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1. Introduction to the UFO system

The universal functional optimization (UFO) system is an interactive modular system for solving both
dense medium-size and sparse large-scale optimization problems. The UFO system can be used for the
following applications:

1.
2.

Formulation and solution of particular optimization problems that are described in chapter 2.

Preparation of specialized optimization routines (or subroutines) based on the methods described
in chapter 3.

Design and testing new optimization methods. The UFO system is a very useful tool for optimiza-
tion algorithms development.

The special realization of the UFO system, which i1s described in the subsequent text, makes this
system portable and extensible and we continue with its further development.

1.1. Philosophy of the UFO system

The UFO system 1s an open software system for solving a broad class of optimization problems. An
optimization problem solution is processed in four phases. In the first phase the optimization problem is
specified and an optimization method is selected. This can be made in three different ways:

1.

The full dialogue mode. The problem specification and the method selection are realized using a
conversation between the user and the UFO system.

The batch mode. The problem specification and the method selection are realized using the input
language. An input file, written in the input language, has to be prepared and stored.

The combined mode. Only the part of the specification is written in the input file. The rest of the
specification 1s obtained as in the dialogue mode. This possibility is usually the best one since the
problem functions can be defined beforehand using a convenient text editor.

The second phase is realized using the UFO macroprocessor. This macroprocessor is written in the Fortran
77 language and its output is a Fortran 77 control program. This conception is very advantageous for
the following reasons:

1.

The Fortran 77 (full ANSI norm) is a sufficiently high and portable programming language. More-
over, this language is very suitable for numerical computations, and a broad class of subroutines is
available in this field.

A control program, generated by the UFO macroprocessor, calls for necessary modules only and
its specification is very easy. Moreover, control program global declarations are determined by
the problem size, which decreases storage requirements. This way overcomes an impossibility of
dynamical declarations in the Fortran 77 language.

The UFO system is open. When a new class of optimization problems or optimization methods
have to be included, one only needs to change the system templates and prepare new modules. The
control program is composed of individual modules by using specifications in the first phase. This
fact allows us to create a great number of various optimization methods.

In the third phase, the control program is translated by using a Fortran 77 compiler and a final program
is linked by using library modules. In the fourth phase, a final program is executed and results which
can be viewed by using extensive output means are obtained.

The above conception is enabled by a special form of source modules. These modules usually consist
of two parts, the interface template and the Fortran 77 realization. The interface template is used by the



UFO macroprocessor only and it serves for the control program generation (the part of control program
corresponding to a given module is coded in the template). These templates also contain knowledge
bases for an automatic selection of the optimization method. If the UFO system has to be extended then
usually only templates, which need not be compiled, are changed. Besides interface templates, which
are a part of source modules, special templates controlling the UFO macroprocessor exist. An input file
written in the input language is one of these special templates.

The UFO macroprocesor works with two stages. In the first pass, the file P.TMP is created. This file
is a control program ancestor containing some macroinstructions and macrovariables which are replaced
in the second pass. The control program P.FOR is the result of the second pass.

1.2. Execution of the UFO system
The UFO system contains three basic procedures GENER.BAT, UFOGO.BAT and COMPIL.BAT.

The UFO macroprocessor is called if the statement
GENER, input_name

is typed. Then the control program, which has to be compiled and loaded using the procedure COM-
PIL.BAT, is obtained. Furthermore, all the UFO system phases are performed if the statement

UFOGO input_name

is typed. Finally, the compilation of the control program P.FOR, which was obtained by the procedure
GENER.BAT, followed by its loading and executing is started if the statement

COMPIL output_name

is typed. Here input_name 1s the first part of the batch file name that is used as an batch input for
the control program generation and outpui_name is the first part of the text file that is used as an text
output from the UFO system. The batch file name must always have the form input_name. UFO with
the extension UFO and the text file name must have the form outpui_name.OUT with the extension
OUT. If GENER, UFOGO statements do not contain batch file specification then a full dialogue mode
is considered (the batch file name is STANDARD.UFO in this case). If COMPIL statement does not
contain text file specification then the standard text file name 1s P.OUT. The UFOGO statement has the
same meaning as the two statements GENER and COMPIL.

First we show how the full dialogue mode proceeds. We suppose that the model function has the form

fF(l‘) = 100(1‘% — xz)z + (21 — 1)2

(the Rosenbrock function) and the starting point is ;1 = —1.2 and 23 = 1.0. If we type the statement
UFOGO (without batch file specification), then the following questions appear. These we supplement
together with answers.



UFO PREPROCESSOR  V.3.1.

? INPUT () ?

USER SUPPLIED INPUT:

HERE THE STARTING POINT, BOUNDS FOR VARIABLES,

TYPES OF CONSTRAINTS, THE STRUCTURE OF SPARSE PROBLEM,
AND OTHER INPUT DATA HAVE TO BE SPECIFIED.

X(1) = -1.2D0; X(2) = 1.0D0

? MODEL (FF) ?

TYPE OF OBJECTIVE FUNCTION
FF - GENERAL FUNCTION
FL - LINEAR FUNCTION
FQ - QUADRATIC FUNCTION
AF - SUM OF FUNCTIONS
AQ - SUM OF SQUARES
AP - SUM OF POWERS
AM - MINIMAX
DF - DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION
DQ - DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES
NO - MODEL IS NOT SPECIFIED

? NF (0) ?
NUMBER OF VARIABLES
: ? IEXT (0) ?
TYPE OF EXTREMUM
0 - MINIMUM
1- MAXIMUM

? FMODELF (*) ?

MODEL OF OBJECTIVE FUNCTION

FF = <FORTRAN_EXPRESSION>

FF = 1.0D2#(X(1)**2 - X(2))#+2 + (X(1) - 1.0D0)=x2



? GMODELF (*) ?
MODEL OF GRADIENT OF OBJECTIVE FUNCTION

GF(1) = <FORTRAN_EXPRESSION>
GF(2) = <FORTRAN_EXPRESSION>

GF(NF) = <FORTRAN_EXPRESSION>

? HMODELF (*¥) ?
MODEL OF HESSIAN MATRIX

HF(1) = <FORTRAN_EXPRESSION>
HF(2) = <FORTRAN_EXPRESSION >

HF(M) = <FORTRAN_EXPRESSION >

? KCF (2) ?
COMPLEXITY OF THE OBJECTIVE FUNCTION
1- EASY COMPUTED FUNCTION
2 - REASONABLE BUT NOT EASY COMPUTED FUNCTION
3 - EXTREMELY COMPLICATED FUNCTION

? KSF (1) ?

SMOOTHNESS OF THE OBJECTIVE FUNCTION:
1-SMOOTH AND WELL-CONDITIONED FUNCTION
2 - SMOOTH BUT ILL-CONDITIONED FUNCTION
3 - NONSMOOTH FUNCTION

? HESF (D) ?
TYPE OF HESSIAN MATRIX:
D - DENSE
S - SPARSE WITH KNOWN (GENERAL) STRUCTURE
NO - HESSIAN MATRIX IS NOT USED

? KBF (0) ?

TYPE OF SIMPLE BOUNDS:
0 - NO SIMPLE BOUNDS
1- ONE SIDED SIMPLE BOUNDS
2 - TWO SIDED SIMPLE BOUNDS




? KBC (0) ?
TYPE OF GENERAL CONSTRAINTS:

0 - NO GENERAL CONSTRAINTS

1- ONE SIDED GENERAL CONSTRAINTS

2 - TWO SIDED GENERAL CONSTRAINTS

? EXTREM (L) ?

TYPE OF OPTIMIZATION
L - LOCAL OPTIMIZATION
G - GLOBAL OPTIMIZATION

? NORMF (0) ?
SCALING SPECIFICATION FOR VARIABLES:
0 - NO SCALING IS PERFORMED
1- SCALING FACTORS ARE DETERMINED AUTOMATICALLY
2 - SCALING FACTORS ARE SUPPLIED BY USER

? INPUTDATA (NO) ?
READ INPUT VALUES OF X (YES OR NO)

? TEST (NO) ?

STANDARD TEST OF EXTERNAL SUBROUTINES:
NO -NO TEST
YES - PERFORM TEST AND CONTINUE
ONLY - PERFORM ONLY TEST

? GRAPH (NO) ?
SPECIFICATION OF GRAPHICAL OUTPUT
NO - GRAPHICAL OUTPUT SUPPRESSED
YES - GRAPHICAL OUTPUT REQUIRED

? DISPLAY (NO) ?

SPECIFICATION OF EXTENDED SCREEN OUTPUT
NO - EXTENDED SCREEN OUTPUT SUPPRESSED
YES - EXTENDED SCREEN OUTPUT REQUIRED

? KOUT (0) ?

LEVEL OF TEXT FILE OUTPUT:
ABS(KOUT)=0 - NO PRINT OR PAPER SAVING PRINT
ABS(KOUT)=1 - STANDARD PRINT OF ITERATIONS
ABS(KOUT)=2 - ADDITIONAL PRINT OF STEPSIZE SELECTION
ABS(KOUT)=3 - ADDITIONAL PRINT OF DIRECTION DETERMINATION
AND VARIABLE METRIC UPDATE
ABS(KOUT)=4 - ADDITINAL PRINT OF CONSTRAINT HANDLING
ABS(KOUT)=5 - ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION
KOUT<0 - ADDITIONAL PRINT OF DATA AND OPTIONS IN THE HEADING




? LOUT (1) ?
LEVEL OF TEXT FILE OUTPUT:
0 - NO PRINT
1- COPY OF THE BASIC SCREEN OUTPUT
-1- PAPER SAVING PRINT

? MOUT (1) ?
LEVEL OF BASIC SCREEN OUTPUT:
ABS(MOUT)=0 - NO OUTPUT
ABS(MOUT)=1 - FINAL OUTPUT
ABS(MOUT)=2 - ADDITIONAL OUTPUT IN EACH ITERATION
ABS(MOUT)=3 - ADDITIONAL FINAL OUTPUT OF LINEAR OR
QUADRATIC PROGRAMMING
ABS(MOUT)=4 - ADDITIONAL OUTPUT IN EACH ITERATION
OF LINEAR OR QUADRATIC PROGRAMMING
MOUT<0 - FINAL OUTPUT WITH TERMINATION CRITERION

? NOUT (0) ?
LEVEL OF BASIC SCREEN OUTPUT:

0 - BASIC FINAL OUTPUT

1- EXTENDED FINAL OUTPUT

? MSELECT (1) ?

SELECTION OF OPTIMIZATION METHOD
1- AUTOMATICAL SELECTION OF METHOD
2 - MANUAL SELECTION OF METHOD
3 - MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS
4 - MANUAL SELECTION OF METHOD AND ALL PARAMETERS

? OUTPUT () ?
USER SUPPLIED OUTPUT:
HERE THE RESULTS OBTAINED IN THE OPTIMIZATION PROCESS

CAN BE USED FOR ADDITIONAL COMPUTATIONS AND FOR A
SPECIFIC OUTPUT.

? OUTPUTDATA (NO) ?

WRITE OUTPUT VALUES OF X (YES OR NO)

UFO PREPROCESSOR  STOP

Fach question is represented by one frame that contains the contents of the question (name of the
macrovariable which has to be defined), the default value (in the brackets) and an explanation of the
requirement. If no default value is wanted then the corresponding value or text has to be typed. The
dialogue can be ended by pressing the key <!> .

The result of the UFO macroprocessor action is the following control program (reported in a slightly
shortened form) consisting of global declarations, input specifications, problem definition, method real-



ization and control variables adjustement:

* ¥ ¥ ¥ *
fp
=
@
[ws)
frad
=
[ w]
3]
O
=
[
=¥
[
—3
=
@
=
w0

INTEGER ITIME
INTEGER IX(1)
REAL*8 UXVDOT
REAL#8 GF(2)
REAL*8 X(2)
REAL#8 HD(2)
REAL#8 HF(2*(2+1)/2)
REAL*8 S(2)
REAL#8 X0(2)
REAL#8 GO(2)
INTEGER IMB

commons placed here were omitted
since they require a large space

* ¥ ¥ ¥

CALL UYCLEA

* ¥ ¥ ¥ ¥
[ea]
=
[w]
@
e |
[ w]
3]
O
=
[
=¥
[
—3
=
@
=
w0

* ¥ X ¥ ¥
=
=
=]
o
o
o
~
-
A

CALL UYINTi
X(1)=-1.2D0
X(2)=1.0D0
M=NF*(NF+1)/2
CALL UYTIM1(ITIME)
CALL UYCLST
NDECF=0
CALL UOOFU1
11000 CONTINUE
CALL UYPRO1(’UXFU’,1)
CALL UYPRO2
11010 CONTINUE
11500 CALL UF1F01(GF,GF)
GOTO (11530,11510,11520) ISB+1
11510 CONTINUE
ASSIGN 11610 TO IMB
11600 CONTINUE



NFV=NFV+1

FF=1.0D2* (X (1)*%2-X(2))**2+(X(1)-1.0D0)**2

GOTO IMB
11610 CONTINUE

IF(TSS(NS).EQ. ’UFXX’) GOTO 11500
11520 CONTINUE

CALL UF0GS2(X,IX,X,GF,HD)

GOTO (11500,11510) ISB+1
11530 CONTINUE

IF(TSS(NS).EQ.’UXFV’) GOTO 11080

IF(TSS(NS).EQ.’UUXX’) GOTO 11040

IF(TSS(NS).EQ.’UXFU’) GOTO 11030

GOTO 11070
11030 CONTINUE

CALL UYTRUG(X,GF,GF)

CALL UO2FU3(X,GF,HF,X,X)

CALL UYFUT1

IF(ITERM.NE.O) GOTO 11090
11040 CONTINUE

CALL UUDSD1(HF)

GOTO (11050,11010) ISB+1
11050 CONTINUE

IF(ITERM.NE.O) GOTO 11090

CALL UYCPSD(IX,HF,HD)

CALL UYTRUH(X,HF)

CALL UDDLI1(HF,GF,S)

CALL UD1TL1(GF,S)

IF(ITERM.NE.O) GOTO 11090

IF(IREST.NE.O) GOTO 11050

CALL UYTRUS(X,X,X0,GF,GO0,S,S)
11070 CONTINUE

CALL USOLO1

GOTO (11074,11072) ISB+1
11072 CONTINUE

CALL UXVDIR(NF,R,S,X0,X)

GOTO 11010
11074 CONTINUE

IF (ITERS.LE.O) THEN

CALL UYZERO(X,X0)

IF(IDIR.EQ.O) THEN

CALL UYRES1(TSXX)

CALL UYSET1

GO TO 11050

ELSE IF (MOT3.EQ.0) THEN

CALL UYSET1

GO TO 11050

ELSE

ITERD=0

ENDIF

ENDIF

IF(KD.GT.LD) THEN

TSS(NS)="UXFV’
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GO TO 11010
ENDIF
11080 CONTINUE
TXFU=TUXX
CALL UYUPSD(X,IX,XO0,GF,GO,HD)
CALL UYTRUD(X,X,X0,GF,GO)
CALL UUDBI1(HF,S,X0,G0)
IF(IDIR.EQ.0) THEN
IF(ITERH.NE.O) CALL UYRES1(’UPDATE ’)
GOTO 11030
ELSE
GOTO 11050
ENDIF
11090 CONTINUE
IF(ITERM.LT.0) TXFU=TDXX
CALL UYEPI1(1)
CALL UO1FU2(X,X,X,X)

* ¥ X ¥ ¥
=
=
o
(@]
3|
=
=
=]
o
o
o
~
-
A

END

* ¥ ¥ ¥ *
]
=
H
]
]
=
=]
=
=]
=
o
3|
=
=
=]
o
o
o
N
-
N

SUBROUTINE UYINT1

commons placed here were omitted
since they require a large space

* ¥ ¥ ¥

REAL*8 XDELS,RPF1S,RPF2S,RPF3S,RGF1S,RGF2S,RGF3S
COMMON/UMCLST/ XDELS,RPF1S,RPF2S,RPF3S,RGF1S,RGF2S,RGF3S
ETAO=1.0D-15

ETA9=1.0D 60

ITR=6

IRD=5

IWR=2

many other assignments follows which were
omitted since they require a large space

* ¥ ¥ ¥

END

* ¥ ¥ ¥ *
]
=
H
]
]
=
=]
=
=]
=
o
3|
o
=]
=]
=)
=
[ea]
=

SUBROUTINE UYINTP
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commons placed here were omitted
since they require a large space

* ¥ ¥ ¥

NF=2
IEXT=0
KCF=2
KSF=1
KBF=0
KBC=0
NORMF=0
KDF=0
KDA=-1
KDC=-1
KDE=-1
KDY=-1
END

The results (screen output) obtained using this control program have the following form:

0 NIT= 43 NFV= 150 NFG= 0 NDC= 0 NCG= 0 F= .184D-13 G= .211D-06
FF= .1842396900D-13
X = .9999998647D+00 .9999997283D+00
TIME= 0:00:00.11

Besides a dialogue, we can use the batch files written in the input language. This possibility will be
explained in section 1.4. Here we note that a certain experience can be obtained using the demo-files
PROBO01.UFO,..., PROB19.UFO. These demo-files contain 19 test problems described in chapter 6. We
can solve them using the statements UFOGO PROBO01,..., UFOGO PROBI19.

