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Abstract

A new finite computational structure — a so—called cogitoid — is proposed. Formally
it is represented by a lattice of concepts with two basic operations — abstraction and
concretization. Its computational behaviour supports a formation of new concepts
and of both excitatory and inhibitory associations among them. It is proved that
cogitoids are able to realize behaviour elicited by the presentation of specific stimulus—
response patterns, such as retrieval by causality, learning of sequences, learning of
composed concepts from partial ones, or similarity based behaviour. Also instances of
Pavlovian conditioning can be acquired. Final examples give the plausible algorithmic
explanation of the so—called operant conditioning that is determined by the positive or
negative stimuli which occur after the responses. The case of delayed reinforcement is

also handled.
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1 Introduction

The idea of thinking about the brain as being a computational device that can be
mathematically formalized and explained, has attracted a lot of attention in artificial
intelligence, cognitive sciences, and in computer science. Within the latter science we
are nowadays witnessing rapid development especially in the related field of neuro-
computing. Besides various kinds of neural nets designed for specific learning tasks,
computational models of the brain, or mind, based on paradigms of neurocomputing,
have also emerged (for a recent overview cf. [1] or [6]). Along these lines, the memory
surface model by Goldschlager [5], and the neural tabula rasa by Valiant [7] seem to
belong among the most elaborated models (for a brief overview of these, and other
computational models of the brain, cf. [8]). Unfortunately, so far none of these or
related models appears to be able to formally, mathematically treat more complicated
cognitive tasks, for various reasons. In the case of memory surface this is because the
Goldschlager’s model is not precise enough in details that are necessary in any formal,
or semi—formal reasoning. Also, the mechanism of inhibition that seems to be necessary
to explain some cases of operant conditioning is missing in his model. On the other
hand, this model offers a good conceptual framework for the explanation of basic cog-
nitive processes, such as concept and association formation, and even offers a plausible
“high—level” explanation of some higher brain functions. Contrary to this, Valiant’s
approach is very precise in details. It offers the notion of the so—called neuroid, a kind
of a neuron that can be programmed to fullfil various atomic cognitive tasks out of
which more complicated tasks ought to be assembled. At the same time this seems
to introduce some limits to the potential of this model: to explain, or model more
complicated cognitive tasks at the level of actions of individual neuroids, moreover in
a probabilistic setting, is not easy. A similar objection holds for other “bottom—up”



approaches starting at neuronal level.

In this circumstance a sufficiently high—level model of the brain that would
concentrate onto the global aspects of mental processes and would be sufficiently formal
to eventually allow an exact mathematical reasoning, but at the same time would
abstract from “implementation details” at the neuronal level, could be usetul.

In the paper at hand a candidate for such a model — a so—called cogitoid,
is presented. The basic entities which the model deals with are concepts. Formally,
the cogitoid is represented by a lattice of concepts with operation of abstraction and
concretization. Moreover, in the course of cogitoid’s computation associations among
concepts keep developing. The model is not programmable in the standard sense, but
can be trained to perform certain cognitive tasks by providing it with the right sequence
of inputs.

The paper is organized as follows. In section 2, main ideas behind cogitoid’s
definition are presented. This is followed by a semi—formal definition of a cogitoid
inclusively its computational behaviour.

Next, in section 3 it is shown that the model as defined in the previous section
is sound, in a certain pragmatic sense: it presents not only a suitable framework for
the description and formalization of certain cognitive tasks, as described in various
experiments with animals, but is able to also offer an algorithmic explanation of the
respective phenomena, with sufficient accuracy. Its minimality is supported by the fact
that the proofs of the respective theorems concerning the cognitive power of cogitoids
make use of all of model’s features.

The above mentioned properties of cogitoids are first demonstrated on simple
cognitive tasks such as the acquisition of a behaviour elicited by the repeated presen-
tation of specific stimulus—response patterns, acquisition of sequences, the emergence
of composed concepts from simpler ones, or the behaviour elicited by similar circum-
stances. Next, examples of standard textbook instances of Pavlovian conditioning are
shown. This kind of behaviour refers to the fact that animals can be conditioned in
such a way that they will tend to activate a concept that is apparently unrelated to the
stimulus at hand. Final examples also give the plausible algorithmic explanation of the
so—called operant conditioning. This is the behaviour that is acquired by exposing an
animal to circumstances in which a certain stimuli-response behaviour is consistently
rewarded or punished after the response is obtained. The case of delayed reinforcement
is considered as well.

