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Abstract� We examine the e�ect of compensating a constraint on the number of hid�

den units in feedforward networks by increasing the size of their parameters� We describe

functions that can be approximated with any accuracy by only changing parameters in per�
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� Introduction

Although neural networks of many types can approximate continuous or Lp�functions
�see e�g�� 	�
� 	�
�� as the accuracy of approximation increases one may require an
arbitrarily large number of hidden units and the size of the network parameters may
also grow without bound� Thus� complexity of a network can be measured either by
the number of hidden units or by the size of its parameters�

The question of whether this �universal approximation property� can be achieved
even with bounded parameters was answered by Stinchcombe andWhite 	�
 for bounds
depending on certain characteristics of the activation function and extended to arbi�
trarily small bounds by Hornik 	�
� Hence� a constraint on the size of parameters can
be compensated by an increase of the number of hidden units�

The complementary task is to characterize functions that can be approximated with
any accuracy by varying only parameters in networks with a �xed number of hidden
units� The 
rst example illustrating the trade�o� between the size of weights and the
number of hidden units was given by Girosi and Poggio 	�
� They gave an example
of a function that can be approximated with any accuracy by changing parameters
�increasing output weights and decreasing one bias� in a network with only two hidden
sigmoidal perceptrons�

Besides being useful for comparison of complexity of networks measured by the
number of hidden units and the size of weights� characterizing functions that can be
approximated with any accuracy by networks with a 
xed number of units can also be
used to compare the approximation capabilities of networks of di�erent types� either
one�hidden�layer networks with di�erent types of units or networks with the same
types of hidden units but di�erent numbers of layers�

The 
rst step in this direction was taken by Chui et al� 	�
 who compared ca�
pabilities of one and two�hidden�layer Heaviside perceptron networks� They proved
that� while characteristic functions of d�dimensional cubes for d � � are exactly com�
putable by two�hidden�layer networks with �d units in the 
rst hidden layer and �
unit in the second one� such characteristic functions cannot be approximated arbi�
trarily well by one�hidden�layer networks with a bounded number of hidden units� In
	�
� we extended their results by showing that sets of functions computable by one�
hidden�layer networks with a constrained number of perceptrons with the Heaviside
activation function are closed in Lp�spaces�

Gori et al� 	�
 listed several examples of functions that can be approximated
arbitrarily well by networks with 
xed number of perceptrons with various activation
functions� In the case of functions of one variable and inverse tangent activation they
gave a complete characterization of the set of such functions�

In this paper� we characterize sets of multivariable functions that can be approxi�
mated with any accuracy by networks with a constrained number of hidden units� If
a hidden unit function� as well as the ratio between change of output weights and hid�
den units parameters� are �reasonable�� we show that the only functions that can be
approximated by networks with a 
xed number of units are linear combinations of iter�
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ated partial derivatives of the hidden unit function with respect to its parameters� We
estimate complexity and rates of approximation of such functions� To illustrate what
kind of functions can be achieved in this way for standard networks� linear combina�
tions of iterated partial derivatives of perceptrons with hyperbolic tangent activation
or of Gaussian radial�basis�functions are characterized�

The paper is organized as follows� In section �� we recall basic concepts and results
concerning the universal approximation property� Next in section �� we introduce a
new concept of complexity for a function with respect to a class of neural networks
and estimate this complexity of iterated partial derivatives of a smooth hidden unit
function with respect to its parameters� In section �� we show that if we eliminate cases
when we cannot infer something about a limit of a sequence of functions computable by
networks with a 
xed number of hidden units� then we only obtain the iterated partial
derivative functions described in the preceding section� In section � we characterize
functions that can be approximated arbitrarily well by networks with a 
xed number
of hyperbolic tangent perceptrons or with Gaussian radial�basis�functions� Section �
is a brief discussion� All proofs are deferred to section ��

� The universal and the best approximation prop�

erty

Let R denotes the set of real numbers� N the set of natural numbers and N� the set
of positive integers� In this paper we examine approximation of continuous functions
by one�hidden�layer networks with a single linear output unit� Such networks compute
functions of the form

Pm
i��wi��yi�x�� where m � N� corresponds to the number of

hidden units� wi � R� i � �� � � � �m� to output weights and � � Rp�d � R to the type
of hidden units with yi � Rp representing their parameters and x � Rd input vectors�
We call such networks ��networks�

For example� for perceptrons with an activation function � � R �R the number of
parameters p equals to d�� and ��v� b�x� � P��v� b�x� � ��v � x� b�� where v � Rd

is an input weight vector and b � R is a bias� For radial�basis�function �RBF� units
with a radial �even� function � � R � R ��v� b�x� � B��v� b�x� � ��bkx � vk��
where v � Rd is a centroid� b � R� b � �� is a width and k�k denotes the Euclidean
norm on Rd�

