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Abstract

A subclass of networks with cascade architecture is presented� We investigate its ap

proximation capabilities by means of a continued fraction framework� It is shown that
such network can approximate any meromorphic function arbitrarily well	 which in the
real domain covers even functions with second order discontinuity� Used techniques
imply various alternative learning algorithms that are discussed�
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� Introduction

The most widely used and studied types of arti�cial neural networks have been mul

tilayer perceptrons trained by various modi�cations of back�propagation algorithm�
The learning process of such networks based on gradient descent in high
dimensional
spaces is usually very time consuming� That is one of the reasons why cascade archi

tectures of neural networks have appeared recently	 together with incremental learning
algorithms that gradually add new units to the network in order to achieve a better
precision� In each step of these algorithms only the weights corresponding to added
unit are changed while the rest of the weights is preserved� A typical example of such
network architecture and learning algorithm is Fahlmans Cascor network �Fahlman	
������ In many applications this network can learn reasonably faster in comparison
with multilayer perceptrons� A theoretical background for incremental learning algo

rithms in multilayer perceptron networks which is based on Jones theorem concerning
convergence of iterative approximation in a Hilbert space was laid by Barron	 �����

It has been shown that multilayer perceptron networks with at least three layers
are capable to represent any reasonable input�output function with arbitrary precision�
This property	 called universal approximation	 is also true for various other architec

tures� This is why other criteria for judging the quality of the networks are being
investigated� One of them might be the learning time	 which seems to be a crucial
problem especially in practical applications of neural networks�

In the following we consider architectures with richer topologies than classical mul

tilayer perceptrons	 particularly the ones in which connections are not limited only to
units in neighboring layers� We call the architectures in which there are lateral connec

tions between the neurons in one layer going from left to right cascade architectures�

In this article we introduce a subclass of cascade architectures and describe its
approximation capabilities� It is shown that in complex domain any meromorphic
function can be approximated arbitrarily well	 which in real case includes even func

tions with the second order discontinuity� Moreover	 rational functions are exactly
representable by this architecture� The continued fraction calculus used in proofs pro

vides new approaches to learning� In the following we brie�y introduce two alternative
learning algorithms�

� Feedforward and Chain Architectures

By multilayer perceptron network we mean a network consisting of several layers of
units �neurons� connected in a feedforward manner such that each unit in one layer
has connections �synapses� with all units in the neighboring layers� It means that
synapses between the preceding and the following layer forms a complete bipartite
graph� Each connection has a real parameter	 called weight	 which is a subject of
learning� The output y of one unit having inputs xi with assigned weight values wi

and a threshold b is computed as

y � ��
nX

i��

wixi � b��



where ��t� is a sigmoidal function	 i�e� non
decreasing function with the following
limits� limt�� ��t� � � and limt��� ��t� � �� The most popular function�logistic
sigmoid�writes as�

��t� �
�

� � exp��t�

In the following	 we consider a class of one
hidden
layer networks with a single
linear output� The horizontal connections in the hidden layer connect the i
th unit
with the �i � ��
th one �see Figure ����� The hidden units compute functions of the
form�

o � ��z� y� �
az � b

cz � d � y
� �����

where y corresponds to the output of the preceding unit	 z is the actual network input
and a� b� c� d are complex parameters� We call a member of this subclass of cascade
networks with the activation function of the form ����� a chain network� On the
contrary to real numbers it is not clear which function should be chosen as an activation
function of one unit� For example	 there is no straightforward complex counterpart of
the logistic sigmoid� That is the reason why various activation functions are used �cf�
Hirose	 ����a	 ����b��� In our considerations we use the function of the form ��� which
is widely used in the complex number theory and �ts into the framework of continued
fractions that will be used in the following� Furthermore	 this function�as the simplest
possible rational function�is very easy computable but it is still able to approximate
discontinuities�

Figure ���� Multilayer perceptron and chain network

In order to formulate our results we need to de�ne two classes of functions�

De�nition � By F we denote the set of all functions f � C � C representable by a
chain network with any �nite number of hidden units�

De�nition � Denote E the set of functions f�z� � C � C of the form p�z�
q�z� � where p

and q are polynomials�

Finally	 remind that a homogeneous polynomial of n variables Hn�x�� � � � � xn� has a
form�

Hn�x�� � � � � xn� �
mX
j��

aj
nY

i��

xqij �

such that the sums
Pn

i�� qij are equal for every j � � � � � m�

� Continued Fractions

A function realized by chain network can be straightforwardly represented in the form
of a continued fraction which formal de�nition immediately follows�

�



De�nition � By a continued fraction we mean the following formula�

b� �
a��z�

b��z��
a��z�

b��z��
a��z�

b��z��
� ��

�����

where ai and bi are complex domain functions of the variable z�
A partial continued fraction Pn�z� is an expression having only a �nite number of

coe�cients ai� bi�
Pn�z��b��

a��z�

b��z��
a��z�

b��z��
a��z�

bn���z��

���
bn���

an�z�
bn�z�

If limn��Pn�z� exists and equals v� we say that continued fraction ���	
 has value v�

The framework of continued fractions represents a classical part of analytical calcu

lus with basic results dating back to Euler	 ����� We introduce additional de�nitions
and theorems here that are needed in the proof of the main theorem in the following
section�

The main relation between a power series and a continued fraction describes the
Euler identity �Danilov et al	 ������

Theorem � Euler� If expressions on both sides exist then the following equation
holds�

�X
i��

ciz
i �

c��c�z

�� c�z

c��c�z�
c�c�z

c��c�z����

� � �
���

� ci��ciz

ci��ciz
�

� � �

The following de�nition and two theorems from Wall	 ���� show that a power series
with negative exponents can be expanded as a continued fraction	 as well�

De�nition � A sequence of polynomials Bp�u��p � m� is called orthogonal relative
to the sequence c if Z

Bp�u�Bq�u�d�c�u�

�
� � � p �� q� p� q � m
�� � � p � q � m

Theorem � A power series
P
�

i���ci�z
i��� can be expanded into a continued fraction if

and only if a sequence of polynomials can be constructed which are orthogonal relative
to the sequence of coe�cients c�� c�� � � � � cn� � � ��

Theorem � Let
P
�

i���ci�z
i��� be a power series and �p determinants�

�p �

����������

c� c� � � � cp
c� c� � � � cp��

���
cp cp�� � � � c�p

����������
�

such that�

�



	� either �p �� � for every p

�� or there is a number m� �p �� � for p � m and �p � � for p 	 m�

Then a sequence of polynomials orthogonal relative to the sequence fc�� c�� � � �g can be
constructed�

� Main results

It is clear from the previous sections that there is a obvious correspondence between
functions that are realized by a chain network and continued fractions� Exactly�

Fact 	 Any function f � F has the form of a partial continued fraction Pn� where n
is the number of hidden units in the network�

The following theorem says that functions realizable by chain networks can approx

imate any meromorphic function� It means that for any function and any precision we
can �nd its approximator f � F 	 in another words�there is a network that	 in princi

ple	 can learn this function arbitrarily well� Due to a limited space we only sketch the
main ideas of the proof�

Theorem � A chain network can approximate any meromorphic function with arbi�
trary precision� Moreover� function of class E can be exactly represented by a chain
network�

Sketch of proof� The typical way of proving universal approximation property is via
the notion of density� In our case we prove that the set of functions F is dense in the
space of meromorphic functions with the uniform metrics�

Any meromorphic function f can be expressed by means of a Laurent series	 which
is an in�nite sum of the form

f�z� �
�X

i���

aiz
i �

�X
i��

�ci�z
i��� �

�X
i��

ciz
i�

We can divide the sum into two parts according to the sign of exponent i� Now the
problem is to realize both sums by continued fractions� Here we use two fundamental
theorems that show how to realize the above two power series by continued fractions�
The former can be expressed according to the Theorem �	 the latter is rewritten ac

cording to the Euler identity ����

The last technical thing deals with obeying slight conditions of the Theorem � and
Euler identity� As our series are of a general kind	 we have to rewrite them as a sum
of three series satisfying necessary presumptions	 which �nishes the proof� �

So far	 we have considered only chain networks with one
dimensional inputs and
outputs	 but the previous result can be extended for multiple
input networks as well�
This is done by means of the dimension reduction	 which is a technique based on
approximation of multi
variable functions by plane waves� The following theorem is a
corollary of a result by Vostrecov and Kreines	 �����

�



Theorem �
 Let Wn is the set of weight vectors of dimension n and N �Hn� is the
set of null points of homogeneous polynomial Hn of n variables� If Wn �� N �Hn� for
any Hn� then there exist continuous functions 
ik of single variable such that the set
of functions �k�x� of the form �k�x� �

Pk
i�� 
ik�wi � x�� where wi � Wn� is dense in

the set of all continuous functions�

Last generalization can be done to multiple outputs	 i�e� to vector functions F �
Cn � Cm	 through Cartesian product of one dimensional output spaces� Thus we
obtain general networks with multiple inputs and outputs�

� Learning possibilities

There are various possibilities of learning algorithms for the chain architectures� We
just brie�y mention an application of three methods here	 details can be found in
Neruda and �St�edr�y	 �����

First	 it is possible to derive a variant of the back propagation learning algorithm
�Rumelhart et al	 ����� for this architecture� The error propagates from top of the
network to the bottom as usual	 but it is important that the computation in the hidden
layer follows the lateral connections of units� It means that the forward phase goes from
left to right �considering the orientation in �gure ����	 while the backward computation
proceeds against the direction of horizontal connections�

Imagine an incremental learning algorithm that gradually adds new hidden units
placing each one as the leftmost unit in the hidden layer� After adding the unit we
keep the old parameters frozen and adapt only the parameters of the new unit� This
corresponds to adding a new term to the partial continued fraction while the old terms
remain the same� If the adaptation algorithm is reliable� this sequence of partial
fractions converges to the desirable function� In any case we can rely on some gradient
adaptation algorithm with known problems of local minima� Alternatively	 the Cascor
algorithm can be used since the chain networks create a subclass of cascade networks�

An interesting approach uses a result due to Viskovatov �cf� Danilov et al	 �����
about the continued fraction expansion of rational functions� According to the following
formula we can incrementally create a continued fraction based on the coe�cients of
the rational function�

a�� � a��x � a��x
� � � � �� a�nx

n � � � �

a�� � a��x � a��x� � � � �� a�nxn � � � �
�

a��
a���

a��x

a���
a��x

a������

�����

where
amn � am����am���n�� � am����am���n��� �����

Having the training set	 we can imagine a gradient learning algorithm that �ts
the data by a rational function� Using the above formula ��� one can directly set the
parameters of a chain network� Moreover	 it is not necessary to have this interlink	

�For instance� suppose quite unrealistic case that the function has a form of a power series� In this
case we can use the Euler formula to explicitly compute parameters in each step�

�



since we can directly derive an adaptive algorithm for the network parameters	 which is
based on the recursive formula ���� So far	 this approach works only for one
dimensional
case but it would be possible to use the theorem �� to extend it to a multiple input
dimension�

� Discussion

In our considerations we used the simplest possible activation function of a single unit
with respect to the form of continued fraction� It is known from the continued fraction
theory	 that convergence can be speeded up by the choice of polynomials of higher
degree� The concrete usage of such transformation is a question of balance between
the complexity of one neuron computations and the number of neurons in the network�

Approximation of functions by perceptron or RBF units can be seen as geometrically
intuitive� This is not true in the case of our chain networks	 where the activation
function	 especially in the complex domain	 together with the gradual composition
does not provide a simple view� On the other hand	 it follows from the continued
fraction properties that the obtained approximation should be optimal in a sense of
the minimization of the number of multiplication and division operations�

�
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