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Abstract

In this paper the solution of the Friction Contact Problem and corresponding solvers
are discussed. The model is based on Linear Elasticity, where small displacements are
assumed. Then the condition of impenetration can be expressed by linear constraints.
Mathematically, the problem leads to the saddle point problem. This formulation
enables additional contact elements to be avoided, where a suitable stiffness parameter
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1 Introduction

The bridges are often constructed in difficult geological conditions, e.g. on undermining
areas or on unstable slopes, simultaneously they have to satisfy a great static and
dynamic loading. They consists of lower structure, upper structure and the bridge
equipment. The foundations and bridge supports are included in lower structure, and
the supporting structure in upper structure. We consider the simple type of a beam
bridge with the lower structure to be massive. We study the case, when the pier is
situated as far as the rigid footwall. In the model problem the neighbouring rocks are
in a contact with the massive pier and then the effect of moving neighbouring rocks
onto the deformation of the massive pier as well as of all construction of the bridge is
numerically analyzed.

In this contribution the model of the bridge will be treated as the elastic contact
problem. We test the conjugate gradient method without and with the preconditioning.

2 Classical formulation of the Contact Problem

Let us suppose, that we have S elastic bodies in a contact. Let these bodies occupy
the bounded regions Q*, Q2 ..., Q° C R? with Lipschitz boundaries.
We look for the vector field of the displacements u = (uy,uz), the tensor field of
small strains e;; = ¢;;(u) and the stress tensor 7,; = 7;;(u), 7,7 = 1,2, on Q' U...UN".
Let the boundary 9€) be divided into disjunct parts

I, T, T.,To, R, 90 =T,UT,UT.UT,U R,
Py =UL Ty, To=UL %, To=UL T To=Ug Y,
M =T'n T, kile{l,...,Sh k<l

and the surface measure of R be zero.
Let on T'. = Uy, I'* normal and tangential components of the displacement vector
u and the stress tensor 7 be defined by

Up = WiNi, Up = Uili, T = Ting, Tt = Til; (2.1)

where n; are the components of outward normal to 90*,

7, = 7;;n;, and t = (—ng, ny) represents the tangential vector to oN~.
Then we have to solve the following

problem (P.):  Find u that satisfies the equilibrium equations

%(u)—I—FZ':O i, =1,2, (2.2)
and the boundary conditions
u; = ug; only, (2.3)
min; =P onl;, (2.4)
ub —ul <0, tF=—7l <0, (v —ul)rF =0, onI'™ (2.5)



] < g on ¥

|7_tkl| < gkl = uf — ull5 = 07 (26)
I7H| = ¢¥ = 3IX > 0 such that uf —ul = A7k,
Up = 07 T+ — 0 on FO? (27)

where £} are the components of body forces vector,
ug; the prescribed displacement vector,

P; the surface loads

and ¢* are the prescribed friction forces.

(2.5) are the Signorini conditions on an unilateral contact, (2.6) represents Cou-
lomb’s friction law and (2.7) describes the conditions on a bilateral contact. We sup-
pose that the relation between stress and displacement is governed by the generalized
Hooke’s law

Tij(u) = cijkmekm(u) Z,j = 1,2 5 (28)
where we use the Einstein’s summation convention,
and the small strain tensor e¢;; is defined by

1 Ou;  Ou;
cii(u) = 5(8:1; 6:1;])
7 7

ij=1,2 (2.9)

DEFINITION 2.1. The function u is a classical solution of the Contact Problem if
it satisfies (2.3-2.7) with (2.8) and (2.9).

The coefficients ¢;jpm in (2.8), ¢ijpm € L(£2), satisfy symmetry conditions
Cijkm = Cjikm = Chmij- (2.10)
Moreover, there exists a constant ¢y > 0 such, that
Cijkm (T )€ij€km > Co€ij€i; (2.11)

is valid for all sym. matrices ¢;; and almost everywhere in ().
In the case of isotropic bodies and plane strain

cii12 = A, 1212 = f,
the same holds for symmetric components (cf.(2.10)), and

Ci111 = €222 = A+ 20, Cijem = 0 otherwise.

3 Variational formulation

For the definition of the classical solution, it is necessary to assume its sufficient smooth-
ness. However, in the case when this assumption is not valid, it is possible to define
the solution by using the minimum potential energy principle.



First of all, we introduce the space of all functions with finite energy by
HY(QY) = {v|v=(vv% .. v e [HY (O] x ... x [H(Q)]* .

The norm is defined as

S 2
V1P = 1v15a @ Z IVl @y = 22 2 il

=1 i=1

Similarly we define the space H?*()
HA(Q) = {v|v= (v, v% ..., v7) € [H* (O] x ... x [H*(Q%)]* ).

We will also use the space

ov;
ot

(WD) = {v]5 - € L=(I)},

where v = v(x), x = x(t) is the parametrization of the abscissa I', ¢ =1,2.

