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Abstract

Mean value of the square of a generalized score function is shown to be interpretable
as an information associated with a continuous random variable. This information is
in particular cases equal to the Fisher information of the corresponding distribution.
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[. INTRODUCTION

It is still an open question what a quantity could be taken as a measure of the
average amount of information associated with a continuous random variable X with
density p. It is well known that it cannot be the natural candidate, the Shannon’s
differential entropy

hs(X) = Ey(~logp) = [ ~logp(x) plx) da.

since it can be negative. We show that such a quantity could be a suitably modified
Fisher information.

Let T C R, where R denotes the real line, be an open interval with the o-field Br
of its Borel subsets and let © C R™ be an open set. Consider the usual parametric
model

Pr={T,Br,p(ulf) :ueT0c0O}

with densities regular in the Cramer-Rao sense. A simple particular case is the loca-
tion model {R,Br,p(x — p),x,pn € R}, where the location parameter p represents a
shift along the x-axis.

The Fisher information is usually defined with respect to parameters of Py. Recall
that the Fisher information matrix (g;x(6))7" is given by

g]‘k(@) = EpS]‘Sk, j, k= 1, sy M2,
where a1 (ul6)
og plu
si(ulp) = 2220 (0.1)
/ 09,

is the likelihood score for the parameter 6;.
The concept of the Fisher information of a distribution is much less frequent. It is

defined (e.g., [2], pp.494) as

[(X) = E,s* = /R ¥ (z)p(z) d, (0.2)

where s is the score function of the distribution p, given by

s(x) =— ) (0.3)

It 1s easy to see that in the location model we have

I(X) = g11(p) ] u=o- (0.4)

Consider the function s* : R — [0,00). In the case of an unimodal distribution
on (R,Bgr), it attains its minimum value at the least informative point @ = 0 of the
distribution. By (0.4), its mean value F,s? has the meaning of an information. It
seems that the value s?(x) could represent the relative information contained in z € R
(relative to other points 2’ € R), under the assumption that the true density is p.
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However, in cases of distributions whose parametric space does not contain the
location parameter, (0.2) is different from any of the diagonal terms of the Fisher
matrix. There is no reason in such cases to interpret F,s® as an information. It
concerns all random variables taking values in 17" # R.

A suitable generalization of the score function for cases 1" # R has been given in
[3]. We show that the mean value of the square of this generalized score function is
proportional to a certain diagonal term of the Fisher matrix, so that it can be taken as
an information contained in a continuous random variable in a general regular case.

II. GENERALIZED SCORE FUNCTION

Let Il be the set of all absolutely continuous distributions on (7', Br) with densities
continuously differentiable a.e.

Definition 1: Let Ur be a random variable with density p € Il7. Let a random
variable Ur be given by the relation Ur = ¢ '(Ur) where ¢ : R — T is sufficiently
smooth and strictly increasing. A real-valued function ¢ : T — R, given by

q(u) = —— —=(=L(u)p(u)), (0.5)

where

(0.6)

will be called a generalized score function (GSF) of Uy.

Random variable Ug and its distribution will be called original, and Ur = ¢(Ug)
and its distribution @—related. The concept of the GSF obviously depends on the
choice of the mapping . We selected it in the simplest possible way for the three
principally different intervals:

(i) In the case of T'= R we set Up = X, and, naturally, o(X) = X. Then L(z) =1
and the GSF of random variable X is the usual score function (0.3).

(i) In the case of T = (0,00) we set Uy = Z and Z = p(X) = ¢X. Then L(z) = =
and X = ¢~ !(Z) = In Z. This choice is certainly in the spirit of statistics. Positive data
are often logarithmically transformed, and some pairs of distributions in current use
defined on Borel subsets of T' = (0, 00) and R are often considered to be logarithmically
related. The GSF of Z is given by the explicit formula

)
Q(Z) - 1 p(Z)

(iii) Let a,b € R. In the case of T = (a,b) we set Ur = W. It might seem that
there are many possible transformations ¢, : R — (a, b) and that the concept of GSF