1.3. Input language

The form of the control program is determined using statements of the input language. The UFO
system input language is based on the batch editing language (BEL) [124] and it contains three types of
instructions:

1. Standard Fortran 77 instructions which can be written in the free format.

2. Fortran 77 instructions containing macrovariables. These instructions get a final form after the first
pass of the UFO macroprocessor.

3. Special macroinstructions. These macroinstructions control the UFO macroprocessor execution.

Standard Fortran 77 instructions used in the input language have some extensions and limitations.
The main extension is the free format. The instructions do not have a limited length, they can be written
everywhere in the input file and if they are written in the same line then the character ’;” is used to
separate the instructions. The continuation of an instruction is specified by the character & ’. The main
limitation concerns the placement of instructions in the control program. Therefore greater statement
numbers then 9999 cannot be used, comments can be introduced by the character '+’ only and the only
continuation character can be & ’. Also, it is recommended to use identifiers beginning with the character
"W’ which are not used in the UFO system

Macrovariables used in the UFO system begin with the character ’$’ and they are supposed to be of
the type character. Their contents are always in the form of a string which can be sometimes interpreted

12



as an integer. The chief significance of the macrovariables is their use in substituting their contents for
their names in the Fortran 77 statements. In this case we place the macrovariable (beginning with ’$’)
in the text, but if 1t is followed by a letter or digit we have to use brackets. For example if we write

$FLOAT W(100)
or
CALL UD$HESF$TYPE$SDECOMPSNUMBER

or

X(1)=1.08(P)0

and if the contents of $FLOAT, $HESF, $STYPE, $DECOMP, $NUMBER and $P are 'REAL#8’ (it is
standard), 'D’, ’L’, °’G’ ’1” and "D’ (it is standard) then we get REAL+8 W(100) or CALL UDDLGI or
X(1)=1.0DO0 respectively after the UFO preprocessor application. The contents of macrovariables can be
defined by substitutions as will be shown later.

The macroinstructions are very important for the input language since they make the substitution of
texts, change of macrovariables, branching, loops, etc., possible. We briefly describe the most useful of
them. The more detailed description is given in [125].

1. Substitution. The substitution of a string for a macrovariable is specified by the macroinstruction
$MACRO="contents’. For example we have to set SHESF="D’, $TYPE="L’, $DECOMP="G’,
SNUMBER=1 (the integers need not to be substituted as strings) to obtain the result given above.

2. Substitution of a text. If we write

$SET(MACRO) or $ADD(MACRO)
text text

$ENDSET $ENDADD

then a given text (that can contain a large number of Fortran 77 statements) is inserted into the
macrovariable SMACRO. The macroinstruction $SET is used for the definition of a new macrovari-
able. The macroinstruction $ADD can, moreover, append a new text to the old one so that it can
be used repeatedly.

3. Logical macrovariables. The macrovariable $DEF has logical contents. If we write $DEF(MACRO)
then the contents of $DEF is either .TRUE., if the macrovariable $MACRO was previously defined
(by the substitution $MACRO="contents’ or using macroinstructions $SET and $ADD), or .FALSE.
in the oposite case. This possibility can be used for branching. If we use the macroinstruction
SERASE(MACRO) then the previously defined macrovariable $MACRO becomes undefined (so
that $DEF(MACRO)=.FALSE.).

4. Branching. This possibility is very similar to the branching in the Fortran 77 language:

SIF(MACRO="stringl”)
statements

SELSEIF(MACRO="string2’)
statements

$ELSE
statements

$ENDIF
Besides the relation’ =’ we can also use the other relations’ <’/ >’/ <=’/ >='/ <>’ and the logical

values .TRUE., .FALSE. and $DEF(MACRO). The branching is used in the UFO macroprocessor

stage and it has an influence in the form of the control program.
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5. Loops. The basic looping macroinstruction has the form (similarly as in the Fortran 77 language):

$DO(MACRO:INDEX1 ,INDEX?,INDEXB)
statements

$ENDDO
For example if $NF=2, $NC=3 and if we write

$DO(I=1,NT,1)
$DO(I=1,NC,1)
CALL UKMCTI($1,$3,$1.0D0+$J.0D0,ICG,JCG,CG)
$ENDDO
$ENDDO

then the UFO macroprocessor creates the sequence

CALL UKMCI1
CALL UKMCI1
CALL UKMCI1
CALL UKMCI1
CALL UKMCI1
CALL UKMCI1

1,1,1.0D041.0D0,ICG JCG,CG
1,2,1.0D042.0D0,ICG JCG,CG
1,3,1.0D0+3.0D0,ICG,JCG,CG
2,1,2.0D0+1.0D0,ICG,JCG,CG
2,2,2.0D0+2.0D0,ICG,JCG,CG
2,3,2.0D0+3.0D0,ICG,JCG,CG

=
PN N N NN

6. Substitution of a file. Suppose we have a file with a name file_ name.extension. Then we can include
it into the control program using the macroinstructions

SINCLUDE(file- name.extension’)
or
$SUBST(file_ name.extension’)

The main difference between these possibilities is that the macroinstruction $SINCLUDE includes a
text without change (it has to be a regular Fortran 77 text with a fixed format) while the macroin-
struction $SUBST substitutes a text executed consecutively by the UFO macroprocessor (so it
can contain the macrovariables and macroinstructions and it can be written in the free format).
Moreover, if this text contains a template, then the macroinstruction $SUBST substitutes only
this template. This possibility 1s widely used for control program generation by using interme-
diate templates. If the included file has the name file_ name.l then we can use a simpler form
without extension. For example the file UZLINS.I can be substituted using the macroinstruction

$SUBST('UZLINS").

7. Special macroinstructions. Besides macroinstructions of the batch editing language BEL, the in-
put language contains special macroinstructions which control the UFO macroprocessor. These
macroinstructions are the switches $DTALOGUE and $BATCH that define the dialogue mode and
the batch mode respectively (an initial status is $DTALOGUE), as well as the special substitutions
$GLOBAL, SINITIATION, $INPUT, $OUTPUT, SMETHOD, $TSTART, $TSTOP and $STAN-
DARD. At the same time, $GLOBAL includes the global declarations, $SINITTATION substitutes
an initiation of common variables, SINPUT and $OUTPUT insert user specified input and output
respectively, SMETHOD substitutes the part of control program corresponding to the optimization
method, $TSTART or $TSTOP insert initial or final timing procedures respectively and $STAN-
DARD includes the sequence:

14



$GLOBAL
$INITIATION
$INPUT
$METHOD
$IF($DEF(OUTPUT)) $OUTPUT
$END

The macroinstruction $END finishes the UFO macroprocessor execution.

8. Standard macrovariables. The macrovariables $FLOAT or $P have standard contents "/REAL#8’ or
"D’ respectively. This possibility has a meaning for a precision free notation. If we write

$FLOAT WA ,WB
WA=2.0$(P)1
WB=1.0$(P)2

then after the UFO macroprocessor execution we have

REAL#8 WA,WB
WA=2.0D0
WB=1.0D2

The macrovariables $FLOAT and $P are defined in the installation template and they can be
changed when we wish to use single precision computations

We have described the basic possibilities of the input language that are sufficient for preparing the batch
mode input file. More details are given in [124] and [125].

1.4. Problem description and method selection using the input language

If we want to process either the batch mode or the mixed mode we have to prepare an input file
written in the input language. This input file prescribes the structure of the control program. If some
macrovariable is used, 1t has to have been previously defined. Therefore definitions of macrovariables
usually lie in the beginning of the input file. Many macrovariables are used for a definition of the
optimization problem. The most important among them are macrovariables defining problem functions:

$FMODELF - definition of a model function value

$GMODELF - definition of a model function gradient

$HMODELF - definition of a model function Hessian matrix

SDMODELF - definition of a model function derivatives (with respect to state space variables)

$FMODELA - definition of approximating functions values

$GMODELA - definition of approximating functions gradients

$HMODELA - definition of approximating functions Hessian matrices

SDMODELA - definition of approximating functions derivatives (with respect to state space variables)

$FMODELC - definition of constraint functions values
$GMODELC - definition of constraint functions gradients
$SHMODELC - definition of constraint functions Hessian matrices

$FMODELE - definition of state space functions values
$GMODELE - definition of state space functions gradients
$DMODELE - definition of state space functions derivatives (with respect to state space variables)
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$FMODELY - definition initial value functions values
$GMODELY - definition initial value functions gradients

First we show a simple example which corresponds to the problem already used for a full dialogue mode
demonstration (the Rosenbrock function):

$SET (INPUT)
X(1)=-1.2D0; X(2)=1.0DO
$ENDSET
$SET (FMODELF)
FF=100.0D0#* (X (1) #*%2-X(2) ) #*2+(X(1)-1.0D0)**2
$ENDSET
$NF=2
$MOUT=2
$BATCH
$STANDARD

Using the macrovariable SINPUT, we specify initial values of variables. Using the macrovariable $FMOD-
ELF we specify the model function value (the model function gradient is not specified and it will be com-
puted numerically). The macrovariable $NF defines the number of variables and $KOUT and $MOUT
are print specifications. The macroinstruction $BATCH switches a mode to the batch one. The macroin-
struction $STANDARD defines a standard form of the control program. Descriptions of more complicated
problems are shown in chapter 5.

In the above example, a direct definition of a model function value is used. We can also use indirect
specifications by means of the Fortran 77 subroutines or the files prepared beforehand. Suppose that the
model function value is defined using the subroutine EFFUO1 or it is specified in the file FVAL.FOR.
Then we can write:

$SET(FMODELF)
CALL EFFU01(NF X,FF,NEXT)
$ENDSET
or
$SET(FMODELF)
$INCLUDE(’FVAL.FOR’)
$ENDSET
or
$SET(FMODELF)
$SUBST('FVAL.FOR’)
$ENDSET

The last possibility is useful if the model function value specification is written in a free format or it
contains the BEL macroinstructions.
If we have to utilize user supplied subroutines we can include them into the control program using

the macrovariable $SUBROUTINES:
$SET(SUBROUTINES)

user supplied subroutines

$ENDSET

In this case, two exceptions in writing source text, forced by the UFO macroprocessor, must be satisfied:
All comments have to begin by the character '*’ and the continuation line character have to be always

7&7.
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1.5. The UFO environment

The UFO environment can be used on personal computers (PC) with processors 286/386,/486/586,
with the operating system MS DOS version 5.0 or higher and with the Microsoft FORTRAN 77 compiler
version 5.0 or higher.

The UFO environment is called by using the statement UFO (program UFO.EXE). It is controlled
by using the “pull-down” menu. The main menu is activated by pressing the key <F10> . The UFO
environment contains a source program editor whose control is similar to the Word Star editor and,
therefore, to the most commonly used source program editors under the MS DOS system (for example
Turbo Pascal). All significant statements of the source program editor are available from the UFO
environment menu.

Since the UFO environment menu is clearly understood we do not describe it (the description is given
in [125]) . We only show the usual way for operating input files. When the batch mode input file is
prepared by using the source program editor we press the key <F10> and find the command Run! in
the UFO environment menu. This command starts the UFO preprocessor and its action corresponds
to the statement UFOGO (with the present input file). An easier possibility is pressing the keys <Alt-
1> . Similarly, pressing the keys <Alt-9> has the same effect as the statement GENER. Furthermore,
if the control program P.FOR is loaded in the source program editor, pressing the keys <Alt-3> has
the same effect as the statement COMPIL and pressing the keys <Alt-5> causes an exit from the UFO
environment.
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2. Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an
objective function F' : R” — R over a set X C R". The objective function can have several forms
determined using the macrovariable S MODEL:

$MODEL="FF’ -
$MODEL="FL’ -
$MODEL="FQ’ -
$MODEL="AF" -
$MODEL="AQ’ -
$MODEL="AP’ -
$MODEL="AM’ -

general optimization. In this case

F(x) = £f" ()
where f¥ : R* — R is a real valued, so-called model function

linear optimization. In this case

) =% (7 + Y o)

where ', gF' 1 <i < n, are real coefficients.

quadratic optimization. In this case

i=1 ji=1

where f£', gF' 1 <i<n, hi

ij»1 <1< n, 1 <j<n, are real coefficients.

sum of functions minimization. In this case

F(e)=) fi'(2)

where f,f :R" — R, 1 <k < nyu, are real valued, so-called approximating functions.

Sum of squares minimization. In this case

F(z) =) |fit ()

where f## : R* — R, 1 < k < ny, are real valued, so-called approximating functions.

sum of powers minimization. In this case

k=1

where f,f R — R, 1 <k < nyu, are real valued, so-called approximating functions
and 1 < r < 0o is a real exponent.

minimization of maximum (minimax). In this case
F = A
(2) = max [fi ()]

where f,f :R" — R, 1 <k < nyu, are real valued, so-called approximating functions.
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$MODEL="DF’ - minimization of general integral criterion with respect to the state equations. In this

case
t?az
= / FA yaleta) ta) dta + f5 (e, yale, 030, 03°)
gmin
and
dya(x,t .
) = 1B o ate ) ) ) = 5 ()

where f4 : RPT75+!l . Ris a real valued, smooth, so-called subintegral function, f¥ :
RP7e+l . Ris a real valued, smooth, so-called terminal function, f¥ : grtne+l
R"% is a real valued, smooth, so-called state function and f¥ : R® — R"% is a real
valued, smooth, so-called initial function.

$MODEL="DQ’ - minimization of sum of squares integral criterion with respect to the state equations.
In this case

1 ftaee o 1 ox
=g [ Y ol @) o ) diat 5 D wF (o500 = oF )
t i=1

min ‘
A i=1

and

%ﬁu) = Pz, yalx, ta), ta), y* (2, 037) = ¥ (z)

where fF : RPTnetl . R7E is a real valued, smooth, so-called state function and
¥ i R — R"® is a real valued, smooth, so-called initial function.

$MODEL="NQ’ - solving an initial value problem for a system of ordinary differential equations. In
this case

dya(ta)

i = fE(ya(ta), ta), y*(3") = y3in
A

where fF : R?E+1 . R"E s a real valued, smooth, so-called state function.

The objective function defined by the choice $MODEL="AQ’ can be used for the solution of a system
of nonlinear equations
fAx)=0, 1<k<ng

In this case we suppose ny = n. This case is considered separately, since for n4 = n special methods for
systems of nonlinear equations can be used.

The model function f¥ : R® — R can have several types of Hessian matrices specified by the
macrovariable $HESF:

SHESF="D’ - dense Hessian matrix.
$SHESF="S’ - sparse Hessian matrix with a general pattern.
$HESF="NO’ - Hessian matrix is not used.

The default option is $HESF="D’. The approximating functions f,f : R — R, 1 <k < ny, can have
several types of Jacobian matrices specified by the macrovariable $JACA:

SJIACA="D’ - dense Jacobian matrix.
$JACA="S’ - sparse Jacobian matrix with a general pattern.
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$JACA="NO’ - Jacoblan matrix is not used.

If the approximating functions are used then we can choose several types of the Hessian matrix represen-
tation. These types are again specified by the macrovariable $HESF:

$HESF="D’ - dense Hessian matrix.

SHESF="S’ - sparse Hessian matrix with a general pattern.
$HESF="B’ - sparse Hessian matrix with a partitioned pattern
SHESF="NO’ - Hessian matrix is not used.

If $JACA="D’, then it must be either SHESF="D’ or SHESF="NO’. If $JACA="S’, then we can specify
all types of Hessian matrices (SHESF="D’, $HESF="S", $HESF="B’, SHESF="NO’). The representation
$HESF="B’ usually leads to more expensive matrix operations. Therefore, we recommend to prefer the
choice $HESF="S’ against the choice SHESF="B".

The subintegral function, terminal function, state function and initial function, appeared in the case
of dynamical systems optimization, are considered to be dense. Therefore we cannot use the specifications
$HESF="S’ or SHESF="B’ in this case.

The set X C R" can be whole R™ (unconstrained case) or it can be defined by box constraints

ef <oy if iel
x; < l‘ZU if 2¢€1ls
b < owy < 2V if el

where T U, UIsU I C {i € N : 1 <i < n}, by general linear constraints

n

cﬁ < ngclxz if kely
i=1
n
ngcixi < ¢ if k€L
i=1
n

k< ngclxz < ep if ke Ls
i=1
n

cﬁ = ngclxz if ke ls
i=1

where g%, 1 <k < n¢, 1 <i<n, are real coefficients and Ly ULy ULz ULs C{k€ N:1<k <nc},
or by general nonlinear constraints

i < i) if ke N

) < & if ke
k< fF@) < & if keNs
k= fE(x) if k€ Ns
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where fkc :R" — R, 1 <k < ng, are real valued, smooth, so-called constraint functions and Ny U N5 U
N3UNs C{k e N:1<k<n¢c}. The constraint functions fkc :R" — R, 1 <k <ng, can have several
types of Jacobian matrices specified by the macrovariable $JACC:

$JACC=D’ - dense Jacobian matrix.
$JACC=S - sparse Jacobian matrix with a general pattern.