Furthermore, we define the seminorm

VP = [ e(v)es(vidx.
We introduce the sets of virtual displacements by
V={veH Q)|v=u onl,, v,=0 only},
where ug € H'() , and the set of all admissible displacements by
K={veV|vh—vl <0 onI*}
REMARK 3.1. For simplicity we will assume ug = 0 on I',.

Let the potential energy functional be of the following form

L(v) = Lo(V) +jo(v)

where |
Lo(v) = §A(V,V)—L(V) \

A, v) = / Cistm €5 (W) (V) d5X
/szdx—l— Pids
jotv) = [ "ef = vilds  and

Fe [LX(QP, P e [LXT,)], g € [L=(TE)].

(3.1)

(3.2)

(3.3)

(3.4)

(3.8)

(3.9)
(3.10)
(3.11)

(3.12)



Regarding (2.10), (2.11) and Schwartz inequality, we have

colv]? < A(v,v) | (3.13)
A(u,v) < Cylullv| (3.14)
VP < Gallvi® (3.15)

We will now define the variational solution.

DEFINITION 3.1. A function u € K is the variational solution of the Contact
Problem if it is the minimum of the potential energy functional on the set of all ad-
missible displacements K i.e.

Lu) <L(v) YvekK . (3.16)

We denote this minimization problem by (P).

It can be easily verified (e.g. [6],[11]), that under the assumption of sufficient
smoothness of the classical solution, both classical and variational solution are equiva-
lent.

THEOREM 3.1. There exists a unique solution of the problem (P).
For the proof see e.g. [6],[10],[14],[15].

Since the term jo(v) is non-differentiable, we transform the minimization problem

(P) to the saddle point problem (P’):

Find a pair (u,A) € K x A such that

H(u, p) < H(u, X)) < H(v,\) VveK, VYueA. (3.17)
where
H(v,p) = Lo(v)+ j1(v,p), (3.18)
J1(v, ) =/ 9" p(vf —vy)ds and (3.19)
rH
A= {plpe LT, |u] <1 ae. on I}, (3.20)

4 Approximation

Consider the regular, consistent triangulation T} of the regions 2°, 1 < s < S, with
nodes a;. Let €)° have a polygonal boundary and & designate the longest side of the
triangles . As the boundary is polygonal, it holds I'* = U}]:1 Ff}, 'y = U}Ilzl I'y;, where
Ff}, ['o; are the abscissae, whose endpoints are the vertices of the region Q. J = J(k, )
is the number of straight lines on the unilateral contact boundary between the bodies
k and [, and J' is the number of straight lines on the bilateral contact boundary.

K and on I'g, define the set of indices

For every node a; of the triangulation on I'Y,



N ={je{l,....J}a; e TE} and N; = {j € {1,...,J'}a; € T'y;}, respectively.
( In plane problems N; has 1 or 2 members. In the latter case the node a; is the vertex
of the region laying inside I'* or I'y). On the abscissae Ff}, let n; denote the outward
normal to the boundary 9QF. Let us define the finite dimensional approximations of

V and K.

Vi = {vie[COYP ... x [CO@ )W vy [P(T))? VT € Ty
vi(ai)n; =0, j € N, a; € T;

Vh(ai) = uo(ai)a a; € I'y }7 (41)
Ky = {vi € Vi|(vi = vj)(ai)n; <0,
jENM a;eTH 1<k<I<S Y. (4.2)

REMARK 4.1. It holds K, C K .
We arrive at the definition of the approximate problem.

DEFINITION 4.1. A function uy, € K}, is the solution of the approximate problem
(Pr), if it is the minimum of the potential energy functional on the set of all admissible
displacements, i.e.

,C(uh) < ,C(Vh) Vv, € K. (43)

THEOREM 4.1. There exists a unique finite element approximation of the pro-
blem (Py,).
For the proof see e.g. [6],[11],[14],[15].

To prove the convergence of the approximations to the exact solution we need the
density lemma [7].

LEMMA 4.1. Let us assume that there is only a finite number of “end points”
Tfl NI, T,NT,, T,N F’jl. Then the set K N [C*(£2)]? is dense in K.

We have the following result:

THEOREM 4.2. Let K C V, K} C Vj, be sets defined above. Let the assumptions
of Lemma 4.1. be fulfilled. Then for Vu € K there exists u, € K} such that

lu—uull1 — 0 for h — 0.

Proof.
Let u € K. Due to Lemma 4.1. there exists a sequence {u;} C K N [C*°(Q)]? such
that

|lu—ugly — 0 for k — oo.

To the element u, € K N [C>(N)]? there exists the element rjuy, - the linear Lagrange
interpolation on the triangulation 7}),. Thus

||lur, — rpuglls < chlugla

5



where | - |3 is the seminorm in [H?*(2)]?. Let uy := rjuy.
Then
|lu —up|ls < ||lu—ug|li + |Jur — rpugl|s — 0 for & — oo, h — 0.

which completes the proof. a

As it was mentioned in previous section, the functional £ is non-differentiable.
Therefore, we define the approximate problem for (P’).