Finally, section 4 contains some open problems and conclusions.

2 The Cogitoid

In the sequel we shall give a semi—formal definition of a cogitoid and of its computational
behaviour. First, we shall review some basic notion concerning lattices (cf. [2]).

A lattice L(X) over the set X is the set ¥ that is partially ordered by the relation
<, that has the least element ¢ and the greatest element ¢, and any two elements ¢ and
b of X have a supremum a V b called join and an infimum a A b called meet. For any

II C X the algebra L(II) is a sublattice of L(X) iff L(II) itself is a lattice. Note than



for any a € ¥ and for Il = {b € X|b < a} the system L(II) is a sublattice (in fact, it is
a principal ideal) denoted as L£,. Its greatest element is @ while its least element is /.

A lattice of concepts is a lattice whose elements are called concepts. For any two
elements a and b of such a lattice, with a < b, we say that a is an abstraction of b, while
bis a concretization of a. Then, a supremum of any two of its elements is the smallest
concretization of these elements, while their infimum is the largest abstraction of these
elements. We shall say that two concepts are non—meeting iff their largest abstraction
is equal to the least element of the respective lattice.

For any finite lattice £(X) the respective cogitoid C can be seen as a transducer
that translates an infinite input string o over the finite alphabet 2% into an infinite
output string +, also over 2%. Thus, the elements of both & and 5 are sets of concepts.
The elements of o are sometimes also called contexts while those of v behaviors, or
actions.

Remark: Assuming |X| = 2", each symbol in ¥ can be represented by a Boolean
vector of length n. Each of these vectors can be seen as a characteristic vector of some
set w.r.t. to some fixed universe U = {x1,xq,...,x,} consisting of n elements that are
called features. Similarly each symbol from 2% can be represented as a Boolean vector
of length 27 that in turn can be seen by a characteristic vector of some subset of 2.

Thus, there is a natural correspondence between the symbols of ¥ and 2% and
subsets of U and 2. Consequently, concepts can be seen as subsets of U | i.e., as
sets of features, while contexts and behaviors as sets of concepts. In this case the
corresponding lattice of concepts is simply the set 2 of all subsets of 2. The sets in
2" are ordered by the relation “C” of set inclusion. The operation of set union corre-
sponds to the concretization operation while that of set intersection to the operation
of abstraction. Then, the empty set plays the role of the least element while the entire
universum the role of the greatest element. In such a case the cogitoid can also be seen
as a transducer {0,1}*" — {0,1}?". This is basically the framework in which the first
ideas about cogitoids were originally presented in [9].

Any ordered pair of form (a,b) of concepts is called an association of a with b
(or between @ and b), written also « — b. We also say that @ and b are then correlated
by causality. The associations appear in two forms: as excitatory ones, denoted as
(a,b)*, and inhibitory ones, denoted as (a,b)”.

In a cogitoid, at each time ¢ each concept or association can be present with a
certain strength that depends on the history of previous computations. The strength
is a non—negative integer. We shall say that a concept or association is present in
C at time ¢ iff its strength at time ¢ is positive. The strength of a concept or of an
association is increased each time when the respective concepts are activated.

At time ¢ each concept that is present in C can be in any of the two possible
states — either in an active, or in a passive, state.

In cogitoids, new concepts are formed from existing ones by principles of si-
multaneous appearance, and by resemblance. If two concepts ¢ and b are activated
simultaneously (what shall be sometimes called as the appearance of {«a, b}), they give
rise to a single concretization a V b. We also say that then ¢ and b are correlated by
simultaneous occurrence.



If aAb = ¢ #(, then we shall say that the concept a resembles the concept b (or
a is similar to b) in ¢. Otherwise, when r = {, the concepts are considered not to be
similar. When a is similar to b we also say that the former two concepts are correlated
by similarity, or resemblance via the concept ¢. Then, under certain conditions, the
activation of @ may give rise to the activation of the concept b that resembles a in ¢
(cf. Phase 2(a) in the following description of computational behaviour of cogitoids).

Besides new concepts also new associations keep emerging in cogitoids. A new
association ¢ — b will appear whenever some concept b is activated immediately after
a was activated in the previous step.

