� or �HESF��NO�� If �JACC��S�� then must be �HESF��S� or
�HESF��NO��

There are several limitations in the current version of the UFO system�

�� Minimization of maximum�minimax� and nonsmooth optimization is not implemented in the sparse
case�

�� Minimization of dynamical systems is not implemented in the sparse case�

�� Usually the UFO system serves for local optimization� Global optimization can be used only for
relatively small �n � ��� dense problems that are unconstrained or that contain box constraints�

These limitations will be consecutively removed in subsequent versions of the UFO system�
In the rest of this report we will use the notation NF� NA� NC instead of n� nA� nC and X� FF� GF�

HF� FA� GA� FC� GC instead of x� fF � gF � hF � fA� gA� fC � gC � This new notation corresponds to the
notation of the variables and the
elds in the UFO system�

	�
� Speci�cation of variables

First we must specify the number of variables using the statement �NF�number of variables� If
there are no box constraints we set �KBF��� In the opposite case we set �KBF�� or �KBF��� If
�KBF�� or �KBF�� then

X�I� � unbounded � if IX�I� � �
XL�I� � X�I� � if IX�I� � �

X�I� � XU�I� � if IX�I� � �
XL�I� � X�I� � XU�I� � if IX�I� � �
X�I� � constant � if IX�I� � �

where �� I� NF� The option �KBF�� must be chosen if IX�I��� for at least one index �� I� NF� Then
two di�erent
elds XL�I� and XU�I�� �� I� NF are declared� In the opposite case we set �KBF�� and
only one common
eld XL�I��XU�I�� � � I� NF is declared�

Initial values of variables X�I�� �� I� NF� types of box constraints IX�I�� �� I� NF� and lower and
upper bounds XL�I� and XU�I�� �� I� NF� can be speci
ed using macrovariable �INPUT� The default
values are IX�I��� and XL�I��XU�I���� �� I� NF� For example�

�KBF��� �NF��
�SET�INPUT�

X����x�
X����x�� IX������ XL����xL�
X����x�� IX������ XL����xL� � XU����xU�
X����x�� IX�����

�ENDSET

The UFO system allows us to use a scaling of variables �for instance if the values of variables di�er
very much in their magnitude�� We set�

��

�NORMF�� � scaling parameters XN�I�� �� I� NF� are determined automatically so that
X�I��XN�I���� ��I�NF� for the initial values of variables�

�NORMF�� � scaling parameters must be speci
ed by the user by means of the macrovariable �IN�
PUT�

The scaling of variables is recommended only in exceptional cases since it increases the computational
time and storage requirements� The scaling of variables is suppressed if �NORMF�� �this value is
default�� The scaling of variables is not permitted in the case of general constraints �if KBC����

	�	� Speci�cation of the model function �dense problems�

If the macrovariable �MODEL is not speci
ed or if �MODEL��FF�� then the objective function is
de
ned by the formula

F�X� � � FF�X� if �IEXT � � �minimization�
or

F�X� � � FF�X� if �IEXT � � �maximization�

Option �IEXT�� is default�
The model function FF�X� must be de
ned by the user either directly in the full dialogue mode� or

by using corresponding macrovariables in the batch �or mixed� mode� The value of the model function
is speci
ed by using the macrovariable �FMODELF�

�SET�FMODELF�
FF � value FF�X�
�for given values of variables X�I�� �� I� NF�

�ENDSET

The
rst derivatives of the model function are speci
ed by using the macrovariable �GMODELF�

�SET�GMODELF�
GF��� � derivative �FF�X�� �X���
GF��� � derivative �FF�X�� �X���
GF��� � derivative �FF�X�� �X���
"#
GF�NF� � derivative �FF�X�� �X�NF�
�for given values of variables X�I�� ��I�NF�

�ENDSET
The second derivatives of the model function are speci
ed by using the macrovariable �HMODELF� If
�HESF��D�� then the Hessian matrix is assumed to be dense and we specify only its upper half�

�SET�HMODELF�
HF��� � derivative ��FF�X�� � X����

HF��� � derivative ��FF�X�� �X����X���
HF��� � derivative ��FF�X�� �X����

HF��� � derivative ��FF�X�� �X��� �X���
HF��� � derivative ��FF�X�� �X��� �X���
HF��� � derivative ��FF�X�� �X����

"#
HF�NF��NF������ � derivative ��FF�X�� �X�NF��

�for given values of variables X�I�� ��I�NF�
�ENDSET

If the macrovariables �GMODELF or �HMODELF are not de
ned� we suppose that the
rst or the
second derivatives of the model function are not given analytically� In this case� they are computed
numerically by using the UFO system routines whenever it is required� If it is advantageous to compute

��

the
rst derivatives of the model function FF�X� together with its value� we can include the models
�FMODELF and �GMODELF into the common model �FGMODELF� Similarly we can include the
models �FMODELF� �GMODELF and �HMODELF into the common model �FGHMODELF�

To improve the e�ciency of the computation� we can specify additional information about the model
function FF�X�� The
rst piece of information� useful for an automatic choice of the optimizationmethod�
is the computational complexity speci
ed by the macrovariable �KCF�

�KCF�� � evaluation of the model function FF�X� is very easy �it takes at most O�NF� simple
operations��

�KCF�� � evaluation of the model function FF�X� is of medium complexity �it takes at least
O�NF� complicated operations and at most O�NF�� simple operations��

�KCF�� � evaluation of the model function FF�X� is extremely di�cult �it takes at least
O�NF�� complicated operations or O�NF�� simple operations��

The option �KCF�� is default� An additional useful piece of information is the analytical complexity
�di�erentiability and conditioning�� which is speci
ed by the macrovariable �KSF�

�KSF�� � the model function FF�X� is smooth and well�conditioned�
�KSF�� � the model function FF�X� is smooth but ill�conditioned�
�KSF�� � the model function FF�X� is nonsmooth�

The option �KSF�� is default� Other speci
cations� which can improve the computational e�ciency
and robustness of optimization methods� are a lower bound of the objective function values and an
upper bound of the stepsize� Both these values depend on a de
nition of the objective function and can
be speci
ed by the statements �FMIN�lower bound �for the objective function� and �XMAX�upper
bound �for the stepsize�� We recommend a de
nition of �FMIN whenever it is possible and a de
nition
of �XMAX whenever the objective function contains exponentials�

If �MODEL��FL�� we suppose the model function is linear of the form

FF�X� � FF �
NFX
I��

GF�I� �X�I�

In this case we need not specify the value and the
rst derivatives of the model function by the macrovari�
ables �FMODELF and �GMODELF as in the general case� Instead� we must specify the coe�cients FF
�constant value� and GF�I�� �� I� NF� �constant gradient� using the macrovariable �INPUT�

�ADD�INPUT�
FF � constant value
GF��� � constant derivative �FF�X���X���
GF��� � constant derivative �FF�X���X���
GF��� � constant derivative �FF�X���X���
GF��� � constant derivative �FF�X���X���
"#
GF�NF� � constant derivative �FF�X���X�NF�

�ENDADD

If �MODEL��FL�� we usually assume that either box constraints or general linear constraints are given�
In this case the optimization problem is the linear programming problem�

If �MODEL��FQ�� we suppose the model function is quadratic of the form

FF�X� � FF �
NFX
I��

GF�I� �X�I� �
�
�

NFX
I��

NFX
J��

HF�K� �X�I� �X�J�

where K�MAX�I�J���MAX�I�J�������MIN�I�J�� In this case we need not specify the value� the
rst
derivatives and the second derivatives of the model function by the macrovariables �FMODELF� �GMOD�
ELF and �HMODELF as in the general case� The coe�cients FF �constant value� and GF�I�� �� I�

��

NF� �constant gradient� are speci
ed in the same way as in the linear case� The coe�cients HF�K�� ��
K� NF��NF������ �the constant Hessian matrix� must be speci
ed using the macrovariable �INPUT�
If �HESF��D�� then the Hessian matrix is assumed to be dense and we specify only its upper half�

�ADD�INPUT�
HF��� � constant derivative ��FF�X���X����

HF��� � constant derivative ��FF�X���X���� X���
HF��� � constant derivative ��FF�X���X����

HF��� � constant derivative ��FF�X���X���� X���
HF��� � constant derivative ��FF�X���X���� X���
HF��� � constant derivative ��FF�X���X����

"
HF�NF��NF������ � constant derivative ��FF�X���X�NF��

�ENDADD

If �MODEL��FQ�� we usually assume that either box constraints or general constraints are given� In
this case the optimization problem is the quadratic programming problem�

If the model function is linear or quadratic� then the options �KCF and �KSF need not be de
ned�
since they are not used�

	��� Speci�cation of the model function �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Hessian matrix HF� This possibility decreases computational time and storage requirements for large�scale
optimization problems� In this case we use the option �HESF��S� which means that the sparsity pattern
is speci
ed� All other speci
cations remain the same as in the case of dense problems� The sparsity
pattern of the Hessian matrix is speci
ed by using the macrovariable �INPUT� Two integer vectors IH
and JH are used where IH�I�� �� I� NF��� are pointers and JH�K�� �� K� M� are indices of nonzero
elements� Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in
rows� The number of nonzero elements must be speci
ed using the statement �M�number of elements�
The number of nonzero elements could be greater then is required �eg� two times� since it is used for the
declaration of working
elds� For example� if we have the Hessian matrix

HF �

�
BBB�

hF��� hF��� hF��� �� hF��
hF��� hF��� �� hF��� �
hF��� �� hF��� �� hF���
�� hF��� �� hF��� ��
hF��� �� hF��� �� hF��

�
CCCA

then we have to set�

�NF��
�M��� �the minimum required value is M����
�ADD�INPUT�

IH������ IH������ IH����
IH����	� IH������� IH������
JH������ JH������ JH������ JH������ JH�����
JH������ JH����� JH������ JH�	���� JH������

�ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero�
As in the case of the dense problem� second derivatives of the model function can be speci
ed by using

the macrovariable �HMODELF� If �HESF��S�� then only nonzero elements of the upper half �including
the diagonal� of the Hessian matrix are speci
ed� For the above example the speci
cation has the form�

��

�SET�HMODELF�
HF����hF��� HF����h

F
��� HF����h

F
��� HF����h

F
��

HF����hF��� HF����h
F
��� HF���h

F
��� HF����h

F
��

HF�	��hF��� HF�����h
F
��

�ENDSET

If the model function is quadratic �i�e� if �MODEL��FQ�� and if �HESF��S�� then the coe�cients
HF�K�� �� K� M� �constant sparse Hessian matrix� must be speci
ed by using the macrovariable �IN�
PUT� If the matrix given in the above example is the constant sparse Hessian matrix� we use the speci�

cation�

�ADD�INPUT�
HF����hF��� HF����h

F
��� HF����h

F
��� HF����h

F
��

HF����hF��� HF����h
F
��� HF���h

F
��� HF����h

F
��

HF�	��hF��� HF�����h
F
��

�ENDADD

	��� Objective functions for discrete approximation

If we set �MODEL��AF�� then we suppose that the objective function F�X� has the form�

F�X� �
NAX

KA��

FA�KA�X� if KBA � �

or

F�X� �
NAX

KA��

AW�KA� � �FA�KA�X� �AM�KA�� if KBA � �

where FA�KA�X�� �� KA� NA� are approximating functions� This form of the objective function is
very useful in large�scale optimization when the approximating functions FA�KA�X�� �� KA� NA� are
assumed to have sparse gradients�

If we set �MODEL��AP�� then we suppose that the objective function F�X� has the form�

F�X� �
�

R

NAX
KA��

jFA�KA�X�j � �R if KBA � �

or

F�X� �
�

R

NAX
KA��

jAW�KA� � �FA�KA�X� �AM�KA��j � �R if KBA � �

where FA�KA�X�� �� KA� NA� are approximating functions� and R�� is a real exponent� The value
of the exponent is speci
ed by the choice �REXP�R �default value is �REXP���� Since the most used
value of the exponent is R��� and since the computations are simplest and the most e�cient for such
a choice� we can use the speci
cation �MODEL��AQ� in this case �minimization of sum of squares��
Moreover� �MODEL��AQ� is formally set whenever we chose �MODEL��AP� and �REXP���

If we set �MODEL��AM�� then we suppose that the objective function F�X� has the form�

F�X� � max
��KA�NA

��FA�KA�X�� if �IEXT � ��

F�X� � max
��KA�NA

�jFA�KA�X�j� if �IEXT � �

��

F�X� � max
��KA�NA

��FA�KA�X�� if �IEXT � ��

for �KBA��� or

F�X� � max
��KA�NA

��AW�KA� � �FA�KA�X� �AM�KA��� if �IEXT � ��

F�X� � max
��KA�NA

�jAW�KA� � �FA�KA�X� �AM�KA��j� if �IEXT � �

F�X� � max
��KA�NA

��AW�KA� � �FA�KA�X� �AM�KA��� if �IEXT � ��

for �KBA��� where FA�KA�X�� �� KA� NA� are approximating functions� The default value is
�IEXT�� �the minimax or the Chebyshev approximation��

The option �KBA serves as a decision between a simple objective function and a more complicated
one� The simple objective function uses no additional
elds� while the more complicated one uses at most
two additional
elds� AM and AW� The vector AM usually contains frequently used observations which
can be included into the functions FA�KA�X�� �� KA� NA� in the case of the simple objective function�
Observations AM�KA�� �� KA� NA� are speci
ed by using the macrovariable �INPUT� Their default
values are AM�KA���� �� KA� NA� The vector AW serves for possible scaling speci
ed by the option
�NORMA�

�NORMA�� � no scaling is performed� In this case AW�KA���� �� KA� NA�
�NORMA�� � scaling parameters are determined automatically so that AW�KA��jAM�KA�j� ��

KA� NA�
�NORMA�� � scaling parameters must be speci
ed by the user by means of the macrovariable �IN�

PUT�

The number of approximating functions NA must be speci
ed by using the statement �NA�number
of functions in all the above cases�

	��� Speci�cation of the approximating functions �dense problems�

The approximating functions FA�KA�X�� �� KA� NA� must be de
ned by the user either directly in
the full dialogue mode� or by using corresponding macrovariables in the batch �or mixed� mode� Values
of the approximating functions are speci
ed by using the macrovariable �FMODELA�

�SET�FMODELA�
FA � value FA�KA�X�
�for a given index KA and given values of variables X�I�� �� I� NF�

�ENDSET

The
rst derivatives of the approximating functions are speci
ed by using the macrovariable �GMODELA�

�SET�GMODELA�
GA��� � derivative �FA�KA�X���X���
GA��� � derivative �FA�KA�X���X���
GA��� � derivative �FA�KA�X���X���
"#
GA�NF� � derivative �FA�KA�X���X�NF�
�for a given index KA and given values of variables X�I�� �� I� NF�

�ENDSET

��

The second derivatives of the approximating functions are speci
ed by using the macrovariable �HMOD�
ELA� If �JACA��D�� then the Hessian matrices are assumed to be dense and we specify only their upper
half�

�SET�HMODELA�
HA��� � derivative ��FA�KA�X���X����

HA��� � derivative ��FA�KA�X���X����X���
HA��� � derivative ��FA�KA�X���X����

HA��� � derivative ��FA�KA�X���X����X���
HA��� � derivative ��FA�KA�X���X����X���
HA��� � derivative ��FA�KA�X���X����

"#
HA�NF��NF������ � derivative ��FA�KA�X���X�NF��

�for a given index KA and given values of variables X�I�� �� I� NF�
�ENDSET

If the macrovariables �GMODELA or �HMODELA are not de
ned� we suppose that the
rst or
the second derivatives of the approximating functions are not given analytically� In this case� they are
computed numerically by using the UFO system routines� whenever it is required� If it is advantageous
to compute
rst derivatives of the approximating functions FA�KA�X�� �� KA� NA� together with their
values� we can collect the models �FMODELA and �GMODELA into the commonmodel �FGMODELA�
Similarlywe can collect the models �FMODELA� �GMODELA and �HMODELA into the commonmodel
�FGHMODELA�

To improve the e�ciency of the computation� we can specify additional information about the approx�
imating functions FA�KA�X�� �� KA� NA� The
rst piece of information� useful for an automatic choice
of the optimization method� is the computational complexity speci
ed by the macrovariable �KCA�

�KCA�� � evaluations of the approximating functions FA�KA�X�� �� KA� NA� are very easy
�they take at most O�NF� simple operations��

�KCA�� � evaluations of the approximating functions FA�KA�X�� �� KA� NA� are of medium
complexity �they take at least O�NF� complicated operations and at most O�NF��
simple operations��

�KCA�� � evaluations of the approximating functions FA�KA�X�� �� KA� NA� are extremely
di�cult �they take at least O�NF�� complicated or O�NF�� simple operations��

The option �KCA�� is default� An additional useful piece of information is the analytical complexity
�conditioning�� which is speci
ed by the macrovariable �KSA�

�KSA�� � the approximating functions FA�KA�X�� �� KA� NA� are smooth and well�
conditioned�

�KSA�� � the approximating functions FA�KA�X�� �� KA� NA� are smooth but ill�
conditioned�

�KSA�� � the approximating functions FA�KA�X�� �� KA� NA� are nonsmooth�

The option �KSA�� is default�
If some of the approximating functions are linear having the form

FA�KA�X� �
NFX
I��

AG��KA� �� �NF� I� �X�I�

we can specify them separately� Then the number of linear approximating functions must be speci
ed by
using the statement �NAL�number of linear functions �default value is �NAL���� We always suppose
that the
rst NAL approximating functions are linear� Then the coe�cients AG��KA����NF�I�� �� KA�
NAL� �� I� NF� are speci
ed using the macrovariable �INPUT and the macrovariables �FMODELA�

�

�GMODELA� �HMODELA are used only for the speci
cation of the nonlinear approximating functions
FA�KA�X�� NAL�KA� NA�

	��� Speci�cation of the approximating functions �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Jacobian matrix AG� This possibility decreases computational time and storage requirements for large�
scale optimization problems� In this case� we use the option �JACA��S� which means that the sparsity
pattern is speci
ed� All other speci
cations remain the same as in the case of dense problems� The
sparsity pattern of the Jacobian matrix is speci
ed by using the macrovariable �INPUT� Two integer
vectors IAG and JAG are used where IAG�KA�� �� KA� NA��� are pointers and JAG�K�� �� K�
IAG�NA������ are indices of nonzero elements� Nonzero elements are ordered by the gradients of the
approximating functions� The number of nonzero elements must be speci
ed by using the statement
�MA�number of elements� For example� if we have the gradients

GA���X� � �gA��� � � � � gA����

GA���X� � �� � gA��� � � gA����

GA���X� � �� � � � gA��� � ��

GA���X� � �gA��� g
A
��� g

A
��� � ��

GA���X� � �� � � � gA��� g
A
����

and the Jacobian matrix

AG�X� �

�
BBB�

gA�� � � � � � gA��
� � gA�� � � � gA��
� � � � gA�� � �
gA�� � gA�� � gA�� � �
� � � � gA�� � gA��

�
CCCA

then we have to set�

�NA��
�MA���
�ADD�INPUT�

IAG������ IAG������ IAG�����
IAG������ IAG����	� IAG������
JAG������ JAG������ JAG������ JAG������ JAG�����
JAG������ JAG����� JAG������ JAG�	���� JAG������

�ENDADD

As in the case of the dense problem� the
rst derivatives of the approximating functions can be
speci
ed by using the macrovariable �GMODELA� If �JACA��S�� then only nonzero elements of the
gradients are speci
ed� For the above example the speci
cation has the form�

�SET�GMODELA�
IF �KA�EQ��� THEN

GA��� � �FA���X���X���
GA��� � �FA���X���X���

��

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X���X���
GA��� � �FA���X���X���

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X���X���

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X���X���
GA��� � �FA���X���X���
GA��� � �FA���X���X���

ELSE
GA��� � �FA���X���X���
GA��� � �FA���X���X���

ENDIF
�ENDSET

If some of the approximating functions are linear �i�e� if �NAL��� and if �JACA��S�� then the
coe�cients AG�K�� �� K� IAG�NAL����� �constant part of the sparse Jacobian matrix�� must be
speci
ed by using the macrovariable �INPUT� If the matrix given in the above example is the constant
sparse Jacobian matrix� we use the speci
cation�

�ADD�INPUT�
AG����gA��� AG����gA��� AG����gA��� AG����gA��
AG����gA��� AG����gA��� AG���gA��� AG����gA��
AG�	��gA��� AG�����gA��

�ENDADD

There is another possibility which can be useful when all approximating functions are linear� It is based
on the usage of special procedure UKMAI� that serves for direct input of individual Jacobian matrix
elements� The procedure UKMAI� is formally called by using the statement

CALL UKMAI��K�I�GAKI�IAG�JAG�AG�

where K is an index of a given approximating function �row of the Jacobian matrix�� I is an index
of a given variable �column of the Jacobian matrix�� and GAKI is a numerical value of the element
�FA�K�X���X�I�� For the example given above we can write�

�ADD�INPUT�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the
elds IAG
and JAG beforehand�

�	

If we use the option �JACA��S�� then we can specify a form of the objective function sparse Hessian
matrix� There are four possibilities�

�HESF��D� � dense Hessian matrix�
�HESF��B� � partitioned sparse Hessian matrix� This matrix is a sum of simple Hessian matrices

which correspond to the individual approximating functions� Only nonzero blocks are
stored�

�HESF��S� � general sparse Hessian matrix �the same as the model function Hessian matrix
corresponding to the option �HESF��S���

�HESF��NO� � Hessian matrix is not used�

This speci
cation serves only for an internal realization of optimization methods and has no in�uence on
the user�s input� The default option is �HESF��D��

	�� Objective functions for optimization of dynamical systems

If we set �MODEL��DF�� then we suppose that the objective function F�X� has the form�

F�X� �

Z TAMAX

TAMIN

FA�X�YA�TA��TA�dTA� FF�X�YA�TAMAX��TAMAX�

where FA�X�YA�TA��TA� is a smooth subintegral function and FF�X�YA�TAMAX��TAMAX� is a smooth
terminal function� At the same time

dYA�KE�TA�
dTA

� FE�KE�X�YA�TA��TA�� YA�KE�TAMIN� � FY�KE�X�

where FE�KE�X�YA�TA��TA�� �� KE� NE� are smooth state functions and FY�KE�X�� �� KE� NE�
are smooth initial functions�

If we set �MODEL��DQ�� then we suppose the objective function F�X� has the form�

F�X� �
�
�

Z TAMAX

TAMIN

NEX
KE��

WE�KE�TA� � �YA�KE�TA��YE�KE�TA��� dTA

�
�

�

NEX
KE��

EW�KE� � �YA�KE�TAMAX�� EY�KE���

At the same time

dYA�KE�TA�
dTA

� FE�KE�X�YA�TA��TA�� YA�KE�TAMIN� � FY�KE�X�

where FE�KE�X�YA�TA��TA�� �� KE� NE� are smooth state functions and FY�KE�X�� �� KE� NE�
are smooth initial functions�

If we set �MODEL��NO�� then we consider the initial value problem

dYA�KE�TA�

dTA
� FE�KE�YA�TA��TA�� YA�KE�TAMIN� is given

where FE�KE�YA�TA��TA�� �� KE� NE� are smooth state functions�

The number of di�erential equations NE must be speci
ed by using the statement �NE�number of
di�erential equations in all the above cases�

��

	��� Speci�cation of the state functions

The state functions FE�KE�X�YA�TA��TA�� �� KE� NE� must be de
ned by the user either directly
in the full dialogue mode� or by using corresponding macrovariables in the batch �or mixed� mode� Values
of the state functions are speci
ed by using the macrovariable �FMODELE�

�SET�FMODELE�
FE � value FE�KE�X�YA�TA��TA�
�for a given index KE� given vector of variables X�
given vector of state variables YA�TA� and given time TA�

�ENDSET

The
rst derivatives of the state functions according to the variables are speci
ed by using the macrovari�
able �GMODELE�

�SET�GMODELE�
GE��� � derivative �FE�KE�X�YA�TA��TA���X���
GE��� � derivative �FE�KE�X�YA�TA��TA���X���
GE��� � derivative �FE�KE�X�YA�TA��TA���X���
"#
GE�NF� � derivative �FE�KE�X�YA�TA��TA���X�NF�
�for a given index KE� given vector of variables X�
given vector of state variables YA�TA� and given time TA�

�ENDSET

The
rst derivatives of the state functions according to the state variables are speci
ed by using the
macrovariable �DMODELE�

�SET�DMODELE�
DE��� � derivative �FE�KE�X�YA�TA��TA���YA���
DE��� � derivative �FE�KE�X�YA�TA��TA���YA���
DE��� � derivative �FE�KE�X�YA�TA��TA���YA���
"#
DE�NE� � derivative �FE�KE�X�YA�TA��TA���YA�NE�
�for a given index KE� given vector of variables X�
given vector of state variables YA�TA� and given time TA�

�ENDSET

If it is advantageous to compute
rst derivatives of the state functions FE�KE�X�YA�TA��TA�� ��
KE� NE� together with their values� we can collect the models �FMODELE� �GMODELE and �DMOD�
ELE into the commonmodel �FGDMODELA� Partially we can collect the models �FMODELE� �GMOD�
ELE or �FMODELE� �DMODELE or �GMODELE� �DMODELE into the common models �FGMOD�
ELE or �FDMODELE or �GDMODELE respectively�

If �MODEL��DQ� we have to de
ne the functions WE�KE�TA� and YE�KE�TA�� �� KE� NE�
for a given index KE and given time TA� These functions can be speci
ed by using the macrovariable
�FMODELE together with the state function FE�KE�X�YA�TA��TA��

�SET�FMODELE�
FE � value FE�KE�X�YA�TA��TA�
WE � value WE�KE�TA�
YE � value YE�KE�TA�
�for a given index KE� given vector of variables X�
given vector of state variables YA�TA� and given time TA�

��

�ENDSET

The default values WE�KE�TA��� and YE�KE�TA��� cannot be speci
ed� they are supposed automat�
ically�

	��� Speci�cation of the initial functions

The initial functions FY�KE�X�� �� KE� NE� must be de
ned by the user either directly in the full
dialogue mode� or by using corresponding macrovariables in the batch �or mixed� mode� Values of the
initial functions are speci
ed by using the macrovariable �FMODELY�

�SET�FMODELY�
FE � value FY�KE�X�
�for a given index KE and given vector of variables X�

�ENDSET

The
rst derivatives of the initial functions according to the variables are speci
ed by using the macrovari�
able �GMODELY�

�SET�GMODELY�
GE��� � derivative �FY�KE�X���X���
GE��� � derivative �FY�KE�X���X���
GE��� � derivative �FY�KE�X���X���
"#
GE�NF� � derivative �FY�KE�X���X�NF�
�for a given index KE and given vector of variables X�

�ENDSET

If it is advantageous to compute
rst derivatives of the initial functions FY�KE�X�� �� KE� NE�
together with their values� we can collect the models �FMODELY and �GMODELY into the common
model �FGMODELY�

If the initial values YA�KE�TAMIN�� �� KE� NE� do not depend on the variables X�I�� �� I� NF�
they can be speci
ed by using the macrovariable �INPUT�

�ADD�INPUT�
YA��� � initial value YA���TAMIN�
YA��� � initial value YA���TAMIN�
YA��� � initial value YA���TAMIN�
"#
YA�NE� � initial value YA�NE�TAMIN�

�ENDADD

	�
�� Speci�cation of the subintegral function

If �MODEL��DF�� then the subintegral function FA�X�YA�TA��TA� must be de
ned by the user
either directly in the full dialogue mode� or by using corresponding macrovariables in the batch �or
mixed� mode� Value of the subintegral function is speci
ed by using the macrovariable �FMODELA�

�SET�FMODELA�
FA � value FA�X�YA�TA��TA�
�for a given vector of variables X� given vector of state variables YA�TA�
and given time TA�

�ENDSET

��

The
rst derivatives of the subintegral function according to the variables are speci
ed by using the
macrovariable �GMODELA�

�SET�GMODELA�
GA��� � derivative �FA�X�YA�TA��TA���X���
GA��� � derivative �FA�X�YA�TA��TA���X���
GA��� � derivative �FA�X�YA�TA��TA���X���
"#
GA�NF� � derivative �FA�X�YA�TA��TA���X�NF�
�for a given vector of variables X� given vector of state variables YA�TA�
and given time TA�

�ENDSET

The
rst derivatives of the subintegral function according to the state variables are speci
ed by using the
macrovariable �DMODELA�

�SET�DMODELA�
DA��� � derivative �FA�X�YA�TA��TA���YA���
DA��� � derivative �FA�X�YA�TA��TA���YA���
DA��� � derivative �FA�X�YA�TA��TA���YA���
"#
DA�NE� � derivative �FA�X�YA�TA��TA���YA�NE�
�for a given vector of variables X� given vector of state variables YA�TA�
and given time TA�

�ENDSET

If it is advantageous to compute
rst derivatives of the subintegral function FA�X�YA�TA��TA� to�
gether with its value� we can collect the models �FMODELA� �GMODELA and �DMODELA into the
common model �FGDMODELA� Partially we can collect the models �FMODELA� �GMODELA or
�FMODELA� �DMODELA or �GMODELA� �DMODELA into the common models �FGMODELA or
�FDMODELA or �GDMODELA respectively�

If �MODEL��DQ� and the objective function contains an integral part� we have to set �MOD�
ELA��YES� and de
ne the functions WE�KE�TA� and YE�KE�TA�� �� KE� NE� by using the macrovari�
able �FMODELE�

	�

� Speci�cation of the terminal function

If �MODEL��DF�� then the terminal function FF�X�YA�TAMAX��TAMAX� must be de
ned by the
user either directly in the full dialogue mode� or by using corresponding macrovariables in the batch �or
mixed� mode� Value of the terminal function is speci
ed by using the macrovariable �FMODELF�

�SET�FMODELF�
FF � value FF�X�YA�TAMAX��TAMAX�
�for a given vector of variables X� given vector of state variables YA�TAMAX�
and given time TAMAX�

�ENDSET

The
rst derivatives of the terminal function according to the variables are speci
ed by using the
macrovariable �GMODELF�

�SET�GMODELF�
GF��� � derivative �FF�X�YA�TAMAX��TAMAX���X���
GF��� � derivative �FF�X�YA�TAMAX��TAMAX���X���

��

GF��� � derivative �FF�X�YA�TAMAX��TAMAX���X���
"#
GF�NF� � derivative �FF�X�YA�TAMAX��TAMAX���X�NF�
�for a given vector of variables X� given vector of state variables YA�TAMAX�
and given time TAMAX�

�ENDSET

The
rst derivatives of the terminal function according to the state variables are speci
ed by using the
macrovariable �DMODELF�

�SET�DMODELF�
DF��� � derivative �FF�X�YA�TAMAX��TAMAX���YA���
DF��� � derivative �FF�X�YA�TAMAX��TAMAX���YA���
DF��� � derivative �FF�X�YA�TAMAX��TAMAX���YA���
"#
DF�NE� � derivative �FF�X�YA�TAMAX��TAMAX���YA�NE�
�for a given vector of variables X� given vector of state variables YA�TAMAX�
and given time TAMAX�

�ENDSET

If it is advantageous to compute
rst derivatives of the terminal function FF�X�YA�TAMAX��TAMAX�
together with its value� we can collect the models �FMODELF� �GMODELF and �DMODELF into
the common model �FGDMODELF� Partially we can collect the models �FMODELF� �GMODELF or
�FMODELF� �DMODELF or �GMODELF� �DMODELF into the common models �FGMODELF or
�FDMODELF or �GDMODELF respectively�

If �MODEL��DQ� and the objective function contains a terminal part� we have to set �MOD�
ELF��YES� and de
ne the coe�cients EW�KE� and EY�KE�� �� KE� NE� by using the macrovariable
�INPUT�

�ADD�INPUT�
EW��� � value EW���� EY��� � value EY���
EW��� � value EW���� EY��� � value EY���
EW��� � value EW���� EY��� � value EY���
"#
EW�NE� � value EW�NE�� EY�NE� � value EY�NE�

�ENDADD

	�
	� Optimization with general constraints�

If there are no general constraints we set �KBC��� In the oposite case we set �KBC�� or �KBC���
If �KBC�� or �KBC�� then

FC�KC�X� � unbounded � if IC�KC� � �
CL�KC� � FC�KC�X� � if IC�KC� � �

FC�KC�X� � CU�KC� � if IC�KC� � �
CL�KC� � FC�KC�X� � CU�KC� � if IC�KC� � �
CL�KC� � FC�KC�X� � CU�KC� � if IC�KC� � �

where �� KC� NC� The option �KBC�� must be chosen if IC�KC��� for at least one index �� KC�
NC� Then two di�erent
elds XL�KC� and XU�KC�� �� KC� NC are declared� In the opposite case we
set �KBC�� and only one common
eld XL�KC��XU�KC�� �� KC� NC is declared�

��

Types of general constraints IC�KC�� ��KC� NC� and lower and upper bounds XL�KC� and XU�KC��
�� KC� NC� can be speci
ed by using the macrovariable �INPUT� Default values are IC�KC��� and
XL�KC��XU�KC���� �� KC� NC� For example�

�KBF��� �NC��
�ADD�INPUT�

IC������ CL����cL�
IC������ CL����cL�
IC������ CL����cL� � CU����c

L
�

�ENDADD

	�
�� Speci�cation of the constraint functions �dense problems�

The constraint functions FC�KC�X�� �� KC� NC� must be de
ned by the user either directly in the
full dialogue mode� or by using corresponding macrovariables in the batch �or mixed� mode� Values of
the constraint functions are speci
ed by using the macrovariable �FMODELC�

�SET�FMODELC�
FC � value FC�KC�X�
�for a given index KC and given values of variables X�I�� �� I� NF�

�ENDSET

The
rst derivatives of the constraint functions are speci
ed by using the macrovariable �GMODELC�

�SET�GMODELC�
GC��� � derivative �FC�KC�X���X���
GC��� � derivative �FC�KC�X���X���
GC��� � derivative �FC�KC�X���X���
"#
GC�NF� � derivative �FC�KC�X���X�NF�
�for a given index KC and given values of variables X�I�� �� I� NF�

�ENDSET

The second derivatives of the constraint functions are speci
ed by using the macrovariable �HMODELC�
If �JACC��D�� then the Hessian matrices are assumed to be dense and we specify only their upper half�

�SET�HMODELC�
HC��� � derivative ��FC�KC�X���X����

HC��� � derivative ��FC�KC�X���X����X���
HC��� � derivative ��FC�KC�X���X����

HC��� � derivative ��FC�KC�X���X����X���
HC��� � derivative ��FC�KC�X���X����X���
HC��� � derivative ��FC�KC�X���X����

"#
HC�NF��NF������ � derivative ��FC�KC�X���X�NF��

�for a given index KC and given values of variables X�I�� �� I� NF�
�ENDSET

If the macrovariables �GMODELC or �HMODELC are not de
ned� we suppose that the
rst or
the second derivatives of the constraint functions are not given analytically� In this case� they are
computed numericaly� by using the UFO system routines� whenever it is required� If it is advantageous
to compute
rst derivatives of the constraint functions FC�KC�X�� �� KC� NC� together with their
values� we can collect the models �FMODELC and �GMODELC into the commonmodel �FGMODELC�

��

Similarlywe can collect the models �FMODELC� �GMODELC and �HMODELC into the commonmodel
�FGHMODELC�

To improve the e�ciency of the computation� we can specify additional information about the con�
straint functions FC�KC�X�� �� KC� NC� The
rst piece of information� useful for an automatic choice
of the optimization method� is the computational complexity speci
ed by the macrovariable �KCC�

�KCC� � � evaluations of the constraint functions FC�KC�X�� �� KC� NC� are very easy �they
take at most O�NF� simple operations��

�KCC� � � evaluations of the constraint functions FC�KC�X�� �� KC� NC� are of medium
complexity �they take at least O�NF� complicated operations and at most O�NF��
simple operations��

�KCC� � � evaluations of the constraint functions FC�KC�X�� �� KC� NC� are extremely
di�cult �they take at least O�NF�� complicated or O�NF�� simple operations��

The option �KCC�� is default�
If some of the constraint functions are linear having the form

FC�KC�X� �
NFX
I��

CG��KC� �� �NF� I� �X�I�

we can specify them separately� Then the number of linear constraint functions must be speci
ed by
using the statement �NCL�number of linear functions �default value is �NCL���� We always suppose
that the
rst NCL constraint functions are linear� Then the coe�cients CG��KC����NF�I�� �� KC�
NCL� �� I� NF� are speci
ed by using the macrovariable �INPUT and the macrovariables �FMOD�
ELC� �GMODELC� �HMODELC are used only for the speci
cation of the nonlinear constraint functions
FC�KC�X�� NCL�KC� NC�

	�
�� Speci�cation of the constraint functions �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Jacobian matrix CG� This possibility decreases computational time and storage requirements for large�
scale optimization problems� In this case� we use option �JACC��S� which means that the sparsity pattern
is speci
ed� All other speci
cations remain the same as in the case of dense problems� The sparsity pattern
of the Jacobian matrix is speci
ed by using the macrovariable �INPUT� Two integer vectors ICG and
JCG are used where ICG�KC�� �� KC� NC��� are pointers and JCG�K�� �� K� ICG�NC������ are
indices of nonzero elements� Nonzero elements are ordered by the gradients of the constraint functions�
The number of nonzero elements must be speci
ed by using the statement �MC�number of elements�
The number of nonzero elements could be greater then is needed �two times say� since it is used for
declaration of working
elds� For example if we have the gradients

GA���X� � �gC��� � � � � gC����

GA���X� � �� � gC��� � � gC����

GA���X� � �� � � � gC��� � ��

GA���X� � �gC��� g
C
��� g

C
��� � ��

GA���X� � �� � � � gC��� g
C
����

and the Jacobian matrix

��

AG�X� �

�
BBB�

gA�� � � � � � gA��
� � gA�� � � � gA��
� � � � gA�� � �
gA�� � gA�� � gA�� � �
� � � � gA�� � gA��

�
CCCA

then we have to set�

�NC��
�MC��� �the minimum required value is MC����
�ADD�INPUT�

ICG������ ICG������ ICG�����
ICG������ ICG����	� ICG������
JCG������ JCG������ JCG������ JCG������ JCG�����
JCG������ JCG����� JCG������ JCG�	���� JCG������

�ENDADD

As in the case of the dense problem� the
rst derivatives of the constraint functions can be speci
ed
by using the macrovariable �GMODELC� If �JACC��S�� then only the nonzero elements of the gradients
are speci
ed� For the above example the speci
cation has the form�

�SET�GMODELC�
IF �KC�EQ��� THEN

GC��� � �FC���X���X���
GC��� � �FC���X���X���

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X���X���
GC��� � �FC���X���X���

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X���X���

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X���X���
GC��� � �FC���X���X���
GC��� � �FC���X���X���

ELSE
GC��� � �FC���X���X���
GC��� � �FC���X���X���

ENDIF
�ENDSET

If some of the constraint functions are linear �i�e� if �NCL��� and if �JACC��S�� then the coe�cients
CG�K�� �� K� ICG�NCL����� �constant part of the sparse Jacobian matrix�� must be speci
ed by using
the macrovariable �INPUT� If the matrix given in the above example is the constant sparse Jacobian
matrix� we use the speci
cation�

�ADD�INPUT�
CG����gC��� CG����gC��� CG����gC��� CG����gC��
CG����gC��� CG����gC��� CG���gC��� CG����gC��
CG�	��gC��� CG�����gC��

�ENDADD

�

There is another possibility which can be useful when all constraint functions are linear� It is based
on the usage of a special procedure UKMCI� that serves for direct input of individual Jacobian matrix
elements� The procedure UKMCI� is formally called by using the statement

CALL UKMCI��K�I�GCKI�ICG�JCG�CG�

where K is an index of a given constraint function �row of the Jacobian matrix�� I is an index of a given
variable �column of the Jacobian matrix�� and GCKI is a numerical value of the element �FC�K�X���X�I��
For the example given above we can write�

�ADD�INPUT�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify beforehand
the
elds ICG and JCG� If the number of constraints are very large then we can use a slightly more
complicated procedure UKMCI�� which uses dynamic structures and therefore works more quickly� The
procedure UKMCI� is formally called by using the statement

CALL UKMCI��K�I�GCKI�ICG�JCG�CG�LCG�

where K is an index of a given constraint function �row of the Jacobian matrix�� I is an index of a given
variable �column of the Jacobian matrix�� GCKI is a numerical value of the element �FC�K�X���X�I�
and LCG is an auxiliary working
eld�

	�
�� Additional speci�cations concerning optimization problems

Useful speci
cations� which can improve the computational e�ciency and robustness of the optimiza�
tion methods� are a lower bound for the objective function value and an upper bound for the stepsize�
Both of these values depend on a de
nition of the objective function and can be speci
ed by the statements
�FMIN�lower bound �for the objective function value� and �XMAX�upper bound �for the stepsize��
We recommend a de
nition of �FMIN� whenever it is possible� and a de
nition of �XMAX� whenever
the objective function contains exponentials� If the objective function is a sum of powers �or a sum of
squares�� then automatically �FMIN��� The default option for the maximum stepsize is �XMAX������

If there are no general constraints and if the number of variables is not greater than ��� then we can
use global optimization methods� A decision between local and global optimization is e�ected by means
of macrovariable �EXTREM�

�EXTREM��L� � a local extremum� that usually contains the starting point in its region of attractivity
is found�

�EXTREM��G� � all extrema in the given region are found and a global extremum is determined�

The default option is �EXTREM��L�� If �EXTREM��G�� we cannot use the commonmodels �FGMOD�
ELF and �FGHMODELF for a common speci
cation of the value � the gradient and the Hessian matrix

��

of the model function� Similarly we cannot use the common models �FGMODELA and �FGHMODELA
for a speci
cation of the approximating functions�

The global optimization is performed over a bounded region speci
ed by lower and upper bounds
XL�I� and XU�I�� �� I� NF� If these bounds are not speci
ed �using the macrovariable �INPUT��
they are computed from the initial values of variables and from the given maximum stepsize� so that
XL�I��X�I��XMAX and XU�I��X�I��XMAX� �� I� NF� The maximum stepsize is speci
ed� as in
the case given above� using the statement �XMAX�maximum stepsize� The default option is again
�XMAX������

Additional useful speci
cations� concerning the solution precision� are bounds used in termination
criteria� These bounds can be speci
ed by the macrovariables �TOLX� �TOLF� �TOLB� �TOLG� �TOLC
and MIC� MIT� MFV�

�TOLX � lower bound for a relative change of variables�
�TOLF � lower bound for a relative change of function values�
�TOLB � lower bound for the objective function value�
�TOLG � lower bound for the objective function gradient norm�
�TOLC � lower bound for the violated constraint functions�

�MIC � maximum number of penalty function changes�
�MIT � maximum number of iterations�
�MFV � maximum number of function evaluations�

The default values are �TOLX�����D���� �TOLF�����D����� �TOLB������D���� �TOLG�����D����
�TOLC�����D��� and MIC��� MIT����� MFV������

�	

� Optimization methods in the UFO system

The UFO system has a modular structure� All optimization methods can be set up using the indi�
vidual simple modules� For example� the sequential quadratic programming variable metric methods for
nonlinearly constrained optimization problems are set up by using the modules for the objective func�
tion evaluation� penalty function de
nition� direction determination� quadratic programming solution�
stepsize selection� and variable metric update� Optimization methods contained in the UFO system
can be roughly divided into two groups� The
rst group contains methods for unconstrained and lin�
early constrained optimization problems� while the second group contains methods for general nonlinear
programming problems� Methods for general nonlinear programming problems� i�e� for problems with
nonlinear constraints� are classi
ed by their realization form which is determined by using the macrovari�
able �FORM�

�FORM��SQ� � sequential �or recursive� quadratic programming methods for general dense problems�
�FORM��SM� � sequential �or recursive� minimax optimization methods for general dense problems�
�FORM��SE� � inexact sequential �or recursive� quadratic programming methods for sparse equality

constrained problems�

Sections ��� � ���� concern methods for unconstrained and linearly constrained problems� These methods
do not use the macrovariable �FORM for a classi
cation� Methods for general nonlinear programming
problems are described in Sections ���� � ���� Basic parts of optimization methods are described in
Sections ���� � ����� Section ���� is devoted to global optimization methods�

Methods for unconstrained and linearly constrained problems contained in the UFO system can be
partitioned into several classes which are speci
ed by using the macrovariable �CLASS�

�CLASS��HM� � heuristic methods for small�size problems� This class contains the pattern search
method and the simplex method�

�CLASS��CD� � conjugate direction methods that use no matrices� This class contains conjugate di�
rection methods� variable metric methods with limited storage and di�erence versions
of the truncated Newton method�

�CLASS��VM� � variable metric methods that use an approximation of the Hessian matrix which is
updated in each iteration�

�CLASS��MN� � modi
ed Newton methods that use the Hessian matrix computed either analytically
or numerically�

�CLASS��GN� � modi
ed Gauss�Newton methods for nonlinear least squares problems that use the
normal equation matrix as an approximation of the Hessian matrix� These methods
are also realized by using the Jacobian matrix representation�

�CLASS��QN� � quasi�Newton methods for nonlinear least squares problems and nonlinear equations�
�CLASS��QL� � quasi�Newton methods with limited storage for sparse nonlinear least squares prob�

lems and sparse nonlinear equations�
�CLASS��BD� � biconjugate direction methods for nonlinear equations�
�CLASS��BR� � modi
ed Brent method for nonlinear equations�
�CLASS��LP� � special methods for linear programming problems�
�CLASS��QP� � special methods for quadratic programming problems�
�CLASS��BM� � proximal bundle methods for nonsmooth optimization�
�CLASS��BN� � bundle�Newton methods for nonsmooth optimization�

The individual methods from the above classes can be chosen by using additional speci
cations� The
most important ones concerning direction determination and stepsize selection� are type of the method�
kind of the matrix decomposition and number of the method� The type of the method is speci
ed by the
macrovariable �TYPE�

�TYPE��L� � line search methods�
�TYPE��G� � general trust region methods �

��

�TYPE��T� � special trust region methods for nonlinear least squares problems�
�TYPE��M� � modi
ed Marquardt methods for nonlinear least squares problems�
�TYPE��P� � pattern search method of Hooke and Jeeves�
�TYPE��S� � simplex method of Nelder and Mead�

The kind of the matrix decomposition is speci
ed by the macrovariable �DECOMP�

�DECOMP��M� � the symmetric matrix is used as an input for the direction determination�
�DECOMP��G� � the LDLT decomposition without permutations is used as an input for the direction

determination� This decomposition is usually obtained by the Gill�Murray algorithm
�����

�DECOMP��S� � the LDLT decomposition with permutations is used as an input for the direction
determination� This decomposition is usually obtained by the Schnabel�Eskow algo�
rithm ������

�DECOMP��B� � the block LDLT decomposition with permutations is used as an input for the di�
rection determination� This decomposition is usually obtained by the Bunch�Parlett
algorithm �����

�DECOMP��I� � the inverse of a symmetric matrix is used as an input for the direction determination�
�DECOMP��R� � the RTR decomposition without permutation is used as an input for the direction de�

termination� This decomposition is usually obtained by the recursive QR factorization
�����

�DECOMP��C� � the RTR decomposition with permutations is used as an input for the direction de�
termination� This decomposition is usually obtained by an application of the rank
revealing algoritm ����

�DECOMP��A� � the rectangular matrix is used as an input for the direction determination�
�DECOMP��Q� � the QR decomposition of a rectangular matrix without permutations is used as an

input for the direction determination� This decomposition is usually obtained by
using the Householder re�ection with the explicitly stored orthogonal matrix Q�

�DECOMP��E� � the general square matrix is used as an input for the direction determination in the
case NA�NF �system of nonlinear equations��

�DECOMP��K� � the inde
nite Karush�Kuhn�Tucker matrix is used as an input for the direction deter�
mination in the equality constrained case�

The macrovariable �DECOMP is also used for the selection of conjugate direction methods� In this case
it does not concern the kind of matrix decomposition�

The serial number of the method is speci
ed by the macrovariable �NUMBER� It determines an
individual realization of the direction determination�

Additional information about speci
cations �TYPE� �DECOMP� �NUMBER is given in Section ���	�
All options used for the method selection have default values which follows from the knowledge bases

coded in the individual templates� Therefore� they need not be speci
ed by the user� The possibilities
we describe can be of service to users that are familiar with optimization methods�

Almost all optimization methods have di�erent realizations for three di�erent representations of the
objective function� If �HESF��D�� then dense variants for either unconstrained problems or box con�
strained problems or linearly constrained problems �with dense linear constraints speci
ed by �JACC��D��
can be used� If �HESF��S�� then sparse variants for either unconstrained problems or box constrained
problems or linearly constrained problems �with sparse linear constraints speci
ed by �JACC��S�� can
be used� If �JACA��S� and �HESF��B�� then partitioned variants for either unconstrained problems
or box constrained problems can be used� Partitioned variants of optimization methods are usually less
e�cient due to more expensive matrix operations� Therefore� we recommend to prefer sparse variants
against the partitioned ones�

��

��
� Heuristic methods

Heuristic �or comparative� methods are speci
ed by the statement �CLASS��HM�� These methods
can be used only for small�size problems �with at most �� variables�� The main advantage of the heuristic
methods is that they do not require continuity of the objectiver function�

The individual heuristic methods are speci
ed by the macrovariable �TYPE�

�TYPE��P� � pattern search method of Hooke and Jeeves ��	��
�TYPE��S� � simplex method of Nelder and Mead �	���

The default value is �TYPE��P��

��	� Conjugate direction methods

Conjugate direction methods are speci
ed by the statement �CLASS��CD�� These methods are very
e�cient for large problems with computationally simple objective functions ��KCF�� or �KCA���� The
main advantage of conjugate direction methods is that matrices are not used �implicitly �HESF��NO���
This fact highly decreases storage requirements�

The individual conjugate direction methods are speci
ed by the macrovariable �DECOMP�

�DECOMP��C� � conjugate gradient methods� These methods are the simplest ones from all conju�
gate direction methods and they require the fewest storage requirements� However�
they usually consume a greater number of function evaluations then other conjugate
direction methods�

�DECOMP��V� � variable metric methods with limited storage� These methods allow us to prescribe
storage requirements using the number of VM steps �the number of necessary used
vectors is approximately two times greater than the number of VM steps�� The num�
ber of VM steps is speci
ed by the macrovariable �MF� Variable metric methods with
limited storage usually consume fewer function evaluations then conjugate gradient
methods�

�DECOMP��M� � inexact di�erence version of the modi
ed Newton method ���� This method is im�
plemented either as the line search method or as the trust region method� It can be
very e�cient but� since it consumes a greater number of gradient evalutions� it can be
slower then other conjugate direction methods� particularly if the objective function
is more complicated ��KCF�� or �KCA����

There are two families of conjugate gradient methods implemented in the UFO system�

�NUMBER�� � basic conjugate gradient methods described in ���� The individual methods are spec�
i
ed by using the macrovariables �MET� �MET� and �MET��

�NUMBER�� � generalized conjugate gradient methods introduced in ����� The individual methods
are speci
ed by using the macrovariable �MET��

If �MET��� then the steepest descent method is used� If �MET��� then the Fletcher�Reeves method ����
is used� If �MET��� then the Polak�Ribiere method ����� is used� If �MET��� then the Hestenes�Stiefel
method ��� is used� The macrovariable �MET� speci
es the restart procedure as it is described in ���� If
�MET���� then a restarted CG method with positive parameter is used� If �MET���� then a bounded
CG method with positive parameter is used� If �MET���� then a bounded CG method with positive
lower bound is used� If �MET���� then a CG method with the Powell restart is used� If �MET����
then a CG method with the test on conjugacy is used� If �MET���� then a CG method with the test
on orthogonality is used� The macrovariable �MET� speci
es the scaling parameter as it is described in
��� ��MET��� for suppressed scaling and �MET��� for scaling in each iteraton��

Similarly� the UFO system contains two variable metric methods with limited storage�

�NUMBER�� � The BFGS method with limited storage described in �		�� The default number of VM
steps is �MF���

��

�NUMBER�� � The extended BFGS method with limited storage described in ����� The default
number of VM steps is �MF���

Both these methods are realized by using various scaling techniques ��	�� speci
ed by the macrovariable
�MET�� If �MET���� then scaling is suppressed� If �MET���� then scalar scaling is used� If �MET����
then diagonal scaling is used� If �MET���� then scalar and diagonal scalings are used simultaneously�

The possible speci
cations �type�decomp�number� for the conjugate direction methods in the uncon�
strained case are�

L�C��� L�V���
L�C��� L�V���

L�M���
G�M���

The default choice is L�C��� In both the box constrained and the linearly constrained cases we cannot
use speci
cations with �DECOMP��M�� Conjugate direction methods can be used also for sparse linear
constraints when �JACC��S��

���� Variable metric methods

Variable metric methods are speci
ed by the statement �CLASS��VM�� These methods are most
commonly used for either unconstrained or linearly constrained optimizations� Variable metric methods
use a symmetric �usually positive de
nite� matrix which is updated in every iteration in such a way
that it approximates the Hessian matrix of the objective function as precisely as possible� In the UFO
system� the variable metric methods are realized in three di�erent forms �for �HESF��D�� �HESF��S�
and �HESF��B�� depending on the Hessian matrix speci
cation�

There are two families of variable metric methods for dense problems ��HESF��D�� which are distin�
guished using the macrovariable �UPDATE�

�UPDATE��B� � the Broyden family ����� Variable metric methods from this family are the most
commonly used ones since they are very robust and e�cient�

�UPDATE��D� � the Davidon family ����� Variable metric methods from this family are similar to
the previous ones� The only di�erence is that projections into the new subspace are
computed� This guarantees the quadratic termination property even in the case of an
imperfect line search�

The default value is �UPDATE��B��
Individual variable metric methods are speci
ed by using the macrovariables �MET� �MET�� and

�MET�� The macrovariable �MET determines the variable metric update� If �MET��� then the BFGS
method ����� ����� ��	�� ����� is used� If �MET��� then the DFP method ����� ��� is used� If �MET���
then the Hoshino method ���� is used� If �MET��� then the safeguarded rank�one method ��� is used�
If �MET��� then the optimally conditioned method ���� is used� If �MET��� then the rank�one based
method ��� from the preconvex part of the Broyden family is used� If �MET�� then the variationally
derived method ��� from the preconvex part of the Broyden family is used� If �MET��� then the heuristic
method �	� is used� If �MET�	� then the method ����� derived from the matrix decomposition is used�
If �MET���� then the method ���� which minimizes the angle between the direction vector and the
negative gradient is used� If �MET���� then the method �	� which minimizes the norm of the direction
vector is used� If �MET���� then the least prior deviation method �	�� is used� The default value is
�MET��� If we specify �DECOMP��M�� then we can use only the values �MET���������

The macrovariable �MET� determines the Oren �scaling� parameter ������ If �MET���� then no
scaling is used� If �MET���� then initial scaling ����� is used� If �MET���� then controlled scaling
��� is used� If �MET���� then simple controlled scaling ���� is used� If �MET���� then scaling in each

��

iteration is used� The default value is �MET���� The scaling parameter is determined by using heuristic
rules given in �	��

The macrovariable �MET� determines a value of the Biggs �nonquadratic model� parameter ����
If �MET���� then the unit value is used� If �MET���� then the Spedicato value ���� is used� If
�MET���� then the modi
ed Spedicato value �	� is used� If �MET���� then the value determined from
the homogeneous model �	� is used� If �MET���� then the value determined from the cubic model ���
is used� The default value is �MET����

The possible speci
cations �type�decomposition�number� for dense variable metric methods in the
unconstrained case are�

L�G��� L�B��� L�I���
L�M���

G�G��� G�B��
G�M���
G�M���

T�G���
T�G���

The default choice is L�I��� In both the box constrained and the linearly constrained cases we cannot use
speci
cations with �DECOMP��B��

If the Hessian matrix is sparse with a general pattern ��HESF��S��� then the sparse variable metric
methods� that preserve this pattern� are used� The individual variable metric updates �or families� are
speci
ed by using the macrovariable �UPDATE�

�UPDATE��M� � the simple Marwill projection �	��� This update can be used only if �DECOMP��M��
�UPDATE��G� � the fractioned Marwill projection ������ This update can be used only if �DE�

COMP��M� and �NUMBER���
�UPDATE��T� � the fractioned Toint projection �the best method given in ������� This update can be

used only if �DECOMP��M� and �NUMBER���
�UPDATE��B� � the partitioned variable metric updates from the Broyden family ����� These updates

can be used only if �MODEL��AF� or �MODEL��AQ� or �MODEL��AP��

The default value is �UPDATE��M��
Fractioned updates with the speci
cations �UPDATE��G� or �UPDATE��T� can be used only in the

unconstrained case� If �UPDATE��B�� then the particular update is speci
ed by using the macrovariable
�MET� If �MET��� then the BFGS method is used� If �MET��� then the DFP method is used� If
�MET��� then the Hoshino method is used� If �MET��� then the safeguarded rank�one method is used�
The default value is �MET���

If �DECOMP��G�� then less e�cient sparse product form updates from the Broyden family are used�
In this case� the values �MET������ can be used�

The possible speci
cations �type�decomposition�number� for sparse variable metric methods in the
unconstrained case are�

L�G��� L�M���
L�M���

G�G���
G�M���
G�M���

The default choice is L�M��� In both the box constrained and the linearly constrained cases we can
use only speci
cations with �DECOMP��M� and �NUMBER��� Similarly� if the fractioned updates
��UPDATE��T� and �UPDATE��G�� are required� then only speci
cations with �DECOMP��M� and
�NUMBER�� can be used�

��

If the Hessian matrix is sparse with a partitioned pattern ��HESF��B��� then only the partitioned
variable metric updates� speci
ed by the choice �UPDATE��B�� can be used� These updates are the
same as in the case in which the Hessian matrix is sparse with a general pattern� but the partitioned
realization is usually less e�cient than the general one due to more expensive matrix operations�

The possible speci
cations �type�decomposition�number� for partitioned variable metric methods in
the unconstrained case are�

L�M���
G�M���

The default choice is L�M���

���� Modi�ed Newton methods

Modi
ed Newton methods are speci
ed by the statement �CLASS��MN�� These methods use the
Hessian matrix of the objective function which is computed either analytically or numerically� The UFO
system performs a numerical computation of the Hessian matrix automatically whenever the macrovari�
able �HMODELF �or �FGHMODELF� is not de
ned� Modi
ed Newton methods are realized in three
di�erent forms �for �HESF��D�� �HESF��S� and �HESF��B�� depending on the Hessian matrix speci
�
cation� Even if the modi
ed Newton methods can be realized as the line search methods ��TYPE��L���
it is more advantageous to realize them as the trust region methods ��TYPE��G���

If the Hessian matrix is dense ��HESF��D��� then all second derivatives have to be given analytically
or they are computed numericaly by using di�erences of gradients� The possible speci
cations �type�
decomposition�number� for dense modi
ed Newton methods in the unconstrained case are�

L�G��� L�S��� L�B���
L�G���

L�M���
G�G��� G�S��� G�B���

G�M���
G�M���
G�M���

The default choice is G�M��� In both the box constrained and the linearly constrained cases we cannot
use speci
cations with �DECOMP��S� and �DECOMP��B�� The choice L�G�� di�ers from the choice
L�G��� The last one corresponds to the combination of both the Newton and the conjugate gradient
methods�

If the Hessian matrix is sparse with a general pattern ��HESF��S��� we have two possibilities� If
�MODEL��FF�� then only the structurally nonzero second order derivatives have to be given analytically
by using the prescribed pattern� Numerical computation of the second derivatives is based on the fact
that a substantially lower number of di�erences has to be used in comparison with the dense case�
The determination of suitable di�erences is a combinatorial problem equivalent to some graph coloring
problem ����� ��	�� If �MODEL��AF� or �MODEL��AQ� or �MODEL��AP�� then only the nonzero
second derivatives of the approximating functions have to be given analytically by using the prescribed
pattern� Numerical computation of the second derivatives is based on the fact that the approximating
functions depend on a minor number of variables so that the number of di�erences is substantially lower
in comparison to the dense case�

If �MODEL��AQ� �sum of squares�� then the combination ���� of both the modi
ed Newton and the
modi
ed Gauss�Newton methods can be used� This choice is possible by using the macrovariable �MET�
If �MET��� then the modi
ed Newton method is used� If �MET��� then the combined method is used�
The default value is �MET���

The possible speci
cations �type�decomposition�number� for sparse modi
ed Newton methods in the
unconstrained case are�

��

L�G��� L�M���
L�M���
L�M���

G�G���
G�M���
G�M���

The default choice is G�M��� In the box constrained case we can only use speci
cations with �DE�
COMP��M� and �NUMBER��� The choice L�M�� di�ers from the choice L�M��� The last one corre�
sponds to the incomplete Gill�Murray decomposition�

If the Hessian matrix is sparse with a partitioned pattern ��HESF��B��� then a computation of
the second order derivatives is the same as in the case when the Hessian matrix is sparse with a general
pattern� but the partitioned realization is usually less e�cient than the general one due to more expensive
matrix operations�

If �MODEL��AQ� �sum of squares�� then the combination of both the modi
ed Newton and the
modi
ed Gauss�Newton methods can be used� This choice is possible by using the macrovariable �MET
like the dense case� The possible speci
cations �type�decomposition�number� for partitioned modi
ed
Newton methods in the unconstrained case are�

L�M���
G�M���

The default choice is G�M���

���� Modi�ed Gauss�Newton methods for nonlinear least squares and nonlinear equations

Modi
ed Gauss�Newton methods are speci
ed by the statement �CLASS��GN�� These methods are
special optimization methods for either nonlinear least squares ��MODEL��AQ�� or nonlinear least pow�
ers ��MODEL��AP�� problems� Modi
ed Gauss�Newton methods are based on the fact that the
rst
term in the Hessian matrix expression� the so�called normal equation matrix� depending on the
rst
derivatives of the approximating functions only� is a good approximation of the whole Hessian matrix�
The second term in the Hessian matrix expression can be approximated by using the variable metric
updates�

Modi
ed Gauss�Newton methods are realized in four di�erent forms �for �HESF��D�� �HESF��S��
�HESF��B�� �HESF��NO�� depending on the Hessian matrix speci
cation� Even if the modi
ed Gauss�
Newton methods can be realized as the line search methods ��TYPE��L��� it is more advantageous to
realize them as the trust region methods ��TYPE��G���

If the Hessian matrix is speci
ed to be dense ��HESF��D��� then the normal equation matrix is also
dense� In this case� we can use hybrid methods with dense updates�

�UPDATE��NO�� no update is used� The method utilizes the normal equation matrix �the
rst part of
the Hessian matrix expression��

�UPDATE��S� � the Dennis structured approach ���� is used� The second part of the Hessian matrix
is approximated by using modi
ed variable metric updates� This part is added to
the normal equation matrix if the conditions for leaving the modi
ed Gauss�Newton
method are satis
ed�

�UPDATE��F� � the Fletcher hybrid approach ���� ��	� is used� The Hessian matrix is approximated
either by the normal equation matrix or by the matrix obtained by using the variable
metric updates� The decision between the two cases is based on the rate of function
value decrease and on the normal equation matrix conditioning�

�UPDATE��B� � a variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi
ed Gauss�Newton method are satis
ed �����

The default value is �UPDATE��NO��

��

Individual variable metric updates from the above families are speci
ed by using the macrovariable
�MET� If �MET��� then the BFGS method is used� If �MET��� then the DFP method is used� If
�MET��� then the Hoshino method is used� If �MET��� then the original �unsafeguarded� rank�one
method is used� The value �MET�� is allowed only if �UPDATE��S� and it is the default in this case�
The value �MET�� is the default in the other cases�

Variable metric updates ��UPDATE�F or �UPDATE��B�� can be realized either as simple updates
�normal equation matrix is updated� or as cumulative updates �previous approximation of the Hessian
matrix is updated�� as it is described in ����� Decision between these possibilities is mediated by the
macrovariable �MOT�� If �MOT���� then the cumulative update is used� If �MOT���� then the simple
update is used�

In the dense case� the modi
ed Gauss�Newton methods can be realized with additional special matrix
decompositions that cannot be used in other cases� If �DECOMP��R�� then the recursive QR decompo�
sition ����� is used with an additional correction of the upper triangular matrix R� If �DECOMP��C�
then� moreover� the upper triangular matrix R is changed by using the rank revealing algorithm ���
that can improve its conditioning� The possible speci
cations �type�decomposition�number� for dense
modi
ed Gauss�Newton methods in the unconstrained case are�

L�G�� � L�S��� L�R��� L�C��� L�M���
L�M���
L�M���

G�G��� G�S��� G�R��� G�C��� G�M���
G�M��
G�M���
G�M���
G�M���

T�G��� T�S��� T�R��� T�C���
T�G���

T�S��� T�C��� T�M���
M�M���
M�M���

The default choice is G�M��� In both the box constrained and the linearly constrained cases we cannot use
speci
cations �DECOMP��S�� �DECOMP��R�� �DECOMP��C�� If �DECOMP��S� or �DECOMP��C��
then variable metric updates cannot be used ��UPDATE��NO��� The speci
cation �UPDATE��S� can
be used only if �DECOMP��M��

If the Hessian matrix is speci
ed to be sparse with a general pattern ��HESF��S��� then the normal
equation matrix has the same structure� In this case� we can use hybrid methods with sparse updates�

�UPDATE��NO�� no update is used� The method utilizes the normal equation matrix �the
rst part of
the Hessian matrix expression��

�UPDATE��S� � the Dennis structured approach ���� is used� The second part of the Hessian matrix
is approximated by using modi
ed variable metric updates� This part is added to the
normal equation matrix if conditions for leaving the modi
ed Gauss�Newton method
are satis
ed�

�UPDATE��D� � the Brown�Dennis structured approach ���� is used� The Hessian matrices of approxi�
mating functions are approximated by using variable metric updates� These matrices
serve for approximating the second part of the Hessian matrix which is added to the
normal equation matrix if conditions for leaving the modi
ed Gauss�Newton method
are satis
ed�

�UPDATE��B� � a variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi
ed Gauss�Newton method are satis
ed �����

�

�UPDATE��M� � a sparse update based on the Marwill projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi
ed Gauss�Newton method are satis
ed �����

The default value is �UPDATE��NO��
Individual variable metric updates from the above families are speci
ed by using the macrovariable

�MET like the dense case� The value �MET�� is allowed only if either �UPDATE��S� or �UPDATE��D�
and it is the default in this case� The value �MET�� is the default in the other cases excepting the case
�UPDATE��M� in which the macrovariable �MET is not utilized�

Variable metric updates ��UPDATE�M or �UPDATE��B�� can be realized either as simple updates
�normal equation matrix is updated� or as cumulative updates �previous approximation of the Hessian
matrix is updated�� Decision between these possibilities is mediated by the macrovariable �MOT� simi�
larly as in the dense case�

If �UPDATE��D�� then we can use several switches for utilizing variable metric updates speci
ed by
the macrovariable �MOT�� If �MOT���� then the Fletcher and Xu switch ��	� is used� If �MOT����
then a modi
cation of the Fletcher and Xu switch is used� If �MOT���� then the Denis and Welsch
switch ���� is used� If �MOT���� then the Ramsin and Wedin switch ����� is used� The default value is
�MOT����

The possible speci
cations �type�decomposition�number� for sparse Gauss�Newton methods in the
unconstrained case are�

L�G��� L�M���
L�M���
L�M���

G�G���
G�M���
G�M���
G�M���

T�G���
T�M���

The default choice is G�M��� In the box constrained case we can use only speci
cations with �DE�
COMP��M� and �NUMBER���

If the Hessian matrix is speci
ed to be sparse with a partitioned pattern ��HESF��B�� then the normal
equation matrix has the same structure� If that is the case� then we can use hybrid methods with par�
titioned updates �UPDATE��NO�� �UPDATE��S�� �UPDATE��D�� �UPDATE��F�� �UPDATE��B��
whose details were already explained above� Note that the partitioned realization is usually less e�cient
than the general one due to more expensive matrix operations�

The possible speci
cations �type�decomposition�number� for partitioned Gauss�Newton methods are�

L�M���
G�M���

The default choice is G�M���
If the Hessian matrix is not speci
ed ��HESF��NO��� then the normal equation matrix is not used�

Instead of that the Jacobian matrix� de
ning a linear least squares problem� is utilized in each iteration�
Such� so�called� normal equation free� Gauss�Newton methods are realized in two di�erent forms �for
�JACA��D� and �JACA��S�� depending on the Jacobian matrix speci
cation�

If the Jacobian matrix is speci
ed to be dense ��JACA��D��� then we cannot use hybrid methods
with variable metric updates �only the speci
cation �UPDATE��NO is permitted�� Moreover� dense�
normal equation free� Gauss�Newton methods can be used only in the unconstrained case�

The possible speci
cations �type�decomposition�number� for dense� normal equation free� Gauss�
Newton methods are�

��

L�Q��� L�A��� L�E���
L�A��� L�E���

G�Q��� G�E���
G�Q��� G�E���

G�A��� G�E���
G�A���

G�Q���

The default choice is G�A�� for least squares problems and G�E�� for systems of nonlinear equations� The
speci
cation �DECOMP��E� can be used only if NA�NF �system of nonlinear equations��

If the Jacobian matrix is speci
ed to be sparse ��JACA��S��� then we can use hybrid methods with
simple variable metric updates�

�UPDATE��NO�� no update is used� The method utilizes original Jacobian matrix�
�UPDATE��V� � the simple factorized BFGS update ���� is used� The second order information is

approximated by the unsymmetric rank�one update of the Jacobian matrix�
�UPDATE��R� � the simple factorized rank�one update ���� is used� The second order information is

approximated by the addition of a dense row to the Jacobian matrix�

If �UPDATE��V� or �UPDATE��R�� then we can use several switches for utilizing variable metric
updates� speci
ed by the macrovariable �MOT�� like the case with the speci
cation �HESF��S� described
above� The default value is �MOT����

The main advantage of sparse� normal equation free� Gauss�Newton methods consists in the fact that
the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row� If this
is the case� then the classical Gauss�Newton methods cannot be used� On the other hand� the normal
equation matrix has often a lower number of nonzero elements then the Jacobian one� As a result� the
classical Gauss�Newton methods are more e�cient in this case�

The possible speci
cations �type�decomposition�number� for sparse� normal equation free� Gauss�
Newton methods are�

L�A��� L�E���
L�E���

L�A��� L�E���
L�E���
L�E���

G�A���
G�E���

G�A��� G�E���
G�A��� G�E���
G�A���

The default choice is G�A�� for least squares problems and G�E�� for systems of nonlinear equations� The
speci
cation �DECOMP��E� can be used only if NA�NF �system of nonlinear equations�� In the box
constrained case we can use only speci
cations with either �NUMBER�� or �NUMBER��� The choice
L�E�� di�ers from the choice L�E��� The last one corresponds to the incomplete LU decomposition�

���� Quasi�Newton methods for nonlinear least squares and nonlinear equations

Quasi�Newton methods are speci
ed by the statement �CLASS��QN�� These methods are special
optimization methods for nonlinear least squares ��MODEL��AQ�� problems including systems of non�
linear equations in the case when the
rst derivatives are not speci
ed analytically �the macrovariable
�GMODELA is not de
ned�� Quasi�Newtod methods use a rectangular matrix which is updated in every
iteration in such a way that it aproximates the Jacobian matrix as precisely as possible� In the UFO
system� the quasi�Newton methods are realized in two di�erent forms �for �JACA��D� and �JACA��S��
depending on the Jacobian matrix speci
cation�

�	

There are two possibilities for dense problems ��JACA��D�� which are distinguished by using the
macrovariable �UPDATE�

�UPDATE��NO�� no update is used� Every approximation of the Jacobian matrix is computed numer�
ically by using di�erences�

�UPDATE��B� � the Broyden family ���� of rank�one updates is used in almost all iterations� Only
after restart the Jacobian matrix is approximated numerically by using di�erences�

When �UPDATE��B�� then the individual quasi�Newton methods are speci
ed by using the macrovariable
�MET� If �MET��� then the
rst �good� Broyden update ���� is used� If �MET��� then the second
Broyden update ���� is used� If �MET��� then the second Greenstadt update ���	� is used� If �MET���
then the
rst Greenstadt update ���	� is used� If �MET��� then the
rst Todd OC update ���� is used�
If �MET��� then the
rst Todd OCX update ���� is used� If �MET�� then the second Todd OC update
���� is used� If �MET��� then the second Todd OCX update ���� is used� The default value is �MET���
Dense quasi�Newton methods can be used only in the unconstrained case�

The possible speci
cations �type�decomposition�number� for dense quasi�Newton methods are�

L�Q��� L�A��� L�E���
L�A��� L�E���

G�Q��� G�E���
G�Q��� G�E���

G�A��� G�E���
G�A���

G�Q���

The default choice is G�Q��� The speci
cation �DECOMP��E� can be used only if NA�NF �system of
nonlinear equations��

If the Jacobian matrix is sparse with a general pattern ��JACA��S��� then there are two possibili�
ties for computing an approximation of the Jacobian matrix by the di�erences� These possibilities are
distinguished by using the macrovariable �NUMDER�

�NUMDER�� � derivatives of individual approximating functions are computed�
�NUMDER�� � the Coleman�More ���� graph coloring algorithm is used�

Moreover� various sparse quasi�Newton updates that preserve pattern of the Jacobian matrix can be used�
If �NUMDER��� then there are three choices of the quasi�Newton updates which are speci
ed by the

macrovariable �UPDATE�

�UPDATE��NO�� no update is used� Every approximation of the Jacobian matrix is computed numer�
ically by using di�erences�

�UPDATE��B� � sparse quasi�Newton updates are used in almost all iterations� Only after restart� the
Jacobian matrix is approximated numerically by using di�erences�

�UPDATE��S� � modi
ed Newton methods such as row scaling update are used in almost all itera�
tions� Only after restart the Jacobian matrix is approximated numerically by using
di�erences�

If �NUMDER��� then there are four choices of the quasi�Newton updates which are speci
ed by the
macrovariable �UPDATE�

�UPDATE��NO�� no update is used� Every approximation of the Jacobian matrix is computed numer�
ically by using di�erences�

�UPDATE��B� � sparse quasi�Newton updates ����� are used in almost all iterations� Only after restart
the Jacobian matrix is approximated numerically by using di�erences�

��

�UPDATE��S� � modi
ed Newton methods such as row scaling update are used in almost all itera�
tions� Only after restart the Jacobian matrix is approximated numerically by using
di�erences�

�UPDATE��C� � cyclic column determination methods are used in almost all iterations� Only after
restart the Jacobian matrix is approximated numerically by using di�erences�

When �UPDATE��B�� then the individual quasi�Newton methods are speci
ed by using the macrovariable
�MET� If �MET��� then the Schubert update ����� is used� If �MET��� then the Bogle�Perkins update
���� is used� If �MET��� then the column update �	�� is used� When �UPDATE��S� and �MET�� then
the modi
ed Newton method is used� When �UPDATE��S� and �MET�� then the row scaling update
�	�� is used� When �UPDATE��C� and �MET�� then the cyclic column determination method ��� is
used� When �UPDATE��S� and �MET�� then the cyclic column determination method ��� followed
by the Schubert update ����� is used�

The possible speci
cations �type�decomposition�number� for sparse quasi�Newton methods are�

L�A��� L�E���
L�E���

L�A��� L�E���
L�E���
L�E���

G�A���
G�E���

G�A��� G�E���
G�A��� G�E���
G�A���

The default choice is G�A�� for least squares problems and G�E�� for systems of nonlinear equations� The
speci
cation �DECOMP��E� can be used only if NA�NF �system of nonlinear equations�� In the box
constrained case we can use only speci
cations with either �NUMBER�� or �NUMBER��� The choice
L�E�� di�ers from the choice L�E��� The later one corresponds to the incomplete LU decomposition�

��� Quasi�Newton methods with limited storage for nonlinear equations

Quasi�Newton methods with limited storage are speci
ed by the statement �CLASS��QL�� These
methods are special methods for solving sparse systems of nonlinear equations ��MODEL��AQ�� in a
case in which the
rst derivatives are not speci
ed analytically �the macrovariable �GMODELA is not
de
ned�� Therefore� only the case NA�NF is permitted� Quasi�Newtod methods with limited storage use
an initial approximation of the sparse Jacobian matrix together with several small�size matrices which
are updated in every iteration in such a way that they aproximate the Jacobian matrix as precisely as
possible� There are two possibilities which are distinguished by using the macrovariable �UPDATE�

�UPDATE��NO�� no update is used� Every approximation of the Jacobian matrix is computed numer�
ically by using di�erences�

�UPDATE��B� � the Broyden good update of rank�one with limited storage ���� is used in almost all
iterations� Only after restart the Jacobian matrix is approximated numerically by
using di�erences�

The possible speci
cations �type�decomposition�number� for quasi�Newton methods with limited stor�
age are�

L�A��� L�E���

The default choice is G�E���

��

Besides the quasi�Newtod methods with limited storage� this class contains inverse column scaling
methods which are chosen by using the speci
cation �DECOMP��I�� There are two possibilities which
are distinguished by using the macrovariable �UPDATE�

�UPDATE��NO�� no update is used� Every approximation of the Jacobian matrix is computed numer�
ically by using di�erences�

�UPDATE��C� � the inverse column scaling update �	�� is used in almost all iterations� Only after
restart the Jacobian matrix is approximated numerically by using di�erences�

The possible speci
cations �type�decomposition�number� for inverse column scaling methods are�

L�I���
L�I���
G�I���

If �NUMBER��� then a tridiagonal decomposition is used� If �NUMBER��� then an incomplete LU
decomposition is used� The default choice is G�I���

���� Biconjugate direction methods for nonlinear equations

Biconjugate direction methods are speci
ed by the statement �CLASS��BD�� These methods are
special methods for solving systems of nonlinear equations ��MODEL��AQ�� in the case when the
rst
derivatives are not speci
ed analytically �the macrovariable �GMODELA is not de
ned�� Therefore only
the case NA�NF is permitted� Biconjugate direction methods are very e�cient for large problems with
computationally simple functions in nonlinear equations ��KCA���� The main advantage of biconjugate
direction methods is that matrices are not used� This fact highly decreases storage requirements�

The individual biconjugate direction methods are speci
ed by the macrovariable �DECOMP�

�DECOMP��E� � inexact di�erence version of the Newton method for systems of nonlinear equations
����� This method is implemented either as the line search method or as the trust
region method and it is based on smoothed CGS algorithm�

Iterative methods for solving linearized equations can be modi
ed by using tridiagonal decomposition�
This possibility is determined by the macrovariable �MOS�� If �MOS���� then tridiagonal decomposi�
tion is not used� If �MOS���� then tridiagonal decomposition is used before the iterative process� If
�MOS���� then tridiagonal decomposition is used as a preconditioner� If �MOS���� then both previous
cases are assumed� The default value is �MOS����

The possible speci
cations �type�decomposition�number� for the biconjugate direction methods are�

L�E���
G�E���

The default choice is G�E���

���� Modi�ed Brent method for nonlinear equations

The Brent method is speci
ed by the statement �CLASS��BR�� This method is a special method
for solving dense systems of nonlinear equations ��MODEL��AQ�� in the case when the
rst derivatives
are not speci
ed analytically �the macrovariable �GMODELA is not de
ned�� Therefore� only the case
NA�NF is permitted� The Brent method does not need any additional speci
cations �macrovariables
�TYPE� �DECOMP� �NUMBER are not used��

��

��
�� Methods for linear programming problems

Linear programming methods are speci
ed by the statement �CLASS��LP�� These methods are re�
alized in two di�erent forms �for �JACC��D� and �JACC��S�� depending on the constraint Jacobian
matrix speci
cation�

If the constraint Jacobian matrix is dense ��JACC��D��� then we can use two di�erent linear pro�
gramming methods based on the active set strategy�

�NUMBER�� � primal reduced gradient �null�space� method �like the method proposed in ������ which
is a special implementation of the steepest descent reduced gradient method�

�NUMBER�� � primal projected gradient �range�space� method which is a special implementation of
the steepest descent projected gradient method�

The possible speci
cations �type�number� for dense linear programming methods are L�� and L���
If the constraint Jacobian matrix is sparse ��JACC��S��� then we can use one linear programming

method based on the simplex algorithm�

�NUMBER�� � primal reduced gradient �null�space� method which is described in ������

The possible speci
cation �type�number� for sparse linear programming methods is L���

��

� Methods for quadratic programming problems

Quadratic programming methods are speci
ed by the statement �CLASS��QP�� These methods are
realized in two di�erent forms �for �JACC��D� and �JACC��S�� depending on the constraint Jacobian
matrix speci
cation�

If the constraint Jacobian matrix is dense ��JACC��D��� then we can use three di�erent quadratic
programming methods based on the active set strategy�

�NUMBER�� � primal reduced gradient �null�space� method �like the method proposed in ���� which
is a special implementation of the Newton reduced gradient method�

�NUMBER�� � primal projected gradient �range�space� method �like the method proposed in �����
which is a special implementation of the Newton projected gradient method�

�NUMBER�� � dual projected gradient �range�space� method �like the method proposed in ������

The possible speci
cations �type�number� for dense quadratic programming methods are L��� L��� and
L���

If the constraint Jacobian matrix is sparse ��JACC��S��� then we can use one quadratic programming
method based on the simplex algorithm�

�NUMBER�� � primal reduced gradient �null�space� method which is described in ������

The possible speci
cation �type�number� for sparse linear programming methods is L���

��
	� Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimizationproblems are speci
ed by the statement �CLASS
��BM�� These methods use a solution of the special quadratic programming subproblem derived from
the cutting plane approach� This subproblem is in fact the same as in recursive quadratic programming
methods for minimax problems� Proximal bundle methods are realized only for unconstrained or linearly
constrained dense problems ��JACA��D��� The special quadratic programming subproblem can be solved
by using the following methods�

�NUMBER�� � dual projected gradient �range�space� method proposed in ����

��

�NUMBER�� � primal projected gradient �range�space� method which is a special implementation of
the Newton projected gradient method�

Proximal bundle methods are realized only as line search methods in two modi
cations� which are spec�
i
ed by the macrovariable �MEX� If �MEX��� then a convex version is assumed� If �MEX��� then
a nonconvex version is assumed and we can de
ne a measure of nonconvexity using the macrovariable
�ETA�� The default value is �ETA������� The possible speci
cations �type�number� for bundle methods
are L�� and L��� The default choice is L��� There are implemented various methods for computing of
the weight parameter which are chosen by using the macrovariables �MOS and �MES�� If �MOS��
and �MES���� then weights are updated using curvature of the one�dimensional quadratic function� If
�MOS�� and �MES���� then weights are updated using minimum position estimate �suitable for poly�
hedral and nearly polyhedral functions�� If �MOS��� then weights are updated using the quasi�Newton
condition� Proximal bundle methods are used whenever �KSF�� or �KSA��� They can be also used for
minimax problems as it is shown in Section �����

��
�� Bundle�Newton methods for nonsmooth optimization

Bundle�Newton methods for nonsmooth optimization problems are speci
ed by the statement �CLASS
��BN�� These methods use a solution of the special quadratic programming subproblem derived from
the cutting plane approach which contains second order information� This subproblem is in fact the
same as in recursive quadratic programming methods for minimax problems� Bundle�Newton methods
are realized only for unconstrained or linearly constrained dense problems ��JACA��D��� The special
quadratic programming subproblem can be solved by using the following methods�

�NUMBER�� � dual projected gradient �range�space� method proposed in ����
�NUMBER�� � primal projected gradient �range�space� method which is a special implementation of

the Newton projected gradient method�

A nonconvex version is assumed and we can de
ne a measure of nonconvexity using the macrovariable
�ETA�� The default value is �ETA������� The possible speci
cations �type�number� for bundle methods
are L�� and L��� The default choice is L��� Bundle�Newton methods can be used when �KSF�� or
�KSA��� They can be also used for minimax problems as it is shown in Section �����

��
�� Methods for minimax problems�

Minimax problems are speci
ed by the choice �MODEL��AM�� These problems can be solved using
four classes of methods�

�CLASS��BM� � proximal bundle methods�
�CLASS��BN� � bundle�Newton methods�
�CLASS��LP� � recursive linear programming methods�
�CLASS��VM� � recursive quadratic programming variable metric methods� An approximation of La�

grangian function Hessian matrix is updated in each iteration using the variable metric
updates belonging to the Broyden family�

�CLASS��MN� � recursive quadratic programming modi
ed Newton methods� The Lagrangian func�
tion Hessian matrix is computed in each iteration either analytically or numerically�

the default value is �CLASS��VM�� Variable metric methods are the same as in Section ��� with the
choice �DECOMP��G� and �UPDATE��B� �values �METS�� � �MET��� can be used�� Similarly�
modi
ed Newton methods are the same as in Section ��� with the choice �DECOMP��G� �the Gill�
Murray decomposition is used��

Even if minimax problems can be solved by using bundle methods described in Sections ���� � ����� it
is more e�cient to use recursive linear programming or recursive quadratic programming methods that
utilize a special structure of minimax problems�

��

Recursive linear programming methods are realized as trust region methods with box constrained
subproblems� The special linear programming subproblem� which is derived from the minimax problem�
is solved by a primal projected gradient �range�space� method which is a special implementation of the
steepest descent method�

Recursive quadratic programming methods are realized in three di�erent forms�

�TYPE��L� � line search methods�
�TYPE��G� � general trust region methods �
�TYPE��C� � general trust region methods with second order corrections �����

If �TYPE��L�� then The special line search method ��MES��� described in ��� can be used successfully�
The special quadratic programming subproblem� which is derived from the minimax problem� can be

solved by using two di�erent methods�

�NUMBER�� � dual projected gradient �range�space� method proposed in ����
�NUMBER�� � primal projected gradient �range�space� method which is a special implementation of

the Newton projected gradient method�

All of the above methods are realized only for dense unconstrained or linearly constrained problems�
The possible speci
cation �type�number� for recursive linear programming methods is G��� The possible
speci
cations �type�number� for recursive quadratic programming methods are�

L���
L���
G���
G���
C���
C���

The default choice is L���

��
�� Recursive quadratic programming methods for nonlinear programming problems�

Recursive quadratic programming methods for nonlinear programming problems are speci
ed by the
statement �FORM��SQ�� These methods belong to two following classes�

�CLASS��VM� � recursive quadratic programming variable metric methods� An approximation of La�
grangian function Hessian matrix is updated in each iteration using variable metric
updates�

�CLASS��MN� � recursive quadratic programming modi
ed Newton methods� The Lagrangian func�
tion Hessian matrix is computed in each iteration either analytically or numerically�

the default value is �CLASS��VM�� Variable metric methods are the same as in Section ��� with the
choice �DECOMP��G� and �UPDATE��B� �values �MET�� � �MET��� can be used�� Similarly� mod�
i
ed Newton methods are the same as in Section ��� with the choice �DECOMP��G� �the Gill�Murray
decomposition is used��

Recursive quadratic programming methods for nonlinear programming problems are realized as line
search methods ��TYPE��L�� with the l��exact penalty function� They are like the methods proposed in
������ The special line search method ��MES��� for l��exact penalty function can be used successfully�
The quadratic programming subproblem can be solved by using two di�erent methods�

�NUMBER�� � dual projected gradient �range�space� method �like the method proposed in ������
�NUMBER�� � primal projected gradient �range�space� method �like the method proposed in �����

which is a special implementation of the Newton projected gradient method�

��

Recursive quadratic programming methods are realized only for dense nonlinear programming prob�
lems� The possible speci
cations �type�number� for these methods are L�� and L��� The default choice
is L���

��
�� Recursive minimax optimization methods for nonlinear programming problems�

Recursive minimax optimization methods for nonlinear programming problems are speci
ed by the
statement �FORM��SM�� These methods belong to two following classes�

�CLASS��VM� � recursive minimax optimization variable metric methods� An approximation of La�
grangian function Hessian matrix is updated in each iteration using variable metric
updates�

�CLASS��MN� � recursive minimax optimization modi
ed Newton methods� The Lagrangian function
Hessian matrix is computed in each iteration either analytically or numerically�

the default value is �CLASS��VM�� Variable metric methods are the same as in Section ��� with the
choice �DECOMP��G� and �UPDATE��B� �values �MET�� � �MET��� can be used�� Similarly� mod�
i
ed Newton methods are the same as in Section ��� with the choice �DECOMP��G� �the Gill�Murray
decomposition is used��

Recursive minimax optimizationmethods for nonlinear programming problems are based on the trans�
formation of a nonlinear programming problem to a sequence of minimax problems with l��exact penalty
function �see ����� These methods are realized as line search methods ��TYPE��L��� The special line
search method ��MES��� for l��exact penalty function can be used successfully� The special quadratic
programming subproblem� derived from the minimax formulation� can be solved by using two di�erent
methods�

�NUMBER�� � dual projected gradient �range�space� method proposed in ����
�NUMBER�� � primal projected gradient �range�space� method which is a special implementation of

the Newton projected gradient method�

Recursive quadratic programming methods are realized only for dense nonlinear programming prob�
lems� The possible speci
cations �type�number� for these methods are L�� and L��� The default choice
is L���

��
� Inexact recursive quadratic programming methods for large sparse equality con�
strained nonlinear programming problems�

Inexact recursive quadratic programming methods for equality constrained nonlinear programming
problems are speci
ed by the statement �FORM��SE�� These methods� which are designed for large
sparse problems� belong to the following class�

�CLASS��MN� � inexact recursive quadratic programmingmodi
ed Newton methods� The Lagrangian
function Hessian matrix is computed in each iteration either analytically or numeri�
cally�

Inexact recursive quadratic programming methods for equality constrained nonlinear programming
problems are based either on an inexact solution of the Karush�Kuhn�Tucker system ��	� or on a decom�
position of Lagrangian function Hessian matrix followed by an inexact solution of a range space system
for the Lagrange multipliers ����� The
rst approach� speci
ed by the choice �DECOMP��K�� is realized
in three variants�

�NUMBER�� � exact sparse Bunch�Parlett decomposition ���� of the inde
nite Karush�Kuhn�Tucker
system�

��

�NUMBER�� � inexact smoothed conjugate gradient method for the inde
nite Karush�Kuhn�Tucker
system with a precision control based on various penalty functions�

�NUMBER�� � inexact MINRES method for the inde
nite Karush�Kuhn�Tucker system with a pre�
cision control based on various penalty functions�

A particular realization of both inexact smoothed conjugate gradient method and inexact MINRES
method depends on speci
cations given by the macrovariables �MOS�� �MOS�� �MOS�� The macrovari�
able �MOS� speci
es a precision control and a choice of penalty parameter� If �MOS���� then a precision
control is suppressed� If �MOS���� then a presision control� together with a basic choice of the penalty
parameter� is used� If �MOS���� then a presision control� together with an extended choice of the
penalty parameter� based on condition of positive de
nitness� is used� The macrovariable �MOS� spec�
i
es a preconditioning technique� If �MOS��� then preconditioning is suppressed� If �MOS���� then
block diagonal positive de
nite preconditioner ����� is used� If �MOS���� then more complex posi�
tive de
nite preconditioner ����� is used� If �MOS���� then inde
nite preconditioner ��	� is used� The
macrovariable �MOS� speci
es residual smoothing of the conjugate gradient method� If �MOS���� then
a residual smoothing is suppressed� If �MOS���� then a one�dimensional residual smoothing is used�

The second approach� speci
ed by the choice �DECOMP��G�� is realized in two variants�

�NUMBER�� � sparse Gill�Murray decomposition of the Lagrangian function Hessian matrix followed
by the inexact smoothed conjugate gradient method for positive de
nite range space
system with a precision control based on various penalty functions�

�NUMBER�� � sparse Bunch�Parlett decomposition of the Lagrangian function Hessian matrix fol�
lowed by inexact MINRES method for an inde
nite range space system with a preci�
sion control based on various penalty functions�

Individual penalty functions are determined by using the macrovariable �MEP� If �MEP��� then
the l� exact penalty function is used� If �MEP��� then the augmented Lagrangian function is used� If
�MEP��� then the combined l� and augmented Lagrangian function is used�

The UFO system allows us to choose a second order correction for overcoming the Maratos e�ect�
various Lagrange multipliers updates and various forms of augmented Lagrangian function� This is
a�ected by the macrovariables �MEP�� �MEP�� �MEP�� The macrovariable �MEP� speci
es a second
order correction� If �MEP���� then the second order correction is suppressed� If �MEP���� then the
second order correction is determined as being a least squares solution of the shifted constraint system�
The macrovariable �MEP� speci
es estimates of Lagrange multipliers at the begining of each iteration�
If �MEP���� then the initial estimate is taken from the previous iteration� If �MEP���� then the initial
estimate is determined as being a least squares solution of the
rst part of the Karush�Kuhn�Tucker
system� The macrovariable �MEP� speci
es penalty term of the augmented Lagrangian function� If
�MEP���� then the basic penalty term is used� If �MEP���� then the extended Boggs�Tolle �	� penalty
term is used�

The possible speci
cations �type�decomposition�number� for inexact recursive quadratic programming
methods for equality constrained nonlinear programming problems are

L�K���
L�K��� L�G���
L�K��� L�G���

The default choice is L�K���

��
�� Methods for initial value problems for ordinary di�erential equations

Methods for initial value problems for ordinary di�erential equations are speci
ed by using the
macrovariable �SOLVER� The UFO system contains
ve types of integration methods�

�SOLVER��DP��� the Dormand and Prince method of the
fth order with a stepsize control for nonsti�
problems�

�

�SOLVER��DP��� the Dormand and Prince method of the eighth order with a stepsize control for nonsti�
problems�

�SOLVER��EX��� the extrapolation method with a stepsize control� based on the midpoint rule� for
nonsti� problems�

�SOLVER��RD��� the Radau method of the
fth order with a stepsize control for sti� problems�
�SOLVER��RS��� the Rosenbrock method of the fourth order with a stepsize control for sti� problems�

The default value is �SOLVER��DP��� These methods� described in ����� use a stepsize control based on
a local truncation error�

A solution to an initial value problem for ordinary di�erential equations can be stored for subsequent
processing� An extent of stored data is determined by using the macrovariable �MED� If �MED���
then no data are stored� If �MED��� then data in all solution steps are stored� If �MED��� then data
in equidistant mesh points are stored� The number of mesh points is speci
ed by using the statement
�NA�number of mesh points in the last case�

��
�� Methods for direction determination

Optimizationmethods� contained in the UFO system� are usually implemented in such a way that they
use the same modules for direction determination� These modules� realized with di�erent kinds of matrix
decomposition� are distinguished by using the macrovariables �TYPE and �NUMBER� The meaning of
the speci
cation �TYPE was explained above� Now we will explain the speci
cation �NUMBER�

If �TYPE��L�� then line search methods are supposed� In this case� relatively simple procedures for
direction determination are used� There are
ve possibilities�

�NUMBER�� � direct methods for solving linear systems based on various matrix decompositions�
These decompositions are interesting� especially in the sparse case� The Gill�Murray
decomposition ���� of the Hessian matrix is applied if �DECOMP��M� or �DE�
COMP��G�� The orthogonal QR decomposition ����� of the Jacobian matrix is used
if �DECOMP��A�� The complete LU decomposition ���� of the Jacobian matrix is
used if �DECOMP��E�� The Bunch�Parlett decomposition ���� of the sparse Karush�
Kuhn�Tucker matrix is used if �DECOMP��K�� Moreover� symbolic decomposition is
always determined before the iterative process in the sparse case� so that only numer�
ical computations with known factors are carried out in the subsequent iterations�

�NUMBER�� � an alternative possibility to the previous case� The Schnabel�Eskow decomposition
����� is applied if �DECOMP��M�� In the sparse case� the incomplete Gill�Murray
decomposition is used if �DECOMP��M� and the incomplete LU decomposition is
used if �DECOMP��E�

�NUMBER�� � inexact iterative methods� The conjugate gradient method ��� for solving linear sys�
tems with the Hessian matrix is used if �DECOMP��M�� The CGLS method ����� for
solving linear systems with the normal equation matrix is used if �DECOMP��A��
The smoothed CGS method ����� for solving linear systems with the Jacobian matrix
is used if �DECOMP��E�� The smoothed conjugate gradient method ��	� for a linear
system with the Karush�Kuhn�Tucker matrix is used if �DECOMP��K�� The preci�
sion is speci
ed by the macrovariable �MOS� If �MOS��� then the simple strategy
is used� If �MOS��� then the geometric decreasing strategy is used� If �MOS���
then the harmonic decreasing strategy is used� If �DECOMP��M� and �HESF��S��
then the conjugate gradient method can be preconditioned by using the incomplete
Gill�Murray �IGM� decomposition� This possibility is speci
ed by the macrovariable
�MOS�� If �MOS��� then preconditioning is suppressed� If �MOS���� then IGM de�
composition is used� Similarly� if �DECOMP��E� and �JACA��S�� then the smoothed
CGS method can be preconditioned by using either the incomplete LU �ILU� decom�
position or the SSOR iteration� This possibility is speci
ed by the macrovariable

��

�MOS�� If �MOS��� then preconditioning is suppressed� If �MOS���� then ILU
decomposition is used� If �MOS���� then SSOR iteration is used� Finally� if �DE�
COMP��K� then the smoothed conjugate gradient method can be preconditioned
by using various preconditioners� This possibility is speci
ed by the macrovariable
�MOS�� If �MOS��� then preconditioning is suppressed� If �MOS���� then block di�
agonal positive de
nite preconditioner ����� is used� If �MOS���� then more complex
positive de
nite preconditioner ����� is used� If �MOS���� then inde
nite precondi�
tioner ��	� is used�

�NUMBER�� � inexact iterative methods� The MINRES method for solving linear systems with the
Karush�Kuhn�Tucker matrix is used if �DECOMP��K�� The precision is speci
ed by
the macrovariable �MOS as in the previous case�

�NUMBER�� � inexact iterative methods� The smoothed BICGSTAB method ����� for solving lin�
ear systems with the sparse Jacobian matrix is used if �DECOMP��E�� The QMR
method ���� for solving linear systems with the Karush�Kuhn�Tucker matrix is used
if �DECOMP��K�� The precision is speci
ed by the macrovariable �MOS as in the
previous case�

If the line search method is used then a descent property of the determined direction is tested� If

�sT g
 �� k s kk g k

where sTg is the directional derivative� s is the direction� and g is the objective function gradient� then
the direction is accepted� In the opposite case the optimization method is restarted� The value �� is
speci
ed using the macrovariable �EPS��

If �TYPE��G�� then trust region methods are supposed� The initial trust region radius can be
speci
ed by the statement �XDEL�trust region radius� but the default automatically derived value is
recommended� Trust region methods can be internally scaled� This way is very advantageous for nonlinear
regression problems containing exponentials� The trust region scaling is speci
ed by the macrovariable
�MOS�� If �MOS���� then no scaling is performed� If �MOS���� then the scaling coe�cients are derived
from the normal equation matrix diagonal elements ���� There are six possibilities�

�NUMBER�� � so�called dog�leg methods based on various matrix decompositions� These decompo�
sitions are interesting especially in the sparse case� The Gill�Murray decomposition
���� of the Hessian matrix is applied if �DECOMP��M� or �DECOMP��G�� The or�
thogonal QR decomposition ����� of the Jacobian matrix is used if �DECOMP��A� or
�DECOMP��Q�� The complete LU decomposition ���� of the Jacobian matrix is used
if �DECOMP��E�� Moreover� symbolic decomposition is always determined before
the iterative process in the sparse case� so that only numerical computations with
known factors are carried out in the subsequent iterations� The individual dog�leg
methods are speci
ed by the macrovariable �MOS� If �MOS��� then the single dog�
leg method ����� is used� If �MOS��� then the double dog�leg method ��	� is used�
If �MOS��� then the triple dog�leg method is used� If �MOS��� then the optimum
dog�leg method ���� is used�

�NUMBER�� � an alternative possibility to the previous case� The Schnabel�Eskow decomposition
����� is applied if �DECOMP��M�� If �DECOMP��G� or �DECOMP��Q� or �DE�
COMP��E� then so�called multiple dog�leg methods ���� are supposed� The number
of dog�leg steps is speci
ed by the statement �MOS�number of steps in the last
case�

�NUMBER�� � iterative trust region methods� The conjugate gradient trust region method ����� with
the Hessian matrix if �DECOMP��M�� The CGLS trust region method �� with the
normal equation matrix if �DECOMP��A�� The smoothed CGS trust region method
��� with the Jacobian matrix if �DECOMP��E�� The precision is speci
ed by the
macrovariable �MOS� If �MOS��� then the simple strategy is used� If �MOS���

�	

then the geometric decreasing strategy is used� If �MOS��� then the harmonic de�
creasing strategy is used� If �DECOMP��M� and �HESF��S�� then the conjugate gra�
dient method can be preconditioned by using the incomplete Gill�Murray �IGM� de�
composition� This possibility is speci
ed by the macrovariable �MOS�� If �MOS���
then preconditioning is suppressed� If �MOS���� then IGM decomposition is used�
Similarly� if �DECOMP��E� and �JACA��S�� then the smoothed CGS method can
be preconditioned by using the incomplete LU �ILU� decomposition� This possibil�
ity is speci
ed by the macrovariable �MOS�� If �MOS��� then preconditioning is
suppressed� If �MOS���� then ILU decomposition is used�

�NUMBER�� � iterative trust region methods� The combined Lanczos and CG trust region method
���� with the Hessian matrix if �DECOMP��M�� The LSQR trust region method
�� with the normal equation matrix if �DECOMP��A�� The GMRES trust region
method ��� with the Jacobian matrix if �DECOMP��E�� The precision is speci
ed by
the macrovariable �MOS as in the previous case� If �DECOMP��E� and �JACA��S��
then the GMRES method can be preconditioned by using the incomplete LU �ILU�
decomposition� This possibility is speci
ed by the macrovariable �MOS� as in the
previous case�

�NUMBER�� � an optimum locally constrained trust region method �	�� The Gill�Murray decompo�
sition ���� is utilized if �DECOMP��M��

�NUMBER�� � an alternative possibility to the previous case� The Schnabel�Eskow decomposition
����� is applied if �DECOMP��M��

If �TYPE��T�� then only the speci
cations �NUMBER��� �NUMBER�� and �NUMBER�� can be
used� These speci
cations have the same meaning as in the case �TYPE��G�� but the implementation
is simpler� If �NUMBER��� then the simpli
ed optimum locally constrained trust region method ��� is
used�

If �TYPE��M� then Levenberg�Marquardt type methods are supposed�
�NUMBER�� � a modi
ed Marquardt method proposed by Fletcher �����
�NUMBER�� � a spiral algorithm proposed by Steen and Byrne ������

��	�� Methods for stepsize selection

Stepsize selection is a very important part of optimization methods� The UFO system contains two
types of stepsize selection procedures� line search methods and trust region methods� Line search methods
are realized in two modi
cations speci
ed by the macrovariable �SEARCH�

�SEARCH��B� � basic line search methods based on various interpolation and extrapolation formulas�
�SEARCH��M� � mixed line search methods which control the maximum stepsize like the trust region

methods�

The choice of individual line search procedures is in�uenced by the order of directional derivatives
being used� This order can be speci
ed by the macrovariable �KDS� The value of the macrovariable �KDS
is usually derived internally from the order of analytically supplied partial derivatives� If this order is
zero� then always �KDS��� In the opposite case� the value of the macrovariable �KDS can be speci
ed
by the user� If �KDS��� then only the function values are used during the line search� If �KDS���
then the function values and the
rst directional derivatives are used� If �KDS�� then� in addition� the
Hessian matrices or their approximations are computed during the line search �this case is very useful for
a line search implementation of modi
ed Gauss�Newton methods��

The particular interpolation and extrapolation rule is speci
ed by the macrovariable �MES� If �KDS��
then we have the following possibilities�

�MES�� � The uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � Two point quadratic extrapolation or interpolation is used�

��

�MES�� � Three point quadratic extrapolation or interpolation is used�
�MES�� � Three point cubic extrapolation or interpolation is used�
�MES�� � Special extrapolation or interpolation is used based on the special form of the objective

function�

If �KDS�� or �KDS��� then the following possibilities� based on the
rst directional derivatives� can be
used�

�MES�� � the uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � quadratic extrapolation or interpolation �with one directional derivative� is used�
�MES�� � quadratic extrapolation or interpolation �with two directional derivatives� is used�
�MES�� � cubic extrapolation or interpolation ���� is used�
�MES�� � conic extrapolation or interpolation ��� is used�

Another useful speci
cation for the line search selection is a termination criterion� which is determined
by using the macrovariable �KTERS�

�KTERS�� � nonmonotone line search procedure proposed in ���� is used� The absolute value of
the macrovariable �KTERS� which cannot be greater then ��� gives the number of
nonmonotone steps�

�KTERS�� � perfect stepsize� The relative precision of the stepsize parameter is given by the value
�EPS��

�KTERS�� � the Goldstein stepsize ����� The termination precision is given by the value �EPS��
�KTERS�� � the Curry�Altman stepsize ���� �Wolfe conditions�� The termination precision is given

by the values �EPS� and �EPS��
�KTRES�� � the extended Curry�Altman stepsize ���� �strict Wolfe conditions�� The termination

precision is given by the values �EPS� and �EPS��
�KTERS�� � the Armijo stepsize ���� The termination is given by the value �EPS��
�KTERS�� � the
rst stepsize� The stepsize selection is terminated after the
rst function evalua�

tion�

The last useful speci
cation for the line search methods is an initial stepsize choice which is determined
by the macrovariable �INITS� The initial stepsize is usually computed by the rule

� � min�c���c��$F�sTg��

where sT g is the initial directional derivative and $F � F � Fmin or $F � Fold � F if the value of
the macrovariable �INITS is positive or negative� respectively� The absolute value of the macrovariable
�INITS determines the coe�cients c� and c� If jINITSj��� then c� � � and c� � �� If jINITSj��� then
c� � � and c� � �� If jINITSj��� then c� � � and c� � �� If jINITSj��� then c� � � and c� � ��

Trust region methods are also realized in two modi
cations speci
ed by the macrovariable �SEARCH�

�SEARCH��B� � basic trust region methods with stepsize control based on the comparison of both the
actual and the predicted function decreases�

�SEARCH��M� � mixed trust region methods which use interpolation formulas for stepsize reduction
like the line search methods ������

Trust region methods are also in�uenced using the macrovariable �KTERS� If �KTERS��� then
nonmonotone trust region procedure proposed in ���� is used� The absolute value of the macrovariable
�KTERS� which cannot be greater then ��� gives the number of nonmonotone steps�

��	
� Methods for numerical di�erentiation

The UFO system computes derivatives of the model function �of the approximating functions� of the
constraint funcions� numerically whenever they are not given analytically� This is made possible by the

��

macroprocessor that generates a corresponding part of the control program� The main problem of a
numerical di�erentiation is a di�erence determination which has to be chosen in such a way that the
total in�uence of both the cancellation and the roundo� error is as small as possible� There are three
possibilities in the UFO system which are distinguished using the macrovatiable �MCG�

�MCG�� � a simple di�erence determination described in ���� is used�
�MCG�� � an optimum di�erence determination proposed in ���� is used�
�MCG�� � an optimum di�erence determination proposed in ����� is used�

The default option is �MCG��� The above possibilities are used for a computation of the model function

rst order derivatives� The other �second order derivatives or derivatives of the approximating functions
and constraint functions� are always computed with the simple di�erence determination�

��		� Methods for objective function evaluation in the case of dynamical systems optimiza�
tion

If either �MODEL��DF� or �MODEL��DQ�� then the objective function is computed from the solu�
tion of an initial value problem for ordinary di�erential equations� The initial value problem is solved and
the integral criterion is evaluated by using integration methods speci
ed by the macrovariable �SOLVER
as it is described above� If the partial derivatives of all the used functions are given analytically� then
the gradient of the objective function is computed by integration methods� There are two possibilities
speci
ed by the macrovariable �SYSTEM�

�SYSTEM��F�� forward integration using an augmented systen of ordinary di�erential equations�
�SYSTEM��B�� backward integration using the adjoint system of ordinary di�erential equations�

The default value is �SYSTEM��F�� In the case of modi
ed Gauss�Newton methods ��CLASS��GN���
an approximation of the Hessian matrix is also computed by using forward integration of an augmented
system�

��	�� Global optimization methods

Global optimization methods are used if �EXTREM��G� is speci
ed� Global optimization methods
use local optimization ones for
nding local minima� Therefore the particular local optimization method
has to be chosen by using the macrovariables �CLASS and �TYPE and others� Individual global opti�
mization methods are speci
ed by using the macrovariables �GCLASS and �GTYPE� The UFO system
contains four classes of global optimization methods�

�GCLASS�� � random search methods� These methods are simple and robust� but less e�cient�
�GCLASS�� � continuation methods� These methods use some penalty functions which are adjusted

after reaching an arbitrary local minimum so that another local minimum is found�
�GCLASS�� � clustering methods� These methods are based on randomly generated sample points

which are processed using clustering algorithms to determine attractivity regions
�clusters� of the individual minima� The attractivity regions �clusters� obtained are
not searched repeatedly�

�GCLASS�� � multi level methods� Modern stochastic methods that involve a combination of sam�
pling and local search techniques� These methods combine strong theoretical prop�
erties with an attractive computational behaviour� These methods are simpler� but
more e�cient than clustering methods�

��

If �GCLASS��� then we can choose four types of global optimization methods�

�GTYPE�� � singlestart methods� Random points� uniformly distributed in the given region� are
generated and a local minimization method is started from the point with the lowest
function value�

�GTYPE�� � multistart methods� Random points� uniformly distributed in a given region� are
generated and a local minimization is started from every point� Obtained local minima
are compared and selected�

�GTYPE�� � modi
ed multistart methods� Random points� distributed in a given region uniformly�
are generated and a local minimization is started whenever a point is found which
has a lower function value than that reached up to date�

�GTYPE�� � Bayesian reduced multistart methods ��� Random samples of points are repeatedly
generated� Every random sample is reduced and a local minimization is started from
all points belonging to the reduced sample� Obtained local minima are compared and
selected� This process is repeated while the Bayessian termination criterion is not
satis
ed�

If �GCLASS��� then we can choose three types of global optimization methods�

�GTYPE�� � tunneling function methods ����� These methods consist of two phases� a local mini�
mization phase and a tunneling phase� The starting point for the second phase is the
local minimum� At the end of the tunneling phase a new point is found which has a
function value equal or lower then the starting point�

�GTYPE�� � combined tunneling function and random search methods� In this case a random
search is used in the tunneling phase� if minimization of a tunneling function has
failed to
nd a new starting point�

�GTYPE�� �
lled function methods ����� ����� The idea of
lled function methods is based on a

lled function� This function has a maximum in the point of a known minimum of
the objective function� On the other hand� this function does not have minimizers
or saddle points in any basin of a higher minimizer of the objective function� but it
does have a minimizer or saddle point in a basin of a lower minimizer of the objective
function�

If �GCLASS��� then we can choose two types of global optimization methods�

�GTYPE�� � density clustering method ���� Density clustering refers to a class of clustering tech�
niques by using nonparametric probability density estimates to form clusters� All
unclustered points from a reduced sample� which are within the threshold distance
from the seed point� are added to the cluster�

�GTYPE�� � single linkage clustering method ���� In this case� the next two clusters to be merged
are those for which the distance between the nearest points is the smallest� When
this distance becomes larger than the threshold distance� the procedure is stopped�
Starting with each point in a separate cluster� the points at distances less than the
threshold distance are linked� A cluster is recognised as a set of points linked together�

If �GCLASS��� then we can choose three types of global optimization methods�

�GTYPE�� � multi level single linkage method ������ In this case� the function values of the sample
points are used in a very simple manner to obtain a very powerful method� The local
search procedure is applied to every sample point� except if there is another sample
point within the critical distance which has a smaller function value� Clusters can
be constructed by associating a point to a local minimum� if there exists a chain of
points linking it to that minimum� This is done so that the distance between each

��

successive pair is� at most� equal to the critical distance and the function value is
decreasing along the chain� A point in this way could be assigned to more than one
minimum�

�GTYPE�� � multi level mode analysis method ������ This method is a generalization of the mode
analysis method� Region is partitioned into cells� After sample reduction� it is deter�
mined which cells contain enough points to be full!� For each full cell the function
value of the cell is de
ned to be equal to the smallest function value of any of the
sample points in the cell� Finally� for every full cell� local minimization is applied
except if a cell has a neighbouring cell which is full and has a smaller function value�

�GTYPE�� � modi
ed multi level single linkage method� This is a multi level single linkage method
with some modi
cations that are described in ������

The number of points randomly generated in the given region can be speci
ed by using the macrovari�
able �MNRND� The default value is usually �������NF� Since it depends on the number of variables
and for NF��� it is too large� we recommend the use of global optimization methods up to �� variables
only� If we use clustering or multi level single linkage methods ��GCLASS�� or �GCLASS���� then we
can specify additional parameters�

�MNLMIN � maximum considered number of local minima� The default value is ������NF�
�GAMA � reduction of random sample �typically ���D� � ���D��� Greater value of GAMA

usually leads to a greater number of local minima� but it requires a greater amount
of work�

�SIGMA � parameter of cluster or single linkage termination �typically � � ���

��

�� Output speci�cations in the UFO system

The UFO system has many output possibilities including the graphical pictures� These output possi�
bilities can be divided into
ve basic groups�

��
� Basic screen output

The basic screen output can be used only if �GRAPH��NO� and �DISPLAY��NO�� In this case�
individual rows corresponding to iterations and
nal results are printed on the screen consequently� A
print level of the screen output is determined by using the macrovariables �MOUT and �NOUT� The
macrovariable �MOUT can have the following values�

�MOUT� � � Screen output is suppressed�
�MOUT�� � � Standard output� The
nal results appear on the screen�
�MOUT�� � � Extended output� Additional information from every iteration appear on the screen�
�MOUT�� � � Extended output� Additional
nal results of linear or quadratic programming sub�

problems appear on the screen�
�MOUT�� � � Extended output� Additional information from every iteration of linear or quadratic

programming subproblems appear on the screen�

If �MOUT��� then a standard line of
nal results is printed� while if �MOUT�� then a modi
ed line of

nal results� containing termination criterion� is printed�

The macrovariable �NOUT can have the following values�

�NOUT� � � Short
nal results �scalar variables� appear on the screen�
�NOUT� � � Extended
nal results �vectors� appear on the screen�

��	� Extended screen output

If we want to use an extended screen output� we have to set �DISPLAY��YES� �the default value is
�DISPLAY��NO��� This type of screen output consists of text pages which correspond to individual iter�
ations and
nal results� Final results are divided into several groups which can be displayed successively�
We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of
nal results�

F � �function� � Value of the objective function and statistics�
V � �variables� � Values of variables if NF�� �with their bounds if KBF����
A � �approximation� � Values of approximating functions if NA�� �with their prescribed values if

KBA���� Values of selected components of a solution of the set of ordinary dif�
ferential equations at the prescribed mesh points if NE���

C � �constraints� � Values of constraint functions if NC�� �with their bounds if KBC����
D � �data� � Data which specify the problem solved �sizes of problem and additional speci
ca�

tions��
O � �options� � Options which specify the method used�

Exit�

Q � �quit� � Exit from the extended screen output�

After typing each character we must use ENTER�
Besides these possibilities we can stop every iteration for scanning the iterative process� It is speci
ed if

we set �SCAN��YES� �the default value is �SCAN��NO�� If �SCAN��NO�� then the output of iterations
is suppressed� Scanning of the iterative process can be terminated by using the character � �� from the
keyboard�

��

���� Graphical screen output

The graphical output can be used only on PC computers under the MS DOS system� This possi�
bility is not allowed on the UNIX workstations� If we want to use a graphical output� we have to set
�GRAPH��YES� �the default value is �GRAPH��NO��� In this case� both iterations and
nal results
appear in the graphical mode� Graphical form of
nal results can be speci
ed in detail using macrovari�
ables �PATH ��NO�� �YES�� �EXTENDED��� �MAP ��NO�� �YES�� �EXTENDED��� �HIL ��NO�� �YES��
and �ISO ��NO�� �YES��� Final results are divided into several groups which can be displayed successively�
We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of
nal results�

F � �function� � Value of the objective function and statistics�
V � �variables� � Values of variables if NF�� �with their bounds if KBF����
A � �approximation� � Values of approximating functions if NA�� �with their prescribed values if

KBA���� Values of selected components of a solution of the set of ordinary dif�
ferential equations at the prescribed mesh points if NE���

C � �constraints� � Values of constraint functions if NC�� �with their bounds if KBC����
D � �data� � Data which specify the problem solved �sizes of problem and additional speci
ca�

tions��
O � �options� � Options which specify the method used�
T � �path� � Values of the objective function and selected variables �we can change these vari�

ables during the graphical output� if we have speci
ed �PATH��EXTENDED�� in
the last NPA iterations �only if �PATH��YES� or �PATH��EXTENDED���

Exit�

Q � �quit� � Exit from the graphical output�
X � �quit� � Exit from the control system�

After typing each character we must use ENTER�
Besides these possibilities we can stop every iteration for scanning the iterative process� It is speci
ed if

we set �SCAN��YES� �the default value is �SCAN��NO��� In every iteration we can choose all possibilities
F� V� A� C� D� O as above� If we have chosen either V �variables� or A �approximation� or C �constraints��
then intermediate results can be displayed graphically by typing G �graph� from the keyboard� In all
these cases we can execute a single iteration typing ENTER merely� in the highest graphics level we can
execute all iterations until the k�th by entering the number k or all remaining iterations by typing the
character � �� from the keyboard�

Besides text representations in the graphical mode� which are essentially like the ones in the ex�
tended screen output �with the choice �DISPLAY��YES��� we can chose several types of graphical data
representation�

a� Graphical picture�

If we have chosen either V �variables� or A �approximation� or C �constraints�� then results can be
displayed graphically by typing G �graph� from the keyboard� A graphical picture appears on the screen
in this case� It contains either values of variables with indices I� �� I � NF� or values of the approximating
functions with indices KA� � � KA � NA� or values of the constraint functions with indices KC� � � KC
� NC� If we have chosen A �approximation� in the case of NE��� then the graphical picture contains a
component �with the index VAR� of a solution of the set of ordinary di�erential equations at the mesh
points AT�KA�� � � KA � NA� We have to de
ne the index VAR from the keyboard in this case� The
graphical picture can be changed by typing particular characters from the keyboard�

Change of representation�

V � �values� � Values are drawn�
O � �ordinates� � Values and ordinates from zero axis are drawn�

��

C � �curves� � Values are connected by a curve�
M � �mixed� � Curve and ordinates are drawn�

Change of graph �if either KBF�� or KBA�� or KBC����

F � �functions� � Either values of variables X�I�� � � I � NF� or values of approximating functions
AF�KA�� � � KA � NA� or values of constraint functions CF�KC�� � � KC �
NC� are demonstrated�

A � �approximation� � Either values of variables X�I� together with their bounds XL�I� and XU�I�� � � I
� NF� or values of approximating functions AF�KA� together with their prescribed
values AM�KA� � � � KA � NA� or values of constraint functions CF�KC� together
with their bounds CL�KC� and CU�KC�� � � KC � NC� are demonstrated�

D � �di�erences� � Either di�erences between variables and their bounds or di�erences between ap�
proximating functions and their prescribed values or di�erences between constraint
functions and their bounds are demonstrated�

Continuation �if either NF � ��� or NA � ��� or NC � �����

P � �previous� � Previous set of at most ��� values is drawn�
N � �next� � Next set of at most ��� values is drawn�

New graph or return�

W � �new� � This possibility can be used only if NE��� Then a new component �with a new
index VAR� of a solution of the set of ordinary di�erential equations is drawn� We
have to de
ne a new index VAR from the keyboard in this case�

Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�
If we have chosen F �function� as a group of
nal results� we can use additional graphical representa�

tions�

b� Two dimensional orbit�

If NE��� we can draw an orbit of two components of a solution of the set of ordinary di�erential
equations by typing G �graph� from the keyboard� We have to de
ne an index VAR for every selected
component of a solution �according to the text appeared on the screen�� Two dimensional orbit can be
changed by typing particular characters from the keyboard�

Change of the orbit�

V � �values� � Values are drawn�
C � �curves� � Values are connected by a curve�

New orbit or return�

W � �new� � New components of a solution of the set of ordinary di�erential equations are
drawn� We have to de
ne new two indices from the keyboard in this case�

Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�

c� Three dimensional orbit�

If NE��� we can draw an orbit of three components of a solution of the set of ordinary di�erential
equations by typing P �picture� from the keyboard� We have to de
ne an index VAR for every selected
component of a solution �according to the text appeared on the screen�� Three dimensional orbit can be
changed by typing particular characters from the keyboard�

Change of the orbit�

V � �values� � Values are drawn�

�

C � �curves� � Values are connected by a curve�
O � �rotate� � Rotation of values or curves about a vertical axis by a subsequently entered angle

D
�
T � �tilt� � Tilting rotated values or curves by a subsequently entered angle Dtheta�
A � �axes� � Drawing a picture with rotated and tilted axes�
S � �scale� � Scaling of rotated and tilted values or curves to make full use of the screen�

New orbit or return�

W � �new� � New components of a solution of the set of ordinary di�erential equations are
drawn� We have to de
ne new three indices from the keyboard in this case�

Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�

d� Colored map of the objective function�

If we have speci
ed either �MAP��YES� or �MAP��EXTENDED� �default value is �MAP��NO���
we can draw a colored map of the objective function by typing M �map� from the keyboard� This picture
can be changed by typing particular characters from the keyboard�

Change of the map�

L � �linear� � Linear scale of the colored map�
G � �logarithmic� � Logarithmic scale of the colored map�
R � �re
nement� � Re
nement of the colored map�
B � �back� � Back re
nement of the colored map�
N � �inverse� � Colored map of the objective function negation�

Another type of picture� new map or return�

H � �hills� � Drawing an objective function surface with respect to visibility�
I � �isolines� � Drawing objective function contours�
W � �new� � Selection of new variables and drawing a new colored map�
Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�
If we set �MAP��YES�� then one picture for two variables is drawn� If we set �MAP��EXTENDED��

then three pictures for all combinations of two from three variables are drawn� In both cases we have
to de
ne� from the keyboard� an index VAR and bounds XL�VAR�� XU�VAR� for every used variable
�according to the text appeared on the screen�� Note that the choice �MAP��EXTENDED� excludes the
choices �HIL��YES� and �ISO��YES�� so that the other pictures cannot be used�

e� Objective function surface�

If we have speci
ed �HIL��YES� �default value is �HIL��NO��� we can draw an objective function
surface with respect to visibility by typing H �hills� from the keyboard� This picture can be changed by
typing particular characters from the keyboard�

Change of the surface�

L � �linear� � Linear scale of the surface�
G � �logarithmic� � Logarithmic scale of the surface�
R � �re
nement� � Re
nement of the surface�
B � �back� � Back re
nement of the surface�
O � �rotate� � Rotation of the surface about a vertical axis by a subsequently entered angle D
�
T � �tilt� � Tilting the rotated surface by a subsequently entered angle Dtheta�
F � �face� � Facing the rotated surface �drawing the rotated surface without tilting��
N � �inverse� � Surface of the objective function negation�

��

Another type of picture� new surface or return�

M � �map� � Drawing a colored map of the objective function�
I � �isolines� � Drawing objective function contours�
W � �new� � Selection of new variables and drawing new surface�
Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�
Before drawing the objective function surface we have to de
ne� from the keyboard� an index VAR

and bounds XL�VAR�� XU�VAR� for every used variable �according to the text appeared on the screen��

f� Objective function contours�

If we have speci
ed �ISO��YES� �default value is �ISO��NO��� we can draw an objective function
contours by typing I �isolines� from the keyboard� This picture can be changed by typing particular
characters from the keyboard�

Change of contours�

L � �linear� � Linear scale of contours�
G � �logarithmic� � Logarithmic scale of contours�
R � �re
nement� � Re
nement of contours�
B � �back� � Back re
nement of contours�
O � �color� � Coloring of contours and used levels�
N � �inverse� � Inverse coloring of contours and used levels�

Another type of picture� new contours or return�

M � �map� � Drawing a colored map of the objective function�
H � �hills� � Drawing an objective function surface with respect to visibility�
W � �new� � Selection of new variables and drawing a new surface�
Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�

g� Graphical path of the objective function and selected variables�

If we have chosen T �path�� then we can display the values of the objective function as a function graph
by typing G �graph� or draw the objective function contours with the path in the last NPA iterations�
The graph can be changed in the same way as in a��

Change of contours�

L � �linear� � Linear scale of contours�
G � �logarithmic� � Logarithmic scale of contours�
R � �re
nement� � Re
nement of contours�
B � �back� � Back re
nement of contours�
Z � �zoom� � Zoom of the path for the number of last iterations entered�

Another type of picture� new contours or return�

W � �new� � Selection of new variables and drawing a new contours �only if we have speci
ed
�PATH��EXTENDED���

Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�
Before drawing the objective function contours we have to de
ne� from the keyboard� an index VAR

and bounds XL�VAR�� XU�VAR� for every used variable �according to the text appeared on the screen��

�	

���� Text �le output

The UFO system contains a great number of text
le output procedures which are controlled by
using the macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT�� and �LOUT� These text
le output
procedures are useful especially for debugging new optimization methods� The UFO system works with
the output
le P�OUT� The Fortran number of this output
le de
nes the common variable IWR� The
macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT� determines what is printed and the macrovariable
�LOUT has an in�uence to the extent of the print�

The macrovariable �KOUT can have the following values�

�KOUT� � � Text
le output is suppressed �the
le P�OUT is empty� �
�KOUT� � � � Standard output� The heading and the
nal results are printed together with selected

information on each accepted iteration�
�KOUT� � � � Extended output� Additional information� obtained from stepsize selection� is printed�
�KOUT� � � � Extended output� Additional information� obtained from direction determination and

variable metric update� is printed�
�KOUT� � � � Extended output� Additional information� obtained from linear constraint addition

and deletion� is printed�
�KOUT� � � � Extended output� Additional information� obtained from numerical di�erentiation� is

printed�

If �KOUT��� then a standard heading is printed� while if �KOUT�� then an extended heading� con�
taining problem speci
cations and optimization options� is printed�

A selection of iterations� accepted for print� is controlled by the contents of the macrovariables
�KOUT�� �KOUT�� �KOUT�� If KOUT�� KOUT� then only the iterations whose numbers are be�
tween KOUT� and KOUT� are assumed� but KOUT��� ones are always omitted �KOUT� is a lower
bound� KOUT� is an upper bound and KOUT� is a step�� Similarly� if KOUT��KOUT�� then only the
iterations whose numbers are less than KOUT� or greater then KOUT� are assumed� but KOUT���
ones are always omitted� If �KOUT���� then no iterations are assumed�

While the macrovariable �KOUT speci
es which information is printed� the macrovariable �LOUT
speci
es how much information is printed�

�LOUT� � � Basic output� The basic information �� row if �KOUT��� is printed in each accepted
iteration�

�LOUT�� � � Extended output� Additional scalars� together with vector of variables� are printed�
�LOUT�� � � Extended output� Additional vectors �usually gradients� are printed�
�LOUT�� � � Extended output� Aditional matrices �usually Hessian matrices� are printed�
�LOUT�� � � The most extended output� All useful data are printed�

If �LOUT��� then basic part of the information is printed� If �LOUT��� then a more extensive part of
the information is printed�

The macrovariable �LOUT has an additional signi
cance� If �KOUT�� and �LOUT��� then a copy
of the basic screen output is provided� If �KOUT�� and �LOUT��� then paper saving print is assumed�
In the last case� only several rows are printed for every solution� This type of output is useful for
simultaneous tests of optimization methods�

To show a typical basic output which corresponds to the choices �KOUT��� �KOUT��� and �LOUT��
we propose the following results from unconstrained optimization�

�

UNCONSTRAINED MINIMIZATION USING UFO SYSTEM

���

OPTIMIZATION SUBROUTINE � U�FDU�

DIRECTION DETERMINATION � UDDLI�

STEP SIZE DETERMINATION � US�L��

FUNCTION DETERMINATION � UF�F��

GRADIENT DETERMINATION � UF�GS�

H MATRIX DETERMINATION �

VARIABLE METRIC UPDATE � UUDBI�

PROBLEM

�������

NF
 � KDF
 � KSF
 � KCF
 � KBF
 � ISNF
 � NORMF
 �

NA
 � NAL
 � MAL
 � KDA
�� KSA
 � KCA
 � KBA
 � ISNA
 � NORMA
 �

NC
 � NCL
 � MCL
 � KDC
�� KSC
 � KCC
 � KBC
 � ISNC
 � NORMC
 �

FINAL RESULTS

�������������

FF
 ������������D���

X
 ������������D��� �����������D���

TERMINATION� ITERM
� GRAD TOL F
�����D��� G
 ����D��� D
 ����D���

STATISTICS

����������

NIT
 �� NDEC
 �

NFV
 �� NAV
 � NCV
 � NRES
 �

NFG
 � NAG
 � NCG
 � NREM
 �

NFH
 � NAH
 � NCH
 � NADD
 �

Here the optimization subroutines used are listed on the top followed by problem speci
cations� After brief
results� the termination causes are written� The termination cause ITERM�� �GRAD TOL� corresponds
to the attainment of the required gradient norm� F is the objective function value� G is the maximum
absolute value of gradient elements and D is the maximum relative change of variables� The statistics
contain the number of iterations NIT� the number of decompositions NDEC� the number of restarts
NRES� the number of constraint deletions or additions NREM or NADD respectively� and a set of data
concerns numbers �N� of model function �F� or approximating functions �A� or constraint functions �C�
values �V� or gradients �G� or Hessian matrices �H� evaluations respectively�

���� User supplied output

The UFO system allows to the utilization of both the user supplied output subroutines and the
post�processing subroutines� These subroutines can be included into the control program by using the
macrovariable �OUTPUT�

�SET�OUTPUT�
Calling the user supplied output subroutines�
Calling the post�processing subroutines�

�ENDSET

Parameters of the user supplied output subroutines and post�processing subroutines must satisfy the

�

UFO conventions� For example� the vector of variables� the model function value� the model function
gradient must be denoted X� FF� GF respectively �see chapter ���

���� Storing �nal results

If we set �OUTPUTDATA��YES�� then
nal values of the variables X�I�� �� I� NF� are stored in
the
le P�DAT� Similarly� if we set �INPUTDATA��YES�� then values of the variables X�I�� �� I� NF�
from the
le P�DAT are used as input data for the new optimization process�

��� Tracing in the UFO control program

Tracing in the control program is a useful tool for debugging optimization algorithms on main�frames�
If this is the case� then we will specify �TRACE��YES�� Besides simple tracing� we can prescribe scalar
integer or real variables whose values will be printed together with labels� This possibility can be speci
ed
by using the macrovariables �IDEB and �RDEB�

�IDEB � �list of integer variables separated by commas�
�RDEB � �list of real variables separated by commas�

If the macrovariables �IDEB or �RDEB are not speci
ed� then no integer or real variables are printed�
Tracing is executed only in the accepted iterations whose numbers are determined by using the

macrovariables �KOUT�� �KOUT�� �KOUT� �see Section �����

���� Error messages

If we use the speci
cation �MOUT�� �basic screen output�� then nonstandard terminations are
indicated� The message consists of three parts� the name of a critical subroutine� the number of a
message� and an explanation text� This possibility serves especially for a debugging and no details are
given here�

�

�� Special tools of the UFO system

The UFO system contains special tools that facilitate the user�s activity� There are tools for checking
the correctness of optimization problems and for testing optimization methods�

��
� Checking external subroutines

The values� gradients� Hessian matrices of the model function or the approximating functions or the
constraint functions are speci
ed by using the macrovariables �FMODELF� �GMODELF� �HMODELF
or �FMODELA� �GMODELA� �HMODELA or �FMODELC� �GMODELC� �HMODELC� respectively�
Sometimes checking the correctness of these models is needed� If this is the case� then both the analytical
and the numerical di�erentiation can be compared� Checking optimization problems can be speci
ed
by using the macrovariable �TEST� If �TEST��NO�� then no checking is performed� If �TEST��YES��
then both the analytical and the numerical di�erentiation is executed before optimization is started and
the derivatives obtained are printed� Only the derivatives that are analytically speci
ed �the
rst� the
second� are checked� Finally� if �TEST��ONLY�� then only checking is performed and optimization is
not started� An output of checking an optimization problem has the following form�

STANDARD TEST OF EXTERNAL SUBROUTINES

�������������������������������������

PROBLEM NO �

PROBLEM

�������

NF
 � KDF
 � KSF
 � KCF
 � NORMF
 �

NA
 � NAL
 � MAL
 � KDA
 �� KSA
 � KCA
 � NORMA
 �

NC
 � NCL
 � MCL
 � KDC
 � KSC
 � KCC
 � NORMC
 �

PARAMETERS

����������

X
 ������������D��� �����������D���

DERIVATIVES

�����������

FF A
 �����������D���

GF N
 ������������D��� ������������D���

GF A
 ������������D��� ������������D���

HF N
 �����������D��� �����������D��� �����������D���

HF A
 �����������D��� �����������D��� �����������D���

FC A
 ������������D���

GC N
 �����������D��� �����������D���

GC A
 �����������D��� �����������D���

FC A
 �����������D���

GC N
 ������������D��� �����������D���

GC A
 ������������D��� �����������D���

FC A
 �����������D���

GC N
 ������������D��� �����������D���

GC A
 ������������D��� �����������D���

�

Here the letter �N� indicates a numerical di�erentiation and the letter �A� indicates an analytical
di�erentiation�

��	� Testing optimization methods

The UFO system contains a great number of subroutines �collections of test problems� that serve
for testing optimization methods� All of these subroutines begin with the letter �E� �external�� Input
subroutines have the second letter �I� and the third letter �U� or �L� or �N� for an unconstrained or linearly
constrained or nonlinearly constrained problems� respectively� The model speci
cation subroutines have
the second letter �F� or �A� or �C� or �E� or �Y� for a model function or approximating functions or
constraint functions or state functions or initial functions� respectively� and the third letter �F� or �G� or
�H� for values or gradients or Hessian matrices� respectively� The fourth letter is always �U� or �D� or �S�
or �B� for universal or dense or sparse or partitioned problems� respectively� The last two digits specify
individual test problems collections� When we want to carry out a test of the selected method� we use
the specicications �COLLECTION��YES� and �NEXT�number of test problems in the input batch
le�

Tests corresponding to individual test problems collections are realized by using the following test
input
les�

TEST����UFO � Tests for unconstrained optimization ��� dense problems from ����� ����� External
subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST����UFO � Tests for sum of squares minimization ��� dense problems from �	���� External sub�
routines EIUD��� EAFU��� EAGU��� EAHD�� are used�

TEST����UFO � Tests for linearly constrained optimization ��� dense problems from ������ External
subroutines EILD��� EFFU��� EFGU�� are used�

TEST����UFO � Tests for medium�size linear programming �� dense problems�� External subroutine
EILD�� is used�

TEST����UFO � Tests for medium�size quadratic programming �� dense problems�� External subrou�
tine EILD�� is used�

TEST����UFO � Tests for minimax � dense problems from ����� External subroutines EIUD���
EAFU��� EAGU��� EAHD�� are used�

TEST���UFO � Tests for inequality constrained nonlinear programming ��� dense problems from ������
External subroutines EIND�� EFFU�� EFGU�� ECFU�� ECGU� are used�

TEST����UFO � Tests for equality constrained nonlinearp rogramming ��� dense problems from ������
External subroutines EIND��� EFFU��� EFGU��� ECFU��� ECGU�� are used�

TEST�	��UFO � Tests for unconstrained global optimization ��� problems from ������� External sub�
routines EIUD�	� EFFU�	� EFGU�	 are used�

TEST����UFO � Tests for unconstrained optimization ��� sparse problems from ���� ������� External
subroutines EIUS��� EFFU��� EFGU��� EFHS�� are used�

TEST����UFO � Tests for large�scale linear programming ��� sparse problems�� External subroutine
EILS�� is used�

TEST����UFO � Tests for large�scale quadratic programming ��� sparse problems�� External subrou�
tine EILS�� is used�

TEST����UFO � Tests for linearly constrained optimization �� sparse problems�� External subroutines
EILS��� EFFU��� EFGU�� are used�

TEST����UFO � Tests for sum of functions minimization ��� sparse problems from ���� ������� Exter�
nal subroutines EIUB��� EAFU��� EAGU�� are used�

TEST����UFO � Tests for sum of squares minimization ��� sparse problems from ���� External sub�
routines EIUB��� EAFU��� EAGU�� are used�

TEST����UFO � Extended tests for unconstrained optimization ��� dense problems from ����� ����
�	���� External subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST���UFO � Tests for nonlinear equations solutions ��� dense problems�� External subroutines
EIUD�� EAFU�� EUGU� are used�

�

TEST����UFO � Tests for nonlinear equations ��� sparse problems from ������ External subroutines
EIUS��� EAFU��� EAGU�� are used�

TEST�	��UFO � Tests for nonsmooth unconstrained optimization ��� dense problems from �	��� ������
External subroutines EIUD�	� EFFU�	� EFGU�	� EFHD�	 are used�

TEST����UFO � Tests for equality constrained sparse nonlinear programming ��� sparse problems from
������ External subroutines EIUB��� EIUS��� EIND��� EINS��� EFFU��� EFGU���
EAFU��� EAGU��� ECFU��� ECGU�� are used�

TEST����UFO � Tests for optimization of dynamical systems �� dense problems�� External subroutines
EIUD��� EEFU��� EEGU��� EYFU��� EYGU�� are used�

TEST����UFO � Tests for linearly constrained minimax optimization �� dense problems from �����
External subroutines EIUD��� EAFU��� EAGU��� EAHD�� are used�

TEST����UFO � Tests for sum of squares minimization �� dense problems from ����� External sub�
routines EIUD��� EAFU��� EAGU�� are used�

TEST����UFO � Tests for sum of squares minimization �� dense problems from ����� External sub�
routines EIUD��� EAFU��� EAGU�� are used�

In these input
les� all necessary macrovariables are de
ned and the external subroutines are called�
The external subroutines with the last two digits ��� � � � � �� are brie�y described in the text
les E���TXT�
� � � � E���TXT�

To demonstrate the use of the test input
le we perform a test of sum of squares minimization by
using hybrid method realized as a trust region method� The test input
le TEST���UFO has the form�

�SET�INPUT�

CALL EIUD���NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

IF�IERR�NE� �� GO TO ��ENDTEST

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT�

�ENDSET

�NF
��

�NA
���

�KOUT
�

�LOUT
�

�MOUT
�

�MIT
���

�MFV
����

�MODEL
AQ

�CLASS
GN

�TYPE
G

�DECOMP
M

�NUMBER
�

�UPDATE
F

�TOLX
����P���

�TOLF
����P���

�TOLB
����P���

�TOLG
����P��

�COLLECTION
YES

�NEXT
��

�BATCH

�

�STANDARD

The result �screen output� obtained has the following form �each row corresponds to one test problem
and the last row is a summary��

� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

� NIT
 � NFV
 � NFG
 � NDC
 �� NCG
 � F
 ����D��� G
 ����D���

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

�� NIT
 ��� NFV
 ��� NFG
 ��� NDC
 ��� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 ��� NFG
 �� NDC
 ��� NCG
 � F
 ����D��� G
 ����D���

US�G��� � �� MAXIMUM NUMBER OF REDUCTIONS

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 ��� NCG
 � F
 ����D��� G
 ����D���

US�G��� � �� MAXIMUM NUMBER OF REDUCTIONS

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 ��� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 � NFV
 � NFG
 � NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 ��� NCG
 � F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� NCG
 � F
 ����D��� G
 ����D���

TOTAL NIT
 ��� NFV
 ��� NFG
 ��� NDC
 ���� � ��

NCG
 � NRS
 � NAD
 � NRM
 �

�

�� Application of the UFO system �examples�

Before the solution of a given problem� the input
le containing the problem description and other
speci
cations for macroprocessor must usually be prepared� This input
le can contain only the macroin�
struction �STANDARD �input
le STANDARD�UFO�� Then a full dialogue is processed� However� a
more advantageous possibility is to prepare an input
le containing a problem description while a method
selection is left to the dialogue� Moreover� since a method selection can be made automatically by using
knowledge bases coded in UFO templates� the batch mode is recommended�

When writing input
le instructions� we have to observe some conventions� Since a control program
contains a great number of common variables� we recommend using variables beginning with the letter
�W� for a problem description to avoid their double use� Real variables of this type should be declared
at the beginning of the control program by the statement �FLOAT �for example �FLOAT W�W��W���
Simple integers I�J�K�L need not be declared� We recommend using statement numbers less than �����
for a problem description to avoid their double use�

The basic implementation of the UFO system is in a double precision arithmetic� Therefore� usually
�FLOAT��REAL��� and �P��D�� We recommend writing real constants always in the form of �P or
D speci
cation �for example ����P �� ����P�� or ���D �� ���D��� since the conversions from a single
precision� that depend on a compiler� can be incorrect� Instead of the constants ���D�� ���D�� ���D��
���D�� ���D�� ���D�� ���D�� we can use the common variables ZERO� HALF� ONE� TWO� THREE�
FOUR� FIVE� TEN which contain corresponding values�

In the following text� we demonstrate the application of the UFO system to �	 typical problems�
Every example consists of the problem description� the problem speci
cation �input
le�� comments to
the problem speci
cation and the problem solution �basic screen output�� All input
les contain necessary
data and can be used in the batch mode� These input
les are included to the UFO system as the demo�

les PROB���UFO�� � � �PROB�	�UFO�

��
� Optimization with simple bounds

a� Problem description�
Suppose we have to
nd a maximum of the objective function

F �x� �
�
n�

� nY
i��

xi
�
� �

with simple bounds � � xi � i for � � i � n� where n � �� The starting point is xi � � for � � i � n� The
solution point is xi � i for � � i � n and the corresponding maximum value of the objective function is
F � �����

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

DO � I
��NF

X�I�
��D� � XL�I�
��D� � XU�I�
DBLE�I� � IX�I�
�

� CONTINUE

�ENDSET

�SET�FGMODELF�

W
��D�

DO � I
��NF

W
W�X�I�	DBLE�I�

� CONTINUE

FF
W���D�

DO � I
��NF

GF�I�
W	X�I�

� CONTINUE

�ENDSET

�IEXT
�

�NF
�

�KBF
�

�MOUT
�

�NOUT
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify initial values and simple bounds for variables� By
using the macrovariable �FGMODELF we specify analytically the value and the gradient of the model
function� Because we look for a maximum� we set �IEXT���

d� Problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

FF
 ������������D���

X
 �����������D��� �����������D��� �����������D��� �����������D���

�����������D���

��	� Minimization of the sum of squares

a� problem description�
Suppose we have to
nd a minimum of the objective function

F �x� �
�

�

mX
i��

�
x�e

�x�ti � x�e
�x�ti � x	e

�x�ti � yi
��

where m � ��� ti � i��� and yi � e�ti��e���ti��e��ti for � � i � m� The starting point is x� � �� x� �
�� x� � �� x� � �� x� � �� x	 � �� The solution point is x� � �� x� � ��� x� � �� x� � �� x� � �� x	 � � and
the corresponding minimum value of the objective function is F � ���

b� Problem speci
cation �input
le��

�FLOAT W�WA�WB�WC

�SET�INPUT�

X���
��D� � X���
��D� � X���
��D�

X���
��D� � X���
��D� � X���
��D�

DO � KA
��NA

W
���D��DBLE�KA�

AM�KA�
EXP��W����D��EXP�����D��W����D��EXP����D��W�

� CONTINUE

XMAX
��D�

FMIN
��D�

�

�ENDSET

�SET�FMODELA�

W
���D��FLOAT�KA�

WA
EXP��W�X����

WB
EXP��W�X����

WC
EXP��W�X����

FA
X����WA�X����WB�X����WC

�ENDSET

�NF
�

�NA
��

�NAL
�

�KBA
�

�MOUT
�

�NOUT
�

�MODEL
AQ

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the vector AM
containing values yi� � � i � m� Since the approximating functions contain exponentials� we de
ne
the maximum stepsize �XMAX���� By using the macrovariable �FGMODELA we specify analytically
the values of the approximating function� The gradients of the approximating functions are computed
numerically� For the sum of squares minimization we set �MODEL��AQ�� The speci
cation �KBA��
indicates that the vector AM is used�

d� Problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

	

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 ��� NFG
 � NDC
 ��� NCG
 � F
 ����D��� G
 ����D���

F
 �����������D���

X
 �����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D���

���� Minimax approximation

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� � max
��i�m

j
x� � tix�

� � tix� � t�ix� � t�ix�
� yij

where m � ��� ti � �i� ������ � and yi � e�ti for � � i � m� Starting point is x� � ���� x� � �� x� �
�� x� � �� x� � �� The solution point is x� � ��			�� x� � ������� x� � ������� x� � ������� x� �
�����	 and the corresponding minimum value of the objective function is F � �����������

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

X���
���D� � X���
���D� � X���
���D�

X���
���D� � X���
���D�

�ENDSET

�SET�FMODELA�

W
���D��DBLE�KA�������D�

FA
�X����W�X����	����D��W��X����W��X����W�X�������EXP�W�

�ENDSET

�MODEL
AM

�NF
�

�NA
��

�NAL
�

�MOUT
�

�NOUT
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FMODELA we specify analytically the values of the approximating functions� The gradients of the
approximating functions are computed numerically� For minimax approximation we set �MODEL��AM��

d� Problem solution �basic screen output��

��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

F
 �����������D���

X
 �����������D��� �����������D��� ������������D��� �����������D���

������������D���

���� Nonsmooth optimization

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� � �x� � � � �x�� � x�� � �� �

�
jx�� � x�� � �j

Starting point is x� � ��� x� � ���� The solution point is x� � �� x� � �� and the corresponding
minimum value of the objective function is F � �����

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

X���
���D�

X���
���D�

�ENDSET

�SET�FGMODELF�

W
X�������X���������D�

FF
�X������D��W�����D��ABS�W�

W
SIGN�����P ��W����D�

GF���
W�X������D�

GF���
W�X���

�ENDSET

�NF
�

�KSF
�

�MOUT
�

�NOUT
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FGMODELF we specify analytically the value and the gradient of the objective function� For
nonsmooth optimization we set �KSF���

��

d� Problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 �����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 �����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 �����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 �����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 �����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 �����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 �����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 �����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 �����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 �����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 �����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 � NCG
 � F
�����D��� G
 ����D���

FF
 ������������D���

X
 �����������D��� �����������D���

���� Optimization with linear constraints

a� problem speci
cation�

Suppose we have to
nd a minimum of the objective function

F �x� � �x� � x��
� � �x� � ��� � �x� � ��� � �x� � ��	

over the set given by the linear constraints

x� � x� � x� � �x� �

x� � �x� � �

The starting point is x� � ��� x� � � x� � �� x� � �� x� � ���� The solution point is x� � �� x� �
�� x� � �� x� � �� x� � � and the corresponding minimum value of the objective function is F � ���

b� Problem speci
cation �input
le��

�SET�INPUT�

X���
 ��D� � X���
 ��D� � X���
 ��D�

X���
���D� � X���
���D�

IC���
� � CL���
��D�

CG���
��D� � CG���
��D� � CG���
��D�

CG���
��D� � CG���
��D�

IC���
� � CL���
��D�

CG���
��D� � CG���
��D� � CG���
��D�

CG���
��D� � CG����
��D�

FMIN
��D�

�ENDSET

�SET�FMODELF�

FF
�X����X���������X������D������ �

��

�X������D�������X������D�����

�ENDSET

�SET�GMODELF�

GF���
 ��D���X����X����

GF���
���D���X����X����

GF���
 ��D���X������D��

GF���
 ��D���X������D�����

GF���
 ��D���X������D�����

�ENDSET

�NF
�

�NC
�

�NCL
�

�KBC
�

�MOUT
�

�NOUT
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and types and values of
the general linear constraints� Since there are only the equality constraints� we can specify only the left
sides �CL��� and CL���� and we can set �KBC��� The speci
cation �FMIN�� is used� since the objective
function value cannot be less then zero� By using the macrovariable �FMODELF we specify analytically
the value of the model function� By using the macrovariable �GMODELF we specify analytically the
gradient of the model function�

d� Problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

��

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 � NCG
 � F
 ����D��� G
 ����D���

FF
 �����������D���

X
 �����������D��� �����������D��� �����������D��� �����������D���

�����������D���

���� Minimax approximation with linear constraints

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� � max�f��x�� f��x�� f��x��

with

f��x� � � exp�x� � x��

f��x� � sinh�x� � ��� �

f��x� � � log�x��� �

over the set given by the box constraint x�
 ����� and the linear constraint

�
���

x� � x� �
�
�

 ��

Starting point is x� � ��� x� � ������ The solution point is x� � ������� x� � ����� and the
corresponding minimum value of the objective function is F � ������	���

b� Problem speci
cation �input
le��

�SET�INPUT�

X���
���D � � IX���
�

X���
 ��D�� � XL���
 ��D�� � IX���
�

CL���
���D�� � IC���
�

CG���
��D�� � CG���
���D �

�ENDSET

�SET�FMODELA�

IF �KA�EQ��� FA
�EXP�X����X����

IF �KA�EQ��� FA
 SINH�X������D�����D�

IF �KA�EQ��� FA
�LOG�X�������D�

�ENDSET

�MODEL
AM

�IEXT
��

�NF
�

�NA
�

��

�NC
�

�NCL
�

�KBF
�

�KBC
�

�MOUT
�

�NOUT
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and types and values of
both the box constraints and the general linear constraints� Since there are only one�sided constraints�
we specify only the left sides �XL��� and CL���� and we can set �KBF�� and �KBC��� By using
the macrovariable �FMODELA we specify analytically the values of the approximating functions� The
gradients of the approximating functions are computed numerically� For minimax approximation we set
�MODEL��AM� and �IEXT����

d� Problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

UYSET�� ���� RESTART

F
 �����������D���

X
 ������������D��� �����������D���

��� Optimization with nonlinear constraints �nonlinear programming�

a� Problem description�

Suppose we have to
nd a maximum of the objective function

F �x� � x�x�

over the set given by the simple bounds x�
 �� x�
 �� x�
 �� x

 � and by the nonlinear constraints

�x� � x	�
� � �x� � x
�

�
 �

x�x� � x�x�p
x�� � x��

 �

x�x	 � x�x
p
x�� � x��

 �

x�x� � �x� � x��x� � x�x�p
�x� � x��� � x��

 �

x�x� � �x� � x��x
 � x�x	p
�x� � x�� � x��

 �

The starting point is x� � ���� x� � ���� x� � ���� x� � ����� x� � ���� x	 � ���� x
 � ���� The
solution point is x� � ������ x� � ������ x� � ������ x� � ������ x� � ������ x	 � ������ x
 � �����
and the corresponding minimum value of the objective function is F � �������

b� Problem speci
cation �input
le��

��

�FLOAT W

�SET�INPUT�

X���
 ���D� � XL���
 ���D� � IX���
 �

X���
 ���D�

X���
 ���D� � XL���
 ���D� � IX���
 �

X���
����D�

X���
 ���D� � XL���
 ���D� � IX���
 �

X���
 ���D�

X���
 ���D� � XL���
 ���D� � IX���
 �

CL���
���D� � IC���
 �

CL���
���D� � IC���
 �

CL���
���D� � IC���
 �

CL���
���D� � IC���
 �

CL���
���D� � IC���
 �

�ENDSET

�SET�FMODELF�

FF
X����X���

�ENDSET

�SET�FMODELC�

IF �KC�LE��� THEN

ELSE IF �KC�EQ��� THEN

FC
�X����X���������X����X�������

ELSE IF �KC�EQ��� THEN

W
SQRT�X�������X�������

FC
�X����X����X����X����	W

ELSE IF �KC�EQ��� THEN

W
SQRT�X�������X�������

FC
�X����X����X����X����	W

ELSE IF �KC�EQ��� THEN

W
SQRT��X����X��������X�������

FC
�X����X�����X����X�����X����X����X����	W

ELSE IF �KC�EQ��� THEN

W
SQRT��X����X��������X�������

FC
�X����X�����X����X�����X����X����X����	W

ENDIF

�ENDSET

�NF
�

�NC
�

�NCL
�

�KBF
�

�KBC
�

�MOUT
�

�NOUT
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify initial values and simple bounds for variables and
types and values of the general constraints� Since there are only one�sided simple bounds and one�sided
general constraints� we set �KBF�� and �KBC��� By using the macrovariable �FMODELF we specify
analytically the value of the model function� The gradient of the model function is computed numerically�

��

d� Problem solution �basic screen output��

NIC
 � NIT
 � NFV
 � NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

� NIC
 � NIT
 �� NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

FF
 �����������D���

X
 �����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D���

���� Global optimization

a� Problem description�

Suppose we have to
nd a global minimum of the objective function

F �x� � �x� � ����x� � ��� � �x� � ����x� � ��� � x��x
�
�

over the set given by the inequalities ��� � x� � �� and ��� � x� � ��� The starting point is x� � ��
x� � �� The solution point is x� � ������� x� � ������ and the global minimumvalue of the objective
function is F � �������

b� Problem speci
cation �input
le��

�SET�INPUT�

XL���
����D� � XU���
���D�

XL���
����D� � XU���
���D�

�ENDSET

�SET�FMODELF�

FF
��X������D����X������D������� �

��X������D����X������D��������X����X�������

�ENDSET

�NF
�

�MOUT
�

�EXTREM
G

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify bounds de
ning the investigated region� By using
the macrovariable �FMODELF we specify analytically the value of the model function� The gradient
of the model function is computed numerically� Since we require to
nd a global minimum we set
�EXTREM��G��

�

d� Problem solution �basic screen output��

� NIT
 �� NFV
 ��� NEX
 � F
 �����D���

��EXTREM � F
 ������������D���

X
 ������������D��� ������������D���

��EXTREM � F
 ������������D���

X
 ������������D��� �����������D���

��EXTREM � F
 ������������D���

X
 �����������D��� ������������D���

��EXTREM � F
 ������������D���

X
 �����������D��� �����������D���

���� Large scale optimization �sparse Hessian matrix�

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
nX
i��

�
��� �xi�xi � xi�� � xi�� � �

��
� xn�� � x� � �

where n � ���� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ���

b� Problem speci
cation �input
le��

�FLOAT A

�SET�INPUT�

DO � I
��NF

X�I�
����D�

J
���I�����

IH�I�
J

JH�J�
I

JH�J���
I��

� CONTINUE

IH�NF���
��NF

�ENDSET

�SET�FMODELF�

FF
���D�

DO � J
��NF

A
����D�����D��X�J���X�J�����D�

IF �J�GT��� A
A�X�J���

IF �J�LT�NF� A
A�X�J���

FF
FF�A�A

� CONTINUE

�ENDSET

�SET�GMODELF�

GF���
���D�

��

DO � J
��NF

A
����D�����D��X�J���X�J�����D�

IF �J�GT��� A
A�X�J���

IF �J�LT�NF� A
A�X�J���

A
A�A

GF�J�
GF�J��A�����D�����D��X�J��

IF �J�GT��� GF�J���
GF�J����A

IF �J�LT�NF� GF�J���
�A

� CONTINUE

�ENDSET

�NF
���

�M
���

�MOUT
�

�HESF
S

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Hessian matrix� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is ��NF����		� We set �M����� since a greater space
is needed for sparse matrix processing� By using the macrovariable �FMODELF we specify analytically
the value of the model function� By using the macrovariable �GMODELF we specify analytically the
gradient of the model function�

d� problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

� NIT
 � NFV
 �� NFG
 �� NDC
 � NCG
 � F
 ����D��� G
 ����D���

��
�� Large�scale optimization �sparse Jacobian matrix�

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
nX
i��

fAi �x�

where n���� and

fAi �x� �
�
��� �xi�xi � xi�� � �

��
� i � �

�	

fAi �x� �
�
��� �xi�xi � xi�� � xi�� � �

��
� � � i � n� �

fAi �x� �
�
��� �xi�xi � xi�� � �

��
� i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ���
�This problem is equivalent to the previous problem��

b� Problem speci
cation �input
le��

�FLOAT A

�SET�INPUT�

DO � I
��NF

X�I�
����D�

� CONTINUE

L
�

DO � I
��NF

IAG�I�
L

IF �I�GT��� THEN

JAG�L�
I��

L
L��

ENDIF

JAG�L�
I

L
L��

IF �I�LT�NF� THEN

JAG�L�
I��

L
L��

ENDIF

� CONTINUE

IAG�NF���
L

�ENDSET

�SET�FMODELA�

A
����D�����D��X�KA���X�KA�����D�

IF �KA�GT��� A
A�X�KA���

IF �KA�LT�NF� A
A�X�KA���

FA
A�A

�ENDSET

�SET�GMODELA�

A
����D�����D��X�KA���X�KA�����D�

IF �KA�GT��� A
A�X�KA���

IF �KA�LT�NF� A
A�X�KA���

A
A�A

GA�KA�
A�����D�����D��X�KA��

IF �KA�GT��� GA�KA���
�A

IF �KA�LT�NF� GA�KA���
�A

�ENDSET

�NF
���

�NA
���

�MA
���

�M
���

�MOUT
�

�MODEL
AF

�JACA
S

	�

�HESF
B

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pat�
tern of the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is
tridiagonal and the number of its nonzero elements is ��NF����	�� Therefore� we set �MA����� Since
we use the partitioned Hessian matrix� indicated by the statement �HESF��B�� we must specify the
number of its nonzero elements �it is ��NF���� Therefore� we set �M����� By using the macrovariable
�FMODELA we specify analytically the values of the approximating functions� By using the macrovari�
able �GMODELA we specify analytically the gradients of the approximating functions� For the sum of
values minimization we set �MODEL��AF��

d� problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 � NCG
 � F
 ����D��� G
 ����D���

��

� Large�scale sum of squares optimization �sparse Jacobian matrix�

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
nX
i��

�
fAi �x�

��

where n � ��� and

fAi �x� � ��� �xi�xi � xi�� � � � i � �

fAi �x� � ��� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi �x� � ��� �xi�xi � xi�� � � � i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ���
�This problem is equivalent to the previous problem��

	�

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I
��NF

X�I�
����D�

� CONTINUE

L
�

DO � I
��NA

IAG�I�
L

IF �I�GT��� THEN

JAG�L�
I��

L
L��

ENDIF

JAG�L�
I

L
L��

IF �I�LT�NA� THEN

JAG�L�
I��

L
L��

ENDIF

� CONTINUE

IAG�NA���
L

�ENDSET

�SET�FMODELA�

I
KA

FA
����D�����D��X�I���X�I�����D�

IF �I�GT��� FA
FA�X�I���

IF �I�LT�NA� FA
FA�X�I���

�ENDSET

�SET�GMODELA�

I
KA

GA�I�
���D�����D��X�I�

IF �I�GT��� GA�I���
����D�

IF �I�LT�NA� GA�I���
����D�

�ENDSET

�NF
���

�NA
���

�MA
���

�M
���

�MOUT
�

�MODEL
AQ

�JACA
S

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is tridiag�
onal and the number of its nonzero elements is ��NF����	�� Therefore� we set �MA����� Since we do
not use the sparse Hessian matrix� we do not specify the number of its nonzero elements� By using the
macrovariable �FMODELA we specify analytically the values of the approximating functions� By using