Let
Ap={p € Alp € Py(UilE)}, (4.4)

where T* are the sides of triangles on the contact boundary T'*.
The approximation of the problem (P’) has the form (P’):
Find a pair (us, A\n) € Kj, x Ay, such that

H(uh,,u) < H(uh, )\h) < H(V, )\h) Vv e Ky, \V/,u c Ay (45)

5 Numerical Realization

In the discrete form, the problem (3.17),(4.5) leads to the problem (Py):
Find (z,A) € K4 x L, such that

fla,p) < fla,X) < fly,A) V(y,p) € K x L, (5.1)

where
fly,p)=2y"Cy —yTd+yTGTp (5.2)
K;={y € RN|Ay <0} and L = {u € R" ||| <1}. (5.3)

REMARK 5.1. The global stiffness matrix €' is of the type N x N, block diagonal.
Every block of it is sparse, symmetric, positive semidefinite matrix and corresponds to
just one body of the model. In the coercive case (e.g.[11],[15]) C is positive definite,
in the semi-coercive case [16] is positive semidefinite. (In our investigated case C' is
positive definite.) The stiffness matrix was stored in two formats: SKY-LINE (profile)
format (e.g. [11]), and SPARSE (e.g. [1], [L1]). The constraint matrix A is of the type
M x N, M < N; we assume its rows to be linearly independent. The friction matrix
G is of type P x N.

We will use the Uzawa algorithm for (P,) ([6], [11],[18],[15]):
A° .. .initial guess
if \* known, we solve the minimization problem
f(z, AF) — min,

obtaining x*.



Then we correct
AL = T 4 p2t " GT),  p >0,
where I} is the projection RF on L is defined by:

L Y iy < 1,

Clearly, the most expensive step is the minimization problem. Therefore, in next
paragraphs we concentrate on it.

REMARK 5.2. By the contact equations we mean the equations with indices cor-
responding to some node on I'..

Let M = {2 ¢ RM*P |5, > 0,i=1,..., M;|%| <1,i=M+1,...,M+ P}. In

coercive case the problem (Py) can be further transformed to the form (Pyz):
%ZTHZ —2Th = min (5.4)

where

H=BC'BT h=BCY, B= ( é )
This dual formulation enables us to use only the minimization algorithm (Conjugate
gradients with projection) for the friction problem. However, to efficiently implement
such algorithm, it is necessary to create Choleski decomposition of the stiffness ma-
trix C'.

In the next paragraphs, we discuss the conjugate gradient method with projection
of the gradient without and with the preconditioning. This can be used for solving the
most expensive step in the Uzawa algorithm - the minimization problem and in the
dual method as well.

6 The conjugate gradient method with constraints

The principal idea of the algorithm [20] lies in the succesive minimization of f(x) on the
facets created by constraints, for which the equality is satisfied. We solve minimization
problem on each of such facets by using the conjugate gradient method (CGM). As
CGM has finite number of steps and the number of facets is also finite (sometimes very
great, however), it is obvious that the algorithm converges after a finite number of steps.

Denote by A; the matrix whose rows have the indices ¢ € 1 C{1,..., M}.

LEMMA 6.1. Let the vectors a;, 7 € I C {1,..., M} be linearly independent. Then
the matrix A;A7T is regular.
For the proof see [20].



Define the projection

P = A?-(A[A?)_I‘AI it 1#4{0}
Pr=0 if 1={0}

Let J={ie{l,...,.M}, (@")Ta; =0}
and v = —(A;ATY7L A f/(2F) kE=0,1,...

It holds PJ:P}7 AJ(I—PJ):O,
f'(z%) = Ca* — d, and
(T = PPt = f1a*) + AT

Now let z° be such that it satisfies Aj2° = 0. We introduce a new variable y by

z=2z"+ (- Py (6.1)
and consider the function
Fy) = f(=° 4+ (I = Pr)y). (6.2)
Differentiating F'(y) using the chain rule and employing the symmetry of P; we get
Fi(y) = (I = Py)['(x) (6.3)

LEMMA 6.2. Let y* be the minimizer of F(y). Then
z¥ = 2%+ (I — Py)y" is the minimizer of f(z) with constraints Az = 0.
Proof.
The gradient F'(y) at the point y* is equal zero.
Then (1 — P)f/(a") = f/(a*) — Ay (A AT Ay f(24) = 0
ie.
f'(2™) + ATur =0 (6.4)
Since Ajz* = Aja° +Ay(1— PJ)yk = 0, the vector z* satisfies Aja* = 0 and therefore,

it is a feasible point. Condition (6.4) is the necessary and sufficient condition for =* to
be the minimizer of f(x) with constraints Ayz = 0. O

Lemma 6.2 shows that the constrained problem can be transformed to the uncon-
strained one.