If $JACC="D’, then must be SHESF="D’ or $HESF="NO’. If $JACC="S’, then must be $HESF="S’ or
$HESF="NO’.

There are several limitations in the current version of the UFO system:

1. Minimization of maximum (minimax) and nonsmooth optimization is not implemented in the sparse
case.

2. Minimization of dynamical systems 1s not implemented in the sparse case.

3. Usually the UFO system serves for local optimization. Global optimization can be used only for
relatively small (n < 20) dense problems that are unconstrained or that contain box constraints.

These limitations will be consecutively removed in subsequent versions of the UFO system.

In the rest of this report we will use the notation NF, NA, NC instead of n, na, n¢c and X, FF, GF,
HF, FA, GA, FC, GC instead of =, f¥, ¢, T, f4, g%, f, ¢“. This new notation corresponds to the
notation of the variables and the fields in the UFO system.

2.1. Specification of variables

First we must specify the number of variables using the statement $NF=number_ of_ variables. If
there are no box constraints we set $KBF=0. In the opposite case we set $KBF=1 or $KBF=2. If
$KBF=1 or $KBF=2 then

X(T) - unbounded LFIX(T) =0
XL(I) < X(I) VI IX(D) = 1

X(1) < XU(I) ,if IX(I) = 2
XL(I) < X(I) < XU(I) ,ifIX(1) = 3
X(T) - constant LFIX(T) =5

where 1< I< NF. The option $KBF=2 must be chosen if IX(I)=3 for at least one index 1< I< NF. Then
two different fields XL(I) and XU(T), 1< I< NF are declared. In the opposite case we set $KBF=1 and
only one common field XL(I)=XU(I), 1 < I< NF is declared.

Initial values of variables X(I), 1< I< NF, types of box constraints IX(I), 1< I< NF, and lower and
upper bounds XL(I) and XU(I), 1< I< NF, can be specified using macrovariable SINPUT. The default
values are IX(I)=0 and XL(I)=XU(I)=0, 1< I< NF. For example:

$KBF=2; $NF=4
$SET(INPUT)
X(l):Xl
X(2)=xs; IX(2)=1; XL(1)=x}
X(3)=xs; IX(3)=3; XL(3)=xt; XU(3)=xY
X (4)=x4; IX(4)=5
$ENDSET

The UFO system allows us to use a scaling of variables (for instance if the values of variables differ
very much in their magnitude). We set:
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$NORMF=1 - scaling parameters XN(I), 1< I< NF, are determined automatically so that
X(I)/XN(I)=1, 1<IKNF, for the initial values of variables.

$NORMF=2 - scaling parameters must be specified by the user by means of the macrovariable $IN-
PUT.

The scaling of variables is recommended only in exceptional cases since 1t increases the computational

time and storage requirements. The scaling of variables is suppressed if SNORMF=0 (this value is

default). The scaling of variables is not permitted in the case of general constraints (if KBC>0).

2.2. Specification of the model function (dense problems)

If the macrovariable $MODEL is not specified or if $MODEL="FF’, then the objective function is
defined by the formula

F(X) = 4+ FF(X) if $TEXT = 0 (minimization)
or
F(X) = — FF(X) if $TEXT = 1 (maximization)

Option $IEXT=0 is defauls.

The model function FF(X) must be defined by the user either directly in the full dialogue mode, or
by using corresponding macrovariables in the batch (or mixed) mode. The value of the model function
is specified by using the macrovariable SFMODELF:

$SET(FMODELF)

FF = value FF(X)

(for given values of variables X(T), 1< I< NF)
$ENDSET

The first derivatives of the model function are specified by using the macrovariable $§GMODELF:

$SET(GMODELF)
GF(1) = derivative 9FF(X)/ 0X(1)
GF(2) = derivative 9FF(X)/ 0X(2)
GF(3) = derivative 9FF(X)/ 0X(3)
GF(NF) = derivative OFF(X)/ 0X(NF)
(for given values of variables X(I), 1<I<NF)
$ENDSET
The second derivatives of the model function are specified by using the macrovariable SHMODELF. If
$HESF="D’, then the Hessian matrix is assumed to be dense and we specify only its upper half:

$SET(HMODELF)
HF (1) = derivative 9?FF(X)/ d X
(2) = derivative 9*FF(X)/ 0X 6X(2)
(3) = derivative 9?FF(X)/ 0X(2)?
HF(4) = derivative 9*FF(X)/ 0X(1) 9X(3)
() (X)/ 9X(2) 9X(3)
) (X)/ X

= derivative 9%FF
= derivative 9%FF

HF(NF*#(NF+1)/2) = derivative 0?FF(X)/ 0X(NF)?
(for given values of variables X(I), 1<I<NF)
$ENDSET

If the macrovariables $§GMODELF or SHMODELF are not defined, we suppose that the first or the

second derivatives of the model function are not given analytically. In this case, they are computed
numerically by using the UFO system routines whenever it is required. If it is advantageous to compute
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the first derivatives of the model function FF(X) together with its value, we can include the models
$FMODELF and $GMODELF into the common model $FGMODELF. Similarly we can include the
models $FMODELF, $GMODELF and $HMODELF into the common model $FGHMODELF.

To improve the efficiency of the computation, we can specify additional information about the model
function FF(X). The first piece of information, useful for an automatic choice of the optimization method,
is the computational complexity specified by the macrovariable $KCF:

$KCF=1 - evaluation of the model function FF(X) is very easy (it takes at most O(NF) simple
operations).

$KCF=2 - evaluation of the model function FF(X) is of medium complexity (it takes at least
O(NF) complicated operations and at most O(NF?) simple operations).

$KCF=3 - evaluation of the model function FF(X) is extremely difficult (it takes at least

O(NF?) complicated operations or O(NF?) simple operations).

The option $KCF=2 is default. An additional useful piece of information is the analytical complexity
(differentiability and conditioning), which is specified by the macrovariable $KSF:

$KSF=1 - the model function FF(X) is smooth and well-conditioned.
$SKSF=2 - the model function FF(X) is smooth but ill-conditioned.
$KSF=3 - the model function FF(X) is nonsmooth.

The option $KSF=1 is default. Other specifications, which can improve the computational efficiency
and robustness of optimization methods, are a lower bound of the objective function values and an
upper bound of the stepsize. Both these values depend on a definition of the objective function and can
be specified by the statements SFMIN=lower_ bound (for the objective function) and $XMAX=upper_
bound (for the stepsize). We recommend a definition of $SFMIN whenever it is possible and a definition
of $XMAX whenever the objective function contains exponentials.

If SMODEL="FL’, we suppose the model function is linear of the form

NF
FF(X) = FF + Y GF(I) * X(1)
I=1
In this case we need not specify the value and the first derivatives of the model function by the macrovari-
ables $FMODELF and $GMODELF as in the general case. Instead, we must specify the coefficients FF
(constant value) and GF(I), 1< I< NF, (constant gradient) using the macrovariable SINPUT:

$ADD(INPUT)

FF = constant value

GF(1) = constant derivative 9FF(X)/0X(1)
GF(1) = constant derivative 9FF(X)/0X(1)
GF(2) = constant derivative IFF(X)/0X(2)
GF(3) = constant derivative 9FF(X)/0X(3)

GF(NF) = constant derivative 0FF(X)/0X(NF)
SENDADD

If SMODEL="FL’, we usually assume that either box constraints or general linear constraints are given.
In this case the optimization problem is the linear programming problem.
If $SMODEL="FQ’, we suppose the model function is quadratic of the form

FF(X) = FF + Y GF(I) « X(I) + % TS THF(K) # X(1) * X(J)

where K=MAX(LD)*(MAX(I,J)-1)/24+MIN(I,J). In this case we need not specify the value, the first
derivatives and the second derivatives of the model function by the macrovariables SFMODELF, $GMOD-
ELF and $HMODELF as in the general case. The coefficients FF (constant value) and GF(I), 1< I<
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NF, (constant gradient) are specified in the same way as in the linear case. The coefficients HF(K), 1<
K< NF#(NF+1)/2, (the constant Hessian matrix) must be specified using the macrovariable $INPUT.
If SHESF="D’, then the Hessian matrix is assumed to be dense and we specify only its upper half:

$ADD(INPUT)

HF(1) = constant derivative 9?FF(X)/0X(1)?
HF(2) = constant derivative 9?FF(X)/9X(1)d X(2)
HF(3) = constant derivative 9?FF(X)/0X(2)?
HF(4) = constant derivative 9?FF(X)/9X(1)d X(3)
HF(5) = constant derivative 9*FF(X)/9X(2)0 X(3)
HF(6) = constant derivative 9?FF(X)/0X(3)?

HF(NF*(NF+1)/2) = constant derivative §?FF(X)/0X(NF)?
$ENDADD

If SMODEL="FQ’, we usually assume that either box constraints or general constraints are given. In
this case the optimization problem is the quadratic programming problem.

If the model function is linear or quadratic, then the options $KCF and $KSF need not be defined,
since they are not used.

2.3. Specification of the model function (sparse problems)

The UFO system contains optimization methods that take into account the sparsity pattern of the
Hessian matrix HF. This possibility decreases computational time and storage requirements for large-scale
optimization problems. In this case we use the option $HESF="S’ which means that the sparsity pattern
is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Hessian matrix is specified by using the macrovariable $INPUT. Two integer vectors ITH
and JH are used where TH(I), 1< I< NF+1, are pointers and JH(K), 1< K< M, are indices of nonzero
elements. Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in
rows. The number of nonzero elements must be specified using the statement $M=number_ of_ elements.
The number of nonzero elements could be greater then is required (eg. two times) since it is used for the
declaration of working fields. For example, if we have the Hessian matrix

hfla hfZa hf?ﬂ Oa hf:’)

hgla tha Oa h§4a 0

hF’ 82’ hF’ 84’ hlLl
51 ’ 53 ’ 55

then we have to set:

$NF=5
$M=20 (the minimum required value is M=10)
$ADD(INPUT)
1H(1)—1~ IH(2)=5; [H(3)=7
IH(4)=9; TH(5)=10; TH(6)=11

H
JH(1)=1; JH(2)=2; JH

JH(6)=4; JH(T)=3; JH
SENDADD

(3)=3; JH(4)=5; JH(5)=2
(8)=b; JH(9)=4; JH(10)=5

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero.

As in the case of the dense problem, second derivatives of the model function can be specified by using
the macrovariable SHMODELF. If $HESF="S’, then only nonzero elements of the upper half (including
the diagonal) of the Hessian matrix are specified. For the above example the specification has the form:
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$SET(HMODELF)
HF(l):hﬂ; HF(Q):hﬂ; HF(3):hf3§ HF(4):hf5
HF(5)=hiy; HF(6)=hi,; HF(T)=hi3; HF(8)=hi;
HF(9)=h{y; HE(10)=h;

SENDSET

If the model function is quadratic (i.e. if $MODEL="FQ’) and if SHESF="S’, then the coefficients
HF(K), 1< K< M, (constant sparse Hessian matrix) must be specified by using the macrovariable $IN-
PUT. If the matrix given in the above example is the constant sparse Hessian matrix, we use the speci-
fication:

$ADD(INPUT)
HF(1)=hT,; HF(2)=hE,; HF(3)=h%}; HF(4)=h{}
HF(5)=h%,; HF(6)=hL,; HF(7)=h%,; HF(8)=hi,
HF(9)=hjy; HE(10)=h{;

$ENDADD

2.4. Objective functions for discrete approximation
If we set SMODEL="AF’, then we suppose that the objective function F(X) has the form:

NA
F(X) = ) FA(KA;X) if KBA =0
KA=1
or

NA
F(X)= ) AW(KA) # (FA(KA; X) — AM(KA)) if KBA =1
KA=1
where FA(KA;X), 1< KA< NA, are approximating functions. This form of the objective function is
very useful in large-scale optimization when the approximating functions FA(KA;X), 1< KA< NA| are

assumed to have sparse gradients.
If we set SMODEL="AP’, then we suppose that the objective function F(X) has the form:

NA
1
F(X)= = 3 [FA(KA; X)| 4R if KBA =0
R
KA=1
or

F(X) = ~ % |AW(KA) * (FA(KA; X) — AM(KA))| #*R  if KBA = 1

R
KA=1

where FA(KA;X), 1< KA< NA, are approximating functions, and R>1 is a real exponent. The value
of the exponent is specified by the choice SREXP=R (default value is SREXP=2). Since the most used
value of the exponent is R=2, and since the computations are simplest and the most efficient for such
a choice, we can use the specification $SMODEL="AQ’ in this case (minimization of sum of squares).
Moreover, SMODEL="AQ’ is formally set whenever we chose $MODEL="AP’ and $REXP=2.

If we set SMODEL="AM’, then we suppose that the objective function F(X) has the form:

F(X)= max (+FA(KA;X)) if $IEXT = -1
1<KA<NA

F(X) = max (|[FA(KA;X)|) if SIEXT =0
1<KA<NA
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F(X)= max (—FA(KA;X)) if $IEXT = +1
1<KA<NA

for $KBA=0, or

F(X) = | _max  (FAW(KA) « (FACKA; X) — AM(KA))) if SIEXT = -1

F(X)= _max_ (JAW(KA) + (FACKA; X) — AM(KA))|) if SIEXT = 0

F(X) = 1SIIglAasxl\IA(—AVV(KA) * (FA(KA; X) — AM(KA))) if SIEXT = +1
for $KBA=1, where FA(KA;X), 1< KA< NA, are approximating functions. The default value is
SIEXT=0 (the minimax or the Chebyshev approximation).

The option $KBA serves as a decision between a simple objective function and a more complicated
one. The simple objective function uses no additional fields, while the more complicated one uses at most
two additional fields, AM and AW. The vector AM usually contains frequently used observations which
can be included into the functions FA(KA;X), 1< KA< NA| in the case of the simple objective function.
Observations AM(KA), 1< KA< NA, are specified by using the macrovariable $INPUT. Their default
values are AM(KA)=0, 1< KA< NA. The vector AW serves for possible scaling specified by the option
$NORMA:

$NORMA=0 - no scaling is performed. In this case AW(KA)=1, 1< KA< NA.

$NORMA=1 - scaling parameters are determined automatically so that AW(KA)=|AM(KA)|, 1<
KA< NA.

$NORMA=2 - scaling parameters must be specified by the user by means of the macrovariable $IN-
PUT.

The number of approximating functions NA must be specified by using the statement $NA=number_
of_ functions in all the above cases.

2.5. Specification of the approximating functions (dense problems)

The approximating functions FA(KA;X), 1< KA< NA, must be defined by the user either directly in
the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. Values
of the approximating functions are specified by using the macrovariable $FMODELA:

$SET(FMODELA)

FA = value FA(KA;X)

(for a given index KA and given values of variables X(I), 1< I< NF)
$ENDSET

The first derivatives of the approximating functions are specified by using the macrovariable SGMODELA

$SET(GMODELA)

GA(1) = derivative 9FA(KA;X)/0X(1)

GA(2) = derivative 9FA(KA;X)/0X(2)

GA(3) = derivative 9FA(KA;X)/I0X(3)
GA(NF) = derivative 9FA(KA;X)/0X(NF)

(for a given index KA and given values of variables X(I), 1< I< NF)
$ENDSET
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The second derivatives of the approximating functions are specified by using the macrovariable $HMOD-
ELA. If $JACA="D’, then the Hessian matrices are assumed to be dense and we specify only their upper
half:

$SET(HMODELA)
HA(1) = derivative 9?FA(KA;X)/0X(1)?
HA(2) = derivative 0?FA(KA;X)/0X(1)0X(2)
HA(3) = derivative §*FA(KA;X)/0X(2)*
HA(4) = derivative 0?FA(KA;X)/0X(1)0X(3)
HA(5) = derivative 0?FA(KA;X)/0X(2)0X(3)
HA(6) = derivative 9?FA(KA;X)/0X(3)?

HA(NF*(NF+1)/2) = derivative 0?FA(KA;X)/0X(NF)?
(for a given index KA and given values of variables X(I), 1< I< NF)
$ENDSET

If the macrovariables $GMODELA or $HMODELA are not defined, we suppose that the first or
the second derivatives of the approximating functions are not given analytically. In this case, they are
computed numerically by using the UFO system routines, whenever it is required. If it is advantageous
to compute first derivatives of the approximating functions FA(KA;X), 1< KA< NA| together with their
values, we can collect the models $FMODELA and $GMODELA into the common model $FGMODELA.
Similarly we can collect the models $FMODELA, $§GMODELA and $HMODELA into the common model
$FGHMODELA.

To improve the efficiency of the computation, we can specify additional information about the approx-
imating functions FA(KA;X), 1< KA< NA. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCA:

$KCA=1 - evaluations of the approximating functions FA(KA;X), 1< KA< NA, are very easy
(they take at most O(NF) simple operations).
$KCA=2 - evaluations of the approximating functions FA(KA;X), 1< KA< NA, are of medium

complexity (they take at least O(NF) complicated operations and at most O(NF?)
simple operations).

$KCA=3 - evaluations of the approximating functions FA(KA;X), 1< KA< NA| are extremely
difficult (they take at least O(NF?) complicated or O(NF?) simple operations).