=—1—zs(z). (0.7)

on a finite interval (a, b) (or [a, b]) should be ambiguous. In fact, this is not the case.
To be consistent with (ii), we require
lim ;! (w) = Inw. (0.8)

a—0
b—oo



A general mapping satisfying (0.8) is

) = n (== (0.9)

where a < ¢ < b and, incidentally, ¢ = ¢(a,b) with lim ¢(a,b) = 1. The Jacobian of
b—o0

the transformation (0.9) and the corresponding GSF do not depend on ¢. Indeed,

L™ (w) = %(‘P;bl(w)) ~ (w _ba)_(ljl— w)

Thus, the general transformation (0.9) provides a unique GSF on (a, b) in the form
gw) = (b= ) [~(b+ a) + 20 — (w — a)(b— w)p'(w)/p(w)],  (0.10)
which reduces on 7' = (0, 1) into
glw) = —1 + 2w — w(l - w)s(w).

We mention some properties of the GSF.

Proposition 1: Let Ur and Ur = ¢(Ugr) be random variables with densities pg, p
and GSFs ¢g, ¢, respectively. Then,

p(u) = pr(e™ ()L™ (u) (0.11)

q(u) = qr(p~ (u)). (0.12)
Proof. The relation between distribution functions F' and Fr of Ur and Ug,
respectively, is F(u) = Fr(p~'(u)), so that

p(u) = dF(u)/du = dFr(z)/dz - dv/du = pr(x) - de™" (u)/du.

By (0.5),

|

The GSF of Ur is thus the transformed score function of the original random

variable Ugp. Further, we have F,qg = 0. Indeed, letting ¢; = inf{u : v € T},
¢z = sup{u:u €T} and using (0.5) and (0.11),

Eyg= [ " a(wp(u) du = ~L)p(u)|3 = pa(e) = =0.

The GSF can be bounded or semi-bounded. It follows immediately from (0.12)
that if the GSF of an original distribution is unbounded, bounded, or semibounded,
the GSF of a ¢-related distribution must be unbounded, bounded, or semibounded,
respectively. Now consider distributions on (R, Bgr). If pr ~ e™", the corresponding
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qr = O(z); whereas if pp ~ eIl then ¢z = O(1). Thus, a bounded GSF indicates
a slow decay of the corresponding density to zero, which characterizes heavy-tailed
distributions.

The concept of GSF can easily be generalized for the case of a parametric family

Pr.

Definition 2: Let Ugr be a random variable with density pr(z|y) € Ilg. Let p(u|f)
be the density of random variable Ur = ©(Ug). The GSF of Uy is defined by

1 d
p(ulf) du

q(ulf) = (= L(w)p(ulf)), (0.13)

where L(u) is given by (0.6).

Let Or = R x ©,,_; where ©,,_; C R™ ! is an open convex set. Consider the
density of Ug in the form p(x — u|a) where 44 = p € R is the location parameter
and o = (Y2, ..., Ym) € Op_1. We call the parameter v = @(u) € T of the density
p(u|f) = p(u|v, a) of random variable Uy = ¢(Ug) the transformed location parameter.

Proposition 2: The GSF of a random variable with distribution p(u|v, ), where v
is the transformed location parameter, is given by

q(uly,a) = L(v)s:(ulv, ),

where s; is the likelihood score for v.
Proof: Denote y = o' (u) — ¢! (v). Asin (0.11), we have p(ulf) =
L= (u)pr(y|a). Using (0.1), (0.6), (0.13) and (0.12)

L dp(ulv,e)  L(u) d(L~'(u)pr(yla)) dy
pluly,a)  dv pr(y|e) dy dv

51(u|1/7 Oé) =

pﬁ%(?ﬂ“) -1 -1 -1
=———"—L"(v)=qrlyla)L™ " (v) = L (v)q(ulv, a).
pr(yl) (v) = qn(yle) L7 (v) (v)q(ulv,a)
|
Thus, if the vector of parameters of a distribution contains the transformed location

parameter, the GSF is proportional to the likelihood score for this parameter.
ITI. INFORMATION OF A CONTINUOUS DISTRIBUTION

Definition 3: Let g be the GSF of a random variable Ur. A function

ig(u) = qz(u)a
will be called the information function of Ug.