THEOREM 6.1. The problem of minimization of the quadratic functional f(x)
with constraints Ajz = 0 has a minimizer ™, which can be found after a finite num-
ber of steps by the following algorithm:

Let 2% be an initial approximation satisfying Ajx = 0
pt=—(I = F;)f(°),
For k=0,1,2,...
B R



=) / Ey(12
P = —(1 = Py) f'(a*) + s ph.
Q= _ (@)t

T (PR OpRtl)e

Proof.
We apply the CG algorithm onto the functional F(y), i.e
let y° =0 and let p' = —F'(y°). Then

yk—l—l _ y + ak—l—l k—l—l

k+ ||F’( s
P = =P + b
o — (F'(y*) p 1)

~ (FLUI=P)CI-Py)pHT)
Now we transform the variable y to the original variable . It is evident [20], that

xk-|—1 — [EO _I_ (] . Pj)yk-l-l7 (Ek — [EO _I_ (] — Pj)yk,

then
N —ah = (1= Py —y*) = (1 = Pyt

Hence

k+1 — l’k + Oék+1pk.

Using I'(y*) = (I — Py)f'(z*), we find

X

(7 = P f M)

pk+1 =—(I - PJ)f/(xk) (1 — PJ)f’( )Hzp )

and (6.5), we find

e (T=POfEh Y (N
(T = P+, C(I— Ppt) (0, Oty

(a4

To analyze the rate of convergence of the method discussed then due to Lemma 6.2.,
we can investigate the functional F'(y).
Let us denote by
ek — yk o ym
the error vector, where y* is k-th approximation and y™ is the minimizer of F'(y). Let

us denote by
C = (I-Py)C(I— Py).

Let us set for any p*

Mt a) =y

M a)—y = (y* +ap’) —v.

The value o represents the value satisfying

d
@|ek+1(o¢)|; la=ar= 0.

9



i.e. of is an optimal parameter minimizing the functional F(y* 4 ap®) among all

possible a € R.
Let

Let us introduce the Krylov space of the order £ by

Ky (%) = span{p®, p',....p" '}
Due to choice p® = r? the Krylov space K;(r?) can be alternatively defined by

Ki(r%) = span{r®,r*, ... r* 11,

The following two lemmas can be proved (see e.g. [17]).

LEMMA 6.3. For &£ > 0 it holds

., — —k
Kiy1 (r®) = span{p®, p', ..., p"} = span{r®,Cv°, ..., C"r°}.

LEMMA 6.4. It holds

(rj,rm) =0, (pj,Upm) = 0 for j # m.

With these results we can prove a fundamental convergence theorem.

THEOREM 6.2. For the CG-method the following estimate holds

— k
—1
|ek+1|6 <2 (K(gi)l) |60|67 k= 0717' .-
_I_

=] o=

w2 (C)

where

_ maX{|)\i(§)| i=1,...,n}
min{|\,(C)] i=1,....n}

(6.10)

and where | - |7 is the vector norm induced by the scalar product (u,v)z = (Cu,v),

u,v € R".
Proof.

Since .
yk—l—l . yO _ Z:Oésps7
5=0
then taking 0 < j <k, setting y = C'~!'d and using Lemma 6.4., we have
T " — 00 = o (Tpi pi) = (o 19) = (T — 07) = (T 1 — o0
(CP.y ') =o'(Cpp") = (p,r") = (Cp'y —y') = (Cpsy —y).

10



Thus y**t' — 9% is the orthogonal projection of y — 4° onto the space spanned by
Y. ..., Pk, with respect to the scalar product (u,v)z Due to Lemma 6.3. y*1 — ¢°

the projection of y — y° onto Ky (r?). Thus,

e = | o y)e = min |y -y’ — wls

0
y y (y we]ﬁk+1(7’0)

ly —y

But ° = U(yk"‘l —y), then any w € Kj11(r") can be written in the form

k+1

w—Z% (y —y°)

Let the set of all polynomials p : R — R of degree less than or equal to k+1 and such
that p(0) = 1 be denoted by Py ;. Then

ly =y = min Oy = ")
k41
Since O = O > 0, there exists orthonormal basis given by eigenvectors of C, and that
the eigenvalues \; of C are strictly positive. If we expand y — y° with respect to these

eigenvectors, then _
POy = 9"l < max Ip(A)ly = vle:

For p()\) we take the polynomial Py with the property that

max |Py(A)] = min  max |Py(A)].