In any cogitoid there are two distinguished disjoint sets AT and A~, respectively,
of non—meeting concepts, called positive or negative affects, or operant concepts. They
correspond to pleasurable or painful feelings of animals.

The affects determine the so—called quality of concepts. The quality of a concept
at time ¢ is an element from the set {+1,—1, 41} and is defined only for concepts active
at time ¢. The exact rules for assigning quality to concepts are described in Phase 3
of the following description of computational behavior of a cogitoid. The quality of a
concept determines the kind of association among this concept and other concepts (cf.
Phase 4(b) in the sequel).

A configuration ¢; of C at time t is a complete list of all concepts and associations
present in C at time ¢, inclusively their strengths, and in case of concepts also inclusively
their qualities and states.

The computation of a cogitoid consists of an infinite sequence of computational
steps.

Let ¢; be the configuration of C at the beginning of the {—th computational step,
let O; be the set of all active concepts in ¢;.

Let the set I; € o be the set of concepts at the input of C at time ¢, for some
t>0,let ¢y = Vyepa.

We shall show that C maintains the following invariant that holds at the begin-
ning of {—th computational step: O; is a union of two sublattices of £L(X) with ¢ being
the least element of both of them. The first sublattice i1s £ and the second one £,
for some a € O.

At time ¢ = 0 no concepts and no associations are present in C. Thus, O; = ()

T—1

and the invariant holds vacuously.

For any ¢ > 0, assume that the cogitoid finds itself in a configuration ¢;, with
O; being the set of active concepts that fulfills the previous invariant.

We shall show that after performing the {—th computational step the above
invariant will be restored.

The t-th computational step consists of 6 phases:

Phase 1: Input/Output:

(a) The Input: The t—th symbol I; from the input string o is read. Subsequently, all
concepts from [; are activated by external stimuli. This gives rise to the activa-
tion of the concretization vy = V,ej,a by the virtue of simultaneous occurrence.
In parallel, all concepts in L;, are also activated by the virtue of simultaneous
occurrence; this is because the activation of ¢; alone is interpreted as though all
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of its abstractions were present simultaneously at the input of C.

(b) The Output: The t—th symbol of the output string 4 corresponding to the be-
haviour O; is produced as the output at time ¢.

Phase 2: Activation of New Concepts by Internal Stimuli: Based on the set of O; of
active concepts the so—called selection mechanism will activate new concepts.

Let P; be the set of all passive concepts in ¢;. The selection mechanism keeps
in check the number of active concepts and works as follows. It first determines the
excitation of all concepts in P, that are correlated with the set of active concepts Oy
via the relation of resemblance or via associations:

(a) FExcitation by Resemblance: Let p € Oy, let ¢ € P; be a concept that resembles
p in some r # (, i.e., p A g = r. Then the excitation of the concept p V ¢
at time ¢ is defined as E(p V ¢,1) = Yicoiocp W(T, 1) + Xyeoyce Wy, 1) +
> 2c0s,2<pvg W(z,t), where W (z, 1) is the strength of = at time ¢.

(b) Fxcitation via Associations: Let p € Oy, let ¢ € P, be the concept to which p
is associated via some excitatory association (p,q)* and/or via some inhibitory
association (p, q)~ (if one of the both is missing than it is treated as being present
with the strength 0) Then the excitation of ¢ at time ¢ is defined as F(q,t) =
Ypeo W ((p.q)" 1) —W((p.q)~,t)], where W((p,q)*,t) and W((p,q)™,t) are the

strengths of the respective associations at time t.

The selection mechanism then activates the maximally excited concept ¢ among
all concepts excited by resemblance or via associations. If there are more concepts
ai, as, . .., ar equally excited satisfying the maximality condition, then their concretiza-
tion a = ay Vas...V a, get activated.

Activation by Simultaneous Occurrence: Let a be the concept activated by the
selection mechanism. Then all the concepts in the sublattice £, get activated by the
virtue of simultaneous occurrence at time ¢.