The option $KCA=2 is default. An additional useful piece of information is the analytical complexity
(conditioning), which is specified by the macrovariable SKSA:

$KSA=1 - the approximating functions FA(KA;X), 1< KA< NA, are smooth and well-
conditioned.

$KSA=2 - the approximating functions FA(KA;X), 1< KA< NA, are smooth but ill-
conditioned.

$KSA=3 - the approximating functions FA(KA;X), 1< KA< NA| are nonsmooth.

The option $KSA=1 is default.
If some of the approximating functions are linear having the form

NF
FA(KA;X) = > AG((KA — 1)« NF + 1) « X(I)
I=1
we can specify them separately. Then the number of linear approximating functions must be specified by
using the statement $NAL=number_ of_ linear_ functions (default value is $NAL=0). We always suppose
that the first NAL approximating functions are linear. Then the coefficients AG((KA-1)«NF+1), I< KA<
NAL, 1< I< NF, are specified using the macrovariable $INPUT and the macrovariables SFMODELA,
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$GMODELA, $SHMODELA are used only for the specification of the nonlinear approximating functions
FA(KA;X), NAL<KA< NA.

2.6. Specification of the approximating functions (sparse problems)

The UFO system contains optimization methods that take into account the sparsity pattern of the
Jacobian matrix AG. This possibility decreases computational time and storage requirements for large-
scale optimization problems. In this case, we use the option $JACA="S’ which means that the sparsity
pattern 1s specified. All other specifications remain the same as in the case of dense problems. The
sparsity pattern of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer
vectors TAG and JAG are used where TAG(KA), 1< KA< NA+1, are pointers and JAG(K), 1< K<
TAG(NA+1)-1, are indices of nonzero elements. Nonzero elements are ordered by the gradients of the
approximating functions. The number of nonzero elements must be specified by using the statement
$MA=number_ of_ elements. For example, if we have the gradients

GA(LX) =[g74,0 ,0 g7y,
GA(2;X) = [0 ,935,0 ,g34],
GA(3;X) =10 ,0 ,933,0 ],
GA(4;X) = g3}, 9, 945, 0 ],

GA(5aX) = [0 aO ag?Bag?AL]a

and the Jacoblan matrix

91141 ;0 ,0 ag1144
0 ag§42 aO ag§44
AGX)=| o 0 ¢4 0
95141 ’95142 agf:s 0
0 0 g8y g8
then we have to set:
$NA=5H
$MA=10
SADD(INPUT)
TAG(1)=1; TAG(2)=3; TAG(3)=5
TAG(4)=6; TAG(5)=9; TAG(6)=11
JAG(1)=1; JAG(2)=4; JAG(3)=2; JAG(4)=4; JAG(5)=3
JAG(6)=1; JAG(7)=2; JAG(8)=3; JAG(9)=3; JAG(10)=5
SENDADD

As in the case of the dense problem, the first derivatives of the approximating functions can be
specified by using the macrovariable SGMODELA. If $JACA="S’, then only nonzero elements of the
gradients are specified. For the above example the specification has the form:

$SET(GMODELA)
IF (KA.EQ.1) THEN
GA(1) = OFA(1;X)/0X(1)
GA(4) = OFA(1;X)/0X(4)
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ELSE IF (KA.EQ.2) THEN
) = OFA(2;X)/0X(2)

GA(2
GA(4) = OFA(2:X)/0X(4)

ELSE IF (KA.EQ.3) THEN
GA(3) = OFA(3:X)/0X(3)

ELSE IF (KA.EQ.4) THEN
GA(1) = OFA(4;X)/0X (1)
GA(2) = OFA(4;X)/0X(2)
GA(3) = OFA(4;X)/0X(3)

ELSE
GA(3) = OFA(5:X)/0X(3)
GA(4) = OFA(5;X)/0X(4)

ENDIF

$ENDSET

If some of the approximating functions are linear (i.e. if SNAL>0) and if $JACA="S’, then the
coefficients AG(K), 1< K< TAG(NAL+1)—1 (constant part of the sparse Jacobian matrix), must be
specified by using the macrovariable $INPUT. If the matrix given in the above example is the constant
sparse Jacobian matrix, we use the specification:

SADD(INPUT)
AG(1)=g7y; AG(2)=g1); AG(3)=g5; AG(4)=g3,
AG(5)=gss; AG(6)=g41; AG(T)=gs%; AG(8)=gis
AG(9)=gés; AG(10)=g2,

$ENDADD

There is another possibility which can be useful when all approximating functions are linear. It is based
on the usage of special procedure UKMAIL that serves for direct input of individual Jacobian matrix
elements. The procedure UKMAIL is formally called by using the statement

CALL UKMAIL(K,I,GAKLIAG JAG AG)

where K is an index of a given approximating function (row of the Jacobian matrix), T is an index
of a given variable (column of the Jacobian matrix), and GAKI is a numerical value of the element
IFA(K;X)/0X(I). For the example given above we can write:

$ADD(INPUT)

CALL UKMAIIL ,gn,IAG JAG,AG

CALL UKMAIl
CALL UKMAIl
CALL UKMAIl
CALL UKMAIl

CALL UKMAIl

g14,IAG,JAG,AG
,gZZ,IAG,JAG,AG
g24,IAG JAG,AG
,g33,IAG JAG,AG

,g42,IAG JAG,AG

CALL UKMAIL(4 3,g43,IAG JAG,AG

CALL UKMAIL(5,3,¢4, IAG,JAG,AG

CALL UKMAIL(5,4,94 1AG JAG AG
$ENDADD

(1, )
(1, )
(2, )
53 |
CALL UKMAI1(4, ,g41,IAG JAG,AG)
(4, )
( )
( )
( )

The main advantage of the last possibility is the fact that it is not necessary to specify the fields IAG
and JAG beforehand.
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If we use the option $JACA="S’, then we can specify a form of the objective function sparse Hessian
matrix. There are four possibilities:

SHESF="D’ - dense Hessian matrix.

$HESF="B’ - partitioned sparse Hessian matrix. This matrix is a sum of simple Hessian matrices
which correspond to the individual approximating functions. Only nonzero blocks are
stored.

SHESF="S’ - general sparse Hessian matrix (the same as the model function Hessian matrix
corresponding to the option SHESF="S").

SHESF="NO’ - Hessian matrix is not used.

This specification serves only for an internal realization of optimization methods and has no influence on
the user’s input. The default option is SHESF="D’.

2.7. Objective functions for optimization of dynamical systems

If we set SMODEL="DF’, then we suppose that the objective function F(X) has the form:

TAMAX
F(X) = / FA(X, YA(TA), TA) dTA + FF(X, YA(TAMAX), TAMAX)
TAMIN

where FA(X,YA(TA),TA) is asmooth subintegral function and FF(X,YA(TAMAX), TAMAX) is a smooth

terminal function. At the same time

dYA(KE; TA)
dTA
where FE(KE;X,YA(TA),TA), 1< KE< NE, are smooth state functions and FY(KE;X), 1< KE< NE,

are smooth initial functions.
If we set SMODEL="DQ’, then we suppose the objective function F(X) has the form:

= FE(KE; X, YA(TA), TA), YA(KE; TAMIN) = FY(KE; X)

1 TAMAX NE
F(X) = —/ > WE(KE; TA) * (YA(KE; TA) — YE(KE; TA))? dTA
2 TAMIN  gE=1
1 NE
+5 > EW(KE)  (YA(KE; TAMAX) — EY(KE))?
KE=1

At the same time

dYA(KE; TA)
dTA
where FE(KE;X,YA(TA),TA), 1< KE< NE, are smooth state functions and FY(KE;X), 1< KE< NE,

are smooth initial functions.
If we set SMODEL="NO’, then we consider the initial value problem

= FE(KE; X, YA(TA), TA), YA(KE; TAMIN) = FY(KE; X)

dYA(KE; TA)
dTA
where FE(KE;YA(TA),TA), 1< KE< NE, are smooth state functions.

= FE(KE; YA(TA), TA), YA(KE; TAMIN) is given

The number of differential equations NE must be specified by using the statement $NE=number_ of_
differential_ equations in all the above cases.
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2.8. Specification of the state functions

The state functions FE(KE;X,YA(TA),TA), 1< KE< NE, must be defined by the user either directly
in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. Values
of the state functions are specified by using the macrovariable $F MODELE:

$SET(FMODELE)

FE = value FE(KE;X,YA(TA),TA)

(for a given index KE, given vector of variables X,

given vector of state variables YA(TA) and given time TA)
$ENDSET

The first derivatives of the state functions according to the variables are specified by using the macrovari-

able SGMODELE:

$SET(GMODELE)
GE(1) = derivative 9FE(KE;X,YA(TA),TA)/0X(1)
GE(2) = derivative 9FE(KE;X,YA(TA),TA)/0X(2)
GE(3) = derivative 9FE(KE;X,YA(TA),TA)/0X(3)

GE(NF) = derivative 9FE(KE;X,YA(TA),TA)/0X(NF)

(for a given index KE, given vector of variables X,

given vector of state variables YA(TA) and given time TA)
$ENDSET

The first derivatives of the state functions according to the state variables are specified by using the
macrovariable SDMODELE:

$SET(DMODELE)
DE(1) = derivative OFE(KE;X,YA(TA), TA)/0YA(1)
DE(2) = derivative OFE(KE;X,YA(TA), TA)/0YA(2)
DE(3) = derivative OFE(KE;X,YA(TA), TA)/0YA(3)

DE(NE) = derivative 9FE(KE;X,YA(TA), TA)/0YA(NE)

(for a given index KE, given vector of variables X,

given vector of state variables YA(TA) and given time TA)
$ENDSET

If it is advantageous to compute first derivatives of the state functions FE(KE;X,YA(TA),TA), 1<
KE< NE, together with their values, we can collect the models $FMODELE, $GMODELE and $DMOD-
ELE into the common model $FGDMODELA. Partially we can collect the models SFMODELE, $GMOD-
ELE or $FMODELE, $DMODELE or $GMODELE, $DMODELE into the common models $FGMOD-
ELE or $SFDMODELE or $§GDMODELE respectively.

If SMODEL="DQ’ we have to define the functions WE(KE;TA) and YE(KE;TA), 1< KE< NE,
for a given index KE and given time TA. These functions can be specified by using the macrovariable

SFMODELE together with the state function FE(KE;X,YA(TA),TA):

$SET(FMODELE)
FE = value FE(KE;X,YA(TA),TA)
WE = value WE(KE;TA)
YE = value YE(KE;TA)
(for a given index KE, given vector of variables X,
given vector of state variables YA(TA) and given time TA)
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$ENDSET

The default values WE(KE;TA)=1 and YE(KE;TA)=0 cannot be specified, they are supposed automat-
ically.

2.9. Specification of the initial functions

The initial functions FY(KE;X), 1< KE< NE, must be defined by the user either directly in the full
dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. Values of the
initial functions are specified by using the macrovariable $FMODELY:

$SET(FMODELY)
FE = value FY(KE;X)
(for a given index KE and given vector of variables X)

$ENDSET

The first derivatives of the initial functions according to the variables are specified by using the macrovari-

able SGMODELY:

$SET(GMODELY)
GE(1) = derivative 0FY(KE;X)/0X(1)
GE(2) = derivative 0FY(KE;X)/0X(2)
GE(3) = derivative 0FY(KE;X)/0X(3)

GE(NF) = derivative 0FY(KE;X)/0X(NF)
(for a given index KE and given vector of variables X)

$ENDSET

If it is advantageous to compute first derivatives of the initial functions FY(KE;X), 1< KE< NE,
together with their values, we can collect the models $FMODELY and $GMODELY into the common
model $FGMODELY.

If the initial values YA(KE;TAMIN), 1< KE< NE, do not depend on the variables X(I), 1< I< NF,
they can be specified by using the macrovariable SINPUT:

$ADD(INPUT)
YA(1) = initial value YA(1,TAMIN)
YA(2) = initial value YA(2, TAMIN)
YA(3) = initial value YA(3,TAMIN)

YA(NE) = initial value YA(NE, TAMIN)
$ENDADD

2.10. Specification of the subintegral function
If SMODEL="DF’, then the subintegral function FA(X,YA(TA),TA) must be defined by the user

either directly in the full dialogue mode, or by using corresponding macrovariables in the batch (or
mixed) mode. Value of the subintegral function is specified by using the macrovariable $SFMODELA:

$SET(FMODELA)
FA = value FA(X,YA(TA),TA)
(for a given vector of variables X, given vector of state variables YA(TA)
and given time TA)

$ENDSET
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The first derivatives of the subintegral function according to the variables are specified by using the

macrovariable §GMODELA:

$SET(GMODELA)
GA(1) = derivative 9FA(X,YA(TA),TA)/0X(1)
GA(2) = derivative 9FA(X,YA(TA),TA)/0X(2)
GA(3) = derivative 9FA(X,YA(TA),TA)/0X(3)
GA(NF) = derivative 9FA(X,YA(TA),TA)/0X(NF)
(for a given vector of variables X, given vector of state variables YA(TA)
and given time TA)
$ENDSET

The first derivatives of the subintegral function according to the state variables are specified by using the
macrovariable SDMODELA:

$SET(DMODELA)
DA(1) = derivative IFA(X,YA(TA),TA)/OYA(1)
DA(2) = derivative IFA(X,YA(TA),TA)/0YA(2)
DA(3) = derivative IFA(X,YA(TA),TA)/OYA(3)
DA(NE) = derivative 9FA(X,YA(TA),TA)/0YA(NE)
(for a given vector of variables X, given vector of state variables YA(TA)
and given time TA)
$ENDSET

If it is advantageous to compute first derivatives of the subintegral function FA(X,YA(TA),TA) to-
gether with its value, we can collect the models $FMODELA, $GMODELA and $DMODELA into the
common model SFGDMODELA. Partially we can collect the models $SFMODELA, $GMODELA or
$FMODELA, $DMODELA or $GMODELA, $DMODELA into the common models $FGMODELA or
$FDMODELA or $GDMODELA respectively.

If SMODEL="DQ’ and the objective function contains an integral part, we have to set $MOD-
ELA="YES’ and define the functions WE(KE;TA) and YE(KE;TA), 1< KE< NE, by using the macrovari-
able $FMODELE.

2.11. Specification of the terminal function

If SMODEL="DF”, then the terminal function FF(X,YA(TAMAX), TAMAX) must be defined by the
user either directly in the full dialogue mode, or by using corresponding macrovariables in the batch (or
mixed) mode. Value of the terminal function is specified by using the macrovariable §FMODELF":

$SET(FMODELF)
FF = value FF(X,YA(TAMAX), TAMAX)
(for a given vector of variables X, given vector of state variables YA(TAMAX)
and given time TAMAX)

$ENDSET

The first derivatives of the terminal function according to the variables are specified by using the
macrovariable SGMODELF:

$SET(GMODELF)

GF(1) = derivative 9FF(X,YA(TAMAX),TAMAX)/0X(1)
GF(2) = derivative 9FF(X,YA(TAMAX),TAMAX)/0X(2)

33



GF(3) = derivative 9FF(X,YA(TAMAX),TAMAX)/0X(3)
GF(NF) = derivative OFF(X,YA(TAMAX), TAMAX)/0X(NF)
(for a given vector of variables X, given vector of state variables YA(TAMAX)
and given time TAMAX)
$ENDSET

The first derivatives of the terminal function according to the state variables are specified by using the
macrovariable SDMODELF:

$SET(DMODELF)
DF(1) = derivative OFF(X,YA(TAMAX) TAMAX)/0YA(1)
DF(2) = derivative OFF(X,YA(TAMAX) TAMAX)/0YA(2)
DF(3) = derivative OFF(X,YA(TAMAX) TAMAX)/0YA(3)

DF(NE) = derivative JFF(X,YA(TAMAX),TAMAX)/9YA(NE)
(for a given vector of variables X, given vector of state variables YA(TAMAX)
and given time TAMAX)

$ENDSET

If it is advantageous to compute first derivatives of the terminal function FF(X,YA(TAMAX) TAMAX)
together with its value, we can collect the models $FMODELF, $§GMODELF and $DMODELF into
the common model $SFGDMODELF. Partially we can collect the models $FMODELF, $GMODELF or
$FMODELF, $DMODELF or $GMODELF, $SDMODELF into the common models $FGMODELF or
$FDMODELF or $GDMODELF respectively.