For A � Rd� a function � � Rp�d � R representing a type of a computational
unit� m positive integer and B � � we denote by F���A�m�B� the set of functions
on A computable by ��networks with at most m hidden units with all the network
parameters bounded by B� Thus� F���A�m�B� denotes the set of all functions from
A to R of the form

Pm
i��wi��yi�x�� where wi � R and yi � Rp such that for all

i � �� � � � �m kyik � B�
When either m or B or both m and B are not bounded we will use notation

F���A� 	� B�� F���A�m� 	� or F���A� 	� 	�� resp� We will abbreviate F���A� 	� 	� by
F���A��
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Standard choices for a perceptron activation function include the Heaviside function
� satisfying ��t� � � for t � � and ��t� � � for t � � and the hyperbolic tangent 	
which is a�nely equivalent to the logistic sigmoid 
�t� � �

��exp��t�
� The standard

choice for a radial function is the Gaussian� denoted �� with ��t� � exp��t���
Capabilities of networks to approximate functions are studied mathematically in

terms of closures and dense subspaces� see� e�g� 	�
 for the basic de
nitions and
theorems� For A � Rd we denote by C�A� the set of all continuous functions on A

with the topology of uniform convergence� For X � A we denote by cl�X� the closure
of X in this topology�

For any locally Riemann�integrable non�polynomial activation function �� for any
positive integer d and any compact A 
 Rd� the set F�P�� A� is known to be dense in
C�A�� i�e� cl�F�P�� A�� � C�A�
� see e�g� 	�
�� The set F�B�� A� is dense in C�A� for any continuous function � with

nite non�zero integral� any positive integer d and any compact A 
 Rd � see 	�
� 	�
��
In neural networks terminology this capability is called the universal approximation

property�
Hornik 	�
 proved that for any analytic non�polynomial activation function �

the universal approximation property can be achieved even using networks with pa�
rameters constrained by an arbitrarily small bound� More precisely� for any B � �
cl�F�P�� A� 	� B�� � C�A�� Of course� the constraint on parameters has to be compen�
sated by an increase of the number of hidden units�

In practical situations� the number of hidden units is bounded by some 
xed pos�
itive integer� In addition� the parameters are also bounded� Under these conditions�
we showed in 	�
 that for many types of feedforward networks� given any continu�
ous function� there is a choice of network parameterization �not necessarily unique�
producing an approximation with the minimum error� We call this the best approx�

imation property� In fact we showed that for A compact such function spaces are
compact too� which in particular implies that F�P�� A�m�B� and F�B�� A�m�B� are
closed for any bounded continuous �� Hence no function that is not already contained
in F�P�� A�m�B� or F�B�� A�m�B�� resp�� can be approximated with any accuracy
by networks with bounds on both the size of parameters and the number of hidden
units�

This suggests the question how quickly such best approximation error decreases as
a function of either the number of hidden units or the size of parameters� Recently�
dependence of the approximation error on the number of hidden units has became
better understood� Following Jones 	�
 and Barron 	�
� several authors �e�g�� 	�
� 	�
�
	�
� characterized sets of functions that can be approximated by one�hidden�layer
neural networks with �dimension�independent� rates of approximation� i�e� for which
the number of hidden units needed for a given accuracy does not grow exponentially
with the number of variables of the function to be approximated� However� these
results estimate the number of hidden units without any constraint on the size of
weights�
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� Iterated partial derivatives with respect to net�

work parameters

Thus� the only case that remains to be investigated is the case when the number of
hidden units is bounded� Functions that can be approximated arbitrarily well by such
networks are in the closures of the sets F���A�m� 	��

Each class of neural networks having the universal approximation property deter�
mines a hierarchy on C�A� ordered by complexity de
ned as the minimal number of
hidden units needed for an arbitrarily close approximation of a given function� For
f � C�A� de
ne ��complexity

��f� ��A� � minfm � N�� f � cl�F���A�m� 	��g

if the set over which the minimum is taken is non�empty� otherwise set ��f� ��A� ���
Girosi and Poggio�s 	�
 gave an example of a low�complexity function with respect

to sigmoidal perceptron networks� based on the equality

�

��� � cosh�x��
� lim

n��
n

�
�

� � exp��x�
�

�

� � exp��x� �
n
�

�
� lim

n��
n

�

�x�� 
�x�

�

n
�
�
�

Hence the function �
��cosh�x�

can be approximated with any accuracy by a network with
only two perceptrons having the logistic sigmoid 
 as an activation function� One can
easily verify that the convergence is uniform on any compact A 
 R� Thus� we have
an upper estimate �� �

��cosh�x�
� P�� A� � � for any compact A 
 R�

Following Girosi and Poggio�s method� we can 
nd an analogous example for RBF
networks� For instance� the function x���x� can be approximated with any accuracy
by a Gaussian RBF network with only two hidden units� Indeed� for every x � R