Phase 3: Determining the Quality of Concepts: Let Ay = L;, U Oy U L, be the set
of all active concepts at this time. The quality of each concept in A; is determined
according to the following rules. The quality of an active negative affect is —1, of an
active positive affect is +1. From concepts that have already obtained their quality this
quality propagates “upwards” to all larger concepts (concretizations) and “downwards”
to all smaller concepts (abstractions). Should some concept obtain in this way both
the quality +1 and —1, it gets the quality £1. The quality of all concepts to which the
quality cannot be assigned by the previous rules is +1.

Phase 4: Long-Term Memorization:

(a) Strengthening of Concepts: The strength of all concepts in A; is increased by
some fixed positive constant ¢;.

(b) Strengthening of Associations: The strength of associations between all sub-
sequently occurring different active concepts is increased by some fixed value



¢y > c¢1. This is done as follows: the first concept in the pair is selected from the
set Oy (since the respective concepts have been activated by the end of (¢ — 1)-st
step) while the second one in the pair is chosen from the set £;, U L, — O; (since
the respective concepts have been activated in the present, {—th step). If the
quality of the first concepts was negative, then the inhibitory association, if it
was negative, then the excitatory one is strengthened. Otherwise, when the qual-
ity of the first concept was £1, then both excitatory and inhibitory associations
get strengthened. Moreover, if in the association at hand its first concept was
activated via external stimuli in the previous step, then the amount ¢3 of this
association strengthening is somewhat larger then in other cases.

Phase 5: Gradual Forgetting: The strength of all concepts that are not active at this
very moment, and the strength of all association among them, is decreased by some
fixed amount ¢y < ¢;.

Phase 6: Deactivation: The concepts in Oy — L;, — L, are deactivated. The set of
currently active concepts remains only £;, U £,, and this is going to be the set of all
active concepts at the beginning of the next step.

The previous six phases uniquely determine the next configuration ¢;41 of C.
Note that in Phase 6 the invariant has been restored.

From the previous description it is seen that a cogitoid is completely specified by
the respective lattice, affects, and the constants ¢y < ¢; < ¢3 < ¢3. The computational
mechanism of all cogitoids is the same.

3 Simple Cognitive Tasks

3.1 Behavioristic Learning

The previous principles are enough to ensure the elicitation of any desired behaviour
of a cogitoid solely by purposefully externally applied stimulus—response pattern via
the activation of the respective concepts. Namely, by repeating the required stimulus—
response pattern enough times, strong concepts representing stimuli and the respective
responses are formed with strong associations among them. Then, any later activation
of a stimulating concept will invoke the respective response. This can be done with
many different patterns, and patterns can be presented to a cogitoid in a random order,
and some of them also in parallel, grouped arbitrarily.
The details are given in the next theorem:

Theorem 3.1 Let X = {xy,29,...,2} and Y = {y1,92,...,ux}, k > 0, be two
disjoint sets of non-meeting concepts. We shall say that a pair {z;,y;}, for any i =
1,2,...,k, is presented sequentially to a cogitoid C at time t iff x; is at the input of
C at time t, y; is at the input at time t + 1 and { (the least element of the respective
lattice) is at the input at time t+2. Let pairs be presented randomly to a cogitoid C, in
any order, with the possibility of presenting a few randomly chosen pairs at the same
time.



Then, later on, after each pair has been presented to C several times, whenever
x; is presented to C at some step, y; will be activated in the next step, for any 1 <o < k.

Sketch of the proof: First assume that at time ¢ the pair {z;,y;} alone is presented
sequentially to C for the first time. Thus, at time ¢ the concept z; is activated from
the input (in Phase 1(a), in Section 2) and as a member of A; it will remain active
also at the beginning of time ¢t + 1 when y; will be activated from the input. Then,
according to Phase 4(b) the association x; — y; will be established by setting its
strength to the value ¢3. This association will be in the future strengthened at any
similar occasion. Thus, when after a few repetitions of the above process the successor
association z; — y; will become the strongest one among all associations invoked by
x;, whenever x; will be activated, y; will get in turn activated by the virtue of Phase
2(b). The above arguments hold for any 1 <7 < k.

Note that when more randomly chosen pairs will be presented to C at the same
time, then concepts joining all concepts appearing simultaneously will also emerge.
Nevertheless, the probability that such concepts will reappear in the near future is
small and therefore they will tend to be forgotten due to Phase 5.