If SMODEL="DQ’ and the objective function contains a terminal part, we have to set $MOD-
ELF="YES’ and define the coefficients EW(KE) and EY(KE), 1< KE< NE, by using the macrovariable
$INPUT:

$ADD(INPUT)
EW(1) = value EW(1); EY(1) = value EY(1)
EW(2) = value EW(2); EY(2) = value EY(2)
EW(3) = value EW(3); EY(3) = value EY(3)
EW(NE) = value EW(NE); EY(NE) = value EY(NE)
$ENDADD

2.12. Optimization with general constraints.

If there are no general constraints we set $KBC=0. In the oposite case we set $KBC=1 or $KBC=2.
If $SKBC=1 or $KBC=2 then

FC(KC;X) - unbounded I ICG(KC) =0
CL(KC) < TFC(KC;X) LI IC(KC) =1

C(KC;X) < CU(KCO) , I IC(KC) = 2
CL(KC) < FC(KC;X) < CU(KC) I IC(KC) = 3
CL(KC) = FC(KC;X) = CU(KC) I ICG(KC) =5

where 1< KC< NC. The option $KBC=2 must be chosen if IC(KC)=3 for at least one index 1< KC<
NC. Then two different fields XL(KC) and XU(KC), 1< KC< NC are declared. In the opposite case we
set $KBC=1 and only one common field XL(KC)=XU(KC), 1< KC< NC is declared.
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Types of general constraints IC(KC), 1< KC< NC, and lower and upper bounds XL(KC) and XU(KC),
1< KC< NC, can be specified by using the macrovariable $INPUT. Default values are IC(KC)=3 and
XL(KC)=XU(KC)=0, 1< KC< NC. For example:

$KBF=2; $NC=3
$ADD(INPUT)

$ENDADD

2.13. Specification of the constraint functions (dense problems)

The constraint functions FC(KC;X), 1< KC< NC, must be defined by the user either directly in the
full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. Values of
the constraint functions are specified by using the macrovariable $§FMODELC:

$SET(FMODELC)

FC = value FC(KC;X)

(for a given index KC and given values of variables X(I), 1< I< NF)
$ENDSET

The first derivatives of the constraint functions are specified by using the macrovariable SGMODELC:

$SET(GMODELC)
GC(1) = derivative dFC(KC;X)/dX(1)
GC(2) = derivative dFC(KC;X)/0X(2)
GC(3) = derivative dFC(KC;X)/IX(3)

GC(NF) = derivative 0FC(KC;X)/0X(NF)
(for a given index KC and given values of variables X(I), 1< I< NF)
$ENDSET

The second derivatives of the constraint functions are specified by using the macrovariable SHMODELC.
If $JACC="D’, then the Hessian matrices are assumed to be dense and we specify only their upper half:

$SET(HMODELC)
HC(1) = derivative 9?FC(KC;X)/0X(1)?
HC(2) = derivative 9?FC(KC;X)/0X(1)0X(2)
HC(3) = derivative 9?FC(KC;X)/0X(2)?
HC(4) = derivative 9?FC(KC;X)/0X(1)9X(3)
HC(5) = derivative 9?FC(KC;X)/0X(2)0X(3)
HC(6) = derivative 9?FC(KC;X)/0X(3)?

HC(NF+(NF+1)/2) = derivative ?FC(KC;X)/0X(NF)?
(for a given index KC and given values of variables X(I), 1< I< NF)
$ENDSET

If the macrovariables $GMODELC or $HMODELC are not defined, we suppose that the first or
the second derivatives of the constraint functions are not given analytically. In this case, they are
computed numericaly, by using the UFO system routines, whenever it is required. If it is advantageous
to compute first derivatives of the constraint functions FC(KC;X), 1< KC< NC, together with their
values, we can collect the models $FMODELC and $GMODELC into the common model $FGMODELC.
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Similarly we can collect the models $FMODELC, $§GMODELC and $HMODELC into the common model
$FGHMODELC.

To improve the efficiency of the computation, we can specify additional information about the con-
straint functions FC(KC;X), 1< KC< NC. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCC:

$KCC=1 - evaluations of the constraint functions FC(KC;X), 1< KC< NC, are very easy (they
take at most O(NTF) simple operations).
$KCC= 2 - evaluations of the constraint functions FC(KC;X), 1< KC< NC, are of medium

complexity (they take at least O(NF) complicated operations and at most O(NF?)
simple operations).

$KCC= 3 - evaluations of the constraint functions FC(KC;X), 1< KC< NC, are extremely
difficult (they take at least O(NF?) complicated or O(NF?) simple operations).

The option $KCC=2 is default.
If some of the constraint functions are linear having the form

NF
FC(KC;X) = 3 CG((KC — 1)+ NF + 1) + X(I)

I=1
we can specify them separately. Then the number of linear constraint functions must be specified by
using the statement $NCL=number_ of_ linear_ functions (default value is $NCL=0). We always suppose
that the first NCL constraint functions are linear. Then the coefficients CG((IKC-1)«NF+1I), 1< KC<
NCL, 1< I< NF, are specified by using the macrovariable $INPUT and the macrovariables $FMOD-
ELC, $GMODELC, $HMODELC are used only for the specification of the nonlinear constraint functions
FC(KC;X), NCL<KC< NC.

2.14. Specification of the constraint functions (sparse problems)

The UFO system contains optimization methods that take into account the sparsity pattern of the
Jacobian matrix CG. This possibility decreases computational time and storage requirements for large-
scale optimization problems. In this case, we use option $JACC="S’ which means that the sparsity pattern
is specified. All other specifications remain the same as in the case of dense problems. The sparsity pattern
of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer vectors ICG and
JCG are used where ICG(KC), 1< KC< NC+1, are pointers and JCG(K), 1< K< ICG(NC+1)-1, are
indices of nonzero elements. Nonzero elements are ordered by the gradients of the constraint functions.
The number of nonzero elements must be specified by using the statement $MC=number_ of_ elements.
The number of nonzero elements could be greater then is needed (two times say) since it is used for
declaration of working fields. For example if we have the gradients

GA(L;X) = [¢7,0 ,0 g%,
GA(2;X) = [0, 95,0 ,g5),
GA(3;X) =10 ,0 ,953,0 ],
GA(4;X) = [95), 952, 95,0 ],

GA(5aX) = [0 aO aggBaggél]a

and the Jacoblan matrix
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then we have to set:

$NC=5
$MC=20 (the minimum required value is MC=10)
$ADD(INPUT)
ICG(1)=1; ICG(2)=3; ICG(3)=5
ICG(4)=6; ICG(5)=9; ICG(6)=11
JCG(1)=1; JCG(2)=4; JCG(3)=2; JCG(4)=4; JICG(5)=3
JCG(6)=1; JCG(7)=2; JCG(8)=3; JCG(9)=3; JCG(10)=5
$ENDADD

As in the case of the dense problem, the first derivatives of the constraint functions can be specified
by using the macrovariable SGMODELC. If $JACC="S’, then only the nonzero elements of the gradients
are specified. For the above example the specification has the form:

$SET(GMODELC)
IF (KC.EQ.1) THEN
GC(1) = 9FC(1;X)/0X(1)
GC(4) = 9FC(1;X)/0X(4)
ELSE IF (KC.EQ.2) THEN
GC(2) = 9FC(2;X)/0X(2)
GC(4) = 9FC(2;X)/0X(4)
ELSE IF (KC.EQ.3) THEN
GO(3) = OFC(3;X)/0X(3)
ELSE IF (KC.EQ.4) THEN

GO(1) = GFC(4;X)/X(1)
GO(2) = GFC(4;X)/0X(2)
GC(3) = OFC(4;X)/X(3)
ELSE
GC(3) = OFC(5:X)/IX(3)
GC(4) = GFC(5;X)/0X(4)
ENDIF
SENDSET

If some of the constraint functions are linear (i.e. if $NCL>0) and if $JACC="S’, then the coefficients
CG(K), 1< KK ICG(NCL+1)—1 (constant part of the sparse Jacobian matrix), must be specified by using
the macrovariable $INPUT. If the matrix given in the above example is the constant sparse Jacobian
matrix, we use the specification:

SADD(INPUT)
CG(1)=gf); CG(2)=g%; CG(3)=g52; CG(4)=g%,
CG(5)=g53; CG(6)=gf; CG(T)=g%; CG(8)=yf
CG(9)=gSs; CG(10)=g5,

$ENDADD
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There is another possibility which can be useful when all constraint functions are linear. It is based
on the usage of a special procedure UKMCI1 that serves for direct input of individual Jacobian matrix
elements. The procedure UKMCI1 is formally called by using the statement

CALL UKMCI1(K,I,GCKLICG,JCG,CG)

where K is an index of a given constraint function (row of the Jacobian matrix), I is an index of a given
variable (column of the Jacobian matrix), and GCKI is a numerical value of the element FC(K;X)/0X(I).
For the example given above we can write:

$ADD(INPUT)
CALL UKMCII(1,1,¢5,ICG,JCG,CQ)
CALL UKMCIl(1,4,g14,ICG JCG,CG)
CALL UKMCI1(2,2,¢5,ICG,JCG,CG)
CALL UKMCI1(2,4,g§4,ICG JCG,CG)
CALL UKMCII1(3, 3,g33,ICG JCG,CG)
CALL UKMCI1(4,1,¢5,,ICG,JCG,CQ)
CALL UKMCIl(4,2,g42,ICG JCG,CG)
CALL UKMCI1(4, 3,g43,ICG JCG,CG)
CALL UKMCII1(5,3,95,I1CG,JCG,CG)
CALL UKMCII1(5,4,¢5,,ICG,JCG,CQ)

$ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify beforehand
the fields ICG and JCG. If the number of constraints are very large then we can use a slightly more
complicated procedure UKMCI2, which uses dynamic structures and therefore works more quickly. The
procedure UKMCI2 is formally called by using the statement

CALL UKMCI2(K I, GCKLICG JCG,CG LCG)

where K is an index of a given constraint function (row of the Jacobian matrix), I is an index of a given
variable (column of the Jacobian matrix), GCKI is a numerical value of the element 0FC(K;X)/dX(T)
and LCG is an auxiliary working field.

2.15. Additional specifications concerning optimization problems

Useful specifications, which can improve the computational efficiency and robustness of the optimiza-
tion methods, are a lower bound for the objective function value and an upper bound for the stepsize.
Both of these values depend on a definition of the objective function and can be specified by the statements
$FMIN=lower_ bound (for the objective function value) and $XMAX=upper_ bound (for the stepsize).
We recommend a definition of $FMIN, whenever it is possible, and a definition of $XMAX, whenever
the objective function contains exponentials. If the objective function is a sum of powers (or a sum of
squares), then automatically SFMIN=0. The default option for the maximum stepsize is $XMAX=1000.

If there are no general constraints and if the number of variables is not greater than 20, then we can
use global optimization methods. A decision between local and global optimization is effected by means
of macrovariable SEXTREM:

$EXTREM="L’ - a local extremum, that usually contains the starting point in its region of attractivity

1s found.
$EXTREM="G’ - all extrema in the given region are found and a global extremum is determined.

The default option is SEXTREM="L". If SEXTREM="G’, we cannot use the common models $FGMOD-
ELF and $SFGHMODELF for a common specification of the value , the gradient and the Hessian matrix
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of the model function. Similarly we cannot use the common models $FGMODELA and $FGHMODELA
for a specification of the approximating functions.

The global optimization is performed over a bounded region specified by lower and upper bounds
XL(I) and XU(I), 1< I< NF. If these bounds are not specified (using the macrovariable $INPUT),
they are computed from the initial values of variables and from the given maximum stepsize, so that
XL(D)=X(I)-XMAX and XU(I)=X(I)+XMAX, 1< I< NF. The maximum stepsize is specified, as in
the case given above, using the statement $XMAX=maximum_ stepsize. The default option is again
$XMAX=1000.

Additional useful specifications, concerning the solution precision, are bounds used in termination
criteria. These bounds can be specified by the macrovariables $TOLX, $TOLF, $TOLB, $TOLG, $TOLC
and MIC, MIT, MFV:

$TOLX - lower bound for a relative change of variables.
$TOLF - lower bound for a relative change of function values.
$TOLB - lower bound for the objective function value.

$TOLG - lower bound for the objective function gradient norm.
$TOLC - lower bound for the violated constraint functions.

$MIC - maximum number of penalty function changes.
$MIT - maximum number of iterations.
$MFV - maximum number of function evaluations.

The default values are $TOLX="1.0D-8", $TOLF="1.0D-16’, $TOLB="-1.0D60’, $TOLG="1.0D-6",
$TOLC="1.0D-6" and MIC=5, MIT=500, MFV=1000.
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3. Optimization methods in the UFO system

The UFO system has a modular structure. All optimization methods can be set up using the indi-
vidual simple modules. For example, the sequential quadratic programming variable metric methods for
nonlinearly constrained optimization problems are set up by using the modules for the objective func-
tion evaluation, penalty function definition, direction determination, quadratic programming solution,
stepsize selection, and variable metric update. Optimization methods contained in the UFO system
can be roughly divided into two groups. The first group contains methods for unconstrained and lin-
early constrained optimization problems, while the second group contains methods for general nonlinear
programming problems. Methods for general nonlinear programming problems; i.e. for problems with
nonlinear constraints, are classified by their realization form which is determined by using the macrovari-

able $FORM:

$FORM="SQ’ - sequential (or recursive) quadratic programming methods for general dense problems.
$FORM="SM’ - sequential (or recursive) minimax optimization methods for general dense problems.
$FORM="SE’ - inexact sequential (or recursive) quadratic programming methods for sparse equality

constrained problems.

Sections 3.1 - 3.14 concern methods for unconstrained and linearly constrained problems. These methods
do not use the macrovariable §FORM for a classification. Methods for general nonlinear programming
problems are described in Sections 3.15 - 3.17. Basic parts of optimization methods are described in
Sections 3.18 - 3.22. Section 3.23 is devoted to global optimization methods.

Methods for unconstrained and linearly constrained problems contained in the UFO system can be
partitioned into several classes which are specified by using the macrovariable $CLASS:

$CLASS="HM’ - heuristic methods for small-size problems. This class contains the pattern search

method and the simplex method.
$CLASS="CD’ - conjugate direction methods that use no matrices. This class contains conjugate di-

rection methods, variable metric methods with limited storage and difference versions

of the truncated Newton method. . . ] ] o
$CLASS="VM’ - variable metric methods that use an approximation of the Hessian matrix which 1s

updated in each iteration.
$CLASS="MN’- modified Newton methods that use the Hessian matrix computed either analytically

or numerically.
$CLASS="GN’ - modified Gauss-Newton methods for nonlinear least squares problems that use the

normal equation matrix as an approximation of the Hessian matrix. These methods
are also realized by using the Jacobian matrix representation.

$CLASS="QN’ -  quasi-Newton methods for nonlinear least squares problems and nonlinear equations.

$CLASS="QL’ -  quasi-Newton methods with limited storage for sparse nonlinear least squares prob-
lems and sparse nonlinear equations.

$CLASS="BD’-  biconjugate direction methods for nonlinear equations.

$CLASS="BR’- modified Brent method for nonlinear equations.

$CLASS="LP’ -  special methods for linear programming problems.

$CLASS="QP’ -  special methods for quadratic programming problems.

$CLASS="BM’ - proximal bundle methods for nonsmooth optimization.

$CLASS="BN’-  bundle-Newton methods for nonsmooth optimization.

The individual methods from the above classes can be chosen by using additional specifications. The
most important ones concerning direction determination and stepsize selection, are type of the method,
kind of the matrix decomposition and number of the method. The type of the method is specified by the
macrovariable $TYPE:

$TYPE="L" - line search methods.
$TYPE="G’ - general trust region methods .
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$TYPE="T" - special trust region methods for nonlinear least squares problems.
$STYPE="M’ - modified Marquardt methods for nonlinear least squares problems.
$TYPE="P’ - pattern search method of Hooke and Jeeves.

$TYPE="S’ - simplex method of Nelder and Mead.

The kind of the matrix decomposition is specified by the macrovariable SDECOMP:

$DECOMP="M’ - the symmetric matrix is used as an input for the direction determination.

SDECOMP="G’ - the LDLT decomposition without permutations is used as an input for the direction
determination. This decomposition is usually obtained by the Gill-Murray algorithm
[46].

SDECOMP="S’ - the LDLT decomposition with permutations is used as an input for the direction
determination. This decomposition is usually obtained by the Schnabel-Eskow algo-
rithm [113].

$DECOMP="B’ - the block LDLT decomposition with permutations is used as an input for the di-
rection determination. This decomposition is usually obtained by the Bunch-Parlett
algorithm [14].

$DECOMP="T" - the inverse of a symmetric matrix is used as an input for the direction determination.

$SDECOMP="R’- the RT R decomposition without permutation is used as an input for the direction de-
termination. This decomposition is usually obtained by the recursive QR factorization
[65].

$SDECOMP="C’ - the RTR decomposition with permutations is used as an input for the direction de-
termination. This decomposition is usually obtained by an application of the rank
revealing algoritm [17].

$SDECOMP="A’ - the rectangular matrix is used as an input for the direction determination.

$DECOMP="Q’ - the QR decomposition of a rectangular matrix without permutations is used as an
input for the direction determination. This decomposition is usually obtained by

using the Householder reflection with the explicitly stored orthogonal matrix Q.
$DECOMP="E’ - the general square matrix is used as an input for the direction determination in the

case NA=NF (system of nonlinear equations).
$DECOMP="K’ - the indefinite Karush-Kuhn-Tucker matrix is used as an input for the direction deter-

mination in the equality constrained case.

The macrovariable SDECOMP is also used for the selection of conjugate direction methods. In this case
it does not concern the kind of matrix decomposition.

The serial number of the method is specified by the macrovariable SNUMBER. It determines an
individual realization of the direction determination.