A1 <A<A N Pry1€Pr M<A<Ay

The solution of this problem is the Chebyshev polynomial of degree k + 1, i.e.:

Amaz+Amin—2y
Thtr (—)

A777,(1.”E_A7n1n

A7774(1.’1:-I—A7774'L774 ’
Titq (7)

ma.r_Amzn

ply) =

Since ([2], [17])
T (w)] < 1, oo < 1,

we find that

IA

)\max + )\mzn -
yG(Arrnrii)/\(mam) |p(y) [Tk+1 ()‘max - Amzn)]
1 1 2k+27 1
)\max )\fmn
< |14 | 2R Tmin
)\max + )\fmn

1 1 k+1
()\%mx = Am)
L 9
)\T2nax + )\fmn

from which (6.10) follows. O

11



7 Algorithm

We may now express the scheme of the algorithm as follows

SUBROUTINE CGC(J' x, f)
2% .. .the initial guess, which satisfies the constraints
IT=0
fl(2%) =Ca®—d
DO WHILE (IT < MAXIT )
Set J
CALL PROJECT(J, f'(z°),u® (I — Py)f'(2"))

IF (|(I = Py)f/(x°)|| ~ 0) THEN
[F (W0 >0Viel) THEN

v =2° { solution }
GOTO 2
LLSE
ji=H{ieJ|u)<0}
V= J - )
ENDIF
LLSE
J'=J
ENDIF

CALL CG(J',2°, f'(2°))
Im=1Tr+1
ENDDO

{ maximum number of iterations reached }

2 END

SUBROUTINE CG(J', z, f')
{ Conjugate gradients - unlike the standard CGM, the projection (I — Py f'(z¥) instead
of the gradient f’(x*) is used. The non-active constraints are also checked in every
iteration, the new step length o+ := min (o1, &@*1), where
= r%n(iﬁ and M= {ili & J' A (a;,p") >0}, }
is corrected.
Input: J'x
Output: =, f’

(%) = f  { from previous iteration }

12



DO WHILE (k < MAXIT? )

CALL PROJECT(J', f'(z*),u, (I — Py)f'(z*))

g=—I—Pp)f(a*)
ritt = 1lg|?
IF (r*' < ¢) THEN
r = l’k
f/ — f’(l‘k)
RETURN
ENDIF

[F (k=0) THEN p' = g
ELSE pktl = phtl/pk

P = g+ gL
ENDIF

al = rktt
a2 = (pttt, Cphth) { scal. product in RV }

IF (al <min(1.0,]a2]) * MAXVAL) THEN
ot = al/a2

ELSE
ot = MAXV AL

ENDIF

M:={ili & J A (a;, p"Y) > 0}
IF M+ {0} THEN
1

. b:—(a; k .
= min J—l(’a, ;;fl) {b; =0 in our case }
2

ELSE &' = MAXV AL
ENDIF

[

IF (@' <o) THEN
- T ak+1pk+1
f/ — f’(l‘k) _I_ak+10pk+1
RETURN
ELSEIF (o' = MAXVAL) THEN
STOP
ELSE

ZFH = gk L qhHl gt

f’($k+1) — f’(xk) + ozk+10pk+1
ENDIF

dd = ||+ — 2*|| /(max (1, [|=*])))
IF (dd < ¢) THEN

13



z = gkt

f/ — f/($k+1)
RETURN
ENDIF

E=k+1

ENDDO

z = 2% { point obtained after max. num. of iterations }

f/ — f’(xk)

RETURN

SUBROUTINE PROJECT(J, f'(x),u,(I — Py)f'(x))
{ The calculation of u = —(A;AL)™ - Ay f'(z) and (I — Py)f'(z) = f'(z) + ALu by the
CG Method }

Input: J, f'(x)
Output: u, (I — Py)f'(x)

RETURN

REM. 7.1. We set 2° = (0,...,0) for the initial guess.

REM. 7.2. Denote the value of |[(I — Py)f'(2°)| in IT-th iteration (0 < IT <

MAXIT) by pg'T. Then pg'’ ~ 0 numerically represents the comparison

[pg' T+ / max (1.0, pg’T)] < e. Similarly, we use the test u?/u > (—¢),

where v = max (1.0, u?) and uf = max (0.0,u2), for the multipliers u?. In semicoercive
me

cases it is also necessary to test the magnitudes of z* and p* .

REM. 7.3. It is convenient to use the following strategy which is similar to [8]. We
choose less strict tolerance for subproblems (subr. C'GY) in the first several iterations
within the CGC subroutine. The tolerance is set to more strict value after a limited
number of these iterations. We can get remarkable acceleration of the process.

REM. 7.4. If C is positive definite (cf. Rem. 5.1.), it can occur
(f'(«"),p"") # 0 and (p™', Cp*1) = 0.

In this case f(x" + ap*!) is decreasing when « is increasing. If @' = MAXV AL,
then f on Kj is not bounded from below.

14



On the basis of the fact that @' > 0 (see Subroutine C'(), we can prove that the
CG algorithm makes a non-zero step (i.e. does not cycle) in the same way as in [20].
If the implication
jeJ = (j€J V (a;p")<0).

is valid then it follows from the formula for @' in the subroutine C'G that @* > 0.
Therefore, it is sufficient to focus the case ||(I — Py)f'(2°)]] ~ 0 and the removed index

jeJg—T.

LEMMA 7.1. Let ||(I — Py)f'(2°)|| = 0. Let Ay be created from A; by removing
the row with index jlu? < 0.
Then (a;,p') <0,j€J—J".
For the proof see [20].