O

In a similar manner as above also sequences of concepts can be acquired:

Theorem 3.2 Let (x1,29,...,25), k > 1, be a sequence of non—meeting concepts
in which each concept occurs exactly once. Let the pairs {x;,x;41} be sequentially
presented to a cogitoid C, in any random order, with the possibility of presenting a few
randomly chosen pairs at the same time, for any k > 1 > 0.

Then, later on, after each pair has been presented to C several times, whenever
x; alone is presented to C at some step, for 1 < 1 < k, concepts x;11,...,x will be
subsequently activated in k — 1 next steps, one concept at each step.

Sketch of the proof: Under the assumptions of the theorem, similarly as in the
previous proof, associations of form x; — z;,1 start to emerge in C, for any k > > 0.
After these associations start to be strong enough to activate x;;; whenever z; gets
activated, the cogitoid will start to behave as predicted in the theorem.
O
The next theorem shows that in a cogitoid more complex, joint concepts are
spontaneously built from simple concepts that resemble each other:

Theorem 3.3 Let C be any cogitoid, let a, b be any concepts that resemble each other
in some r =aAb#{. Than the repeated unrelated activation of a or b (i.e., a and b
can be activated at different times) will give rise to the joint concept aV b that will be
activated whenever either a or b is activated.

Sketch of the proof: After both ¢ and b have already been activated a few times
both concepts will get a positive strength. Then, whenever a (or b) gets activated it
will by resemblance (cf. Phase 2(a) from Section 2) excite a V b. In the presence of no
other stronger excitation the selection mechanism will eventually activate a V b.



O
The last theorem in this section is concerned with the “similarity based” be-
haviour that forms the basis of more complex behaviors:

Theorem 3.4 Let C be any cogitoid, let X = {xq,22,..., 21} be a set of concepls, let
y & X be a concept. Let the pairs {z;,y} be sequentially presented to C in any random
order.

Then, later on, whenever any concept x & X, so far unrelated to y, is presented
to C at time t, then

o when x resembles x; for some 1 <o < k, then y will be activated at time t + 1;

o when x does not resemble any x; for all 1 <1 <k, y will not be activated at time

t+ 1.

Sketch of the proof: By presenting sequentially the above pairs to the cogitoid not
only associations of form z; — y will emerge. Due to the computational mechanism of
a cogitoid, also associations of form z — y for all abstractions z of x;. will appear.

Now, let later on some @ ¢ X appear at the input at time ¢. By the definition,
x resembles some x; iff x A x; # (.

Therefore, when x resembles x; the selection mechanism will activate the concept
x V x; (cf. Phase 2(a) in Section 2) and also all abstractions of this concept. Among
them, also abstractions of z; will get activated which in turn, in the next step, will
activate y as stated in the theorem.

However, it is obvious that when = does not resemble any x;, the activation of
x will have no effect on y since = excites no abstraction of any x;.

O

3.2 Pavlovian Conditioning

Translated to our terminology, the Pavlovian conditioning is a phenomenon in which
an animal can be conditioned to activate a concept as a response to an apparently
unrelated stimulating concept (cf. [7], p. 217).

This behaviour and its variations can be precised, modeled, and explained in
the framework of cogitoids in the following way:.

Theorem 3.5 Let there be a cogitoid C containing non—meeting concepts a,b,r,s in
which such a strong association s — r has been established that s, a stimulus, alone,
and only s, elicits r, a response. Let C undergo the basic training process that consists
of repeating the following two steps a few times:

o at the beginning of a computational cycle, s appears simultaneously with another
concept a, as the set {a,s}, at the input of C. The concept a has so far no
particular associations to r;

o at the beginning of the next computational cycle, there in “no input” to C — i.e.,
the minimal abstraction { corresponding to the empty input is activated;



Then:

(a) during the basic training process C starts to activate r at every second computa-
tional step;

(b) when after the end of the basic training process the input a alone is presented to
C in the first step, and { in the second step, C will activate r in the third step,
for some time;

c extinction): after some time, instead o CLTLSUJG?“?:TLQ r in the third ste C will
) D,
start to answer g;

(d) (inhibition): moreover, when after the end of the basic training process C will
undergo an additional training consisting of repeatedly performing the next two
steps:

o in the first step, an input chosen randomly from the set {{a,s},{a,b}} is
presented to C, where the concept b is a stimulus that does not elicit r by

itself;
o in the next step, { is presented to C,

then, after some time, a alone, presented in the first step, will continue to activate
rin the third step, while {a, b} presented simultaneously will activate ( in the third
step.