Additional information about specifications $TYPE, $SDECOMP, $NUMBER is given in Section 3.19.

All options used for the method selection have default values which follows from the knowledge bases
coded in the individual templates. Therefore, they need not be specified by the user. The possibilities
we describe can be of service to users that are familiar with optimization methods.

Almost all optimization methods have different realizations for three different representations of the
objective function. If $SHESF="D’, then dense variants for either unconstrained problems or box con-
strained problems or linearly constrained problems (with dense linear constraints specified by $JACC="D")
can be used. If $HESF="S’, then sparse variants for either unconstrained problems or box constrained
problems or linearly constrained problems (with sparse linear constraints specified by $JACC=’S’) can
be used. If $JACA="S’ and $HESF="B’, then partitioned variants for either unconstrained problems
or box constrained problems can be used. Partitioned variants of optimization methods are usually less
efficient due to more expensive matrix operations. Therefore, we recommend to prefer sparse variants
against the partitioned ones.
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3.1. Heuristic methods

Heuristic (or comparative) methods are specified by the statement $CLASS="HM’. These methods
can be used only for small-size problems (with at most 10 variables). The main advantage of the heuristic
methods 1s that they do not require continuity of the objectiver function.

The individual heuristic methods are specified by the macrovariable $TYPE:

$TYPE="P’ - pattern search method of Hooke and Jeeves [59].
$TYPE="S’ - simplex method of Nelder and Mead [98].

The default value is $TYPE="P".

3.2. Conjugate direction methods

Conjugate direction methods are specified by the statement SCLASS="CD’. These methods are very
efficient for large problems with computationally simple objective functions ($KCF=1 or $KCA=1). The
main advantage of conjugate direction methods is that matrices are not used (implicitly SHESF="NO’).
This fact highly decreases storage requirements.

The individual conjugate direction methods are specified by the macrovariable $DECOMP:

$DECOMP="C’ - conjugate gradient methods. These methods are the simplest ones from all conju-
gate direction methods and they require the fewest storage requirements. However,
they usually consume a greater number of function evaluations then other conjugate

direction methods. o )
$DECOMP="V’ - variable metric methods with limited storage. These methods allow us to prescribe

storage requirements using the number of VM steps (the number of necessary used
vectors is approximately two times greater than the number of VM steps). The num-
ber of VM steps is specified by the macrovariable $MF. Variable metric methods with
limited storage usually consume fewer function evaluations then conjugate gradient

methods.
$DECOMP="M’ - inexact difference version of the modified Newton method [27]. This method is im-

plemented either as the line search method or as the trust region method. It can be
very efficient but, since it consumes a greater number of gradient evalutions, it can be

slower then other conjugate direction methods, particularly if the objective function
is more complicated ($KCF>1 or SKCA>1).

There are two families of conjugate gradient methods implemented in the UFO system:

$NUMBER=1 -  basic conjugate gradient methods described in [74]. The individual methods are spec-

ified by using the macrovariables $MET, $MET1 and $MET?2.
$NUMBER=2 - generalized conjugate gradient methods introduced in [61]. The individual methods

are specified by using the macrovariable SMET1.
If SMET=0, then the steepest descent method is used. If $MET=1, then the Fletcher-Reeves method [38]
is used. If SMET=2, then the Polak-Ribiere method [104] is used. If $MET=3, then the Hestenes-Stiefel
method [57] is used. The macrovariable SMET1 specifies the restart procedure as it is described in [74]. If
$MET1=1, then a restarted CG method with positive parameter is used. If $MET1=2, then a bounded
CG method with positive parameter is used. If $MET1=3, then a bounded CG method with positive
lower bound is used. If $SMET1=4, then a CG method with the Powell restart is used. If $METI1=5,
then a CG method with the test on conjugacy is used. If $SMET1=6, then a CG method with the test
on orthogonality is used. The macrovariable SMET?2 specifies the scaling parameter as it is described in
[74] (SMET2=1 for suppressed scaling and $MET2=2 for scaling in each iteraton).
Similarly, the UFO system contains two variable metric methods with limited storage:

$NUMBER=1 - The BFGS method with limited storage described in [99]. The default number of VM
steps is SMF=5.
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$NUMBER=2 - The extended BFGS method with limited storage described in [62]. The default
number of VM steps is $MF=3.

Both these methods are realized by using various scaling techniques [69], specified by the macrovariable
$MET1. If SMET1=1, then scaling is suppressed. If $SMET1=2, then scalar scaling is used. If SMET1=3,
then diagonal scaling is used. If $SMET1=4, then scalar and diagonal scalings are used simultaneously.

The possible specifications (type-decomp-number) for the conjugate direction methods in the uncon-
strained case are:

L-C1, L-V-1,

L-C2, LV-2,
L-M-3,
G-M-3.

The default choice is L-C-1. In both the box constrained and the linearly constrained cases we cannot
use specifications with $DECOMP="M". Conjugate direction methods can be used also for sparse linear
constraints when $JACC="S".

3.3. Variable metric methods

Variable metric methods are specified by the statement $CLASS="VM’. These methods are most
commonly used for either unconstrained or linearly constrained optimizations. Variable metric methods
use a symmetric (usually positive definite) matrix which is updated in every iteration in such a way
that it approximates the Hessian matrix of the objective function as precisely as possible. In the UFO
system, the variable metric methods are realized in three different forms (for SHESF="D’, $HESF="S’
and $SHESF="B’) depending on the Hessian matrix specification.

There are two families of variable metric methods for dense problems ($HESF="D’) which are distin-
guished using the macrovariable §UPDATE:

$UPDATE="B’ - the Broyden family [11]. Variable metric methods from this family are the most
commonly used ones since they are very robust and efficient.

SUPDATE="D’- the Davidon family [24]. Variable metric methods from this family are similar to
the previous ones. The only difference 1s that projections into the new subspace are
computed. This guarantees the quadratic termination property even in the case of an
imperfect line search.

The default value is SUPDATE="B’".

Individual variable metric methods are specified by using the macrovariables $MET, $MET1, and
$MET2. The macrovariable $MET determines the variable metric update. If $MET=1, then the BFGS
method [11], [33], [49], [115] is used. If $MET=2, then the DFP method [23], [37] is used. If $MET=3,
then the Hoshino method [60] is used. If $MET=4, then the safeguarded rank-one method [73] is used.
If SMET=5, then the optimally conditioned method [24] is used. If $MET=6, then the rank-one based
method [73] from the preconvex part of the Broyden family is used. If $MET=7, then the variationally
derived method [76] from the preconvex part of the Broyden family is used. If S MET=8, then the heuristic
method [79] is used. If SMET=9, then the method [136] derived from the matrix decomposition is used.
If SMET=10, then the method [137] which minimizes the angle between the direction vector and the
negative gradient is used. If SMET=11, then the method [79] which minimizes the norm of the direction
vector is used. If SMET=12, then the least prior deviation method [94] is used. The default value is
$MET=1. If we specify $DECOMP="M’, then we can use only the values $SMET=1,2,3 4.

The macrovariable $MET1 determines the Oren (scaling) parameter [101]. If $MET1=1, then no
scaling is used. If $MET1=2, then initial scaling [116] is used. If $SMET1=3, then controlled scaling
[76] is used. If $MET1=4, then simple controlled scaling [84] is used. If SMET1=5, then scaling in each
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iteration is used. The default value is SMET1=3. The scaling parameter is determined by using heuristic
rules given in [79)].

The macrovariable $MET2 determines a value of the Biggs (nonquadratic model) parameter [4].
If $MET2=1, then the unit value is used. If $MET2=2, then the Spedicato value [117] is used. If
$MET2=3, then the modified Spedicato value [79] is used. If S MET2=4, then the value determined from
the homogeneous model [79] is used. If SMET2=5, then the value determined from the cubic model [5]
is used. The default value is $SMET2=2.

The possible specifications (type-decomposition-number) for dense variable metric methods in the
unconstrained case are:

L-G-1, LB, LII,

L-M-3,
G-G-1, G-B-1
G-M-3,
G-M-5,
T-G-1,
T-G-2.

The default choice is L-1-1. In both the box constrained and the linearly constrained cases we cannot use
specifications with $DECOMP="B’.

If the Hessian matrix is sparse with a general pattern ($HESF="S"), then the sparse variable metric
methods, that preserve this pattern, are used. The individual variable metric updates (or families) are
specified by using the macrovariable SUPDATE:

$UPDATE="M’ - the simple Marwill projection [91]. This update can be used only if $DECOMP="M".
SUPDATE="G’ - the fractioned Marwill projection [131]. This update can be used only if $DE-

COMP="M’ and $NUMBER=3.
SUPDATE="T’ - the fractioned Toint projection (the best method given in [131]). This update can be

used only if $DECOMP="M’ and $NUMBER=3.
$UPDATE="B’ - the partitioned variable metric updates from the Broyden family [53]. These updates

can be used only if $SMODEL="AF’ or $MODEL="AQ’ or SMODEL="AP’.

The default value is $UPDATE="M".

Fractioned updates with the specifications $UPDATE="G’ or SUPDATE="T" can be used only in the
unconstrained case. If SUPDATE="B’, then the particular update is specified by using the macrovariable
$MET. If SMET=1, then the BFGS method is used. If $MET=2, then the DFP method is used. If
$MET=3, then the Hoshino method is used. If $§MET=4, then the safeguarded rank-one method is used.
The default value is $MET=1.

If $DECOMP="G’, then less efficient sparse product form updates from the Broyden family are used.
In this case, the values $MET=1,2,3 can be used.

The possible specifications (type-decomposition-number) for sparse variable metric methods in the
unconstrained case are:

L-G-1, LM,
L-M-3,
G-G-1,
G-M-3,
G-M-5.

The default choice is L-M-3. In both the box constrained and the linearly constrained cases we can
use only specifications with $DECOMP="M’ and $SNUMBER=3. Similarly, if the fractioned updates
(SUPDATE="T" and $UPDATE="G’) are required, then only specifications with $DECOMP="M" and
$NUMBER=3 can be used.
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If the Hessian matrix is sparse with a partitioned pattern ($HESF="B’), then only the partitioned
variable metric updates, specified by the choice $UPDATE="B’, can be used. These updates are the
same as in the case in which the Hessian matrix is sparse with a general pattern, but the partitioned
realization is usually less efficient than the general one due to more expensive matrix operations.

The possible specifications (type-decomposition-number) for partitioned variable metric methods in
the unconstrained case are:

L-M-3,
G-M-3.

The default choice 1s L-M-3.

3.4. Modified Newton methods

Modified Newton methods are specified by the statement $CLASS="MN’. These methods use the
Hessian matrix of the objective function which i1s computed either analytically or numerically. The UFO
system performs a numerical computation of the Hessian matrix automatically whenever the macrovari-
able SHMODELF (or $SFGHMODELT) is not defined. Modified Newton methods are realized in three
different forms (for SHESF="D’, SHESF="S’ and $HESF="B’) depending on the Hessian matrix specifi-
cation. Even if the modified Newton methods can be realized as the line search methods ($TYPE="L"),
it is more advantageous to realize them as the trust region methods (STYPE="G").

If the Hessian matrix is dense (SHESF="D’"), then all second derivatives have to be given analytically
or they are computed numericaly by using differences of gradients. The possible specifications (type-
decomposition-number) for dense modified Newton methods in the unconstrained case are:

L-G-1, LS1, L-BI,

L-G-2,
L-M-3,
G-G-1, G-S1, GB-,
G-M-3,
G-M-5,
G-M-6.

The default choice is G-M-5. In both the box constrained and the linearly constrained cases we cannot
use specifications with $DECOMP="S" and $DECOMP="B’. The choice L-G-1 differs from the choice
L-G-2. The last one corresponds to the combination of both the Newton and the conjugate gradient
methods.

If the Hessian matrix is sparse with a general pattern ($HESF="S’), we have two possibilities. Tf
$MODEL="FF’, then only the structurally nonzero second order derivatives have to be given analytically
by using the prescribed pattern. Numerical computation of the second derivatives is based on the fact
that a substantially lower number of differences has to be used in comparison with the dense case.
The determination of suitable differences is a combinatorial problem equivalent to some graph coloring
problem [18], [19]. If SMODEL="AF’ or SMODEL="AQ’ or $SMODEL="AP’, then only the nonzero
second derivatives of the approximating functions have to be given analytically by using the prescribed
pattern. Numerical computation of the second derivatives is based on the fact that the approximating
functions depend on a minor number of variables so that the number of differences is substantially lower
in comparison to the dense case.

If SMODEL="AQ’ (sum of squares), then the combination [82] of both the modified Newton and the
modified Gauss-Newton methods can be used. This choice is possible by using the macrovariable SMET.
If SMET=1, then the modified Newton method is used. If $MET=2, then the combined method is used.
The default value is SMET=2.

The possible specifications (type-decomposition-number) for sparse modified Newton methods in the
unconstrained case are:
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L-G-1, LM,
L-M-2,
L-M-3,
G-G-1,
G-M-3,
G-M-5.

The default choice is G-M-3. In the box constrained case we can only use specifications with $DE-
COMP="M’ and $NUMBER=3. The choice L-M-1 differs from the choice I-M-2. The last one corre-
sponds to the incomplete Gill-Murray decomposition.

If the Hessian matrix is sparse with a partitioned pattern (SHESF='B’), then a computation of
the second order derivatives is the same as in the case when the Hessian matrix is sparse with a general
pattern, but the partitioned realization is usually less efficient than the general one due to more expensive
matrix operations.

If SMODEL="AQ’ (sum of squares), then the combination of both the modified Newton and the
modified Gauss-Newton methods can be used. This choice is possible by using the macrovariable $MET
like the dense case. The possible specifications (type-decomposition-number) for partitioned modified
Newton methods in the unconstrained case are:

L-M-3,
G-M-3.

The default choice i1s G-M-3.

3.5. Modified Gauss-Newton methods for nonlinear least squares and nonlinear equations

Modified Gauss-Newton methods are specified by the statement $CLASS="GN’. These methods are
special optimization methods for either nonlinear least squares (SMODEL="AQ’) or nonlinear least pow-
ers (SMODEL="AP’) problems. Modified Gauss-Newton methods are based on the fact that the first
term in the Hessian matrix expression, the so-called normal equation matrix, depending on the first
derivatives of the approximating functions only, is a good approximation of the whole Hessian matrix.
The second term in the Hessian matrix expression can be approximated by using the variable metric
updates.

Modified Gauss-Newton methods are realized in four different forms (for SHESF="D’, $HESF="S",
SHESF="B’, SHESF="NQ’) depending on the Hessian matrix specification. Even if the modified Gauss-
Newton methods can be realized as the line search methods ($TYPE="L"), it is more advantageous to
realize them as the trust region methods ($TYPE="G").

If the Hessian matrix is specified to be dense (SHESF="D’), then the normal equation matrix is also
dense. In this case, we can use hybrid methods with dense updates:

$UPDATE="NO’- no update is used. The method utilizes the normal equation matrix (the first part of
the Hessian matrix expression).

$UPDATE="S’ -  the Dennis structured approach [28] is used. The second part of the Hessian matrix
is approximated by using modified variable metric updates. This part is added to
the normal equation matrix if the conditions for leaving the modified Gauss-Newton

method are satisfied.
$UPDATE="F’ - the Fletcher hybrid approach [3], [39] is used. The Hessian matrix is approximated

either by the normal equation matrix or by the matrix obtained by using the variable
metric updates. The decision between the two cases is based on the rate of function

value decrease and on the normal equation matrix conditioning.
SUPDATE="B’ - a variable metric update from the Broyden class is applied either to the normal

equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [82].

The default value is SUPDATE="NO’.
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Individual variable metric updates from the above families are specified by using the macrovariable
$MET. If SMET=1, then the BFGS method is used. If $MET=2, then the DFP method is used. If
$MET=3, then the Hoshino method is used. If $MET=4, then the original (unsafeguarded) rank-one
method is used. The value $MET=4 is allowed only if $UPDATE="S’ and it is the default in this case.
The value $SMET=1 is the default in the other cases.

Variable metric updates (SUPDATE=F or SUPDATE="B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian
matrix is updated), as it is described in [82]. Decision between these possibilities is mediated by the
macrovariable SMOT1. If $MOT1=0, then the cumulative update is used. If $MOT1=1, then the simple
update 1s used.

In the dense case, the modified Gauss-Newton methods can be realized with additional special matrix
decompositions that cannot be used in other cases. If $DECOMP="R’, then the recursive QR decompo-
sition [104] is used with an additional correction of the upper triangular matrix R. If $DECOMP="C’
then, moreover, the upper triangular matrix R is changed by using the rank revealing algorithm [17]
that can improve its conditioning. The possible specifications (type-decomposition-number) for dense
modified Gauss-Newton methods in the unconstrained case are:

LG1, LSI1, LRI, LCI1, LMI,
L-M-2,
L-M-3,
G-G-1, G-S1, G-R-1, G-C-1, G-M-I,
G-M-2
G-M-3,
G-M-5,
G-M-6,
TG-1, TS1, TRI1, TCI,
T-G-2,
T-S-5, T-C-5, T-M-5,
M-M-1,
M-M-2.