Proposition 3: Let T # R. The solution of the equation i,(uv) = 0, if unique,
appears to be the least informative point of the distribution p.



Proof: By (0.11), density p(u) appears to be a product of two terms. The term
L7 (u) is common to all distributions on a given (T, Br), so that it does not carry any
information about the random variable Up. All the information contained in Ur is thus
condensed into the term pr(¢~'(u)). The maximum of pg exists and defines the least
informative point u* of the distribution p. By (0.11) and (0.5), (d/du)pr(¢™'(u)) =
(d/du)(L(u)p(u)) = —q(u)p(u), so that u* is the solution of the equation ¢(u*) =0. m

Information function of a parametric distribution p(u|8) is, obviously, i,(u|f) =
q*(ul0).
Definition 4: A value

1,(Ur10) = [ 4*(ul0) plul0)du

will be called the g-information of random variable Ur.

Clearly, I,(Ur|f) is non-negative and finite for all Cramer-Rao regular distribu-

tions. In a model with the transformed location parameter v, we have [, (Ur) =

lin;l)]q(Uﬂl/). Moreover, by Proposition 2, I,(Ur|v) = L*(v)g11(v), where gi1(v) is
v—p(0

the Fisher information about v. The mean value of ¢, is thus proportional to a quantity
which is known to be an information measure.

This conclusion, together with Proposition 3 (which obviously holds true also in the
case of a parametric distribution), is the basis of our belief that ¢,(u) can be interpreted
as a relative information contained in u € T provided that the true distribution is p,
and the g-information as an information of a distribution p.

IV. EXAMPLES

Both the differential entropy and g-information are values (possibly dependent on
parameters) characterizing a continuous random variable. We show by means of some
examples that the latter has a reasonable meaning.

Fxample 1: T = R. Here GSF is the score function, and I,(X) equals the Fisher
information of distribution (0.2). Densities, information functions and Fisher informa-
tion of some distributions are given in Table 1.

While ig(2) = — log p(x) is unbounded for all distributions, 7,(x) can be unbounded,
semi-bounded or bounded depending on the type of the distribution. We judge that
the boundedness of the information function of heavy-tailed distributions has a good
reason. An occurrence of outlier values in samples from heavy-tailed distributions
only slightly influences estimates, contrary to disastrous effects that arise in similar
situations in cases of sharply-peaked distributions with unbounded ¢, (see e.g. [4]).

The g-information is high for sharply-peaked and low for heavy-tailed distributions.
A sample from a sharply-peaked distribution is thus carrying, on average, more -
information about the distribution than a sample from a heavy-tailed distribution.



Perhaps the mean Fisher uncertainty of a continuous random variable (g-entropy, say)
could be expressed by the reciprocal value of the g-information,

hy(Ur|0) = I,(Ur]0)~". (0.14)

FExample 2: Related distributions on T = (0,00). Consider random variables X
with distributions given in Example 1. Densities and information functions of ¢-related
random variables Z; = ¢%i are given in Table 2. The g-information of Z; and X; are

equal.

FExample 3: Non-symmetric exponential family. Let T = (0,00). Consider a family
of distributions with densities in the form

NN

A z AL
(=, B,A) = % (;) ) L B0 (0.15)

where I' is the gamma function. Some members of the family are, for instance, the
following distributions:

Distribution v g A
exponential v 1 1
Rayleigh w2 2 1
Weibull v g 1
Erlang n/B 1 n
gamma cA 1A
chi-squared n/3* 1 n/2

The differential entropy of the family is given by
hs(v, 3,A) = —log B — Alog A+ log T'(A) + log v + (A — 1/8)(log A — 1())) + A.
The formula is very cumbersome, since there are logarithms of norming factors involved
" ltThe GSF of the family ¢(z|v, B, ) = A\3((z/v)? — 1) is of semi-bounded type. The

g-information is given by an extremely simple expression

]q(l/vﬂv)‘) = )‘ﬂz

Notice that I, is independent of the transformed location parameter v. The Fisher
information about the parameter v is, by Proposition 2, ¢y1(v) = A3*/v?. The family
original to (0.15) has densities

A o) o —\ele=w)/a
el o,3) = e

where ¢ = logv and o = 37!, and the g-information I,(y, o, ) = A/o?.