Sketch of the proof: To see the first claim, note that the simultaneous occurrence of
{a, s} at the input in the first step will activate and strengthen a V s and both a and
s, according to Phase 1(a) and 4(a). In the next step, s will activate r since, according
to our assumption, there is a strong association s — r. Moreover, since { appears at
the input, in this step the associations ¢ — ¢, s — (, and a V s — ( also start to
establish themselves very strongly, as associations between input concepts, according
to the rules in Phase 4(b). Nevertheless, for some time, thanks to the strong initial
association s — r, the response r will be the most excited concept and hence the
cogitoid keeps activating r in every second step due to the rule in Phase 2(b).

As far as the second claim is concerned, observe that after some time, when the
concept @ V s becomes strong enough, being repeatedly at the input, the appearance
of a alone, at some time, will activate, in the second step, a V s by the relation of
resemblance (Phase 2(a)) and, in turn, still in the same step, also a and s as the
abstractions of @ V s. Finally, in the third step, s will activate r. Here we assume that
thanks to this initially strong association the excitation of r is for some time greater
than that of ¢ (coming from a, s, and @ V s) in this step.

The extinction of r’s activation will come into power when the lastly mentioned
activation of r will be overruled by the activation of £, since the respective associations
from a, s and a V s to { are repeatedly strengthened when empty inputs in the second
step is read by C.



The inhibition can be explained by similar mechanisms as before. Namely,
during the additional training, concepts a V s and a V b start to establish themselves,
similarly as the associations of all combinations (joins) of concepts a, b, and s to (.

When « alone appears at the input, in the next step, a activates a V s by
similarity rather than a V b since due to the basic training a V s has a very strong
presence. This is followed by immediate activation of s and « (the last rule in Phase
2). In the third step the selection mechanism of C eventually activates r, via the
initially strongly established association s — r. Here we have to assume that via this
association r is excited stronger then ¢ is via the previously mentioned associations,
and stronger than a V b is excited by resemblance .

However, when {a, b} appears at the input, «, b, and a V b are activated in the
first step from the external stimuli. In the second step, not only a V s is activated
again, but a, b, and @ V b remain active also, as members of A;. In the third step, ¢,
rather than r, will be the most excited concept (by the joint effort of all combinations
of a,b, and s) and therefore will be activated. All other concepts will be deactivated in
Phase 5 of this step. O

Note that in order to explain the Pavlovian conditioning no use of negative
operant concepts and of the related inhibitory associations was needed. Also observe
that in the case of extinction and inhibition the cogitoid keeps activating some concepts
in its second and third step, but others than r.

3.3 Operant Conditioning

Now we show that our model is also able to realize so—called operant behaviour. This is
a behaviour acquired, shaped, and maintained by stimuli occurring after the responses
rather than before. Thus, the invocation of a certain response concept r is confirmed as
a “good one” (by invoking the positive operant concept p) or “bad one” (the negative
operant concept n) only after r has been invoked. It is the reward (p), or punish-
ment (n) that act to enhance the likelihood of r being re-invoked under the similar
circumstances as before.

The real problem here is hidden in the last statement which says that r should
be re—invoked (or not re-invoked) only under similar circumstances as before. Thus,
inhibition, or excitation of r must not depend on s alone: in some contexts, r should
be inhibited, and in others, excited.

The implementation of such a behaviour is described in the following theorem.
In this theorem the context in which the conditioning should occur is called operant
context; it is represented by a concept that appears invariantly as the part of the input
of a cogitoid during the circumstances at hand.

Theorem 3.6 Let C be any cogitoid containing the non—meeting concepts a,n,r,p, s
and z. Letty <ty < ... be the distinct times, with t;11 > t,43. Let a strong assoctation
s — 1 be established in C prior to time t1. Let at times t; < ty < ... C finds itself
in the operant context z for four subsequent steps (i.e., in times t;, t; + 1, t; + 2, and
ti+3, fori=1,2,...).

Let C undergo either of following two trainings:
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(a) Negative Conditioning: Let s, a stimulus, appear at the input at time t; + 1 and
let the activation of r, a response, at time t; + 2 will be punished by the negative
operant concept n appearing at the input at time t; + 3.

Then there exists a constant k > 0 such that for ¢ = 1,2,... k, s elicits r at
time t; + 2, whereas fori1 =k +1,..., s will not elicit r at time t; + 2.

(b) Positive Conditioning: Let s appear at the input at time t; + 1 and let the ac-
tivation of r at time t; + 2 will be rewarded by the positive operant concept p
appearing at the input at time t; 4+ 3.

Then v will be activated at time t; + 2, fort=1,2,...

Whenever s is presented to C and z is not active v then r still will be activated
in the next step.

Prior to giving the proof of this theorem, a few words to explain its essence are
in order.

Observe that the assumptions of the theorem are fairly general. To take a lesson
from behaviour confirmed by an operant concept, no particularly intensive, continuous
training is needed. It is enough when a similar circumstance, modeled by the concept s
and the operant context z will occur a few times (i.e., at times t; < t5 < ...), possibly
with long intervals between the successive occurrences. When the subsequently elicited
action r will be always punished, the theorem says that after only a few punishments
the cogitoid ceases to invoke r at these occasions. The “similarity” of circumstances
is modeled by the requirement that the operant context z remains the same at all
pertinent occasions. This is fulfilled e.g. in cases when, at all times, C finds itself in
configurations that share a subset of sufficiently strong concepts that alone uniquely
characterize the event.

Sketch of the proof: The idea of the proof is as follows: we have to achieve that
whenever at each time t; after the time #; the concepts z and s appear simultaneously
at the input, C has to “recall” what it did at a similar occasion in the past, i.e., at
time t;,_; and shorty afterwards. Then it has to accept the decision that was either
approved by p (i.e., reinforce the excitation of 1), or rejected by n (inhibit the excitation
of r) at time ¢,_1 + 3. This is achieved by “coupling” the operant context z with the
respective affect a € {p,n} and by building the association z V a — r. Then, whenever
at any future similar occasion, z V a will be active jointly with s, depending on the
quality of a, z V @ — r will reinforce, or inhibit, the activation of r.

In a more detail this idea works as follows. Consider the state of affairs in our
cogitoid at time #;.

At this time, C finds itself in the operant context z and therefore z appears at
the input for the first time.

At time ¢ 4+ 1, z keeps appearing at the input, with s also appearing simulta-
neously. This will activate s V z and reactivate z and s by the rules from Phase 1(a)
in Section 2 . Subsequently, in the next step, r will be activated via s — r, and the
association z — r and z V s — r will emerge.

11



In turn, at time ¢; 4+ 3, external activation of an operant concept a will follow,
according to our assumptions. Thanks to our assumption on z, this concept will still
be at the input, and thanks to its simultaneous occurrence with @, a composed concept
z V a will thus appear.

Next time, when z appears at the input, both 2 V s and z V a will be reminded
(activated) by similarity in the next step, since both are equally excited (see the se-
lection mechanism from Phase 2, Section 2). Hence, a joint concept z V sV a will be
established. In the next step, the association z V sV @ — r will emerge for the first
time.

This scenario is repeated a few times, with the latter association becoming
repeatedly stronger. At some point, say at time #;, it becomes so strong that its
influence to the excitation of r is no longer negligible.

Thus, in the case of negative conditioning, from this time on this association
will prevent r from being activated, since it inherits the negative strength from a =
n. However, in the case of positive conditioning this association will reinforce the
activation of r.

Assume now that z is not active, and s appears at the input. In the next step,
the activation of r by causality competes with the activation of z V s V @ by similarity.
In this case we may safely suppose that the former activation will be selected by
the selection mechanism. This is because we have assumed that the strength of the
association s — r was great initially and therefore the excitation of r is greater than
that of 2z VsV a.

O

From the previous theorem and from its proof the following interesting fact
follows. When, at time ¢; + 2, the response r is activated and it is a correct one,
confirmed by p, the cogitoid behaves like having already acquired the right behavior.
But from the proof it is seen that this is not yet the case, since r is activated by the
stimulus s alone, not yet taking p into account. In the case of an incorrect answer the
cogitoid takes a proper lesson very fast and after a few exercises behaves “correctly”.
Note, however, that due to Phase 5, in the long run the cogitoid tends to forget what
it has learned in this case, since the inhibitory connections are not strengthened any
longer, because r is not invoked.