The default choice is G-M-5. In both the box constrained and the linearly constrained cases we cannot use
specifications $DECOMP="S’, $DECOMP="R’, $DECOMP="C". If $DECOMP="S’ or $DECOMP="C",
then variable metric updates cannot be used (S UPDATE="NO’). The specification $UPDATE="S’ can
be used only if $DECOMP="M".

If the Hessian matrix is specified to be sparse with a general pattern (SHESF="S’), then the normal
equation matrix has the same structure. In this case, we can use hybrid methods with sparse updates:

$UPDATE="NO’- no update is used. The method utilizes the normal equation matrix (the first part of
the Hessian matrix expression).

$UPDATE="S’ -  the Dennis structured approach [28] is used. The second part of the Hessian matrix
is approximated by using modified variable metric updates. This part is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method

are satisfied. ) ) ) .
SUPDATE="D’- the Brown-Dennis structured approach [13] is used. The Hessian matrices of approxi-

mating functions are approximated by using variable metric updates. These matrices
serve for approximating the second part of the Hessian matrix which i1s added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method

are satisfied. ] ] )
SUPDATE="B’ - a variable metric update from the Broyden class is applied either to the normal

equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [82].
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SUPDATE="M’ - a sparse update based on the Marwill projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [82].

The default value is SUPDATE="NO’.

Individual variable metric updates from the above families are specified by using the macrovariable
$MET like the dense case. The value $MET=4 is allowed only if either SUPDATE="S’ or §UPDATE="D’
and it is the default in this case. The value $SMET=1 is the default in the other cases excepting the case
$UPDATE="M" in which the macrovariable $MET is not utilized.

Variable metric updates (SUPDATE=M or §UPDATE="B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian
matrix is updated). Decision between these possibilities is mediated by the macrovariable $MOT1 simi-
larly as in the dense case.

If SUPDATE="D’, then we can use several switches for utilizing variable metric updates specified by
the macrovariable $MOT2. If $MOT2=0, then the Fletcher and Xu switch [39] is used. If $MOT2=1,
then a modification of the Fletcher and Xu switch is used. If $MOT2=2, then the Denis and Welsch
switch [31] is used. If $MOT2=3, then the Ramsin and Wedin switch [110] is used. The default value is
$MOT2=0.

The possible specifications (type-decomposition-number) for sparse Gauss-Newton methods in the
unconstrained case are:

L-G-1, LM,
L-M-2,
L-M-3,
G-G-1,
G-M-3,
G-M-4,
G-M-5,
T-G-1,
T-M-5.

The default choice is G-M-3. In the box constrained case we can use only specifications with $DE-
COMP="M’ and $NUMBER=3.

If the Hessian matrix is specified to be sparse with a partitioned pattern ($HESF="B’) then the normal
equation matrix has the same structure. If that is the case, then we can use hybrid methods with par-
titioned updates SUPDATE="NO’, $SUPDATE="S’, $SUPDATE="D’, SUPDATE="F’, SUPDATE="B’,
whose details were already explained above. Note that the partitioned realization is usually less efficient
than the general one due to more expensive matrix operations.

The possible specifications (type-decomposition-number) for partitioned Gauss-Newton methods are:

L-M-3,
G-M-3.

The default choice is G-M-3.

If the Hessian matrix is not specified (SHESF="NO’), then the normal equation matrix is not used.
Instead of that the Jacobian matrix, defining a linear least squares problem, is utilized in each iteration.
Such, so-called, normal equation free, Gauss-Newton methods are realized in two different forms (for
$JACA="D’ and $JACA="S’") depending on the Jacobian matrix specification.

If the Jacobian matrix is specified to be dense ($JACA="D’), then we cannot use hybrid methods
with variable metric updates (only the specification SUPDATE="NO is permitted). Moreover, dense,
normal equation free, Gauss-Newton methods can be used only in the unconstrained case.

The possible specifications (type-decomposition-number) for dense, normal equation free, Gauss-
Newton methods are:
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L-Q1, L-Al, LEI,

L-A-3, L-E-3,

G-Q-1, G-E-1,

G-Q-2, G-E-2,
G-A-3, G-E3,
G-A-4,

G_Q_5a

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification SDECOMP="E’ can be used only if NA=NF (system of nonlinear equations).

If the Jacobian matrix is specified to be sparse ($JACA=’S"), then we can use hybrid methods with
simple variable metric updates:

$UPDATE="NQO’- no update is used. The method utilizes original Jacobian matrix.
SUPDATE="V’ - the simple factorized BFGS update [82] is used. The second order information is

approximated by the unsymmetric rank-one update of the Jacobian matrix.
SUPDATE="R’- the simple factorized rank-one update [82] is used. The second order information is

approximated by the addition of a dense row to the Jacobian matrix.

If $UPDATE="V’ or SUPDATE="R’, then we can use several switches for utilizing variable metric
updates, specified by the macrovariable $MOT2, like the case with the specification $HESF="S" described
above. The default value is $MOT2=0.

The main advantage of sparse, normal equation free, Gauss-Newton methods consists in the fact that
the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row. If this
is the case, then the classical Gauss-Newton methods cannot be used. On the other hand, the normal
equation matrix has often a lower number of nonzero elements then the Jacobian one. As a result, the
classical Gauss-Newton methods are more efficient in this case.

The possible specifications (type-decomposition-number) for sparse, normal equation free, Gauss-
Newton methods are:

L-A-1, LEI,
L-E-2,
L-A-3, LES3,
L-E-4,
L-E-5,
G-A-1,
G-E-2,
G-A-3, G-E-3,
G-A4, G-EA,
G-A-5.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $SDECOMP="E’ can be used only if NA=NF (system of nonlinear equations). In the box
constrained case we can use only specifications with either SNUMBER=3 or $NUMBER=4. The choice
L-E-1 differs from the choice L-E-2. The last one corresponds to the incomplete LU decomposition.

3.6. Quasi-Newton methods for nonlinear least squares and nonlinear equations

Quasi-Newton methods are specified by the statement $CLASS="QN’. These methods are special
optimization methods for nonlinear least squares ($SMODEL="AQ’) problems including systems of non-
linear equations in the case when the first derivatives are not specified analytically (the macrovariable
$GMODELA is not defined). Quasi-Newtod methods use a rectangular matrix which is updated in every
iteration in such a way that it aproximates the Jacobian matrix as precisely as possible. In the UFO
system, the quasi-Newton methods are realized in two different forms (for $JACA="D’ and $JACA="S")
depending on the Jacobian matrix specification.
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There are two possibilities for dense problems ($JACA='D’) which are distinguished by using the
macrovariable SUPDATE:

SUPDATE="NO’- no update is used. Every approximation of the Jacobian matrix is computed numer-

ically by using differences.
$UPDATE="B’ - the Broyden family [12] of rank-one updates is used in almost all iterations. Only

after restart the Jacobian matrix 1s approximated numerically by using differences.

When $UPDATE="B’, then the individual quasi-Newton methods are specified by using the macrovariable
SMET. If SMET=1, then the first (good) Broyden update [12] is used. If SMET=2, then the second
Broyden update [12] is used. If $MET=3, then the second Greenstadt update [119] is used. If $SMET=4,
then the first Greenstadt update [119] is used. If SMET=5, then the first Todd OC update [63] is used.
If SMET=6, then the first Todd OCX update [63] is used. If SMET=T, then the second Todd OC update
[63] is used. If SMET=8, then the second Todd OCX update [63] is used. The default value is SMET=1.
Dense quasi-Newton methods can be used only in the unconstrained case.
The possible specifications (type-decomposition-number) for dense quasi-Newton methods are:

L-Q1, L-Al, LEI,

L-A-3, L-E-3,

G-Q-1, G-E-1,

G-Q-2, G-E-2,
G-A-3, G-E3,
G-A-4,

G-Q-5,

The default choice is G-Q-3. The specification $DECOMP="E’ can be used only if NA=NTF (system of
nonlinear equations).
If the Jacobian matrix is sparse with a general pattern ($JACA=’S’), then there are two possibili-

ties for computing an approximation of the Jacobian matrix by the differences. These possibilities are
distinguished by using the macrovariable SNUMDER:

$NUMDER=1-  derivatives of individual approximating functions are computed.
$NUMDER=2-  the Coleman-More [20] graph coloring algorithm is used.

Moreover, various sparse quasi-Newton updates that preserve pattern of the Jacobian matrix can be used.
If SNUMDER=1, then there are three choices of the quasi-Newton updates which are specified by the
macrovariable SUPDATE:

SUPDATE="NO’- no update is used. Every approximation of the Jacobian matrix is computed numer-

ically by using differences.
$UPDATE="B’ - sparse quasi-Newton updates are used in almost all iterations. Only after restart, the

Jacobian matrix 1s approximated numerically by using differences.
SUPDATE="S’ - modified Newton methods such as row scaling update are used in almost all itera-

tions. Only after restart the Jacobian matrix is approximated numerically by using
differences.

If SNUMDER=2, then there are four choices of the quasi-Newton updates which are specified by the
macrovariable SUPDATE:

SUPDATE="NO’- no update is used. Every approximation of the Jacobian matrix is computed numer-

ically by using differences.
$UPDATE="B’ - sparse quasi-Newton updates [114] are used in almost all iterations. Only after restart

the Jacobian matrix is approximated numerically by using differences.
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SUPDATE="S’ - modified Newton methods such as row scaling update are used in almost all itera-
tions. Only after restart the Jacobian matrix is approximated numerically by using

differences. o ] ) )
$UPDATE="C’ - cyclic column determination methods are used in almost all iterations. Only after

restart the Jacobian matrix is approximated numerically by using differences.

When $UPDATE="B’, then the individual quasi-Newton methods are specified by using the macrovariable
$MET. If SMET=1, then the Schubert update [114] is used. If $MET=2, then the Bogle-Perkins update
[10] is used. If $MET=3, then the column update [92] is used. When $UPDATE="S’ and $MET=0 then
the modified Newton method is used. When $UPDATE="S’ and $MET=1 then the row scaling update
[92] is used. When SUPDATE="C’ and $MET=0 then the cyclic column determination method [67] is
used. When SUPDATE="S’ and $MET=1 then the cyclic column determination method [67] followed
by the Schubert update [114] is used.
The possible specifications (type-decomposition-number) for sparse quasi-Newton methods are:

L-A-1, LEI,
L-E-2,
L-A-3, LES3,
L-E-4,
L-E-5,
G-A-1,
G-E-2,
G-A-3, G-E-3,
G-A4, G-EA,
G-A-5.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $SDECOMP="E’ can be used only if NA=NF (system of nonlinear equations). In the box
constrained case we can use only specifications with either SNUMBER=3 or $NUMBER=4. The choice
L-E-1 differs from the choice L-E-2. The later one corresponds to the incomplete LU decomposition.

3.7. Quasi-Newton methods with limited storage for nonlinear equations

Quasi-Newton methods with limited storage are specified by the statement $CLASS="QL’. These
methods are special methods for solving sparse systems of nonlinear equations ($SMODEL="AQ’) in a
case in which the first derivatives are not specified analytically (the macrovariable $§GMODELA is not
defined). Therefore, only the case NA=NF is permitted. Quasi-Newtod methods with limited storage use
an initial approximation of the sparse Jacobian matrix together with several small-size matrices which
are updated in every iteration in such a way that they aproximate the Jacobian matrix as precisely as
possible. There are two possibilities which are distinguished by using the macrovariable $UPDATE:

SUPDATE="NO’- no update is used. Every approximation of the Jacobian matrix is computed numer-
ically by using differences.

$UPDATE="B’- the Broyden good update of rank-one with limited storage [16] is used in almost all
iterations. Only after restart the Jacobian matrix is approximated numerically by
using differences.

The possible specifications (type-decomposition-number) for quasi-Newton methods with limited stor-
age are:

L-A-3, LE3.

The default choice 1s G-E-3.
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Besides the quasi-Newtod methods with limited storage, this class contains inverse column scaling
methods which are chosen by using the specification $DECOMP="T". There are two possibilities which
are distinguished by using the macrovariable SUPDATE:

SUPDATE="NO’- no update is used. Every approximation of the Jacobian matrix is computed numer-
ically by using differences.

$UPDATE="C’ - the inverse column scaling update [93] is used in almost all iterations. Only after
restart the Jacobian matrix is approximated numerically by using differences.

The possible specifications (type-decomposition-number) for inverse column scaling methods are:

LI,
L12,
G-I-1.

If SNUMBER=1, then a tridiagonal decomposition is used. If SNUMBER=2, then an incomplete LU
decomposition is used. The default choice is G-I-1.

3.8. Biconjugate direction methods for nonlinear equations

Biconjugate direction methods are specified by the statement $CLASS="BD’. These methods are
special methods for solving systems of nonlinear equations (SMODEL="AQ’) in the case when the first
derivatives are not specified analytically (the macrovariable SGMODELA is not defined). Therefore only
the case NA=NF is permitted. Biconjugate direction methods are very efficient for large problems with
computationally simple functions in nonlinear equations (S KCA=1). The main advantage of biconjugate
direction methods is that matrices are not used. This fact highly decreases storage requirements.

The individual biconjugate direction methods are specified by the macrovariable $DECOMP:

$DECOMP="E’ - 1inexact difference version of the Newton method for systems of nonlinear equations
[80]. This method is implemented either as the line search method or as the trust
region method and it is based on smoothed CGS algorithm.

Iterative methods for solving linearized equations can be modified by using tridiagonal decomposition.
This possibility is determined by the macrovariable $MOS2. If $MOS2=0, then tridiagonal decomposi-
tion is not used. If $MOS2=1, then tridiagonal decomposition is used before the iterative process. If
$MOS2=2, then tridiagonal decomposition is used as a preconditioner. If $MOS2=3, then both previous
cases are assumed. The default value is $MOS2=0.

The possible specifications (type-decomposition-number) for the biconjugate direction methods are:

L-E-3,
G-E-3.

The default choice 1s G-E-3.

3.9. Modified Brent method for nonlinear equations

The Brent method is specified by the statement $CLASS="BR’. This method is a special method
for solving dense systems of nonlinear equations ($MODEL="AQ’) in the case when the first derivatives
are not specified analytically (the macrovariable §GMODELA is not defined). Therefore, only the case
NA=NF is permitted. The Brent method does not need any additional specifications (macrovariables

$TYPE, $SDECOMP, $NUMBER are not used).
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3.10. Methods for linear programming problems

Linear programming methods are specified by the statement $CLASS="LP’. These methods are re-
alized in two different forms (for $JACC="D’ and $JACC="S’) depending on the constraint Jacobian
matrix specification.

If the constraint Jacobian matrix is dense ($JACC="D’), then we can use two different linear pro-
gramming methods based on the active set strategy:

$NUMBER=1 -  primal reduced gradient (null-space) method (like the method proposed in [45]), which

is a special implementation of the steepest descent reduced gradient method.
$NUMBER=2 - primal projected gradient (range-space) method which is a special implementation of

the steepest descent projected gradient method.

The possible specifications (type-number) for dense linear programming methods are L-1 and L-2.
If the constraint Jacobian matrix is sparse ($JACC=’S’), then we can use one linear programming
method based on the simplex algorithm:

$NUMBER=1 -  primal reduced gradient (null-space) method which is described in [130].
The possible specification (type-number) for sparse linear programming methods is L-1.

3.11. Methods for quadratic programming problems

Quadratic programming methods are specified by the statement SCLASS="QP’. These methods are
realized in two different forms (for $JACC="D" and $JACC="S’) depending on the constraint Jacobian
matrix specification.

If the constraint Jacobian matrix is dense ($JACC="D’), then we can use three different quadratic
programming methods based on the active set strategy:

$NUMBER=1 -  primal reduced gradient (null-space) method (like the method proposed in [47]) which

is a special implementation of the Newton reduced gradient method.
$NUMBER=2 - primal projected gradient (range-space) method (like the method proposed in [35])

which is a special implementation of the Newton projected gradient method.
$NUMBER=3 -  dual projected gradient (range-space) method (like the method proposed in [50]).

The possible specifications (type-number) for dense quadratic programming methods are L-1, L-2, and
L-3.

If the constraint Jacobian matrix is sparse ($JACC="S"), then we can use one quadratic programming
method based on the simplex algorithm:

$NUMBER=1 -  primal reduced gradient (null-space) method which is described in [130].
The possible specification (type-number) for sparse linear programming methods is L-1.

3.12. Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimization problems are specified by the statement $CLASS
="BM’. These methods use a solution of the special quadratic programming subproblem derived from
the cutting plane approach. This subproblem is in fact the same as in recursive quadratic programming
methods for minimax problems. Proximal bundle methods are realized only for unconstrained or linearly
constrained dense problems ($JACA="D"). The special quadratic programming subproblem can be solved
by using the following methods:

$NUMBER=1 -  dual projected gradient (range-space) method proposed in [70].
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$SNUMBER=2 - primal projected gradient (range-space) method which is a special implementation of
the Newton projected gradient method.