If the condition for removing more indices is fulfilled then, similarly as in [4], we
choose the one with the greatest absolute value.

However, the condition (a;,p') < 0 j € J — J may be fulfilled even in the case
when more indices {j|u§ < 0} are removed (e.g. for all with jlu? < (—¢) cf. Rem.
7.2.). The following lemma shows this. In some cases we can accelerate the algorithm
very much through these means.

LEMMA 7.2. Let ||(I — Py)f'(2°)|| = 0. Let Ay be created from A; by removing
the rows with indices j|u? < 0. Furthermore, let the rows of Ay satisfy (a;,a;) = 0,
1 £ g, 1,5 €J.

Then (a;,p1) < 0,5 € J—J".

Proof.
0=(I- PJ)f'(:L'O) = f(2°) + A?uo = f’(:z;o) + A?u? + A?_J,u?/
—p' = —Pp)f'(2%) = f'(2°) + ALwv |
where v = —(ApAL) " Ay f(2°). Subtracting and multiplying by the vector a;,

j € J—J', we obtain (aj,p') = c¢-u;" where ¢ = (a;,a;) > 0 and from the assumption
uf < 0.
Thus, (a;,p') < 0. O

COROLLARY. Let the assumptions of the previous lemma be fulfilled.
Then @' > 0, and as a result the algorithm C'GC is not cycling. O

The condition for the rows of Ay is fulfilled in “two bodies contact”. It may be

slightly violated in a general case and also when the preconditioning is used. Never-
theless for such cases we often have an acceleration as well.
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8 The preconditioning
Consider again the problem (Py), i.e

flz) = %J}TCJ} —27d — min
Az <0.

Now we assume (' to be positive definite. Let W be a positive definite N x N matrix
in the form W = EFET. Let us introduce the transformation y = E7z and express (P;)
in terms of a new variable y. Then

fly)=3y"Cy —y"d — min
Ay <0,

where

C=F'CET d=E"d, A=AE"T.
As E-TOET = W~'C, the matrices C and W~!C have the same eigenvalues. The

convergence of CGM depends on the condition number (A4:/ Amin) of the matrix C.
The speed of the convergence is increasing when the condition number [1] is decreasing.
The lowest condition number has a unity matrix. Therefore, we try to find W which is
an easy invertible approximation of C' or for which we can show that W=1C has lower
condition number.

The preconditioning will be used when solving the problem on particular facets,
i.e. in the subroutine C'G/. Let us write its steps for the transformed problem (Py)
(without supplementary commands and tests).

SUBROUTINE PCG—0 (J,a{=E-Ty}, ET,7{= f'} )

yo =y = ET(E
™ =Cy" —d
7= (1 Py
7=
for k=0,1,...
Oé ( 7gk)/( )
@ = min — @ )
m (@ 5*)
IF (@ < k) THEN
=74 oszp { and return to CGC }
ELSE
g = b 4 abph
R = 7 4 oF O
ENDIF

gk-l—l _ (] PJ/) k+1
gt = (g, g/ (9", 7%)

16



At the same time Py = Z?;, (ZJ/Z?/)_IZJ/
and M is connected with M by the transformation y = E7z.

Introducing a vector v* by v* = E~T5* and using

=T (y") = E7 (),
( ,Cp%) = (v*, Co*)  and
(E p ) = (aivvk) )

we can write PCG — 0 in z variable.

SUBROUTINE PCG —1 (J,z, ET r{=f})

r® = f'  { from previous iteration }

30 — 1,0
gO = (] — FJ/)}LO
_ _E—T 0
for k=0,1,...
ot = (gkvgk)/(vkvcvk)
& = min — @)
M (ai,vk)
1F (a <o ) THEN

T = —I—Oékvk

f=rF+a&Cv* {and return to CGC }
KELSE
o = ok 4 oFok

rAtl = ok Lok Ok
hk-|—1 I

g (] Fjl)hk—l—l
6’““ =( ’““,g’““)/(g g )
ENDIF

In the subroutine PROJECT, if it is called from PCG — 1 (the calculation of g),
the multiplications Ayz, AL 2 are replaced by Ay, Z?,y, ie. ApE Ty, E~YALy. As
E~T is regular, Ay also has linearly independent rows.

The matrix C' does not occur in the transformed problem.
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9 A second approach to the preconditioning

In previous section, the projection matrix is very expensive to calculate. Therefore, it
is desirable to modify the algorithm so that the projection matrix is created directly
from the original constraint matrix. We write the preconditioned CG algorithm from
previous section omitting the steps with the projection, i.e. we have the unconstrained
version of this algorithm now.

SUBROUTINE PCG

0 =Cz"—d
¢ = B0
vO — _E—TgO
for k=0,1,...

of = (g*,g")/(v*, CvP)
e R N T
rktl = ok ok Oyt
gHtl = pipht

E+1 (gk+1,gk+1)/(gk,gk)
WL = T gkl gLk

It we consider a constrained problem, we may use Lemma 6.2 and modify directly
PCG. We deal with the minimization of f(:z;) = fly) = f(({ — Py)x), therefore
the quantities ¥, ¢* and v*, which concern the gradient are replaced by (I — Py)r*,
(I — Py)g* and (I — Py)v*, respectively.