In practice this means that behaviour acknowledged by positive rewards looks
like it is being acquired faster than the one acknowledged by negative rewards. More-
over, in the long run, if not rewarded, the inhibited behaviour tends to be forgotten.
This seems to correspond well to our everyday experience — reinforcing good habits
is easier than suppressing wrong ones.

3.4 Delayed Reinforcement

It appears that by a similar mechanism that ties a certain operant concept to some
temporarily prevailing operant context one can also explain a more complicated case
of the so—called delayed reinforcing when the reinforcing stimulus — a punishment or
a reward — does not necessarily appear immediately after the step to be reinforced.
Thus, we shall deal with a problem when a punishment appears only after the
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cogitoid activates a previously acquired sequence of concepts in a way described in

Theorem 3.2.

Theorem 3.7 Let a sequence of non—meeting concepts (r1,22,...,25), k > 1, in
which each concept occurs exactly once, be acquired by a cogitoid C. Let v be fized,
with 1 < ¢ < k, let z be an operant context that is active only during the activities of
Liglye oy Tk

Then, if each activation of x) subsequently invoked by the initial activation of
x1 (¢f. Theorem 3.2) will be punished by activating a negative operant concept n, then,
after this happens a few times, activation of 1 will activate x,,. .., x;, but none of x;,
forie <y <k.

Sketch of the proof: The similar mechanism as in the Theorem 3.6, viz. the repeated
punishment of z; by n in the context z, will give rise to the negatively reinforcing
association zV n V xy_1 — x;. Thus, under the circumstances at hand after several
repetitions of the previous experience C ceases to activate x, but will still activate xj_
(when ¢ < k —1). Nevertheless, the latter activation will then by resemblance activate
the concept z V n V zr_1 that has emerged previously. This concept will act like a
punishment for the activation of x;_1, and hence the negatively reinforcing association
zVnV xp_y — xp_1 will eventually emerge. After some time, it will start to inhibit
the activation of x;_1. The similar process repeats itself for x;_s, etc., until it reaches
x;. Then, clearly, in accordance with Theorem 3.2 activation of z; will still activate
the concepts xj,...,x;. Nevertheless, unlike the preceeding ones, the latter concept,
x;, will be active simultaneously with the operant context z whose association with the
negative operant concept n will cause that none of z;, for ¢ < 57 < k, will be activated.
O
Based on the proof of the previous theorem it appears that cogitoids are also
able to realize a strategy that is similar to the so—called backtracking technique used in
searching for the accepting solutions in decision trees. In this case, at each potential
branching point cogitoid must find itself in a specific operant context. When some
sequence of concept activation presents a “blind alley” (i.e., leads to a punishment)
in this context, this operant context will get associated with the negative operant
concept much in the same way as in the proof of theorem 3.6. This will subsequently
enable the cogitoid to return to the branching point and, eventually, to take an other
path. However, we will abstain from stating the respective theorem since its proper
formulation requires a lot of technical assumptions.

4 Conclusions and Open Problems

The contribution of this paper is twofold. First, a new formal finite model of mind
has been introduced. It presents a deviation from similar models that are based on
paradigms of neurocomputing. This is because it abstracts from brain-like implemen-
tations and instead focuses on the substance of mental processes — viz. the concept
and association calculus. Secondly, the viability of this model has been demonstrated
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by its capability to exactly formulate the instances of Pavlovian and operant condi-
tioning and to give their plausible algorithmic explanation. This seems to be the first
occasion when a computational justification of the related mental phenomena, in a
form usual in computer science, is given.

Of course, the underlying emerging theory of cogitoids has a lot of open ends.
First of all, the versatility of the model must by further verified on other cognitive tasks
described in experimental psychology. This will probably lead to further tuning of the
model. But already now, in its present form the model seems to offer an interesting
and promising alternative for studying the computational aspects of mental processes.
It opens ways for its possible computer simulation. It appears that with the help of
this model algorithmic explanation of higher brain functions (such as the concept of
self, consciousness, thinking, language acquisition and generation, etc.) could be also
possible. Such possibilities are subject of the author’s current research in this field.
The work by [4] or [5] can serve as a vital source of inspiration along these lines.
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