Example 4: Uniform distribution, T = [0,b]. The differential entropy is hgs(b) =
log b. Its value and even the sign depends on b. The GSF of the uniformly distributed
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random variable is, by (0.10), ¢(w|b) = 2w/b — 1. Hence, I,(b) = b~ [2(2w — b)? dw =
1/3 independently of the length of the interval.

Considering a discrete distribution as a sampled version of a continuous one, the
GSF of a discrete random variable taking on values in 7' = (0,00) or 7' = (a,b) can
be defined by the means of formulas (0.7) and (0.10), respectively, after replacing the
derivatives of the density by differences (e.g., p'(z;) =~ p(x;) — p(x;—1)). In the case
of the discrete uniform distribution with density p(k|n) = 1/(n + 1),k = 0,...,n, the
influence function is, by (0.10), ¢(k|n) = 2k/n — 1, and the g-information I,(n) =
Sr_o(2k/n—1)2/(n +1)=2(2n+1)/3n — 1, with Lim I,(n) =1/3.

Example 5: Beta distribution. The uniform distribution is the maximum differential
entropy distribution on the given interval. If T = (0,1), it holds hg(1) = 0 and the
differential entropy of any other continuous distribution is negative. Let us consider
the beta distribution with density

1
B(a, )

where B is the beta function. By (0.10), the corresponding GSF is ¢(w|a, 3) = (a +
f)w — « and the g-information is given by

p(wla, 8) = w1 —w) ™ we0,1]a,820

b
B(a, )

For illustration we give some values of the g-entropy (0.14):

3 1
hr(1,3) 1.5

_ap

Lo, B) = atftl

[Tt By — ot (1= ) do =

It is obvious that the uniform distribution, p(w|1, 1), is not the distribution with the
maximum uncertainty, measured by (0.14), on T" = (0,1). We think that this result
is well justified. The relation hp > 3 holds in cases of small values of parameters
«, 3, where the density of the beta distribution is antimodal, exhibiting small relative
probabilities in the central area and large ones at the ends of the interval. It can be
interpreted as though the result of the observation would be more uncertain, in a Fisher
sense, when an occurrence of an event is likely in two, almost separated areas, rather
than in the case of equally likely events.

Example 6. Triangular distribution. Consider a triangular distribution with density
p(wla) = 2w/a, 0 < w < @ and p(wla) = 2(1 —w)/(1 —a) when a < w < 1. The
differential entropy is hs(X|a) = 1/2 —log?2 (e.g., [2]), which is independent of a. The
corresponding information function is discontinuous and equals, according to (0.10),
iy(w) = (=14+2w—w(l—w)/w))? = (3w—2)* when 0 < w < @ and i,(w|a) = (3w—1)?
when a < w < 1. The g-information, given by I,(a) = (5a°/2 —5a*+2a+1/2)/(1 —a),
depends on a. It illustrates the fact that the q-entropy, contrary to Shannon’s entropy,
is capable of encompassing the morphology of distributions.



TABLE 1

INFORMATION FUNCTION AND ¢-INFORMATION OF SOME DISTRIBUTIONS

Distribution p(x) iy(x) I,
1 T e sinh®x 1.429
2 normal \/IQ—We_xi/z z? 1
3 doubly exponential e (e* —1)? 1
4 logistic e”/(1 + e*)? tgh’(x/2) 1/3
5 Cauchy N1+ 2?7 42? /(1L +2)? 1)2

(Ko is the modified Bessel function of the third kind.)

TABLE 2

INFORMATION FUNCTION OF @-RELATED DISTRIBUTIONS

j Distribution p(2) iy(2)

1 Wald type me_%(z"'l/z) 1z —1/2)?

2 lognormal \/;_er—%log2z log® =

3 exponential e~? (z —1)?

4 log-logistic /(= +1)? (z—1)/(z+1))?
5 log-Cauchy  (72)7Y(1 4 log?2)™' 4log?z/(1 + log® 2)?
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