��x���x� �

��b�x� c��


b

���
b���c��

� lim
n��

n

�
���� �

�

n
�x�� ��x�

�
�

Thus ��x���x�� B�� A� � � for any compact A 
 R�
The technique of Leshno et al��s proof 	�
 of the universal approximation prop�

erty of one�hidden�layer networks with perceptrons with any non�polynomial analytic
activation function � is based on an observation that powers are �simple� functions

with respect to such networks� Since �k��vx�b�
�bk

� xk��k��vx � b� and there exists a
real number bk such that ��k��bk� �� � �� is non�polynomial� we can approximate the
k�th power xk with any accuracy by a network with k � � hidden ��perceptrons �the
k�th derivative of any function f can be approximated within any accuracy by a linear
combination of the terms f�x� jh�� j � �� � � � � k�� Hence ��xk� P�� A� � k�� for any
compact A 
 R�

To generalize these examples we need some notation� Let Cq�Rp� denote the set of
all functions on Rp for which all iterated partial derivatives of order at most q exist
and are continuous and let C��Rp� denote the set of functions with continuous partial
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derivatives of all orders� For a function f � Cq�Rp�� s � f�� � � � � qg and j � f�� � � � � pg

denote by D
�s�
j f the partial derivative of order s with respect to the j�th variable�

and for s � � de
ne D
���
j f � f � We will write Dj instead of D

���
j � For a multiindex

s � �s�� � � � � sp� � N p let jsj �
Pp

j�� sj and for a 
nite set P let jP j denotes the number
of its elements�

For � � C��Rp�d�� s � N � r � N� denote by D���A� r� s� the set of all functions
f � Rd � R of the form

f�x� �
mX
i��

X
s�Pi

aisD
�s��
� � � �D�sp�

p ��yi�x��

where m � N�� for every i � �� � � � �m yi � Rp � Pi 
 N�
p is 
nite and

Pm
i�� jPij � r�

for every s � Pi ais � R and jsj � s� Thus� D���A� r� s� contains linear combi�
nations of r functions obtained using partial di�erential operators of order at most
s acting on ��y�x� � ��y�� � � � � yp� x�� � � � � xd� with respect to the 
rst p variables
y�� � � � � yp� Note that since we allow s � 
� F���A�m� 	� � D���A�m� ��� Let
D���A� � 
fD���A� r� s�� s � N � r � N�g�

It follows from the de
nition of a derivative that D
�s��
� � � �D�sp�

p � is a limit of a

linear combination of the translates of � of the form ��y� �
i�
n
� � � � � yp �

ip

n
�x�� where

j � f�� � � � � pg and ij � f�� � � � � sjg� Thus each iterated partial derivative of � can be
approximated arbitrarily well by functions computable by ��networks with a �p

j���sj�
�� hidden units� Using the mean value theorem we can verify by induction that this
convergence is uniform on any compact A 
 Rd� The number of terms in the linear
combination corresponding to the number of hidden units depends polynomially on
the sum of orders jsj and exponentially on the dimension of the parameter space�

Theorem ��� Let d� p� r be positive integers� s be a non�negative integer� � � C��Rp�d�
and A 
 Rd be compact� Then D���A� r� s� � cl�F���A� r�s� ��p�� and so for every

f � D���A� r� s� ��f� ��A� � r�s� ��p�

Thus� if a hidden unit function� �� is smooth� then the set of functions computable
by ��networks with a 
xed number of hidden units is not closed� it contains lin�
ear combinations of iterated partial derivatives of � with respect to its parameters�
However� networks approximating an iterated partial derivative D

�s��
� � � �D�sp�

p � have

output weights growing with O�njsj� and di�erences between hidden unit parameters
of order O� �

n
�� Implementation of such networks might not be feasible for large n�

On the other hand� if n is small enough to allow implementation� then the achievable
approximation error could not be su�ciently accurate�

We can estimate this error using the following proposition� Recall that a modulus
of continuity of a function g � Rp � R is a function �g � ����� � R de
ned by
�g��� � supfjg�y� y��j�y�y� � R���i � �� � � � � p��jyi � y�ij � �g� By k�k� is denoted
the supremum norm�

Proposition ��� Let d� s� n be positive integers� g � C��R� and ��s�
n g�y� � n�g�y �

�
n
�� g�y�� for every y � R� Then k��s�

n g �D�s�gk� �
Ps

i����n�
s�i���D�j�g�

�
n
��
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� Limits of sequences of functions computable by

networks with a �xed number of hidden units

In the previous section we have shown that� if the hidden unit function� �� is smooth� all
linear combinations of iterated partial derivatives of � with respect to its parameters
have 
nite complexity measured by the number of � hidden units� For a complete
characterization of such 
nite complexity functions we have to investigate closures of
sets of functions computable by networks with a 
xed number of hidden units� Recall
that all elements in the closure of a set in the topology of uniform convergence are
limits of sequences of elements of this set� Hence� we have to study for 
xed m limits
of the form

lim
n��

mX
i��

win��yin�x�� �����

We will show that for a uniformly continuous hidden unit function� �� such a
limit is either a linear combination of iterated partial derivatives of � with respect
to its parameters or else we cannot infer anything about it� There are two types of
situations when we cannot infer anything about a limit of the form ���� the 
rst one
is caused by an �unbalanced� ratio between growth of sequences of output weights
fwin�n � N�g and hidden unit parameters fyin�n � N�g� while the second one is
caused by a property of ��

For A � Rd� call a function � � C��Rp�d� derivative recursive on A if the constant
zero function can be represented as a function from D���A� in a non�trivial way� i�e�
the functional equation

mX
i��

�
�X
s�Pi

aisD
�s��
� � � �D�sp�

p ��yi�x�

	
A � � �����

is satis
ed on A� where m is a positive integer� for every i � �� � � � �m � ��
Pi 
 N p� for every s � �s�� � � � � sp� � Pi ais is a non�zero real number� for all pairs
i� j � f�� � � � �mg such that i �� j also yi �� yj� and if � is odd or even in y moreover
yi �� �yj�

Any smooth function � satisfying the negation of this condition is �reasonable
� in the sense that it does generate cases when we cannot infer anything about a
limit of the form ���� We will show that when � is not derivative recursive then
all limits of functions computable by ��networks with 
xed number of hidden units
with a �balanced� ratio between growth of their output weights and input parameters
converge to linear combinations of iterated partial derivatives of ��

We call a sequence of functions computable by networks with a single linear output
unit and a 
xed number m of � hidden units balanced when for each hidden unit the
sequence of its innner parameters fyin�n � N�g is convergent and the sequence of
its output weights fwin�n � N�g grows only polynomially with the decrease of the
distance yin from its limit value yi� More precisely for every i � �� � � � �m there
exists yi � R such that limn�� yin � yi� fwin�n � N�g is either convergent or
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divergent and when it is divergent� then there exists ki � N such that the sequence
fwinkyin � yikki��n � Ng is convergent� where the subscript denotes the supremum
norm onRp and the superscript means raising to the ki power� Denote by �F���A�m� 	�
the subset of cl�F���A�m� 	�� containing only limits of balanced sequences� Since
each f � F���A� is trivially a limit of a balanced sequence� we have F���A�m� 	� �
�F���A�m� 	��

The following theorem shows that if the hidden unit function � is not derivative
recursive� then the only functions among limits of balanced sequences that have 
nite
complexity measured by the number of ��hidden units are the functions described
in the previous section� Its proof is based on the Taylor formula for multivariable
functions�

Theorem ��� Let p� d be positive integers� � � C��Rp�d� be uniformly continuous�

A � Rd� If � is not derivative recursive on A then for every positive integer m
�F���A�m� 	� � D���A��

Generally� verifying that a function is not derivative recursive is a di�cult task
which requires us to 
nd some special properties of the function � that contradict
the functional equation ���� In 	�
 we studied a stronger condition requiring that the
functional equation ��� is satis
ed with all Pi containing only the zero vector� i�e�

mX
i��

ai��yi�x� � �� �����

non�trivially �all ai �� �� all the vectors fyi� i � �� � � � �mg are distinct and when
� is either odd or even in y then also yi �� �yj for i �� j�� Note that the negation
of this condition guarantees that an input output function of a ��network determines
the network parameterization uniquely up to a permutation of hidden units �see 	�
�
	�
��

When a function of one variable satis
es this special�case condition then it can be
expressed as a linear combination of its scaled and translated copies in a non�trivial
way� Such functions were called �a�nely recursive�in 	�
� For example� singularities
of complex extensions can play such a role �see 	�
�� It is shown in 	�
 that many
analytic functions cannot be a�nely recursive� On the other hand� with the exception
of polynomials� all examples of a�nely recursive functions known to us �such as the
Daubechies scaling function� are non�smooth� Since the Gaussian has no poles� we
used its asymptotic properties in 	�
 to verify that B� does not satisfy the functional
equation ��� on Rd� However� here we need a weaker condition ��� allowing also
iterated partial derivative terms�

� Local and non�local hidden units

To describe functions having 
nite complexity measured by the number of hidden
units of the most popular types ! perceptrons with the hyperbolic tangent 	 as an
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activation function and radial�basis�function units with the Gausssian function � as a
radial function ! we need to characterize D�P� � A� and D�B� � A�� For a polynomial Q
of several variables� let deg�Q� denotes its degree� i�e� the maximum of exponents of
all of its variables�

Theorem ��� Let d� r be positive integers� s be a non�negative integer� A � Rd� Then

every f � D�P� � A� r� s� can be represented as f�x� �
Pm

i��

P
s�Pi aisx�

s� � � � xd
sdQs�	 �vi�

x � bi��� where m is a positive integer�
Pm

i�� jPij � r and for every s � 
m
i��Pi

Qs � R �R is a polynomial with deg�Qs� � s� ��

Theorem ��� Let d� r be positive integers� s be a non�negative integer� A � Rd� Then

every f � D�B� � A� r� s� can be represented as f�x� �
Pm

i�� ��bikx � vik�Qi�bi� kx �
vik� vi�� � � � � vid� x�� � � � � xd�� where m is a positive integer and for every i � �� � � � �m
Qi � R��d��� �R is a polynomial with deg�Qi� � �s�

For d � � perceptrons and radial�basis�function units are geometrically opposite�
perceptrons apply a sigmoidal activation function to a weighted sum of inputs plus a
bias and so correspond to non�localized regions of the input space by partitioning it
with fuzzy hyperplanes �or sharp ones if the sigmoid is Heaviside�s step�function�� while
RBF units calculate the distance between an input vector and a centroid� multiply by
a scale�factor called width and then apply a radial function ! hence corresponding to
localized regions� Thus� perceptron type networks that compute linear combinations of
ridge functions and RBF networks that compute linear combinations of radial functions
should be e�cient in approximating di�erent types of functions� Note that for d �
� the functions with low complexity with respect to hyperbolic tangent perceptron
networks described in Theorem ��� contain no linear combinations of radial functions�
On the other side� there are no linear combinations of ridge functions among low
complexity functions with respect to Gaussian RBF described in Theorem ����

� Discussion

We have introduced a new concept of complexity determined for sets of continuous
functions of several variables by classes of neural networks possessing the universal
approximation property� We have shown that if a hidden unit function� �� does not
satisfy a special type of recursion and if we restrict to cases when the approximation
has to be achieved using networks with a polynomial ratio between output weights
and di�erences between hidden unit parameters� then the only functions having 
nite
complexity are linear combinations of iterated partial derivatives of � with respect to
its parameters�

Although theoretically for these 
nite complexity functions we can compensate a
constraint on the number of hidden units by increasing parameters� practically this
method of approximation is limited by precision bounds that do not allow us to im�
plement two rapidly diverging scales of parameters�
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	 Proofs

Lemma ��� Let d� p� q be positive integers� � � Cq�Rp�d�� A 
 Rd be compact� j �

f�� � � � � dg and s � f�� � � � � qg� Then for every y � Rp D
�s�
j �y� �� � limn���njs��y� ��

uniformly on A� where �
�s�
jn��y� �� � R

d � R is de�ned by �
�s�
jn ��y�x� � ns

�Ps
i������i���

s

i
���y�� � � � � yj

Proof
Without loss of generality assume that j � �� First� we will verify the statement for
s � �� Let U be a compact neighborhood of y� Then both � and D

���
� � D�� are

uniformly continuous on A� U � Hence for any � � � there exists � � � such that for
every x�x� � A with kx � x�k � � and for every y� � U with ky � y�k � � we have

y� � U � j��y�x�� ��y��x��j � �
�
and jD���y�x��D���y��x��

��� � �
�
�

Compactness of A guarantees that the existence of a 
nite set fx�� � � � �xkg � A

such that for every x � A there exists i � f�� � � � � kg with kx � xik � �� Since

limn���
���
�n��y� �� � D���y� �� on A pointwise� there exists n� such that �

n�
� � � �

n
�

neighbourhood of y is contained in U and for every n � n� and for every i � �� � � � � k
j����

�n��y�xi��D���y�xi�j �
�
�� Hence for every x � A

j����
�n��y�x��D���y�x�j �

j����
�n��y�x������

�n��y�xi�j� j�
���
�n��y�xi��D���y�xi�j� jD���y�xi��D���y�x�j �

��

�
� j����

�n��y�x���
���
�n��y�xi�j�

By the mean value theorem for every n � N� there exist y�n� y�ni � 	y�� y� � �
n



such that �
���
�n��y�x� � n���y� �

�
n
� y�� � � � � yp�x� � ��y�x�� � D���y�n� y�� � � � � yp�x�

and �
���
�n��y�xi� � D���y�ni� y�� � � � � yp�xi�� Putting yn � �y�n� y�� � � � � yp� and yni �

�y�ni� y�� � � � � yp� we have j�
���
�n��y�x���

���
�n��y�xi�j � jD���yn�x��D���yni�xi�j �

�

� �

Hence for every x � X j����
�n��y�x��D���y�x�j � ��

Assume that the statement is true for s and that D�s���
� � is continuous� Then an

analogous argument as in the 
rst step shows that it is also true for s� �� �

Proof of Theorem ���
Let f�x� �

Pm
i��

P
s�Pi aisD

�s��
� � � �D�sp�

p ��yi�x�� where for every i � �� � � � �m jPij � s

and
Pm

i�� jPij � r� Inspection of the proof of Lemma ��� shows that for each i �

�� � � � �m and s � Pi D
�sj�
j ��yi� �� is a limit of a uniformly convergent sequence of

functions from F���A��p
j���sj ���� 	�� Thus a linear combination of r such functions