We arrive at the following algorithm:

SUBROUTINE PCG —2(J',x, ET, )
r® = f'  { from previous iteration }

gO == (] — PJ/)E_I(]— PJ/)TO

UO = —(]— PJ/)E_Tgo

for k=0,1,...

f=rF+a&Cv* {and return to CGC }

o S Y

rktl = ¢k 4 ok Ok

gk+1 = (]— PJ/)E_I(] — PJ/)Tk+1
B = (g1, ) (4" o)

18



vk-l—l — _(] o PJ/)E—Tgk-l—l _I_ ﬂk-l_lvk
ENDIF

Comparing with PC'G'—1, we have to calculate the projection three times during one
iteration. This projection is, however, much simpler to calculate than the projection
appearing in PCG — 1. It is obvious, that the version PCG — 2 is much more efficient
concerning time aspect. The numerical experiments confirm this, up to one exception,

which is shown in Tab. 11.9 and Fig. 11.16.

10 The choice of the preconditioning matrix

The simplest choice is W = D, where D is the diagonal of the matrix C'. In this case
ET = D% and it is sufficient to store only the vector.

Another possibility is the SOR decomposition [1],[2]. Let C = D + L + LT. The

preconditioning matrix is of the form

1 1 1 N/l T
W:—<—D+L) (—D) (—D+L) ) 0<w<2, (10.1)
2 w w w

— W

where the factor ﬁ may be omitted. Thus

1 \"7/1
BT = (—D) (—D + LT) .
w w

The condition number of C' = W~LC', we denote it by «(C), may be under the certain
assumptions smaller than x(C'), as the following assertion shows [1].

THEOREM 10.1. Let C' be positive definite and W be determined by (10.1). Let

1 1 1 1 1 1
|0~ LDl < o, |DELT D <

Then

The optimal value of w can be determined [1], if the numbers

@ =max (2! Dz /2" Hz)
z#0 ’
eT(LD-'LT -1 D)e
— 4
B

are estimated.

However, in our case (the presence of the constraints) the numerical experiments
have shown that by choosing w # 1, the speed of the process does not change very
much.
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The incomplete factorization is more effective. Consider factorization C' = LLT,
where L is a lower triangular matrix. The incomplete factorization, in the simplest
form, lies on determining only such entries of L where the original matrix €' has non-
zeros. We will obtain certain “approximation” of C'.

Define S¢ = {(¢,J), ¢ij # 0}. Proceeding from the Gaussian elimination, the steps
of incomplete factorization can be written as follows:

forr=1,...,N—1

lir = CE:)/C%) )

D 1) (1 <G SNYA[G,G) €S A (£ )),
=10 (r+1<j<N)A[(i,]) ¢ Sc],
=l =3

In another variant we add removed entries to the diagonal, i.e.

N
NI S R

(4,k)ES¢c
k=r+1

Thus, in the matrix form

C=FEET+R=W4+R,

0 (¢,7) € So, 1t # 7,
R = Nz_l ROHL 1) = Cg])v— lipcl) (¢,7) € Sc,

(The form of R follows from the description of the incomplete Gaussian elimination
through lower triangular matrices L, and from properties of these matrices.)

It is obvious that, in particular, the version with adding to the diagonal in the
number of operations does not differ so much from a complete factorization. Its main
advantage is in avoiding the fill-in which occurs in the complete factorization. This
fact is not important in SKY-LINE format. Therefore, here we also test the complete
factorization.

DEFINITION 10.1. C is M-matrix, if
(1) ci >0 r=1,...,.N—1,
(2) ¢ <0 1# 7,
(3) max{j|t<jJ<N)A(¢;; Z0)} >7 for 1 <i< N,

For this class of matrices the following theorem holds [1],[2].
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THEOREM 10.2. The incomplete factorization is a stable process for the diagonal
dominant M-matrix in the following sense:
the number
q = max Icg)l/fg@vx el

is bounded from above (even ¢ = 1).

Generally, it can be said that the number of iterations on particular facets is lower
in the preconditioning (see Tabs. 11.3-11.9). In the first version of the preconditioning
(PCG — 1), however, the calculations of the projection matrix are very expensive.

In the SKY-LINE format it is the best to carry out the complete factorization.
While in the problems without constraints it would be redundant to perform the ite-
rations after it, for this situation we do not have the solution yet, but we can achieve
substantial acceleration of the CGM iterations. Only in this situation the convergence
is faster (see Tab. 11.2) in the case of PCG — 1 than in the case without the precon-
ditioning and also faster than for the version PCG — 2. Naturally, the disadvantage is
the fill-in which arises due to the elimination.

