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Abstract

In this paper the solution of the Friction Contact Problem and corresponding solvers
are discussed� The model is based on Linear Elasticity� where small displacements are
assumed� Then the condition of impenetration can be expressed by linear constraints�
Mathematically� the problem leads to the saddle point problem� This formulation
enables additional contact elements to be avoided� where a suitable sti�ness parameter
is needed� We discuss the continuous problem� the approximation and the discretized
problem as well� The Conjugate Gradient Method without and with preconditioning
is applied to solve the basic step of the discretized problem� We discuss several aspects
concerning the CG method with projection of the gradient�
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� Introduction

The bridges are often constructed in di	cult geological conditions� e�g� on undermining
areas or on unstable slopes� simultaneously they have to satisfy a great static and
dynamic loading� They consists of lower structure� upper structure and the bridge
equipment� The foundations and bridge supports are included in lower structure� and
the supporting structure in upper structure� We consider the simple type of a beam
bridge with the lower structure to be massive� We study the case� when the pier is
situated as far as the rigid footwall� In the model problem the neighbouring rocks are
in a contact with the massive pier and then the e�ect of moving neighbouring rocks
onto the deformation of the massive pier as well as of all construction of the bridge is
numerically analyzed�
In this contribution the model of the bridge will be treated as the elastic contact

problem� We test the conjugate gradient method without and with the preconditioning�

� Classical formulation of the Contact Problem

Let us suppose� that we have S elastic bodies in a contact� Let these bodies occupy
the bounded regions 
��
�� � � � �
S � R� with Lipschitz boundaries�
We look for the vector �eld of the displacements u � 
u�� u��� the tensor �eld of

small strains eij � eij
u� and the stress tensor �ij � �ij
u�� i� j � �� �� on 
� � � � ��
S�
Let the boundary �
 be divided into disjunct parts

�u��� ��c���� R� �
 � �u � �� � �c � �� � R�
�u �

SS
i�� �

i
u� �� �

SS
i�� �

i
� � �� �

SS
i�� �

i
�� �c �

S
k�l �

kl
c �

�klc � �
k

c � �
l

c� k� l � f�� � � � � Sg� k � l�

and the surface measure of R be zero�
Let on �c �

S
k�l �

kl
c normal and tangential components of the displacement vector

u and the stress tensor � be de�ned by

un � uini� ut � uiti� �n � �ini� �t � �iti � 
����

where ni are the components of outward normal to �
k�
�i � �ijnj � and t � 
�n�� n�� represents the tangential vector to �
k�
Then we have to solve the following
problem 
Pc�� Find u that satis�es the equilibrium equations

��ij
�xj


u� � Fi � � i� j � �� � � 
����

and the boundary conditions
ui � u�i on �u� 
����

�ijnj � Pi on �� � 
����

ukn � uln � �� � kn � ��
l
n � �� 
ukn � uln��

k
n � �� on �klc 
����

�



j� klt j � gkl on �klc
j� klt j � gkl � ukt � ult � ��

j� klt j � gkl � �� 	 � such that ukt � ult � ���
kl
t �


����

un � �� �t � � on ��� 
����

where Fi are the components of body forces vector�
u�i the prescribed displacement vector�
Pi the surface loads
and gkl are the prescribed friction forces�


���� are the Signorini conditions on an unilateral contact� 
���� represents Cou�
lomb�s friction law and 
���� describes the conditions on a bilateral contact� We sup�
pose that the relation between stress and displacement is governed by the generalized
Hooke�s law

�ij
u� � cijkmekm
u� i� j � �� � � 
����

where we use the Einstein�s summation convention�
and the small strain tensor eij is de�ned by

eij
u� �
�
�


�ui
�xj

�
�uj
�xi

� i� j � �� � 
����

DEFINITION ���� The function u is a classical solution of the Contact Problem if
it satis�es 
�������� with 
���� and 
�����

The coe	cients cijkm in 
����� cijkm � L�

�� satisfy symmetry conditions

cijkm � cjikm � ckmij � 
�����

Moreover� there exists a constant c� � � such� that

cijkm
x�eijekm 	 c�eijeij 
�����

is valid for all sym� matrices eij and almost everywhere in 
�
In the case of isotropic bodies and plane strain

c���� � �� c���� � 	 �

the same holds for symmetric components 
cf�
������� and

c���� � c���� � �� �	� cijkm � � otherwise�

� Variational formulation

For the de�nition of the classical solution� it is necessary to assume its su	cient smooth�
ness� However� in the case when this assumption is not valid� it is possible to de�ne
the solution by using the minimum potential energy principle�

�



First of all� we introduce the space of all functions with �nite energy by

H�

� 
 fvjv � 
v��v�� � � � �vS� � �H�

���� � � � �� �H�

S��� g� 
����

The norm is de�ned as

kvk� � kvk�H���� �
SX
l��

kvlk��H���l�	� �
SX
l��

�X
i��

kvlik
�
�� 
����

Similarly we de�ne the space H�

�

H�

� 
 fvjv � 
v��v�� � � � �vS� � �H�

���� � � � �� �H�

S��� g� 
����

We will also use the space

�W ���
���� 
 fvj
�vi
�t

� L�
��g� 
����

where v � v
x�� x � x
t� is the parametrization of the abscissa �� i � �� ��
Furthermore� we de�ne the seminorm

jvj� �
Z
�
eij
v�eij
v�dx� 
����

We introduce the sets of virtual displacements by

V 
 fv � H�

�jv � u� on �u� vn � � on �� g� 
����

where u� � H�

� � and the set of all admissible displacements by

K 
 fv � V j vkn � vln � � on �klc g 
����

REMARK ���� For simplicity we will assume u� 
 � on �u�

Let the potential energy functional be of the following form

L
v� � L�
v� � j�
v� � 
����

where

L�
v� �
�
�
A
v�v�� L
v� � 
����

A
u�v� �
Z
�
cijkmeij
u�ekm
v�dx 
�����

L
v� �
Z
�
Fividx�

Z

�
Pivids � 
�����

j�
v� �
Z

klc

gkljvkt � vltjds and 
�����

F � �L�

���� P � �L�
�� ���� gkl � �L�
�klc ��
��

�



Regarding 
������ 
����� and Schwartz inequality� we have

c�jvj
� � A
v�v� � 
�����

A
u�v� � C�jujjvj � 
�����

jvj� � C�kvk
� � 
�����

We will now de�ne the variational solution�

DEFINITION ���� A function u � K is the variational solution of the Contact
Problem if it is the minimum of the potential energy functional on the set of all ad�
missible displacements K i�e�

L
u� � L
v� �v � K � 
�����

We denote this minimization problem by 
P��
It can be easily veri�ed 
e�g� ���������� that under the assumption of su	cient

smoothness of the classical solution� both classical and variational solution are equiva�
lent�

THEOREM ���� There exists a unique solution of the problem 
P��
For the proof see e�g� �������������������

Since the term j�
v� is non�di�erentiable� we transform the minimization problem

P� to the saddle point problem 
P ���

Find a pair 
u� �� � K �� such that

H
u� 	� � H
u� �� � H
v� �� �v � K� �	 � �� 
�����

where
H
v� 	� � L�
v� � j�
v� 	�� 
�����

j�
v� 	� �
Z

klc

gkl	
vkt � vlt�ds and 
�����

� � f	j	 � L�
�klc �� j	j � � a�e� on �
kl
c g� 
�����

� Approximation

Consider the regular� consistent triangulation Th of the regions 
s� � � s � S� with
nodes ai� Let 
s have a polygonal boundary and h designate the longest side of the
triangles � As the boundary is polygonal� it holds �klc �

SJ
j�� �

kl
cj � �� �

SJ �

j�� ��j� where
�klcj � ��j are the abscissae� whose endpoints are the vertices of the region 
� J � J
k� l�
is the number of straight lines on the unilateral contact boundary between the bodies
k and l� and J � is the number of straight lines on the bilateral contact boundary�
For every node ai of the triangulation on �klc � and on ��� de�ne the set of indices

�



N kl
i � fj � f�� � � � � Jgj ai � �klcjg and Ni � fj � f�� � � � � J �gj ai � ��jg� respectively�


 In plane problems Ni has � or � members� In the latter case the node ai is the vertex
of the region laying inside �klc or ���� On the abscissae �

kl
cj � let nj denote the outward

normal to the boundary �
k� Let us de�ne the �nite dimensional approximations of
V and K�

Vh � fvh � �C


�
��� � � � �� �C



S
���jvjT � �P�
T ��� �T � Th �

vh
ai�nj � �� j � Ni� ai � ���

vh
ai� � u�
ai�� ai � �u g� 
����

Kh � fvh � Vhj
vkh � vlh�
ai�nj � ��

j � N kl
i � ai � �

kl
c � � � k � l � S g� 
����

REMARK ���� It holds Kh � K �

We arrive at the de�nition of the approximate problem�

DEFINITION ���� A function uh � Kh is the solution of the approximate problem

Ph�� if it is the minimum of the potential energy functional on the set of all admissible
displacements� i�e�

L
uh� � L
vh� �vh � Kh� 
����

THEOREM ���� There exists a unique �nite element approximation of the pro�
blem 
Ph��
For the proof see e�g� �������������������

To prove the convergence of the approximations to the exact solution we need the
density lemma ����

LEMMA ���� Let us assume that there is only a �nite number of �end points�
�
kl

c � �� � �u � �� � �u � �
kl

c � Then the set K � �C�

��� is dense in K�

We have the following result�

THEOREM ���� Let K � V � Kh � Vh be sets de�ned above� Let the assumptions
of Lemma ���� be ful�lled� Then for �u � K there exists uh � Kh such that

ku� uhk� 
 � for h
 ��

Proof�
Let u � K� Due to Lemma ���� there exists a sequence fukg � K � �C�

��� such
that

ku� ukk� 
 � for k 
��

To the element uk � K � �C�

��� there exists the element rhuk � the linear Lagrange
interpolation on the triangulation Th� Thus

kuk � rhukk� � chjukj�

�



where j � j� is the seminorm in �H�

���� Let uh �� rhuk�
Then

ku� uhk� � ku� ukk� � kuk � rhukk� 
 � for k 
�� h
 ��

which completes the proof� �

As it was mentioned in previous section� the functional L is non�di�erentiable�
Therefore� we de�ne the approximate problem for 
P ���

Let
�h � f	 � �j	 � P�
�i�

kl
ci �g� 
����

where �klci are the sides of triangles on the contact boundary �
kl
c �

The approximation of the problem 
P �� has the form 
P ��h�

Find a pair 
uh� �h� � Kh � �h such that

H
uh� 	� � H
uh� �h� � H
v� �h� �v � Kh� �	 � �h� 
����

� Numerical Realization

In the discrete form� the problem 
������
���� leads to the problem 
Pd��
Find 
x� �� � Kd � L� such that

f
x� 	� � f
x� �� � f
y� �� � 
y� 	� � K � L� 
����

where
f
y� 	� � �

�
yTCy � yTd� yTGT	 
����

Kd � fy � RN jAy � �g and L � f	 � RP j j	ij � �g� 
����

REMARK ���� The global sti�ness matrix C is of the type N �N � block diagonal�
Every block of it is sparse� symmetric� positive semide�nite matrix and corresponds to
just one body of the model� In the coercive case 
e�g����������� C is positive de�nite�
in the semi�coercive case ���� is positive semide�nite� 
In our investigated case C is
positive de�nite�� The sti�ness matrix was stored in two formats� SKY�LINE 
pro�le�
format 
e�g� ������ and SPARSE 
e�g� ���� ������ The constraint matrix A is of the type
M �N � M � N � we assume its rows to be linearly independent� The friction matrix
G is of type P �N �

We will use the Uzawa algorithm for 
Pd� 
���� ����������������
�� � � � initial guess
if �k known� we solve the minimization problem
f
x� �k�
 min�
obtaining xk�

�



Then we correct
�k�� �  L
�k � 
xk

T
GT �� 
 � ��

where  L is the projection RP on L is de�ned by�


 L
y��i �

�
yi if jyij � ��

sgn yi if jyij � ��
�

Clearly� the most expensive step is the minimization problem� Therefore� in next
paragraphs we concentrate on it�

REMARK ���� By the contact equations we mean the equations with indices cor�
responding to some node on �c�

Let M � fz � RM�P jzi 	 �� i � �� � � � �M � jzij � �� i � M � �� � � � �M � Pg� In
coercive case the problem 
Pd� can be further transformed to the form 
Pd���

�
�z

THz � zTh
 min 
����

where

H � BC��BT � h � BC��d� B �

�
A
G

�

This dual formulation enables us to use only the minimization algorithm 
Conjugate
gradients with projection� for the friction problem� However� to e	ciently implement
such algorithm� it is necessary to create Choleski decomposition of the sti�ness ma�
trix C�
In the next paragraphs� we discuss the conjugate gradient method with projection

of the gradient without and with the preconditioning� This can be used for solving the
most expensive step in the Uzawa algorithm � the minimization problem and in the
dual method as well�

� The conjugate gradient method with constraints

The principal idea of the algorithm ���� lies in the succesive minimization of f
x� on the
facets created by constraints� for which the equality is satis�ed� We solve minimization
problem on each of such facets by using the conjugate gradient method 
CGM�� As
CGM has �nite number of steps and the number of facets is also �nite 
sometimes very
great� however�� it is obvious that the algorithm converges after a �nite number of steps�

Denote by AI the matrix whose rows have the indices i � I � f�� � � � �Mg�

LEMMA ���� Let the vectors ai� i � I � f�� � � � �Mg be linearly independent� Then
the matrix AIA

T
I is regular�

For the proof see �����

�



De�ne the projection

PI � AT
I � 
AIA

T
I �
�� �AI if I �� f�g

PI � � if I � f�g

Let J � fi � f�� � � � �Mg� 
xk�Tai � �g
and uk � �
AJA

T
J �
�� �AJf

�
xk� k � �� �� � � �

It holds PJ � P T
J � AJ
I � PJ � � ��

f �
xk� � Cxk � d� and

I � PJ �f �
xk� � f �
xk� �AT

Ju
k�

Now let x� be such that it satis�es AJx
� � �� We introduce a new variable y by

x � x� � 
I � PJ �y 
����

and consider the function

F 
y� � f
x� � 
I � PJ �y�� 
����

Di�erentiating F 
y� using the chain rule and employing the symmetry of PJ we get

F �
y� � 
I � PJ �f
�
x� 
����

LEMMA ���� Let yk be the minimizer of F 
y�� Then
xk � x� � 
I � PJ �yk is the minimizer of f
x� with constraints AJx � ��
Proof�
The gradient F 
y� at the point yk is equal zero�
Then 
I � PJ �f �
xk� � f �
xk��AJ
AJA

T
J �
��AJf

�
xk� � �
i�e�

f �
xk� �AT
Ju

k � � 
����

Since AJx
k � AJx

��AJ
I�PJ�yk � �� the vector xk satis�es AJx
k � � and therefore�

it is a feasible point� Condition 
���� is the necessary and su	cient condition for xk to
be the minimizer of f
x� with constraints AJx � �� �

Lemma ��� shows that the constrained problem can be transformed to the uncon�
strained one�

THEOREM ���� The problem of minimization of the quadratic functional f
x�
with constraints AJx � � has a minimizer xm� which can be found after a �nite num�
ber of steps by the following algorithm�

Let x� be an initial approximation satisfying AJx � �
p� � �
I � PJ �f �
x���
For k � �� �� �� � � �
xk�� � xk � �k��pk���

�



pk�� � �
I � PJ �f �
xk� �
k�I�PJ �f

��xk�k�

k�I�PJ�f ��xk���k�
pk�

�k�� � � �f ��xk��pk���
�pk���Cpk��� �

Proof�
We apply the CG algorithm onto the functional F 
y�� i�e��
let y� � � and let p� � �F �
y��� Then
yk�� � yk � �k��pk���
pk�� � �F 
yk� � kF ��yk�k�

kF ��yk���k�
pk�

�k�� � � �F ��yk��pk���
�pk����I�PJ �C�I�PJ �pk���

�

Now we transform the variable y to the original variable x� It is evident ����� that


I � PJ �pk � pk� 
����

xk�� � x� � 
I � PJ �y
k��� xk � x� � 
I � PJ�y

k�

then
xk�� � xk � 
I � PJ �
y

k�� � yk� � 
I � PJ��
k��pk�

Hence
xk�� � xk � �k��pk�

Using F �
yk� � 
I � PJ �f �
xk�� we �nd

pk�� � �
I � PJ �f
�
xk� �

k
I � PJ �f �
xk�k�

k
I � PJ �f �
xk���k�
pk�

and 
����� we �nd

�k�� � �


I � PJ �f �
xk�� pk���



I � PJ�pk��� C
I � PJ �pk���
� �


f �
xk�� pk���

pk��� Cpk���

� �

To analyze the rate of convergence of the method discussed then due to Lemma �����
we can investigate the functional F 
y��
Let us denote by

ek � yk � ym

the error vector� where yk is k�th approximation and ym is the minimizer of F 
y�� Let
us denote by

C � 
I � PJ�C
I � PJ ��

Let us set for any pk

ek��
�� � yk��
��� y � 
yk � �pk�� y�

The value �k represents the value satisfying

d

d�
jek��
��j�

C
j���k� ��

�



i�e� �k is an optimal parameter minimizing the functional F 
yk � �pk� among all
possible � � R�
Let

rk � F �
yk� k � �� �� � � � �

Let us introduce the Krylov space of the order k by

Kk
r�� � spanfp�� p�� � � � � pk��g � 
����

Due to choice p� � r� the Krylov space Kk
r�� can be alternatively de�ned by

Kk
r
�� � spanfr�� r�� � � � � rk��g � 
����

The following two lemmas can be proved 
see e�g� ������

LEMMA ���� For k 	 � it holds

Kk��
r�� � spanfp�� p�� � � � � pkg � spanfr�� Cr�� � � � � C
k
r�g� 
����

LEMMA ���� It holds


rj � rm� � �� 
pj � Cpm� � � for j �� m� 
����

With these results we can prove a fundamental convergence theorem�

THEOREM ���� For the CG�method the following estimate holds

jek��jC � �

�
�� �

� 
C�� �

�
�
� 
C� � �

�
Ak

je�jC� k � �� �� � � � 
�����

where

� �
maxfj�i
C�j i � �� � � � � ng

minfj�i
C�j i � �� � � � � ng
�

and where j � jC is the vector norm induced by the scalar product 
u� v�C � 
Cu� v��
u� v � Rn�
Proof�
Since

yk�� � y� �
kX

s��

�sps�

then taking � � j � k� setting y � C��d and using Lemma ����� we have


Cpj � yk�� � y�� � �j
Cpj � pj� � 
pj� rj� � 
Cpj � y � yj� � 
Cpj � y � y���

��



Thus yk�� � y� is the orthogonal projection of y � y� onto the space spanned by
p�� � � � � pk� with respect to the scalar product 
u� v�C� Due to Lemma ���� y

k�� � y� is
the projection of y � y� onto Kk��
r��� Thus�

jy � yk��jC � jy � y� � 
yk�� � y��jC � min
w�Kk���r��

jy � y� � wjC �

But r� � C
yk�� � y�� then any w � Kk��
r�� can be written in the form

w �
k��X
j��


jC
j

y � y���

Let the set of all polynomials p � R 
 R of degree less than or equal to k�� and such
that p
�� � � be denoted by P �

k��� Then

jy � yk��jC � min
p�P �

k��

jp
C�
y � y��jC�

Since C � C
T
� �� there exists orthonormal basis given by eigenvectors of C� and that

the eigenvalues �j of C are strictly positive� If we expand y� y� with respect to these
eigenvectors� then

jp
C�
y � y��jC � max
��j�n

jp
�j�jjy � y�jC �

For p
�� we take the polynomial !Pk�� with the property that

max
������N

j !Pk
��j � min
Pk���P �

k��

max
������N

j !Pk
��j�

The solution of this problem is the Chebyshev polynomial of degree k � �� i�e��

p
y� �
Tk��

�
�max��min��y
�max��min

	
Tk��

�
�max��min

�max��min

	 �

Since 
���� �����
jTk��
w�j � �� jwj � ��

we �nd that

max
y���min��max�

jp
y�j �



Tk��

�
�max � �min

�max � �min

����

�

�

�� �

�
��

�
�
max � �

�
�
min

�
�
�
max � �

�
�
min

�
A
�k��

�
��
��

�

�

�
��

�
�
max � �

�
�
min

�
�
�
max � �

�
�
min

�
A
k��

�

from which 
����� follows� �

��



� Algorithm

We may now express the scheme of the algorithm as follows

SUBROUTINE CGC
J �� x� f ��
x� � � � the initial guess� which satis�es the constraints
IT � �
f �
x�� � Cx� � d
DO WHILE 
 IT � MAXIT �

Set J
CALL PROJECT 
J� f �
x��� u�� 
I � PJ�f �
x���

IF 
k
I � PJ �f �
x��k � �� THEN
IF 
u�i 	 � �i � J� THEN

x� � x� f solution g
GOTO �

ELSE
j �� f i � J ju�i � � g
J � � J � fjg

ENDIF
ELSE
J � � J

ENDIF

CALL CG
J �� x�� f �
x���
IT � IT � �
ENDDO
f maximum number of iterations reached g

� END

SUBROUTINE CG
J �� x� f ��
f Conjugate gradients � unlike the standard CGM� the projection 
I�PJ ��f �
xk� instead
of the gradient f �
xk� is used� The non�active constraints are also checked in every
iteration� the new step length �k�� �� min
�k��� �k���� where

�k�� � min
M

��ai�xk�
�ai�pk���

and M �� fiji �� J � � 
ai� pk��� � �g� g

is corrected�
Input� J �� x
Output� x� f �

k � �
x� � x
f �
x�� � f � f from previous iteration g

��



DO WHILE 
k � MAXIT� �

CALL PROJECT 
J �� f �
xk�� u� 
I � PJ ��f �
xk��
g � �
I � PJ ��f �
xk�
rk�� � kgk�

IF 
rk�� � �� THEN
x � xk

f � � f �
xk�
RETURN

ENDIF

IF 
k � �� THEN p� � g
ELSE �k�� � rk���rk

pk�� � g � �k��pk

ENDIF

�� � rk��

�� � 
pk��� Cpk��� f scal� product in RN g

IF 
�� � min 
���� j��j� �MAXV AL� THEN
�k�� � �����

ELSE
�k�� �MAXV AL

ENDIF

M �� fiji �� J � � 
ai� pk��� � �g
IF M �� f�g THEN

�k�� � min
M

bi��ai�x
k�

�ai�pk���
fbi � � in our case g

ELSE �k�� �MAXV AL
ENDIF

IF 
�k�� � �k��� THEN
x � xk � �k��pk��

f � � f �
xk� � �k��Cpk��

RETURN
ELSEIF 
�k�� �MAXV AL� THEN

STOP
ELSE

xk�� � xk � �k��pk��

f �
xk��� � f �
xk� � �k��Cpk��

ENDIF

dd � kxk�� � xkk�
max 
�� kxkk��
IF 
dd � �� THEN

��



x � xk��

f � � f �
xk���
RETURN

ENDIF

k � k � �

ENDDO

x � xk f point obtained after max� num� of iterations g
f � � f �
xk�

RETURN

SUBROUTINE PROJECT 
J� f �
x�� u� 
I � PJ �f �
x��
f The calculation of u � �
AJA

T
J �
�� �AJf

�
x� and 
I �PJ�f �
x� � f �
x��AT
Ju by the

CG Method g

Input� J� f �
x�
Output� u� 
I � PJ �f �
x�

RETURN

REM� ���� We set x� � 
�� � � � � �� for the initial guess�

REM� ���� Denote the value of k
I � PJ �f �
x��k in IT �th iteration 
� � IT �
MAXIT � by pgIT � Then pgIT � � numerically represents the comparison
�pgIT���max
���� pgIT �� � �� Similarly� we use the test u�i�u � 
����
where u � max
���� u�l � and u

�
l � max

m�J

���� u�m�� for the multipliers u

�
i � In semicoercive

cases it is also necessary to test the magnitudes of xk and pk �

REM� ���� It is convenient to use the following strategy which is similar to ���� We
choose less strict tolerance for subproblems 
subr� CG� in the �rst several iterations
within the CGC subroutine� The tolerance is set to more strict value after a limited
number of these iterations� We can get remarkable acceleration of the process�

REM� ���� If C is positive de�nite 
cf� Rem� ������ it can occur


f �
xk�� pk��� �� � and 
pk��� Cpk��� � ��

In this case f
xk � �pk��� is decreasing when � is increasing� If �k�� � MAXV AL�
then f on Kd is not bounded from below�

��



On the basis of the fact that �� � � 
see Subroutine CG�� we can prove that the
CG algorithm makes a non�zero step 
i�e� does not cycle� in the same way as in �����
If the implication

j � J � 
 j � J � � 
aj� p
�� � � ��

is valid then it follows from the formula for �� in the subroutine CG that �� � ��
Therefore� it is su	cient to focus the case k
I�PJ �f �
x��k � � and the removed index
j � J � J ��

LEMMA ���� Let k
I � PJ �f �
x��k � �� Let AJ � be created from AJ by removing
the row with index jju�j � ��
Then 
aj� p�� � �� j � J � J ��
For the proof see �����
If the condition for removing more indices is ful�lled then� similarly as in ���� we

choose the one with the greatest absolute value�

However� the condition 
aj� p�� � � j � J � J � may be ful�lled even in the case
when more indices fjju�j � �g are removed 
e�g� for all with jju�j � 
��� cf� Rem�
������ The following lemma shows this� In some cases we can accelerate the algorithm
very much through these means�

LEMMA ���� Let k
I � PJ �f �
x��k � �� Let AJ � be created from AJ by removing
the rows with indices jju�j � �� Furthermore� let the rows of AJ satisfy 
ai� aj� � ��
i �� j� i� j � J �
Then 
aj� p�� � �� j � J � J ��
Proof�

� � 
I � PJ �f
�
x�� � f �
x�� �AT

Ju
� � f �
x�� �AT

J �u
�
� �AT

J�J �u
�
��

�p� � 
I � PJ ��f
�
x�� � f �
x�� �AT

J �v� �

where v� � �
AJ �A
T
J ��

��AJ �f
�
x��� Subtracting and multiplying by the vector aj�

j � J � J �� we obtain 
aj� p�� � c � uj��� where c � 
aj� aj� � � and from the assumption
u��� � ��
Thus� 
aj� p�� � �� �

COROLLARY� Let the assumptions of the previous lemma be ful�lled�
Then �� � �� and as a result the algorithm CGC is not cycling� �

The condition for the rows of AJ is ful�lled in �two bodies contact�� It may be
slightly violated in a general case and also when the preconditioning is used� Never�
theless for such cases we often have an acceleration as well�

��



� The preconditioning

Consider again the problem 
Pd�� i�e�

f
x� � �
�
xTCx� xTd 
 min
Ax � � �

Now we assume C to be positive de�nite� Let W be a positive de�nite N �N matrix
in the formW � EET � Let us introduce the transformation y � ETx and express 
Pd�
in terms of a new variable y� Then

f 
y� � �
�
yTCy � yTd 
 min
Ay � ��

where
C � E��CE�T � d � E��d� A � AE�T �

As E�TCET � W��C� the matrices C and W��C have the same eigenvalues� The
convergence of CGM depends on the condition number 
�max��min� of the matrix C�
The speed of the convergence is increasing when the condition number ��� is decreasing�
The lowest condition number has a unity matrix� Therefore� we try to �nd W which is
an easy invertible approximation of C or for which we can show that W��C has lower
condition number�
The preconditioning will be used when solving the problem on particular facets�

i�e� in the subroutine CG� Let us write its steps for the transformed problem 
Pd�

without supplementary commands and tests��

SUBROUTINE PCG� � 
 J �� xf� E�Tyg� ET � rf� f �g �
y� � y � ETx
r� � Cy� � d
g� � 
I � P J ��r�

p� � �g�

for k � �� �� � � �

�k � 
gk� gk��
pk� Cpk�

�k � min
M
� �ai�yk�

�ai�pk�

IF 
�k � �k� THEN
y � yk � �kpk

f
�
� rk � �kCpk f and return to CGC g

ELSE
yk�� � yk � �kpk

rk�� � rk � �kCpk

ENDIF
gk�� � 
I � P J ��rk��

�k�� � 
gk��� gk����
gk� gk�

��



pk�� � �gk�� � �k��pk

At the same time P J � � A
T

J �
AJ �A
T

J ��
��AJ �

andM is connected withM by the transformation y � ETx�

Introducing a vector vk by vk � E�Tpk and using

hk �� f
�

yk� � E��f �
xk��


pk� Cpk� � 
vk� Cvk� and

ai� pk� � 
ai� vk� �

we can write PCG� � in x variable�

SUBROUTINE PCG� � 
 J �� x�ET � rf� f �g �
r� � f � f from previous iteration g
h� � E��r�

g� � 
I � P J ��h�

v� � �E�Tg�

for k � �� �� � � �

�k � 
gk� gk��
vk� Cvk�
�k � min

M
� �ai�xk�

�ai�vk�

IF 
�k � �k� THEN
x � xk � �kvk

f � � rk � �kCvk f and return to CGC g
ELSE

xk�� � xk � �kvk

rk�� � rk � �kCvk

hk�� � E��rk��

gk�� � 
I � P J ��hk��

�k�� � 
gk��� gk����
gk� gk�
vk�� � �E�T gk�� � �k��vk

ENDIF

In the subroutine PROJECT � if it is called from PCG� � 
the calculation of g��

the multiplications AJ �x� A
T
J �x are replaced by AJ �y� A

T

J �y� i�e� AJ �E
�Ty� E��AT

J �y� As
E�T is regular� AJ � also has linearly independent rows�
The matrix C does not occur in the transformed problem�

��



	 A second approach to the preconditioning

In previous section� the projection matrix is very expensive to calculate� Therefore� it
is desirable to modify the algorithm so that the projection matrix is created directly
from the original constraint matrix� We write the preconditioned CG algorithm from
previous section omitting the steps with the projection� i�e� we have the unconstrained
version of this algorithm now�

SUBROUTINE PCG
r� � Cx� � d
g� � E��r�

v� � �E�Tg�

for k � �� �� � � �

�k � 
gk� gk��
vk� Cvk�
xk�� � xk � �kvk

rk�� � rk � �kCvk

gk�� � E��rk��

�k�� � 
gk��� gk����
gk� gk�
vk�� � �E�T gk�� � �k��vk

If we consider a constrained problem� we may use Lemma ��� and modify directly
PCG� We deal with the minimization of !f
x� � f
y� � f

I � PJ � �x�� therefore
the quantities rk� gk and vk� which concern the gradient are replaced by 
I � PJ � �rk�

I � PJ ��gk and 
I � PJ ��vk� respectively�
We arrive at the following algorithm�

SUBROUTINE PCG� �
J �� x�ET � f ��
r� � f � f from previous iteration g
g� � 
I � PJ ��E��
I � PJ ��r�

v� � �
I � PJ ��E�T g�

for k � �� �� � � �

�k � 
gk� gk��
vk� Cvk�

�k � min
M
� �ai�xk�

�ai�vk�

IF 
�k � �k� THEN
x � xk � �kvk

f � � rk � �kCvk f and return to CGC g
ELSE

xk�� � xk � �kvk

rk�� � rk � �kCvk

gk�� � 
I � PJ ��E��
I � PJ ��rk��

�k�� � 
gk��� gk����
gk� gk�

��



vk�� � �
I � PJ ��E�T gk�� � �k��vk

ENDIF

Comparing with PCG��� we have to calculate the projection three times during one
iteration� This projection is� however� much simpler to calculate than the projection
appearing in PCG� �� It is obvious� that the version PCG� � is much more e	cient
concerning time aspect� The numerical experiments con�rm this� up to one exception�
which is shown in Tab� ���� and Fig� ������

�
 The choice of the preconditioning matrix

The simplest choice is W � D� where D is the diagonal of the matrix C� In this case
ET � D

�
� and it is su	cient to store only the vector�

Another possibility is the SOR decomposition �������� Let C � D � L � LT � The
preconditioning matrix is of the form

W �
�

�� �

� �
�
D � L

�� �
�
D
��� � �

�
D � L

�T
� � � � � � � 
�����

where the factor �
��� may be omitted� Thus

ET �
� �
�
D
�� �

�
� �
�
D � LT

�
�

The condition number of C � W��C� we denote it by �
C�� may be under the certain
assumptions smaller than �
C�� as the following assertion shows ����

THEOREM ����� Let C be positive de�nite and W be determined by 
������ Let

kD� �
�LD� �

� k� �
�
�
� kD� �

�LTD� �
� k� �

�
�
�

Then

min
�����

�
C� �

s
�
�
�
C� �

�
�
�

The optimal value of � can be determined ���� if the numbers

	 � max
x ���


xTDx�xTHx� �

� � max
x���

xT �LD��LT� �
�D�x

xTHx
�

are estimated�
However� in our case 
the presence of the constraints� the numerical experiments

have shown that by choosing � �� �� the speed of the process does not change very
much�

��



The incomplete factorization is more e�ective� Consider factorization C � LLT �
where L is a lower triangular matrix� The incomplete factorization� in the simplest
form� lies on determining only such entries of L where the original matrix C has non�
zeros� We will obtain certain �approximation� of C�
De�ne SC � f
i� j�� cij �� �g� Proceeding from the Gaussian elimination� the steps

of incomplete factorization can be written as follows�

for r � �� � � � � N � �

lir � c
�r�
ir �c

�r�
rr �

c
�r���
ij �

����
���

c
�r�
ij � lirc

�r�
rj 
r � � � j � N� � �
i� j� � SC � � 
i �� j� �

� 
r � � � j � N� � �
i� j� �� SC � �
c
�r�
ii � lirc

�r�
ri i � j �

In another variant we add removed entries to the diagonal� i�e�

c
�r���
ii � c

�r�
ii � lirc

�r�
ri �

NX
�i�k���SC
k�r��

lirc
�r�
rk �

Thus� in the matrix form

C � EET � R � W �R �

R �
N��P
r��

R�r��� � r�r��� �

�����
����

� 
i� j� � SC� i �� j �

c
�r�
ij � lirc

�r�
rj 
i� j� �� SC �

NP
k�r��

lirc
�r�
rk i � j�


The form of R follows from the description of the incomplete Gaussian elimination
through lower triangular matrices Lr and from properties of these matrices��
It is obvious that� in particular� the version with adding to the diagonal in the

number of operations does not di�er so much from a complete factorization� Its main
advantage is in avoiding the �ll�in which occurs in the complete factorization� This
fact is not important in SKY�LINE format� Therefore� here we also test the complete
factorization�

DEFINITION ����� C is M �matrix� if


�� cii � � i � �� � � � � N � � �

�� cij � � i �� j �

�� maxf j j
i � j � N� � 
cij �� ��g � i for � � i � N �

For this class of matrices the following theorem holds ��������

��



THEOREM ����� The incomplete factorization is a stable process for the diagonal
dominant M �matrix in the following sense�
the number

q � max
i�j�r

jc�r�ij j�max
i�j

jcijj

is bounded from above 
even q � ���

Generally� it can be said that the number of iterations on particular facets is lower
in the preconditioning 
see Tabs� ����������� In the �rst version of the preconditioning