Proximal bundle methods are realized only as line search methods in two modifications, which are spec-
ified by the macrovariable SMEX. If $MEX=0, then a convex version is assumed. If SMEX=1, then
a nonconvex version is assumed and we can define a measure of nonconvexity using the macrovariable
$ETAB. The default value is SETA5=0.25. The possible specifications (type-number) for bundle methods
are [-1 and [-2. The default choice is L-1. There are implemented various methods for computing of
the weight parameter which are chosen by using the macrovariables $MOS and $MES2. If $MOS=1
and $MES2=1, then weights are updated using curvature of the one-dimensional quadratic function. If
$MOS=1 and $MES2=2, then weights are updated using minimum position estimate (suitable for poly-
hedral and nearly polyhedral functions). If $MOS=2, then weights are updated using the quasi-Newton
condition. Proximal bundle methods are used whenever $KSF=3 or $KSA=3. They can be also used for
minimax problems as it is shown in Section 3.14.

3.13. Bundle-Newton methods for nonsmooth optimization

Bundle-Newton methods for nonsmooth optimization problems are specified by the statement $CLASS
=’BN’. These methods use a solution of the special quadratic programming subproblem derived from
the cutting plane approach which contains second order information. This subproblem is in fact the
same as in recursive quadratic programming methods for minimax problems. Bundle-Newton methods
are realized only for unconstrained or linearly constrained dense problems (3JACA="D’). The special
quadratic programming subproblem can be solved by using the following methods:

$NUMBER=1 -  dual projected gradient (range-space) method proposed in [70].
$NUMBER=2 - primal projected gradient (range-space) method which is a special implementation of
the Newton projected gradient method.

A nonconvex version is assumed and we can define a measure of nonconvexity using the macrovariable
$ETAB. The default value is SETA5=0.25. The possible specifications (type-number) for bundle methods
are L-1 and L-2. The default choice is I-1. Bundle-Newton methods can be used when $KSF=3 or
$KSA=3. They can be also used for minimax problems as it is shown in Section 3.14.

3.14. Methods for minimax problems.

Minimax problems are specified by the choice $MODEL="AM’. These problems can be solved using
four classes of methods:

$CLASS="BM’ - proximal bundle methods.

$CLASS="BN’ -  bundle-Newton methods.

$CLASS="LP’ -  recursive linear programming methods.

$CLASS="VM’ - recursive quadratic programming variable metric methods. An approximation of La-

grangian function Hessian matrix is updated in each iteration using the variable metric

updates belonging to the Broyden family.
$CLASS="MN’- recursive quadratic programming modified Newton methods. The Lagrangian func-

tion Hessian matrix is computed in each iteration either analytically or numerically.

the default value is $CLASS="VM’. Variable metric methods are the same as in Section 3.3 with the
choice $DECOMP="G’ and $UPDATE="B’ (values $SMETS=1 - $MET=12 can be used). Similarly,
modified Newton methods are the same as in Section 3.4 with the choice $DECOMP="G’ (the Gill-
Murray decomposition is used).

Even if minimax problems can be solved by using bundle methods described in Sections 3.12 - 3.13, it
is more efficient to use recursive linear programming or recursive quadratic programming methods that
utilize a special structure of minimax problems.
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Recursive linear programming methods are realized as trust region methods with box constrained
subproblems. The special linear programming subproblem, which is derived from the minimax problem,
is solved by a primal projected gradient (range-space) method which is a special implementation of the
steepest descent method.

Recursive quadratic programming methods are realized in three different forms:

$TYPE="L" - line search methods.
$TYPE="G’ - general trust region methods .
$TYPE="C’ - general trust region methods with second order corrections [40].

If STYPE="L’, then The special line search method ($MES=5) described in [71] can be used successfully.
The special quadratic programming subproblem, which is derived from the minimax problem, can be
solved by using two different methods:

$NUMBER=1 -  dual projected gradient (range-space) method proposed in [70].
$NUMBER=2 - primal projected gradient (range-space) method which is a special implementation of
the Newton projected gradient method.

All of the above methods are realized only for dense unconstrained or linearly constrained problems.
The possible specification (type-number) for recursive linear programming methods is G-1. The possible
specifications (type-number) for recursive quadratic programming methods are:

The default choice 1s L-1.

3.15. Recursive quadratic programming methods for nonlinear programming problems.

Recursive quadratic programming methods for nonlinear programming problems are specified by the
statement SFORM="SQ’. These methods belong to two following classes:

$CLASS="VM’ - recursive quadratic programming variable metric methods. An approximation of La-
grangian function Hessian matrix is updated in each iteration using variable metric

updates.
$CLASS="MN’- recursive quadratic programming modified Newton methods. The Lagrangian func-

tion Hessian matrix is computed in each iteration either analytically or numerically.

the default value is $CLASS="VM’. Variable metric methods are the same as in Section 3.3 with the
choice SDECOMP="G’ and $UPDATE="B’ (values SMET=1 - $MET=12 can be used). Similarly, mod-
ified Newton methods are the same as in Section 3.4 with the choice $DECOMP="G’ (the Gill-Murray
decomposition is used).

Recursive quadratic programming methods for nonlinear programming problems are realized as line
search methods ($TYPE="L’) with the |;-exact penalty function. They are like the methods proposed in
[108]. The special line search method ($MES=5) for {;-exact penalty function can be used successfully.
The quadratic programming subproblem can be solved by using two different methods:

$NUMBER=1 -  dual projected gradient (range-space) method (like the method proposed in [50]).

$NUMBER=2 -  primal projected gradient (range-space) method (like the method proposed in [35])
which is a special implementation of the Newton projected gradient method.
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Recursive quadratic programming methods are realized only for dense nonlinear programming prob-
lems. The possible specifications (type-number) for these methods are L-1 and L-2. The default choice
1s L-1.

3.16. Recursive minimax optimization methods for nonlinear programming problems.

Recursive minimax optimization methods for nonlinear programming problems are specified by the
statement SFORM="SM’. These methods belong to two following classes:

$CLASS="VM’ - recursive minimax optimization variable metric methods. An approximation of La-
grangian function Hessian matrix is updated in each iteration using variable metric
updates.

$CLASS="MN’ - recursive minimax optimization modified Newton methods. The Lagrangian function

Hessian matrix is computed in each iteration either analytically or numerically.

the default value is $CLASS="VM’. Variable metric methods are the same as in Section 3.3 with the
choice SDECOMP="G’ and $UPDATE="B’ (values SMET=1 - $MET=12 can be used). Similarly, mod-
ified Newton methods are the same as in Section 3.4 with the choice $DECOMP="G’ (the Gill-Murray
decomposition is used).

Recursive minimax optimization methods for nonlinear programming problems are based on the trans-
formation of a nonlinear programming problem to a sequence of minimax problems with /,,-exact penalty
function (see [71]). These methods are realized as line search methods ($TYPE="L"). The special line
search method ($MES=5) for [.,-exact penalty function can be used successfully. The special quadratic
programming subproblem, derived from the minimax formulation, can be solved by using two different
methods:

$NUMBER=1 -  dual projected gradient (range-space) method proposed in [70].
$NUMBER=2 - primal projected gradient (range-space) method which is a special implementation of
the Newton projected gradient method.

Recursive quadratic programming methods are realized only for dense nonlinear programming prob-
lems. The possible specifications (type-number) for these methods are L-1 and L-2. The default choice
1s L-1.

3.17. Imexact recursive quadratic programming methods for large sparse equality con-
strained nonlinear programming problems.

Inexact recursive quadratic programming methods for equality constrained nonlinear programming
problems are specified by the statement $FORM="SE’. These methods, which are designed for large
sparse problems, belong to the following class:

$CLASS="MN’ - 1inexact recursive quadratic programming modified Newton methods. The Lagrangian
function Hessian matrix is computed in each iteration either analytically or numeri-
cally.

Inexact recursive quadratic programming methods for equality constrained nonlinear programming
problems are based either on an inexact solution of the Karush-Kuhn-Tucker system [89] or on a decom-
position of Lagrangian function Hessian matrix followed by an inexact solution of a range space system
for the Lagrange multipliers [85]. The first approach, specified by the choice $DECOMP="K’, is realized
in three variants:

$NUMBER=1 -  exact sparse Bunch-Parlett decomposition [32] of the indefinite Karush-Kuhn-Tucker
system.
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$NUMBER=3 - inexact smoothed conjugate gradient method for the indefinite Karush-Kuhn-Tucker

system with a precision control based on various penalty functions.
$NUMBER=4 -  inexact MINRES method for the indefinite Karush-Kuhn-Tucker system with a pre-

cision control based on various penalty functions.

A particular realization of both inexact smoothed conjugate gradient method and inexact MINRES
method depends on specifications given by the macrovariables $MOS1, $MOS2, $MOS3. The macrovari-
able $MOS1 specifies a precision control and a choice of penalty parameter. If $MOS1=0, then a precision
control is suppressed. If $MOS1=1, then a presision control, together with a basic choice of the penalty
parameter, is used. If $MOS1=2, then a presision control, together with an extended choice of the
penalty parameter, based on condition of positive definitness, is used. The macrovariable $MOS2 spec-
ifies a preconditioning technique. If $MOS2=0 then preconditioning is suppressed. If $MOS2=1, then
block diagonal positive definite preconditioner [133] is used. If $MOS2=2, then more complex posi-
tive definite preconditioner [133] is used. If $MOS2=3, then indefinite preconditioner [89] is used. The
macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method. If $MOS3=0, then
a residual smoothing is suppressed. If $MOS3=1, then a one-dimensional residual smoothing is used.
The second approach, specified by the choice $DECOMP="G’, is realized in two variants:

$NUMBER=3 - sparse Gill-Murray decomposition of the Lagrangian function Hessian matrix followed
by the inexact smoothed conjugate gradient method for positive definite range space

system with a precision control based on various penalty functions.
$NUMBER=4 - sparse Bunch-Parlett decomposition of the Lagrangian function Hessian matrix fol-

lowed by inexact MINRES method for an indefinite range space system with a preci-
sion control based on various penalty functions.

Individual penalty functions are determined by using the macrovariable SMEP. If $MEP=1, then
the [ exact penalty function is used. If $MEP=2, then the augmented Lagrangian function is used. If
$MEP=3, then the combined {; and augmented Lagrangian function is used.

The UFO system allows us to choose a second order correction for overcoming the Maratos effect,
various Lagrange multipliers updates and various forms of augmented Lagrangian function. This is
affected by the macrovariables SMEP1, $SMEP2, $MEP3. The macrovariable $MEP1 specifies a second
order correction. If SMEP1=1, then the second order correction is suppressed. If SMEP1=2, then the
second order correction is determined as being a least squares solution of the shifted constraint system.
The macrovariable SMEP2 specifies estimates of Lagrange multipliers at the begining of each iteration.
If $SMEP2=1, then the initial estimate is taken from the previous iteration. If $MEP2=2, then the initial
estimate 1s determined as being a least squares solution of the first part of the Karush-Kuhn-Tucker
system. The macrovariable $MEP3 specifies penalty term of the augmented Lagrangian function. If
$MEP3=1, then the basic penalty term is used. If SMEP3=2, then the extended Boggs-Tolle [9] penalty
term is used.

The possible specifications (type-decomposition-number) for inexact recursive quadratic programming
methods for equality constrained nonlinear programming problems are

L-K-1,
L-K-3, L-G-3,
L K4, L-GA.

The default choice 1s L-K-3.

3.18. Methods for initial value problems for ordinary differential equations

Methods for initial value problems for ordinary differential equations are specified by using the
macrovariable $SOLVER. The UFO system contains five types of integration methods:

$SOLVER="DP5’- the Dormand and Prince method of the fifth order with a stepsize control for nonstiff
problems.
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$SOLVER="DP&’- the Dormand and Prince method of the eighth order with a stepsize control for nonstiff

problems.
$SOLVER="EX1’- the extrapolation method with a stepsize control, based on the midpoint rule, for

nonstiff problems.
$SOLVER="RD5’- the Radau method of the fifth order with a stepsize control for stiff problems.

$SOLVER="RS4’- the Rosenbrock method of the fourth order with a stepsize control for stiff problems.

The default value is $SOLVER="DP8&’. These methods, described in [55], use a stepsize control based on
a local truncation error.

A solution to an initial value problem for ordinary differential equations can be stored for subsequent
processing. An extent of stored data is determined by using the macrovariable $MED. If SMED=0,
then no data are stored. If $MED=1, then data in all solution steps are stored. If $SMED=2, then data
in equidistant mesh points are stored. The number of mesh points is specified by using the statement
$NA=number_ of_ mesh_ points in the last case.

3.19. Methods for direction determination

Optimization methods, contained in the UFO system, are usually implemented in such a way that they
use the same modules for direction determination. These modules, realized with different kinds of matrix
decomposition, are distinguished by using the macrovariables $TYPE and SNUMBER. The meaning of
the specification $TYPE was explained above. Now we will explain the specification $NUMBER..

If $TYPE="L", then line search methods are supposed. In this case, relatively simple procedures for
direction determination are used. There are five possibilities:

$NUMBER=1 - direct methods for solving linear systems based on various matrix decompositions.
These decompositions are interesting, especially in the sparse case. The Gill-Murray
decomposition [46] of the Hessian matrix is applied if $SDECOMP="M’ or $DE-
COMP="G’. The orthogonal QR decomposition [132] of the Jacobian matrix is used
if $DECOMP="A". The complete LU decomposition [25] of the Jacobian matrix is
used if $DECOMP="E’. The Bunch-Parlett decomposition [32] of the sparse Karush-
Kuhn-Tucker matrix is used if $DECOMP="K’. Moreover, symbolic decomposition is
always determined before the iterative process in the sparse case, so that only numer-

ical computations with known factors are carried out in the subsequent iterations.
$NUMBER=2 - an alternative possibility to the previous case. The Schnabel-Eskow decomposition

[113] is applied if $SDECOMP="M". In the sparse case, the incomplete Gill-Murray
decomposition is used if $DECOMP="M’ and the incomplete LU decomposition is

used if SDECOMP="E’
$NUMBER=3 - inexact iterative methods. The conjugate gradient method [27] for solving linear sys-

tems with the Hessian matrix is used if §DECOMP="M’. The CGLS method [103] for
solving linear systems with the normal equation matrix is used if SDECOMP="A".
The smoothed CGS method [128] for solving linear systems with the Jacobian matrix
is used if $DECOMP="E’. The smoothed conjugate gradient method [89] for a linear
system with the Karush-Kuhn-Tucker matrix is used if $DECOMP="K’. The preci-
sion is specified by the macrovariable $MOS. If $MOS=1, then the simple strategy
is used. If $MOS=2, then the geometric decreasing strategy is used. If $MOS=3,
then the harmonic decreasing strategy is used. If SDECOMP="M" and $HESF="S’,
then the conjugate gradient method can be preconditioned by using the incomplete
Gill-Murray (IGM) decomposition. This possibility is specified by the macrovariable
$MOS2. If $MOS2=0 then preconditioning is suppressed. If $MOS2=1, then IGM de-
composition is used. Similarly, if SDECOMP="E’ and $JACA="S’, then the smoothed
CGS method can be preconditioned by using either the incomplete LU (ILU) decom-
position or the SSOR iteration. This possibility is specified by the macrovariable
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$MOS2. If $MOS2=0 then preconditioning is suppressed. If $SMOS2=1, then ILU
decomposition is used. If $MOS2=2, then SSOR iteration is used. Finally, if $DE-
COMP="K’ then the smoothed conjugate gradient method can be preconditioned
by using various preconditioners. This possibility is specified by the macrovariable
$MOS2. If $MOS2=0 then preconditioning is suppressed. If $MOS2=1, then block di-
agonal positive definite preconditioner [133] is used. If $MOS2=2, then more complex
positive definite preconditioner [133] is used. If $MOS2=3, then indefinite precondi-

tioner [89] is used.
$NUMBER=4 - inexact iterative methods. The MINRES method for solving linear systems with the

Karush-Kuhn-Tucker matrix is used if $DECOMP="K’. The precision is specified by

the macrovariable $MOS as in the previous case.
$NUMBER=5 - inexact iterative methods. The smoothed BICGSTAB method [134] for solving lin-

ear systems with the sparse Jacobian matrix is used if SDECOMP="E’. The QMR
method [41] for solving linear systems with the Karush-KKuhn-Tucker matrix is used
if $SDECOMP="K’. The precision is specified by the macrovariable $MOS as in the
previous case.

If the line search method is used then a descent property of the determined direction is tested. If

—sTg>colls gl

where s7g is the directional derivative, s is the direction, and g¢ is the objective function gradient, then
the direction is accepted. In the opposite case the optimization method is restarted. The value ¢y is
specified using the macrovariable $EPSO0.

If $TYPE="G’, then trust region methods are supposed. The initial trust region radius can be
specified by the statement $XDEL=trust_ region_ radius, but the default automatically derived value is
recommended. Trust region methods can be internally scaled. This way is very advantageous for nonlinear
regression problems containing exponentials. The trust region scaling is specified by the macrovariable
$MOS1. If $MOS1=1, then no scaling is performed. If $MOS1=2, then the scaling coeflicients are derived
from the normal equation matrix diagonal elements [78]. There are six possibilities:

$NUMBER=1 - so-called dog-leg methods based on various matrix decompositions. These decompo-
sitions are interesting especially in the 