11 Test example

We analyze the structure of a beam bridge on a nonstable slope as a model example
(Fig.11.1). The model example was simplified in the sense, that the valley was arched
by one prestressed concrete arch. Foundation of the bridge situated on the unstable
slope is simulated by contact conditions with Coulombian friction. The movement
of the unstable slope acting onto a bridge is simulated by the boundary conditions.
Moreover, we suppose that the bridge is statically loaded by vehicles. As the movement
of the slope is very slow, the model can be investigated as a quasistatic ([14]-[15]).

There are 5 subregions with different values of E[Nm™?%] and p varying from E =
0.45d+11 and g = 0.17 to £ = 0.73d+11 and g = 0.31 . The contact boundaries are
located along the lines 10 — 15, 16 — 11 and 14 — 17. The movement of unstable slope
is realized by the prescribed displacement ug = 0.1d—1 [m] between the vertices 11 and
20. The load P = —0.1d+5[Nm™2] acts along the line 4 — 19, ¢ = 0.1d+8[Nm~2].

Figs. 11.2-11.6 represent by turns deformations, stresses (711, 712, T22) and principal
stresses. The same quantities are depicted in Figs. 11.7-11.11 for the zoomed detail
(see Fig. 11.1). We use scale factor 100 for the deformations. In Figs. 11.6 and 11.11
“e—7 represents tractions, “—<—" pressures.

Various types of preconditioners were tested on our model of the bridge (see Tabs.
11.2-11.9) - diagonal(P-DIAG), incomplete Choleski(P-ILL), incomplete Choleski with
adding to the diagonal(P-ILLD), SOR decomposition(P-SOR). Also, the complete
Choleski decomposition for the algorithm PCG-1 (P-LL(1)) and PCG-2 (P-LL(2)) was
tested. The results are graphically shown on graphs (Figs. 11.12-11.16).

The statistics for this example is in Tab. 11.1.

Here NV - number of vertices, NFEL - number of elements, NFE(Q - number of
degrees of freedom, NC'P - number of contact constraints, LIC' and NW K - number
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Detail

Figure 11.1:
Table 11.1:

NV | NEL | NEQ | NCP | LIC | NWK | LJA
380 551 716 10 4546 | 16378 40
Table 11.2:

METHOD | TIME
SPARSE 30”

P-DIAG 30”

P-SOR 19”7
P-1LL 13”7
P-ILLD 157
SKY-LINE 29”7
P-LL(1) 27
P-LL(2) 37
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Table 11.3: Outer iterations - SPARSE

Tter. | Activ. Constr. | No. of Inner It.
1 10 547
2 3 558

Table 11.4: Outer iterations - P-DIAG

Tter. | Activ. Constr. | No. of Inner It.
1 10 431
2 3 128

of stored entries in the stifness matrix for SPARSE and SKY — LINIE formats.

Table 11.5: Outer iterations - P-SOR

Tter. | Activ. Constr. | No. of Inner It.
1 10 212
2 3 203
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Table 11.6: Outer iterations - P-1LL

Tter. | Activ. Constr. | No. of Inner It.
1 10 141
2 3 128

Table 11.7: Outer iterations - P-ILLD

Tter. | Activ. Constr. | No. of Inner It.
1 10 141
2 3 128

Table 11.8: Outer iterations - SKY-LINE

Tter. | Activ. Constr. | No. of Inner It.
1 10 547
2 3 557

Table 11.9: Outer iterations - P-LL(1)

Tter. | Activ. Constr. | No. of Inner It.
1 10 2
2 3 2

Table 11.10: Outer iterations; 2. ver. of preconditioning - P-LL(2)

Tter. | Activ. Constr. | No. of Inner It.
1 10 18
2 3 8
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Figure 11.2:
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Table 11.11:

METHOD | ITER [ TOT. TIME
SPARSE | 562 1167
P-DIAG | 550 5957

P-SOR 541 1060
P-ILL 527 6007
P-ILLD 535 5927

SKY-LINE | 565 1137
P-LL(1) | 531 2197
P-LL(Z) | 531 1497

DUAL v

The Table 11.2 compares the times for the versions without preconditioning and
with the second version of preconditioning required by the CGC Method. The first
version of the preconditioning (except LL(1)) is not shown as the times were greater
than for the version without the preconditioning.

The Tables 11.3 - 11.9 show the statistics concerning outer iterations in Subr. CGC
in Sec.T .

The Table 11.11 shows the total times, including iterations of the Uzawa algorithm
(cf. Sec.5), for all tested variants. The Uzawa method is the method with locally
bounded step, which was confirmed in our experiments as compared with the dual
method. On the other hand, the dual method can be used only under the additional
assumption on the stiffness matrix.

For the greater value of the Uzawa algorithm iteration number (IT E R), the number
of inner iterations in C'G'C' is almost comparable for the versions without and with the
preconditioning. Therefore, we have no acceleration for the preconditioned versions

(cf. Tab. 11.11).
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Figure 11.6:

Figure 11.7:
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