is in cl�F���A� r


�p
j���sj � ��

�
� 	��� �s � ��p is an upper bound on �p

j���sj � ��

satisfying
Pp

j�� sj � s� �

Proof of Proposition ���
It follows from the mean value theorem that for every n � N� k����

n g �D���gk� �

�



�D���g�
�
n
�� Asume that the statement is true for s then k��s���

n g � D�s���gk� �
k����

n D�s�g �D���D�s�gk� � k����
n ��s�

n g �����
n D�s�gk�

�n�D�s�g�
�
n
� � �D�s���g�

�
n
� and so it is also true for s� �� �

Recall that a directional derivative of order k of a function g of p variables in the
direction of a vector h � Rd is de
ned by

D
�k�
h
g�y� �

X
s�Pk

�
k

s� � � � sd

�
hs�� � � � hsdd D

�s��
� � � �D

�sp�
d g�y�� �����

where Pk � fs � f�� � � � � kgp� jsj � kg� For a�b � Rp we denote by L�a�b� the line

segment connecting a and b�

Lemma ��� Let d� p be positive integers� A � Rd� � � C��Rp�d� be derivative recur�

sive on A and let ffn�x� �
Pm

i�� win ���yi � hin�x�� �n � N�g be a balanced sequence

converging on A pointwise to a function f � A� R� Then f � D���A��

Proof

For k� n � N�� s � Pk and i � f�� � � � �mg let Hins � �
k	

�
k

s� � � � sp

�
hs�in� � � � h

sp
inp�

Let � denotes an equivalence on f�� � � � �mg de
ned in the case that � is either odd
or even with respect to y by i � j if yi � �yj� and when � is neither odd nor
even by i � j if yi � yj� Let J be a subset of f�� � � � �mg containing exactly one
representative of each class of �� For every i � J let Ji � fj � f�� � � � �mg� j � ig�
Ji� � fj � f�� � � � �mg�yi � yjg and Ji� � fj � f�� � � � �mg�yi � �yjg� When
� that is neither odd nor even de
ne �win �

P
j�Ji wjn� while when � is either odd

or even de
ne �win �
P

j�Ji� wjn �
P

j�Ji� wjn� For i � J let Ki � fk � N � ��s �
Pk��f �winHins�n � Mg is convergent �g�

Since ffn�n � N�g is a balanced sequence for every i � J Ki �� �� let ki � minKi

and for s � Pki let cis � limn�� winHins� LetM be an in
nite subset of N� such that
�i� for every i � J � for every r � �� � � � � ki � � and for every s � Pr the sequence
fwinHins�n � Mg is either convergent or divergent�

By the Taylor formula for multivariable functions �see e�g�� 	�� p����
� we have

mX
i��

win ���yi � hin�x�� ��yi�x�� �

mX
i��

win

�
�ki��X

r��

D
�r�
hin

��yi�x�

r#
�
D

�ki�
hin

��zin�x�

ki#

	
A �

where zin � L�yi�yi � hin� and D
�r�
hin

are directional derivatives�
Since for every i � �� � � � �m limn�� hin � 
� we have limn�� zin � yi� Hence by

���

lim
n��

n�M

X
i�J

win

D
�ki�
hin

��zin�x�

ki#
�
X
i�J

X
s�Pki

cisD
�s��
� � � �D�sp�

p ��yi�x��

��



Let
g�x� � f�x��

X
i�J

X
s�Pki

cisD
�s��
� � � �D�sp�

p ��yi�x��

Then

g�x� � lim
n��

n�M

mX
i��

ki��X
r��

X
s�Pr

winHinsD
�s��
� � � �D�sp�

p ��yi�x��

For every n � M put vn � maxfj �winHinsj� i � �� � � � �m� s � Pr� r � �� � � � � ki � �g
and let uins �


winHins
vn

� Note that for every i � J either ui�s� � � or ui�s� � ���
Let M� be an in
nite subset of M such that

�i� for every i � J � for every r � �� � � � � ki � � and for every s � Pr the sequence
f �winHins�n � M�g is either convergent or divergent
�ii� for every n � M� there exists uis � lim n��

n�M�

�wis

�ii� either there exists i� � J � r� � f�� � � � � ki� �g� s� � Pr� such that for every n � M�

vn � wi�nHi�ns� or there exists i�� r�� s� such that for every n � M� vn � �wi�nHi�ns� �
Then

� � lim
n��

n�M�

X
i�J

ki��X
r��

X
s�Pr

uinsD
�s��
� � � �D�sp�

p ��yi�x��

Let I � fi � J � ��s � Si��uis �� ��g� Then we have a functional equation

� �
X
i�I

X
s�Si

uisD
�s��
� � � �D�sp�

p ��yi�x�

with �vi�s� � � or �vi�s� � ��� which contradicts the assumption that � is not derivative
recursive on A� �

Proof of Theorem ���
Let f � cl�F���A�� be a limit of a balanced sequence f

Pm
i��win��yin�x��n � N�g�

Let I � fi � f�� � � � �mg� fwin�� N�g is divergent g� J � fi � f�� � � � �mg� fwin�� Ng
is convergent g� for every i � �� � � � �m let yi � limn�� yin� for every i � J wi �
limn�� win and f��x� �

P
i�J wi��yi�x�� Since � is uniformly continuous on A �Rp

f��x� � limn��
P

i�J win��yin�x� uniformly on Rd�
Let � denotes an equivalence on I de
ned by i � k if limn�� yin � limn�� ykn�

Let $I be a subset of I containing exactly one representative of each class of �� For
every i � $I de
ne Ki � fk � I� k � ig� �win �

P
k�Ki

wkn and hin � yin � yi�
Then

f�x�� f��x� � lim
n��

�
�X

i��I

X
k�Ki

wkn���yk � hkn�x�� ��yi�x� � ��yi�x��

	
A �

lim
n��

�
�X

i�I

win���yi � hin�x�� ��yi�x�� �
X
i��I

�win��yi�x�

	
A �

��



Let M be an in
nite subset of N� satisfying the following conditions�
�i� for each i � $I the sequence f �win�n � Mg is either convergent or divergent
�ii� there exists i� � $I such that either for every n � M � � �wi�n � maxfj �winj� i � $Ig
or � � � �wi�n � maxfj �winj� i � $Ig
�iii� for every i � $I f 
win

vn
�n � Mg is convergent� where vn � jwi�nj�

Let �wi � limn��

n�M
�win� ui � limn��

n�M


win

vn
� �I � fi � f�� � � � �mg� f �win�� Ng is diver�

gent g� �J � fi � f�� � � � �mg� f �win�� Ng is convergent g and f��x� �
P

i� 
J �wi��yi�x��

Note that for every n � M j 
win j
vn

� � and so either ui� � � or ui� � ���
Uniform continuity of � guarantees that f��x� � limn��

n�M

P
i� 
J �win��yin�x� uni�

formly on A�
Hence

f�x�� f��x�� f��x� � lim
n��

n�M

�
�X

i�I

win���yin�x�� ��yi�x�� �
X
i�
I

�win��yi�x�

	
A

uniformly on A�
We will show by contradiction that �I � �� Assume that �I �� �� Then

� � lim
n��

n�M

f�x�� f��x�� f��x�

vn
� lim

n��

n�M

X
i�I

�
�win

vn
���yi � hin�x�� ��yi�x�� �

X
i�
I

�win

vn
��yi�x�

	
A �

Thus�

�
X
i�
I

ui��yi�x� � lim
n��

n�M

X
i�I

�win

vn
���yi � hin�x�� ��yi�x��� �����

The sequence on the right side of ��� is balanced since it is obtained from a subsequence
of a balanced sequence by dividing each n�th member by vn satisfying vn � �� Since
this sequence converges to a 
nite function� by Lemma ��� its limit must be a function
from D���A�� i�e� a function of the form

P
i�I

P
s�Pi asiD

�s��
� � � �D�sd�

p ��yi�x�� Thus�
we have a functional equation

X
i�
I

ai��yi�x� �
X
i�I

X
s�Pi

asiD
�s��
� � � �D�sp�

p ��yi�x� � ��

where for some i� � $I either ui� � � or ui� � ��� which contradicts the assumption
that � is not derivative recursive on A�

Thus �I � � and we have

f�x�� f��x�� f��x� � lim
n��

n�M

�X
i�I

win���yi � hin�x�� ��yi�x��

�

uniformly on A� By Lemma ��� the limit on the right side is a function from D���A��
Since f�� f� � F���A� � D���A�� we have f � D���A�� �

��



To prove Theorems ��� and ��� we need formulas for higher order partial derivatives
of P� and B� with respect to the 
rst d � � variables� Recall that 	 ��t� � � � �	 �t���

and that ���t� � ��t��t��

Lemma ��� There exists a sequence of polynomials fps � R �R� s � N�g such that

for all positive integers d� s and for every x�v � Rd� b � R

D
�s�
d��P� �v� b�x� �


s	 �v � x� b�


bs
� ps�	 �v � x� b���

and for every j � �� � � � � d

D
�s�
j P� �v� b�x� �


s	 �v � x� b�


vjs
� xj

sps�	 �v � x� b���

and fps� s � N�g satis�es the following recursion� p��t� � �� t�� ps���t� � ps
��t����

t���

Proof
The 
rst part is true for s � � since


	 �v � x� b�


b
� �� 	 �bv � x��� � p��	 �v � x� b���

Suppose that it is true for s� Then


s��	 �v � x� b�


bs��
�


ps�	 �v � x� b�


b
�

ps
��	 �v � x� b����� �	 �v � x� b��� � ps���	 �v � x� b���

When ps�t� is a polynomial� then ps���t� � ps
��� � t�� is a polynomial� too� Thus�

the 
rst part holds also for s� ��
The second part is true for s � � since


	 �v � x� b�


vj
� ��� �	 �v � x� b����xj � xjp��	 �v � x� b���

Suppose that it holds for s� Then


s��	 �v � x� b�


vjs��
� xsjps

��	 �v � x� b����� �	 �v � x� b����xj � xs��
j ps���	 �v � x� b���

When ps�t� is a polynomial� then ps���t� � ps
��t����t�� is a polynomial� too� Thus�

the second part is also true for s� �� �

��



Lemma ��� There exist two sequences of polynomials fps � R� � R� s � N�g and

fqs � R� � R� s � N�g such that for all positive integers d� s� for every x�v � Rd

D
�s�
d��B��v� b�x� �


s��bkx� vk�


bs
� ��bkx� vk� ps�b� kx� vk��

for every j � �� � � � � d

D
�s�
j B��v� b�x� �


s��bkx� vk�


vjs
� ��bkx� vk� qs�b� vj� xj�

and fps� s � N�g and fqs� s � N�g satisfy the following recursions� p��t�� t�� �

��t�t��� ps���t�� t�� � p��t�� t��ps�t�� t���
�ps�t��t��

�t�
� q��t�� t�� t�� � �t���t��t��� qs���t�� t�� t�� �

q��t�� t�� t��qs�t�� t�� t�� �
�qs�t��t��t��

�t�
�

Proof�
The 
rst part is true for s � � since


 exp��b�kx� vk��


b
� exp��b�kx� vk�����bkx� vk�� � ��bkx� vk�p��b� kx� vk��

where p��t�� t�� � ��t�t���
Suppose that it is true for s� Then


s�� exp��b�kx� vk��


bs��
�


 exp��b�kx� vk��ps�b� kx� vk�


b
�

exp��b�kx� vk��

�
p��b� kx� vk�ps�bkx� vk� �


ps�b� kx� vk�


b

�
�

When ps�t�� t�� is a polynomial� then ps���t�� t�� � p��t�� t��ps�t�� t���
�ps�t��t��

�t�
is a

polynomial� too� Thus the 
rst part also holds for s� ��
The second part is true for s � � since


 exp��b�kx� vk��


vj
� exp��b�kx� vk�����b��vj � xj�� � ��bkx� vk�q��b� vj� xj��

where q��t�� t�� t�� � �t���t� � t���
Suppose that it holds for s� Then


s�� exp��b�kx� vk��


vjs��
� exp��b�kx�vk��

�
q��b� vj� xj�qs�b� vj� xj� �


qs�b� vj� xj�


vj

�
�

When qs�t�� t�� t�� is a polynomial� then qs���t�� t�� t�� � q��t�� t�� t��qs�t�� t�� t�� �
�qs�t��t��t��

�t�
is a polynomial� too� Thus� the second part is also true for s� �� �

��



Proof of Theorem ���
Extending the de
nition of ps also to s � � by setting p��t� � t we get from Lemma

��� for every j � �� � � � � d�� and every sj � N D
�sj�
j P� �v� b�x� � xj

sjpsj �P� �v� b�x���
where deg�psj � � sj � Since derivative of a polynomial is a polynomial� we get applying
Lemma ��� repeatedly for any s � �s�� � � � � sd��� a polynomialQs with deg�Qs� � jsj��

such that for everyx�v � Rd and b � RD
�s��
� � � �D

�sd���
d�� P� �v� b�x� � x�

s� � � � xd
sdQs�P� �v� b�x���

HencePm
i��

P
s�Pi D

�s��
� � � �D

�sd���
d�� P� �vi� bi�xi� � x�

s� � � � xd
sdQs�P� �vi� bi�x��� �

Proof of Theorem ���
Extending the de
nition of ps and qs also to s � � by setting p� � � and q� � � we

get from Lemma ��� for every j � �� � � � � d � � and every sj � N D
�sj�
j B��v� b�x� �

B��v� b�x�psj�b� kx�vk� orD
�sj�
j B��v� b�x� � B��v� b�x�qsj�b� vj� xj�� where deg�psj � �

�sj and deg�sj � � �sj � Since derivative of a polynomial is a polynomial we get apply�

ing Lemma ��� repeatedly a polynomial Qs � R��d��� � R such that deg�Qs� � �jsj

and for every x�v � Rd and b � R D
�s��
� � � �D

�sd���
d�� B��v� b�x� � B��v� b�x�Qs�b� kx�

vk� v�� � � � � vd� x�� � � � � xd�� Let Qi �
Pm

i��

P
s�Pi aisQs� ThenPm

i��

P
s�Pi aisD

�s��
� � � �D

�sd���
d�� B��vi� bi�x� �

Pm
i��B��vi� bi�x�Qi�bi� kx�vik� vi�� � � � � vid� x�� � � � � xd��

�

��
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