PCG� ��� however� the calculations of the projection matrix are very expensive�
In the SKY�LINE format it is the best to carry out the complete factorization�

While in the problems without constraints it would be redundant to perform the ite�
rations after it� for this situation we do not have the solution yet� but we can achieve
substantial acceleration of the CGM iterations� Only in this situation the convergence
is faster 
see Tab� ����� in the case of PCG � � than in the case without the precon�
ditioning and also faster than for the version PCG� �� Naturally� the disadvantage is
the �ll�in which arises due to the elimination�

�� Test example

We analyze the structure of a beam bridge on a nonstable slope as a model example

Fig������� The model example was simpli�ed in the sense� that the valley was arched
by one prestressed concrete arch� Foundation of the bridge situated on the unstable
slope is simulated by contact conditions with Coulombian friction� The movement
of the unstable slope acting onto a bridge is simulated by the boundary conditions�
Moreover� we suppose that the bridge is statically loaded by vehicles� As the movement
of the slope is very slow� the model can be investigated as a quasistatic 
�����������
There are � subregions with di�erent values of E�Nm��� and 	 varying from E �

����d��� and 	 � ���� to E � ����d��� and 	 � ���� � The contact boundaries are
located along the lines ��� ��� �� � �� and ��� ��� The movement of unstable slope
is realized by the prescribed displacement u� � ���d�� �m� between the vertices �� and
��� The load P � ����d�� �Nm��� acts along the line �� ��� gkl � ���d���Nm����
Figs� ��������� represent by turns deformations� stresses 
���� ���� ���� and principal

stresses� The same quantities are depicted in Figs� ���������� for the zoomed detail

see Fig� ������ We use scale factor ��� for the deformations� In Figs� ���� and �����
��
� represents tractions� �
�� pressures�
Various types of preconditioners were tested on our model of the bridge 
see Tabs�

���������� � diagonal
P�DIAG�� incomplete Choleski
P�ILL�� incomplete Choleski with
adding to the diagonal
P�ILLD�� SOR decomposition
P�SOR�� Also� the complete
Choleski decomposition for the algorithm PCG�� 
P�LL
��� and PCG�� 
P�LL
��� was
tested� The results are graphically shown on graphs 
Figs� �������������
The statistics for this example is in Tab� �����
Here NV � number of vertices� NEL � number of elements� NEQ � number of

degrees of freedom� NCP � number of contact constraints� LIC and NWK � number

��
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Figure �����

Table �����

NV NEL NEQ NCP LIC NWK LJA
��� ��� ��� �� ���� ����� ��

Table �����

METHOD TIME
SPARSE ���
P�DIAG ���
P�SOR ���
P�ILL ���
P�ILLD ���
SKY�LINE ���
P�LL
�� ��
P�LL
�� ��

��



Table ����� Outer iterations � SPARSE

Iter� Activ� Constr� No� of Inner It�
� �� ���
� � ���

Table ����� Outer iterations � P�DIAG

Iter� Activ� Constr� No� of Inner It�
� �� ���
� � ���

of stored entries in the stifness matrix for SPARSE and SKY � LINE formats�

Table ����� Outer iterations � P�SOR

Iter� Activ� Constr� No� of Inner It�
� �� ���
� � ���

��



Table ����� Outer iterations � P�ILL

Iter� Activ� Constr� No� of Inner It�
� �� ���
� � ���

Table ����� Outer iterations � P�ILLD

Iter� Activ� Constr� No� of Inner It�
� �� ���
� � ���

Table ����� Outer iterations � SKY�LINE

Iter� Activ� Constr� No� of Inner It�
� �� ���
� � ���

Table ����� Outer iterations � P�LL
��

Iter� Activ� Constr� No� of Inner It�
� �� �
� � �

Table ������ Outer iterations� �� ver� of preconditioning � P�LL
��

Iter� Activ� Constr� No� of Inner It�
� �� ��
� � �

��
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Table ������

METHOD ITER TOT� TIME

SPARSE ��� ����
P�DIAG ��� ����
P�SOR ��� �����
P�ILL ��� ����
P�ILLD ��� ����
SKY�LINE ��� ����
P�LL
�� ��� ����
P�LL
�� ��� ����
DUAL ��

The Table ���� compares the times for the versions without preconditioning and
with the second version of preconditioning required by the CGC Method� The �rst
version of the preconditioning 
except LL
��� is not shown as the times were greater
than for the version without the preconditioning�
The Tables ���� � ���� show the statistics concerning outer iterations in Subr� CGC

in Sec�� �
The Table ����� shows the total times� including iterations of the Uzawa algorithm


cf� Sec���� for all tested variants� The Uzawa method is the method with locally
bounded step� which was con�rmed in our experiments as compared with the dual
method� On the other hand� the dual method can be used only under the additional
assumption on the sti�ness matrix�
For the greater value of the Uzawa algorithm iteration number 
ITER�� the number

of inner iterations in CGC is almost comparable for the versions without and with the
preconditioning� Therefore� we have no acceleration for the preconditioned versions

cf� Tab� �������
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