	�

the macrovariable �GMODELA we specify analytically the gradients of the approximating functions� For
the sum of squares minimization we set �MODEL��AQ��

d� problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

��
	� Large�scale nonlinear equations

a� Problem description�

Suppose we have to solve a system of the nonlinear equations

fAi �x� � ��� �xi�xi � xi�� � � � � � i � �

fAi �x� � ��� �xi�xi � xi�� � xi�� � � � � � � � i � n� �

fAi �x� � ��� �xi�xi � xi�� � � � � � i � n

where n����� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ��� �This problem is equivalent to the previous problem��

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I
��NF

X�I�
����D�

� CONTINUE

�ENDSET

�SET�FMODELA�

I
KA

FA
����D�����D��X�I���X�I�����D�

IF �I�GT��� FA
FA�X�I���

IF �I�LT�NA� FA
FA�X�I���

�ENDSET

�NF
���

�NA
���

�MOUT
�

�MODEL
AQ

�JACA
NO

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FMODELA we specify analytically the values of functions in the nonlinear equations� For solving
nonlinear equations we set �MODEL��AQ��

	�

d� problem solution �basic screen output��

NIT
 � NFV
 � F
 ����D���

NIT
 � NFV
 � F
 ����D���

NIT
 � NFV
 � F
 ����D���

NIT
 � NFV
 �� F
 ����D���

NIT
 � NFV
 �� F
 ����D���

NIT
 � NFV
 �� F
 ����D���

� NIT
 � NFV
 �� NDC
 � NCG
 � F
 ����D���

��
�� Large�scale linear programming

a� Problem description�

Suppose we have to
nd a maximum of the linear function

F �x� �
nX
i��

����ixi

with simple bounds ��� � xi � ��� � � xi � n� and linear constraints

�xi � xi�� � xi�� � i� � � i � nC

where n � �� and nC � ��� The starting point is not given� The maximum value of the linear objective
function is F � ��

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I
��NF

IX�I�
�

XL�I�
����D�

XU�I�
 ���D�

GF�I�
FLOAT�������I�

� CONTINUE

DO � KC
��NC

IC�KC�
�

CL�KC�
FLOAT�KC�

CALL UKMCI��KC�KC�����D��ICG�JCG�CG�

CALL UKMCI��KC�KC������D��ICG�JCG�CG�

CALL UKMCI��KC�KC�������D��ICG�JCG�CG�

� CONTINUE

�ENDSET

�IEXT
�

�NF
��

�NC
��

�NCL
��

�MC
���

�KBF
�

�KBC
�

�MOUT
�

�NOUT
�

�MODEL
FL

	�

�JACC
S

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify bounds for variables and the sparsity pattern with
numerical values of the constraint Jacobian matrix� We use the procedure UKMCI�� The sparse Jacobian
matrix� indicated by the statement �JACC��S�� is tridiagonal and the number of its nonzero elements
is ���NF������� We set �MC���� as a su�ciently large dimension for auxiliary
elds� The option
�MODEL��FL� indicates the linear programming problem�

d� Problem solution �basic screen output��

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 � IJOLD
 �� KINP
 � IU
 �� F
 ����D���

� NUMITR
 � NEL
 � NREF
 � KINP
 � IU
 �� F
 ����D��� ITERL
 �

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
�����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
�����D���

NUMITR
 � IJNEW
 � IJOLD
 �� KINP
 � IU
 �� F
�����D���

� NUMITR
 � NEL
 � NREF
 � KINP
 � IU
 �� F
�����D��� ITERL
 �

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

FF
 �����������D���

X
 ������������D��� �����������D��� �����������D��� ������������D���

������������D��� ������������D��� ������������D��� ������������D���

������������D��� ������������D��� ������������D��� ������������D���

������������D��� ������������D��� ������������D��� ������������D���

������������D��� ������������D��� ������������D��� ������������D���

��
�� Large�scale quadratic programming

a� Problem description�

Suppose we have to
nd a minimum of the quadratic function

F �x� �
k��X
i��

�xk�i�� � xk�i�
�

with simple bounds �i � xi � �i��� �����i�� � �i� � xk�i � �����i�� � �i�� � � i � k � �� �k � xk �
�k��� and linear constraints

xk�i � xi�� � xi � �� � � i � k � �

where �i � � � ���������i� � � i � k � �� and where n � �k � � � ��� nC � k � � � ��� The starting
point is not given� The minimum value of the quadratic objective function is F � ���	����

b� Problem speci
cation �input
le��

�FLOAT WA�WB�WC

�SET�INPUT�

WA
����D�� WB
����D�

DO � I
��NC

	�

J
I�NC��

WC
���D�������D�����I���

IX�I�
�� XL�I�
WA� XU�I�
WB

IX�J�
�� XL�J�
���D���WC�WA�� XU�J�
���D���WC�WA�

GF�I�
���D�

GF�J�
���D�

WA
WB� WB
WC

IC�I�
�� CL�I�
���D�

CALL UKMCI��I�J����D��ICG�JCG�CG�

CALL UKMCI��I�I����D��ICG�JCG�CG�

CALL UKMCI��I�I�������D��ICG�JCG�CG�

IH�I�
�

� CONTINUE

IX�NC���
�� XL�NC���
WA� XU�NC���
WB

GF�NC���
�

IH�NC���
�� IH�NC���
�

K
NC��

DO � I
K�NF��

IH�I���
IH�I���

� CONTINUE

IH�NF���
IH�NF���

J
�

DO � I
K�NF

JH�J�
I� JH�J���
I��

HF�J�
���D�� HF�J���
����D�

IF �I�EQ�K�OR�I�EQ�NF� HF�J�
���D�

J
J��

� CONTINUE

�ENDSET

�NF
��

�NC
��

�NCL
��

�MC
���

�M
���

�MCOLS
���

�MROWS
��

�KBF
�

�KBC
�

�MOUT
�

�NOUT
�

�MODEL
FQ

�JACC
S

�HESF
S

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify bounds for variables� the sparsity pattern with numer�
ical values of the model Hessian matrix� and the sparsity pattern with numerical values of the constraint
Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix� indicated by the statement
�HESF��S�� is very simple and the number of its upper half nonzero elements is ���N�NC�����	� We

	�

set M����� as a su�ciently large dimension for working
elds� The sparse Jacobian matrix� indicated
by the statement �JACC��S�� is tridiagonal and the number of its nonzero elements is ��NC���� We set
�MC���� as a su�ciently large dimension for working
elds� The option �MODEL��FQ� indicates the
linear programming problem�

d� Problem solution �basic screen output��

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 ����D���

NUMITR
 � IJNEW
 � IJOLD
 �� KINP
 � IU
 �� F
 ����D���

� NUMITR
 � NEL
 � NREF
 � KINP
 � IU
 �� F
 ����D��� ITERL
 �

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 � IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 � IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 � IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

� NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ��������D��� G
 ����D���

	

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 �� F
 ����D��� G
 ����D���

FF
 �����������D���

X
 �����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D���

��
�� Large�scale optimization with linear constraints

a� Problem description�

The problem we have solved is in fact the Hock and Schittkowski problem number ��	 �see ����� which
has �� variables and � linear constraints� The minimum value of the objective function is F � �����		�

b� Problem speci
cation �input
eld��

�FLOAT WI�WJ

�SET�INPUT�

DO � I
��NF

X�I�
����D�� XL�I�
���D�� XU�I�
���D�� IX�I�
�

� CONTINUE

IH� ��
 �� IH� ��
 �� IH� ��
��� IH� ��
��� IH� ��
��

IH� ��
��� IH� ��
��� IH� ��
��� IH� ��
��� IH����
��

IH����
��� IH����
��� IH����
��� IH����
��� IH����
��

IH����
��� IH����
���

JH� ��
 �� JH� ��
 �� JH� ��
 �� JH� ��
 �� JH� ��
��

JH� ��
 �� JH� ��
 �� JH� ��
 �� JH� ��
���

JH����
 �� JH����
 �� JH����
 �� JH����
��� JH����
��

JH����
 �� JH����
 �� JH����
��� JH����
���

JH����
 �� JH����
 �� JH����
��� JH����
��� JH����
��

JH����
 �� JH����
 �� JH����
���

JH����
 �� JH����
��� JH����
���

JH����
 �� JH����
��� JH����
���

JH����
 �� JH����
��� JH����
���

JH����
��� JH����
���

JH����
��� JH����
���

JH����
��� JH����
���

JH����
��� JH����
���

JH����
���

JH����
���

JH����
���

DO � I
��NC

IC�I�
�

� CONTINUE

CL���
 ���D�

	�

CL���
 ���D�

CL���
����D�

CL���
����D�

CL���
 ���D�

CL���
 ���D�

CL���
 ���D�

CL���
����D�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

		

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

�ENDSET

�SET�FGMODELF�

FF
���D�

DO � I
��NF

GF�I�
���D�

� CONTINUE

DO � I
��NF

WI
X�I���X�I�����D������D�

K�
IH�I�

K�
IH�I�����

DO � K
K��K�

J
JH�K�

WJ
X�J���X�J�����D������D�

FF
FF�WI�WJ

GF�I�
GF�I������D��X�I�����D���WJ

GF�J�
GF�J��WI�����D��X�J�����D��

� CONTINUE

� CONTINUE

�ENDSET

�NF
��

�M
���

�NC
�

�NCL
�

�MC
���

�KBF
�

�KBC
�

�MOUT
�

�NOUT
�

�JACC
S

�HESF
S

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify bounds for variables� the sparsity pattern with numer�
ical values of the model Hessian matrix� and the sparsity pattern with numerical values of the constraint
Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix is indicated by the state�
ment �HESF��S�� The sparse Jacobian matrix is indicated by the statement �JACC��S�� The option
�MODEL��FF� indicates a general objective function� By using the macrovariable �FGMODELF we
specify analytically the value and the gradient of the model function�

d� Problem solution �basic screen output��

���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

� NIT
 � NFV
 �� NFG
 �� NDC
 � NCG
 � F
 ����D��� G
 ����D���

FF
 �����������D���

X
 �����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����������D��� ������������D��� �����������D��� �����������D���

�����������D��� �����������D��� �����������D��� �����������D���

��
�� Large�scale optimization with nonlinear equality constraints

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
nX
i��

�
fAi �x�

��

where n � ��� and

fAi �x� � ��� �xi�xi � xi�� � � � i � �

fAi �x� � ��� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi �x� � ��� �xi�xi � xi�� � � � i � n

over the set given by the nonlinear equality constraints

�xi�x
�
i � xi���� ���� xi� � ��xi � x�i��� � x�i�� � xi�� � xi�� � x�i�� � �� � � i � n� �

The starting point is xi � ��� � � i � n� The minimum value of the objective function is F � ���	����

b� Problem speci
cation �input
le��

�FLOAT WA�WB

�SET�INPUT�

DO � I
��NF

X�I�
���D�

� CONTINUE

M
�

IH���
�

DO � I
��NF

M
M��

JH�M�
I

���

IF �I�LE�NF��� THEN

M
M��

JH�M�
I��

ENDIF

IF �I�LE�NF��� THEN

M
M��

JH�M�
I��

ENDIF

IH�I���
M��

� CONTINUE

MC
�

ICG���
�

DO � I
��NF��

MC
MC��

JCG�MC�
I��

MC
MC��

JCG�MC�
I��

MC
MC��

JCG�MC�
I

MC
MC��

JCG�MC�
I��

MC
MC��

JCG�MC�
I��

ICG�I���
MC��

� CONTINUE

DO � KC
��NC

IC�KC�
�

CL�KC�
��D�

� CONTINUE

�ENDSET

�SET�FMODELF�

FF
��D�

DO � J
��NF

WA
���D����D��X�J���X�J����D�

IF �J�GT� �� WA
WA�X�J���

IF �J�LT�NF� WA
WA�X�J���

FF
FF�WA���

� CONTINUE

�ENDSET

�SET�GMODELF�

DO � J
��NF

GF�J�
��D�

� CONTINUE

DO � J
��NF

WA
���D����D��X�J���X�J����D�

IF �J�GT� �� WA
WA�X�J���

IF �J�LT�NF� WA
WA�X�J���

WB
��D��WA

GF�J�
GF�J��WB����D����D��X�J��

IF �J�GT� �� GF�J���
GF�J����WB

IF �J�LT�NF� GF�J���
GF�J����WB

� CONTINUE

���

�ENDSET

�SET�FMODELC�

K
KC��

FC
��D��X�K���X�K�����X�K�������D�����D��X�K���

� ��D���X�K��X�K��������X�K�������X�K����X�K����

� X�K������

�ENDSET

�SET�GMODELC�

K
KC��

GC�K���
���D�

GC�K���
���D��X�K����D��X�K���

GC�K�
���D��X�K�������D��X�K������D�

GC�K���
���D��X�K������D�

GC�K���
���D��X�K���

�ENDSET

�NF
���

�M
����

�NC
��

�NCL
�

�MC
���

�KBC
�

�MOUT
�

�JACC
S

�HESF
S

�FORM
SE

�FMIN
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� the sparsity pattern of
the objective Hessian matrix� the sparsity pattern of the constraint Jacobian matrix� and the constraint
speci
cations� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is ��NF����		� We set �M������ since a greater
space is needed for sparse matrix processing� The sparse Jacobian matrix is indicated by the statement
�JACC��S�� Since there are only the equality constraints� we can specify only the left sides CL�KC�� �
� KC � NC� and we can set �KBC��� The speci
cation �FMIN�� is used� since the objective function
value cannot be less then zero� By using the macrovariable �FMODELF we specify analytically the value
of the model function� By using the macrovariable �GMODELF we specify analytically the gradient of
the model function� By using the macrovariable �FMODELC we specify analytically the values of the
constraint functions� By using the macrovariable �GMODELC we specify analytically the gradients of the
constraint functions� The choice �FORM��SE� correspond to inexact recursive quadratic programming
methods for equality constrained problems�

d� problem solution �basic screen output��

NIC
 � NIT
 � NFV
 � NFG
 �� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 � NFG
 �� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 � NFG
 �� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 � NFG
 �� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 � NFG
 �� F
 ����D��� C
 ����D��� G
 ����D���

���

NIC
 � NIT
 � NFV
 � NFG
 �� F
 �����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 � NFG
 �� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 � NFG
 �� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 �� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 ��� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 �� NFG
 ��� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 �� NFG
 ��� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 �� NFG
 ��� F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 �� NFG
 ��� F
 ����D��� C
 ����D��� G
 ����D���

� NIC
 � NIT
 �� NFV
 �� NFG
 ��� F
 ����D��� C
 ����D��� G
 ����D���

��
� Optimization of dynamical systems � general integral criterion

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
�

�

Z T

�

�y���t� � y���t��dt�
�

�
�y���T � � y���T ��

where T � ��� and where

dy��t�
dt

� y��t�� y���� � x�

dy��t�
dt

� ��� y���t��y��t� � y��t�� y���� � �

b� Problem speci
cation �input
eld��

�SET�INPUT�

X���
ZERO

TA
ZERO

TAMAX
���D �

�ENDSET

�SET�FMODELF�

FF
HALF��YA�������YA�������

�ENDSET

�SET�DMODELF�

DF���
YA���

DF���
YA���

�ENDSET

�SET�FMODELA�

FA
HALF��YA�������YA�������

�ENDSET

�SET�DMODELA�

DA���
YA���

DA���
YA���

�ENDSET

�SET�FMODELE�

GO TO ����� KE

� FE
YA���

GO TO �

� FE
�ONE�YA��������YA����YA���

���

� CONTINUE

�ENDSET

�SET�DMODELE�

GO TO ����� KE

� DE���
ZERO

DE���
ONE

GO TO �

� DE���
�ONE�TWO�YA����YA���

DE���
ONE�YA������

� CONTINUE

�ENDSET

�SET�FMODELY�

GO TO ����� KE

� FE
X���

GO TO �

� FE
ONE

� CONTINUE

�ENDSET

�SET�GMODELY�

GO TO ������� KE

�� GE���
ONE

GO TO ��

�� GE���
ZERO

�� CONTINUE

�ENDSET

�NF
�

�NE
�

�MODEL
DF

�MOUT
�

�NOUT
�

�TOLR
����P��

�TOLA
����P��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify as the initial value of the variable x� as the initial and
terminal times � and T� respectively� By using the macrovariables �FMODELA and �DMODELA we
specify subintegral function and by using the macrovariables �FMODELF and �DMODELF we specify
terminal function� Right hand sides of the di�erential equations are speci
ed by using the macrovari�
ables �FMODELE and �DMODELE� while initial values and their derivatives are given by using the
macrovariables �FMODELY and �GMODELY� The option �MODEL��DF� indicates general integral
criterion�

d� Problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

���

� NIT
 � NFV
 � NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

FF
 �����������D���

X
 �����������D���

��
�� Optimization of dynamical systems � special integral criterion

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
�
�

Z T

�

�y��t�� ���� � t���dt

where T � � and where

dy��t�

dt
� �x�y��t�� y���� � x�

b� Problem speci
cation �input
eld��

�SET�INPUT�

X���
���D �

X���
���D �

TA
ZERO

TAMAX
ONE

�ENDSET

�SET�FMODELE�

FE
�X����YA������

YE
ONE	�ONE�TA�

WE
ONE

�ENDSET

�SET�GDMODELE�

GE���
�YA������

GE���
ZERO

DE���
�TWO�X����YA���

�ENDSET

�SET�FMODELY�

FE
X���

�ENDSET

�SET�GMODELY�

GE���
ZERO

GE���
ONE

�ENDSET

�MODELA
YES

�NF
�

�NE
�

�MODEL
DQ

�CLASS
GN

�UPDATE
F

�MOUT
�

�NOUT
�

�TOLR
����P��

�TOLA
����P��

���

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify as the initial values of the variables x� and x� as the
initial and terminal times � and T� respectively� The right hand side of the di�erential equation is speci
ed
by using the macrovariables �FMODELE and �GDMODELE� while initial values and their derivatives are
given by using the macrovariables �FMODELY and �GMODELY� The option �MODEL��DQ� together
with �MODELA��YES� indicates special integral criterion�

d� Problem solution �basic screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

� NIT
 � NFV
 �� NFG
 � NDC
 � NCG
 � F
 ����D��� G
 ����D���

F
 �����������D���

X
 �����������D��� �����������D���

��
�� Initial value problem for ordinary di�erential equations

a� Problem description�

Suppose we have to
nd a solution of the Van der Pol equation

dy��t�
dt

� y��t�� y���� � �

dy��t�
dt

� ��� y���t��y��t� � y��t�� y���� � �

in the interval � � t � T where T � ���

b� Problem speci
cation �input
eld��

�SET�INPUT�

YA���
���D�

YA���
���D�

TA
���D�

TAMAX
���D�

�ENDSET

�SET�FMODELE�

IF �KE�EQ��� THEN

FE
YA���

ELSE

FE
����D��YA��������YA����YA���

ENDIF

�ENDSET

�NA
��

�NE
�

��

�MODEL
NO

�MED
�

�NOUT
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify as the initial values of the variables y� and y� as
the initial and terminal times � and T� respectively� Right hand sides of the di�erential equations are
speci
ed by using the macrovariable �FMODELE� The option �MODEL��NO� indicates integration of
a system of ordinary di�erential equations�

d� Problem solution �basic screen output��

� NSTP
 �� NACC
 �� NREJ
 �� NEV
����

� AT
 �����������D���

AY
 �����������D��� �����������D���

� AT
 �����������D���

AY
 �����������D��� ������������D���

� AT
 �����������D���

AY
 �����������D��� ������������D���

� AT
 �����������D���

AY
 �����������D��� ������������D���

� AT
 �����������D���

AY
 �����������D��� ������������D���

� AT
 �����������D���

AY
 ������������D��� ������������D���

� AT
 �����������D���

AY
 ������������D��� ������������D���

� AT
 �����������D���

AY
 ������������D��� �����������D���

� AT
 �����������D���

AY
 ������������D��� �����������D���

�� AT
 �����������D���

AY
 ������������D��� �����������D���

�� AT
 �����������D���

AY
 ������������D��� �����������D���

�� AT
 �����������D���

AY
 �����������D��� �����������D���

�� AT
 �����������D���

AY
 �����������D��� �����������D���

�� AT
 �����������D���

AY
 �����������D��� �����������D���

�� AT
 �����������D���

AY
 �����������D��� ������������D���

�� AT
 �����������D���

AY
 �����������D��� ������������D���

�� AT
 �����������D���

AY
 �����������D��� ������������D���

�� AT
 �����������D���

AY
 �����������D��� ������������D���

���

�� AT
 �����������D���

AY
 ������������D��� ������������D���

�� AT
 �����������D���

AY
 ������������D��� ������������D���

�� AT
 �����������D���

AY
 ������������D��� �����������D���

��	

�� Model examples for demonstration of graphical output

Here we introduce several problem speci
cations �input
les� which demonstrates application of graph�
ical output� These input
les are included to the UFO system as the demo�
les PROC���UFO�� � �
�PROC���UFO� Corresponding gra
cal pictures are included in the appendix� The recommended data
for graphical pictures are introduced in lines which begin by the directive �REM�

�
� Nonlinear regression

�SET�INPUT�

L
�

X���
���D��

X���
���D�

X���
���D�

X���
����D�

X���
���D��

X���
���D�

X���
���D�

X���
����D�

X���
���D��

X����
���D�

X����
���D�

X����
����D�

X����
���D��

X����
���D�

X����
���D�

X����
����D�

X����
���D��

X����
���D�

X����
���D�

X����
����D�

BETA
����D�

CALL BIUD���NF�L�NA�X�XL�XU�IX�AT�AM�

�ENDSET

�SET�FMODELA�

CALL BAFU���NF�L�KA�NA�X�AT�FA�BETA�

�ENDSET

�SET�GMODELA�

CALL BAGU���NF�L�KA�NA�X�AT�GA�BETA�

�ENDSET

�NF
��

�NA
���

�KOUT
�

�KOUT�
�

�KOUT�
���

�KOUT�
�

�LOUT
�

�MOUT
�

�MIT
���

�MODEL
AQ

�CLASS
GN

�TYPE
G

���

�DECOMP
M

�NUMBER
�

�UPDATE
F

�TOLX
����P���

�TOLF
����P���

�TOLB
����P���

�TOLG
����P��

�KBA
�

�KBF
�

�GRAPH
YES

�SCAN
YES

�BATCH

�ADD�REAL��BETA�AT��NA��

�ADD�SUBROUTINES�

SUBROUTINE BIUD���N�L�NA�X�XL�XU�IX�AT�AM�

INTEGER N�L�NA�IX�N��I�K

REAL�� X�N��XL�N��XU�N��AT�NA��AM�NA�

N
��L

K
�

DO � I
��L

X�K���
LOG�X�K����

XL�K���
LOG����D���

XU�K���
LOG����D����

IX�K���
�

X�K���
LOG�X�K����

XL�K���
LOG����D���

XU�K���
LOG����D����

IX�K���
�

XL�K���
���D��

XU�K���
���D��

IX�K���
�

XL�K���
�������D�

XU�K���
�������D�

IX�K���
�

K
K��

� CONTINUE

OPEN ����FILE
PROC���DAT�STATUS
OLD�

NA
�

� NA
NA��

READ ������D������ERR
�� AT�NA��AM�NA�

GO TO �

� NA
NA��

RETURN

END

SUBROUTINE BAFU���N�L�KA�NA�X�AT�FA�BETA�

INTEGER N�L�KA�NA

REAL�� X�N��AT�NA��FA�Q����QD���

REAL�� ARG�POM�BK�B�INT�BETA

INTEGER J�K

COMMON 	BCOM	 Q�QD

DATA BK 	��������D��	

FA
���D �

���

K
�

DO � J
��L

ARG
X�K���	�BK�AT�KA��

IF �KA�EQ��� THEN

Q�J�
B�INT�AT�KA��ARG�

FA
FA�EXP�X�K����X�K����ARG�

ELSE

POM
X�K�������D�

FA
FA�EXP�X�K����X�K����ARG��

� ����D���POM	BETA��EXP�X�K������B�INT�AT�KA��ARG��

� Q�J�������X�K���	POM�

ENDIF

K
K��

� CONTINUE

RETURN

END

SUBROUTINE BAGU���N�L�KA�NA�X�AT�GA�BETA�

INTEGER N�L�KA�NA

REAL�� X�N��AT�NA��GA�N�

REAL�� FAC�ARG�POM�POW�BK�B�INT�B�INTD�A�B�C�D�E�F�G

REAL�� Q����QD����QQ�QQD�BETA

INTEGER J�K

COMMON 	BCOM	 Q�QD

DATA BK 	��������D��	

K
�

DO � J
��L

FAC
���D�	�BK�AT�KA��

ARG
FAC�X�K���

IF �KA�EQ��� THEN

Q�J�
B�INT�AT�KA��ARG�

QD�J�
FAC�B�INTD�AT�KA��ARG�

QQ
���D�

QQD
���D�

ELSE

QQ
B�INT�AT�KA��ARG��Q�J�

QQD
FAC�B�INTD�AT�KA��ARG��QD�J�

ENDIF

POM
X�K�������D�

POW
�X�K���	POM

A
EXP�X�K����X�K����ARG�

B
EXP�X�K����

G
B�QQ

C
����D���POM	BETA��G�

D
C��POW

E
POW�D	C

F
POM�POM

GA�K���
A��D�E��POM	BETA��G�

GA�K���
A�D

GA�K���
A���FAC�D�E��POM	BETA��B�QQD�

GA�K���
A�D��LOG�C�	F�POW�G	�C�BETA��

K
K��

� CONTINUE

���

RETURN

END

FUNCTION B�INT�T�X�

REAL�� T�X�B�INT

REAL�� A��A��A��A��A��A��B��B��B��B��B��B�

DATA A��A��A��A��A��A� 	����D��� �����D��� ������D���

� ������D��� ������D��� �����D��	

DATA B��B��B��B��B��B� 	����D��� �����D��� ������D���

� �������D��� �������D��� ������D��	

B�INT
����D���A��X��A��X��A��X��A��X��A��X��A��X������	

� �B��X��B��X��B��X��B��X��B��X��B��X��������EXP��X��T

RETURN

END

FUNCTION B�INTD�T�X�

REAL�� T�X�B�INTD

REAL�� A��A��A��A��A��A��B��B��B��B��B��B�

REAL�� C��C��C��C��C��D��D��D��D��D��DIS�DEN�DISD�DEND

DATA A��A��A��A��A��A� 	����D��� �����D��� ������D���

� ������D��� ������D��� �����D��	

DATA B��B��B��B��B��B� 	����D��� �����D��� ������D���

� �������D��� �������D��� ������D��	

DATA C��C��C��C��C� 	�����D��� ������D��� �������D���

� �������D��� ������D��	

DATA D��D��D��D��D� 	�����D��� ������D��� �������D���

� �������D��� �������D��	

DIS
A��X��A��X��A��X��A��X��A��X��A��X�����

DEN
B��X��B��X��B��X��B��X��B��X��B��X�����

DISD
C��X��C��X��C��X��C��X��C�����D��X����

DEND
D��X��D��X��D��X��D��X��D�����D��X����

B�INTD
��DIS�DISD�DEND�DIS	DEN�	DEN����D���EXP��X��T

RETURN

END

�ENDADD

�STANDARD

�	� Nonlinear minimax optimization

�FLOAT W

�SET�INPUT�

X���
���D� � X���
���D� � X���
���D�

X���
���D� � X���
���D�

�ENDSET

�SET�FMODELA�

W
���D��DBLE�KA�������D�

FA
�X����W�X����	����D��W��X����W��X����W�X�������EXP�W�

�ENDSET

�MODEL
AM

�NF
�

�NA
��

�NAL
�

�GRAPH
YES

���

�MAP
YES

�HIL
YES

�ISO
YES

�PATH
EXTENDED

�BATCH

�STANDARD

�REM VAR
�� XL
��� XU
�

�REM VAR
�� XL
��� XU
�

��� Transformer network design

�SET�INPUT�

NEXT
�

CALL EIUD���NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT�

�ENDSET

�NF
�

�NA
��

�NAL
�

�MOUT
�

�MODEL
AM

�GRAPH
YES

�MAP
YES

�HIL
YES

�ISO
YES

�PATH
EXTENDED

�BATCH

�STANDARD

�REM VAR
�� XL
��� XU
�

�REM VAR
�� XL
��� XU
�

��� Global optimization

�SET�INPUT�

NEXT
�

CALL EIUD���NF�XL�XU�NEXT�IERR�

�ENDSET

�SET�FMODELF�

CALL EFFU���NF�X�FF�NEXT�

�ENDSET

�NF
�

�MOUT
�

�GCLASS
�

���

�GRAPH
YES

�MAP
YES

�HIL
YES

�ISO
YES

�EXTREM
G

�BATCH

�STANDARD

�REM VAR
�� XL
����� XU
���

�REM VAR
�� XL
����� XU
���

��� Nonsmooth optimization

�SET�INPUT�

NEXT
��

CALL EIUD���NF�X�FMIN�XMAX�NEXT�IEXT�IERR�

MA
NF��

�ENDSET

�SET�FMODELF�

CALL EFFU���NF�X�FF�NEXT�

�ENDSET

�SET�GMODELF�

CALL EFGU���NF�X�GF�NEXT�

�ENDSET

�KSF
�

�NF
��

�MOUT
��

�MODEL
FF

�GRAPH
YES

�MAP
YES

�HIL
YES

�ISO
YES

�PATH
YES

�BATCH

�STANDARD

�REM VAR
�� XL
��� XU
�

�REM VAR
�� XL
��� XU
�

��� Nonlinear equations

�SET�INPUT�

DO � I
��NF

X�I�
����D�

� CONTINUE

�ENDSET

�SET�FMODELA�

I
KA

FA
����D�����D��X�I���X�I�����D�

IF �I�GT��� FA
FA�X�I���

���

IF �I�LT�NA� FA
FA�X�I���

�ENDSET

�NF
���

�NA
���

�MOUT
�

�MODEL
AQ

�JACA
NO

�GRAPH
YES

�BATCH

�STANDARD

�� Ordinary di�erential equations

�FLOAT W��W��W��W�

�SET�INPUT�

TA
���D�

YA���
�����D�

YA���
���D�

YA���
���D�

YA���
��������������������������������D�

TAMAX
�������������������������������D�

�ENDSET

�SET�FMODELE�

W�
�����������D�

W�
��D��W�

W�
�YA����W������YA������

W�
W��SQRT�W��

W�
�YA����W������YA������

W�
W��SQRT�W��

GO TO ��������� KE

� FE
YA���

GO TO �

� FE
YA���

GO TO �

� FE
YA������YA����W���YA����W��	W��W���YA����W��	W�

GO TO �

� FE
YA������YA����W��YA���	W��W��YA���	W�

� CONTINUE

�ENDSET

�NE
�

�NA
����

�MODEL
NO

�SOLVER
DP�

�MOUT
��

�TOLR
����P��

�TOLA
����P��

�MED
�

�GRAPH
YES

�BATCH

�STANDARD

���

��� The Lorenz attractor

�FLOAT W��W��W�

�SET�INPUT�

W�
����D�

W�
����D�

W�
���D�	���D�

TA
���D�

YA���
����D�

YA���
 ���D�

YA���
W�����D�

TAMAX
����D�

�ENDSET

�SET�FMODELE�

GO TO ������� KE

� FE
�W��YA����W��YA���

GO TO �

� FE
�YA����YA����W��YA����YA���

GO TO �

� FE
YA����YA����W��YA���

� CONTINUE

�ENDSET

�NE
�

�NA
����

�MODEL
NO

�SOLVER
DP�

�MOUT
��

�TOLR
����P��

�TOLA
����P��

�MED
�

�GRAPH
YES

�BATCH

�STANDARD

��

References

��� M�Altman� Generalized gradient methods of minimizing a functional� Bull� Acad� Polon� Sci�� Ser�
Sci� Math� Astronom� Phys� �� ��	��� ��������

��� L�Armijo� Minimization of functions having continuous partial derivatives� Paci
c J� Math� �� ��	���
����

��� M�Al�Baali� R�Fletcher� Variational methods for nonlinear least squares� JOTA �� ��	��� ��������

��� M�C�Biggs� Minimizationalgorithmsmaking use of nonquadratic properties of the objective function�
J� Inst� math� Appl� � ��	�� �������

��� M�C�Biggs� A note on minimization algorithms which make use of non�quadratic properties of the
objective function� Journal of the Institute of Mathematics and its Applications �� ��	�� �������

��� P�Bjorstadt� J�Nocedal� Analysis of a new algorithm for one�dimensional minimization� Computing
�� ��		� 	������

�� C�G�E�Boender� A�H�G�Rinnoy Kan� Bayessian stopping rules for multistart global optimization
methods� Math� Programming � ��	�� �	����

��� C�G�E�Boender� A�H�G�Rinnoy Kan� G�T�Timmer� L�Stougie� A stochastic method for global opti�
mization� Mathematical programming �� ��	��� ��������

�	� P�T�Boggs� J�W�Tolle� A strategy for global convergence in a sequential quadratic programming
algorithm� SIAM Journal on Numerical Analysis �� ��	�	� ��������

���� I�D�L�Bogle� J�D�Perkins� A New Sparsity Preserving Quasi�Newton Update for Solving Nonlinear
Equations� SIAM Journal on Scienti
c and Statistical Computations �� ��		�� ��������

���� C�G�Broyden� The convergence of a class of double rank minimization algorithms� Part � � general
considerations� Part � � the new algorithm� J� Inst� Math� Appl� � ��	�� ��	�� ��������

���� C�G�Broyden� A class of methods for solving nonlinear simultaneous equations� Math� of Comput�
�	 ��	��� ���	��

���� K�M�Brown� J�E�Dennis� A new algorithm for nonlinear least squares curve
tting� In� Mathemat�
ical Software! �J�Rice ed�� Academic Press� London �	��

���� J�R� Bunch� B�N� Parlett� Direct methods for solving symmetric inde
nite systems of linear equa�
tions� SIAM J� Numer� Anal� � ��	�� ��	�����

���� R�H�Byrd� R�B�Schnabel� G�A�Shultz� Approximate solution of the trust region problem by mini�
mization over two�dimensional subspaces� Math� Programming �� ��	��� �������

���� R�H�Byrd� J�Nocedal� R�B�Schnabel� Representation of quasi�Newton matrices and their use in
limited memory methods� Math Programming �� ��		�� ��	�����

��� T�F�Chan� Rank revealing QR factorizations� Linear Algebra Appl� ����	 ��	�� �����

���� T�F�Coleman� B�S�Garbow J�S�Mor%� Software for estimation sparse Hessian matrices� ACM Trans�
of Math� Software �� ��	��� �������

��	� T�F�Coleman� Large sparse numerical optimization� Springer�Verlag� Berlin� �	���

���� T�F�Coleman� B�S�Garbow� J�S�Mor%� Software for estimating sparse Jacobian matrices� ACM Trans�
of Math� Software �� ��	��� ��	�����

���

���� A�R� Conn� N�I�M� Gould� P�L� Toint� Testing a class of methods for solving minimization problems
with simple bounds on the variables� Mat� Comput� �� ��	��� �		�����

���� H�Curry� The method of steepest descent for nonlinear minimization problems� Quart� Appl� Math�
� ��	��� ��������

���� W�C�Davidon� Variable metric method for minimisation� A�E�C� Research and Development Report
ANL��		�� �	�	�

���� W�C�Davidon� Optimally conditioned optimization algorithms without line searches� Math� Pro�
gramming 	 ��	�� �����

���� T�A�Davis� I�S�Du�� An unsymmetric pattern multifrontal methodfor sparse LU factorization� Re�
port No� TR�	������ CIS Department� University of Florida� Gainesville �		��

���� N�Y�Deng� Y�Xiao� F�J�Zhou� Nonmonotonic trust region algorithm� JOTA � ��		�� ��	�����

��� R�S�Dembo� T�Steihaug� Truncated�Newton algorithms for large�scale unconstrained minimization�
Math� Programming �� ��	��� �	������

���� J�E�Dennis� Some computational techniques for the nonlinear least squares problem� In� Numerical
solution of nonlinear algebraic equations! �G�D�Byrne� C�A�Hall� eds�� Academic Press� London �	��

��	� J�E�Dennis� H�H�W�Mei� An unconstrained optimization algorithm which uses function and gradient
values� Report No� TR������� Dept� of Computer Sci�� Cornell University �	��

���� J�E�Dennis� R�B�Schnabel� Numerical methods for unconstrained optimization and nonlinear equa�
tions� Prentice�Hall� Englewood Cli�s� New Jersey �	���

���� J�E�Dennis� R�E�Welsch� Techniques for Nonlinear Least Squares and Robust Regression� Commu�
nications in Statistics B ��	�� ������	�

���� I�S�Du�� J�K�Reid� The multifrontal solution of inde
nite sparse symmetric linear equations� ACM
Trans� of Math� Software 	 ��	��� ��������

���� R�Fletcher� A new approach to variable metric algorithms� Computer J� �� ��	�� �������

���� R�Fletcher� A modi
ed Marquardt subroutine for nonlinear least squares� Report No� R��		� The�
oretical Physics Division� A�E�R�E� Harwell� �	��

���� R�Fletcher� A general quadratic programming algorithm� J� Inst� Math� Appl� ��	�� ��	��

���� R�Fletcher� Practical methods of optimization �Second edition�� Wiley� New York� �	��

��� R�Fletcher� M�J�D�Powell� A rapidly convergent descent method for minimization� Computer J� �
��	��� ��������

���� R�Fletcher� C�M�Reeves� Function minimization by conjugate gradients� Computer J� ��	��� ��	�
����

��	� R�Fletcher� C�Xu� Hybrid methods for nonlinear least squares� IMA J� Numer� Anal� ��	�� ���
��	�

���� R�Fletcher� Second order corrections for nondi�erentiable optimization� In� Numerical analysis�
Dundee �	��! �G�A�Watson ed��� Lecture Notes in Mathematics	��� Springer�Verlag� Berlin �	���

���� R�W�Freund� N�M�Nachtigal� A new Krylov�subspace method for symmetric inde
nite linear sys�
tems� Report No� ORNL�TM������ Oak Ridge National Laboratory� Oak Ridge� Tennessee� �		��

��	

���� R�P�Ge� A
lled function method for
nding a global minimizer of a function of several variables�
Math� Programming �� ��		�� �	������

���� R�P�Ge� Y�F�Qin� A Class of
lled functions for
nding global minimizers of a function of several
variables� JOTA �� ��	�� ��������

���� J�C�Gilbert� C�Lemarechal� Some numerical experiments with variable�storage quasi�Newton algo�
rithms� Math� Programming� �� ��	�	� �������

���� P�E�Gill� W�Murray� A numerically stable form of the simplex algorithm� Linear Algebra Appl�
��	�� 		�����

���� P�E�Gill� W�Murray� Newton type methods for unconstrained and linearly constrained optimization�
Math� Programming ��	�� ��������

��� P�E�Gill� W�Murray� Numerically stable methods for quadratic programming� Math� Programming
�� ��	�� ��	����

���� P�E�Gill� W�Murray� M�H�Wright� Practical optimization� Academic Press� London �	���

��	� D�Goldfarb� A family of variable metric algorithms derived by variational means� Math Comput� ��
��	�� ������

���� D�Goldfarb� A�U�Idnani� A numerically stable dual method for solving strictly convex quadratic
programms� Report No� ������� Dept�of Computer Sci�� The City College of New York� �	���

���� A�A�Goldstein� On steepest descent� SIAM J� Control � ��	��� �������

���� G�H�Golub� C�F�Van Loan� Matrix computations �second edition�� Johns Hopkins University Press�
Baltimore �	�	�

���� A�Griewank� P�L�Toint� Partitioned variable metric updates for large scale structured optimization
problems� Numer� Math� �	 ��	��� ��	����

���� L�Grippo� F�Lampariello� S�Lucidi� A nonmonotone line search technique for Newton�s method�
SIAM J� Numer� Anal� �� ��	��� �����

���� E�Hairer� S�P�Norsett� G�Wanner� Solving ordinary di�erential equations I� Springer Series in Com�
putational Mathematics �� Springer Verlag� Berlin �	��

���� S�P�Han� Variable metric methods for minimizing a class of nondi�erentiable functions� Math� Pro�
gramming �� ��	��� �����

��� M�R�Hestenes� C�M�Stiefel� Methods of conjugate gradient for solving linear systems� J� Res� NBS
�	 ��	��� ��	�����

���� W�Hock� K�Schittkowski� Test examples for nonlinear programming codes� Lecture notes in eco�
nomics and mathematical systems ��� Springer Verlag� Berlin �	���

��	� R�Hooke� T�A�Jeeves� Direct search solution of numerical and statistical problems� J� Assoc� Comp�
Mach� � ��	��� ��������

���� S�Hoshino� A formulation of variable metric methods� J� Inst� Math� Appl� �� ��	�� �	������

���� Y�F�Hu� Y�Liu� C�Storey� E�cient generalized conjugate gradient algorithms� Part � � theory� Part
� � implementation� JOTA �	 ��		�� ��	���� ��	�����

���� Y�F�Hu� C�Storey� Motivating quasi�Newton updates by preconditioned conjugate gradient methods�
Report No� A���� Dept� of Math� Sci�� Loughborough Univ� of Technology� Loughborough �		��

���

���� C�M�Ip� M�J�Todd� Optimal conditioning and convergence in rank one quasi�Newton updates� SIAM
J� Numer� Anal� �� ��	��� ��������

���� K�C�Kiwiel� An ellipsoid trust region bundle method for nonsmooth convex minimization� SIAM J�
on Control and Optimization � ��	�	� ����

���� C�L�Lawson� R�J�Hanson� Solving least squares problems� Prentice�Hall� Englewood Cli�s� New
Jersey �	��

���� A�V�Levy� A�Montalvo� The tunneling algorithm for the global minimization of functions� SIAM
Journal Sci� Stat� Comp� � ��	��� ����	�

��� G�Li� Successive column correction algorithms for solving sparse nonlinear systems of equations�
Mathematical Programming �� ��	�	� ������

���� P�Lindstrom� P�A�Wedin� A new linesearch algorithm for nonlinear least squares problems� Math�
Programming �	 ��	��� �����	��

��	� D�C�Liu� J�Nocedal� On the limited memory BFGS method for large�scale optimization� Math�
Programming �� ��	�	� ��������

��� L�Luk&an� Dual method for solving a special problem of quadratic programming as a subproblem at
linearly constrained nonlinear minimax approximation� Kybernetika �� ��	��� �������

��� L�Luk&an� An implementation of recursive quadratic programming variable metric methods for
linearly constrained nonlinear minimax approximation� Kybernetika �� ��	��� ������

��� L�Luk&an� Variable metric methods� Unconstrained minimization� Academia� Prague �		� �in
Czech��

��� L�Luk&an� Computational experience with improved variable metric methods for unconstrained min�
imization� Kybernetika �� ��		�� ��������

��� L�Luk&an� Computational experience with improved conjugate gradient methods for unconstrained
minimization� Kybernetika �� ��		�� ��	�����

��� L�Luk&an� A note on comparison of statistical software for nonlinear regression� Computational
Statistics Quaterly � ��		�� ��������

��� L�Luk&an� Variationally derived scalling and variable metric updates from the preconvex part of the
Broyden family� JOTA � ��		�� �		����

�� L�Luk&an� Inexact trust region method for large sparse nonlinear least squares� Kybernetika �	
��		�� ��������

��� L�Luk&an� E�cient trust region method for nonlinear least squares� Report No� ���� Institute of
Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague �		��

�	� L�Luk&an� Computational experience with known variable metric updates� JOTA �� ��		�� ����

���� L�Luk&an� Inexact trust region method for large sparse systems of nonlinear equations� JOTA ��
��		�� ��	��	��

���� L�Luk&an� Combined trust region methods for nonlinear least squares� Report No� ���� Institute of
Computer Science� Academy of Sciences of the Czech Republic� Prague �		��

���� L�Luk&an� Hybrid methods for large sparse nonlinear least squares� Report No� ���� Institute of
Computer Science� Academy of Sciences of the Czech Republic� Prague �		��

���

���� L�Luk&an� J�Vl'ek� Optimization of dynamical systems� Report No� ���� Institute of Computer
Science� Academy of Sciences of the Czech Republic� Prague �		�

���� L�Luk&an� J�Vl'ek� Simple scaling for variable metric updates� Report No� ���� Institute of Computer
Science� Academy of Sciences of the Czech Republic� Prague �		� Submitted to Kybernetika�

���� L�Luk&an� J�Vl'ek� E�cient algorithm for large sparse equality constrained nonlinear programming
problems� Technical Report V����� Prague� ICS AS CR �		�� � p� Submitted to Journal of Opti�
mization Theory and Applications�

���� L�Luk&an� J�Vl'ek� A bundle�newton method for nonsmooth unconstrained minimization� Report
No� ���� Institute of Computer Science� Academy of Sciences of the Czech Republic� Prague �		�

��� Luk&an L�� Vl'ek J�� Inexact trust region method based on preconditioned iterative subalgorithms
for large sparse systems of nonlinear equations� Technical Report V���� Prague� ICS AS CR �		��
�� p� Submitted to Journal of Optimization Theory and Applications�

���� Luk&an L�� Vl'ek J�� Computational experience with globally convergent descent methods for large
sparse systems of nonlinear equations� Technical Report V����� Prague� ICS AS CR �		�� �	 p�
Submitted to Optimization Methods and Software�

��	� Luk&an L�� Vl'ek J�� Fully iterative inde
nitely preconditioned algorithm for large sparse equality
constrained nonlinear programming problems� Technical Report V��	�� Prague� ICS AS CR �		��
�� p� Submitted to Numerical Linear Algebra�

�	�� M�M�M(kel(� J�Neittaanm(ki� Nonsmooth Optimization� World Scienti
c Publishing Co� Ltd� Lon�
don �		��

�	�� E�S�Marwill� Exploiting sparsity in Newton�like methods� Ph�D� Thesis� Cornell University� Ithaca
�	��

�	�� J�M�Martinez� A quasi�Newton method with modi
cation of one column per iteration� Computing
�� ��	��� ��������

�	�� J�M�Martinez� M�C�Zambaldi� An inverse column�updating method for solving large�scale nonlinear
systems of equations� Optimization Methods and Software � ��		�� ��	�����

�	�� R�B�Mi)in� J�L�Nazareth� The least�prior deviation quasi�Newton update� Technical Report� Dept�
of Pure and Applied Math�� Washington State University� Pullman �		��

�	�� J�J�Mor%� The Levenberg�Maquardt algorithm� Implementation and theory� In� Numerical Analy�
sis! �G�A�Watson ed�� Springer Verlag� Berlin �	��

�	�� J�J�Mor%� B�S�Garbow� K�E�Hillstr*m� Testing unconstrained optimization software� ACM Trans�
Math� Software ��	��� �����

�	� J�J�Mor%� D�C�Sorensen� Computing a trust region step� Report No� ANL������� Argonne National
Laboratory� �	���

�	�� J�A�Nelder� R�Mead� A simplex method for function minimization� Computer J� ��	��� ��������

�		� J�Nocedal� Updating quasi�Newton Matrices with limited storage� Math� Comput� �� ��	��� �����

����� J�Nocedal� Y�Yuan� Combining trust region and line search techniques� To appear�

����� S�S�Oren� D�G�Luenberger� Self scaling variable metric �SSVM� algorithms� Part � � criteria and
su�cient condition for scaling a class of algorithms� Part � � implementation and experiments�
Management Sci� �� ��	�� �������� �������

���

����� S�S�Oren� E� Spedicato� Optimal conditioning of self scaling variable metric algorithms� Math
Programming �� ��	�� ��	��

����� C�C�Paige and M�A�Saunders� LSQR� An algorithm for sparse linear equations and sparse least
squares� ACM Transactions on Mathematical Software � ��	��� �����

����� E�Polak� G�Ribi%re� Note sur la convergence des methodes de directions conjug%es� Revue Francaise
Inform� Mech� Oper� ���R���	�	� ������

����� M�J�D�Powell� A new algorithm for unconstrained optimization� In� Nonlinear Programming!
�J�B�Rosen O�L�Mangasarian� K�Ritter eds�� Academic Press� London �	��

����� M�J�D�Powell� Convergence properties of a class of minimization algoritms� In Nonlinear Program�
ming �! �O�L�Mangasarian� R�R�Meyer� S�M�Robinson eds��� Academic Press� London �	��

���� M�J�D�Powell� Restart procedures of the conjugate gradient method� Math� Programming �� ��	�
��������

����� M�J�D�Powell� A fast algorithm for nonlinearly constrained optimization calculations�
In� Numerical analysis! �G�A�Watson ed��� Springer Verlag� Berlin �	�

���	� M�J�D�Powell� Convergence properties of algorithms for nonlinear optimization� Report No�
DAMPT �	���NA�� University of Cambridge� �	���

����� H�Ramsin� P�A�Wedin� A Comparison of Some Algorithms for the Nonlinear Least Squares Prob�
lem� BIT � ��	� ��	��

����� A�H�G�Rinnoy Kan� C�G�E�Boender� G�T�Timmer� A stochastic approach to global optimization�
Computational Mathematical Programming� NATO ASI Series Vol� F���

����� A�H�G�RinnoyKan� G�T�Timmer� Stochastic global optimizationmethods� Part I� Clustering meth�
ods� Part II� Multi�level methods� Math� Programming �	 ��	��� North�Holland ������ ����

����� R�B�Schnabel� E�Eskow� A new Choleski factorization� SIAM J� Sci� Stat� Comput� �� ��		���
����������

����� L�K�Schubert� Modi
cation of a quasi�Newton method for nonlinear equations with a sparse Jaco�
bian� Math� of Comput� �� ��	�� ����� ��		�� ������

����� D�F�Shanno� Conditioning of quasi�Newton methods for function minimization� Math� Comput� ��
��	�� �������

����� D�F�Shanno� K�J�Phua� Matrix conditioning and nonlinear optimization� Math� Programming ��
��	�� ��������

���� E�Spedicato� A class of rank�one positive de
nite quasi�Newton updates for unconstrained mini�
mization� Math� Operationsforsch� Statist� Ser� Optimization �� ��	��� �����

����� E�Spedicato� M�T�Vespucci� Numerical experiments with variations of the Gauss�Newton algorithm
for nonlinear least squares� JOTA � ��	��� ������	�

���	� E�Spedicato� J�Greenstadt� On some classes of variationally derived quasi�Newton methods for
systems of nonlinear algebraic equations� Numer� Math� �	 ��	�� ��������

����� T�Steihaug� Local and superlinear convergence for truncated iterated projections methods� Math�
Programming � ��	��� ����	��

����� T�Steihaug� The conjugate gradient method and trust regions in large�scale optimization� SIAM J�
Numer� Anal� �� ��	��� �������

���

����� N�M�Steen� G�D�Byrne� The problem of minimizing nonlinear functionals� I� Least squares� In�
 Numerical solution of nonlinear algebraic equations! �G�D�Byrne� C�A�Hall� eds�� Academic Press�
London �	��

����� G�W�Stewart� A modi
cation of Davidon�s minimization method to accept di�erence approxima�
tions of derivatives� J� ACM �� ��	�� �����

����� M�+i&ka� Macroprocessor BEL for the UFO system �version �	�	�� Report No� ��� �in Czech��
Institute of Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague �	�	�

����� M�+i&ka� Macroprocessor UFO �version �		��� Report No� ��� �in Czech�� Institute of Computer
and Information Sciences� Czechoslovak Academy of Sciences� Prague �		��

����� P�L�Toint� On sparse and symmetric matrix updating subject to a linear equation� Math of Comp�
�� ��	� 	���	���

���� P�L�Toint� On large scale nonlinear least squares calculations� SIAM J� Sci� Stat� Comput� � ��	��
��������

����� C�H�Tong� A comparative study of preconditioned Lanczos methods for nonsymmetric linear sys�
tems� Report No� SAND	������B� Sandia National Laboratories� Livermore �		��

���	� D�Touati�Ahmed� C�Storey� E�cient hybrid conjugate gradient techniques� JOTA �� ��		��� pp�
�	��	�

����� M�T,ma� A quadratic programmingalgorithm for large and sparse problems� Kybernetika � ��		��
�������

����� M�T,ma� Sparse fractioned variable metric updates� Report No� �	� Institute of Computer and
Information Sciences� Czechoslovak Academy of Sciences� Prague �		��

����� M�T,ma� Intermediate
ll�in in sparse QR decomposition� In� Linear Algebra for Large Scale and
Real�Time Applications!� �B�de Moor� G�H�Golub� M�Moonen� eds��� Kluwer Academic Publishers�
London �		�� pp� ������

����� P�S�Vassilevski� D�Lazarov� Preconditioning mixed
nite element saddle�point elliptic problems�
Numerical Linear Algebra with Applications � ��		�� �����

����� H�A�Van der Vorst� Bi�CGSTAB� A fast and smoothly converging variant of Bi�CG for the solution
of nonsymmetric linear systems� SIAM J� Sci� Stat� Comput� �� ��		�� ��������

����� H�Yabe� T�Takahashi� Factorized quasi�Newton methods for nonlinear least squares problems�
Math� Programming �� ��		�� ������

����� Y�Zhang� R�P�Tewarson� Least�change updates to Choleski factors subject to nonlinear quasi�
Newton condition� IMA J� Numer� Anal� ��	�� ��	�����

���� Y�Zhang� R�P�Tewarson� Quasi�Newton algorithms with updates from the preconvex part of Broy�
den�s family� IMA J� Numer� Anal� � ��	��� �����	�

����� A�-ilinskas� A�A�Thorn� Global optimization� Springer Verlag� Berlin �		��

���

Appendix� Graphical screen output

���

