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� Introduction

Many physical processes connected with heat 
ow and di�usion involving phase�change
phenomena give rise to free boundary problems for parabolic partial di�erential equa�
tions of the Stefan type� Historically the �rst paper was given by Joseph Stefan 	�����
����
 	����
 and was concerned with the melting of ice at ��C� A concept of weak
solution of the Stefan problem was introduced by Kamenomotskaya ����� ���� and next
was analyzed by means of smoothing techniques as developed in ����� ����� ���� and of
monotonicity methods developed by Brezis ��� and Lions ����� A very rich literature
exists for numerical solutions of Stefan problems� The problem is non�linear so that
numerically the problem was solved by �nite di�erence and �nite element methods� e�g�
���� ����� ���� ����� ����� ���� ����� ����� ����� etc� and in variational inequality approach
in ���� ����� etc� The algorithms are then based on non�linear SOR method� devel�
oped e�g� in ����� ����� ��� or on non�linear conjugate gradient method� The coupled
contact�two�phase Stefan�like problem is solved in ����� ����� �����

The interest of geophysical and technological disciplines for numerical modelling
has encouraged the development of corresponding numerical methods� Not otherwise
it is in geodynamics as well as in technological practice� where instead of processes
connecting with moving masses also processes connecting with heating 	melting and
recrystallization
 and freezing 	solidi�cation
 play the important role� As a �rst step�
simulations related to this topic consist in studying the macroscopic heat transfer
mechanism� modelled by the so�called two�phase Stefan problem� Since problems con�
necting with melting� recrystallization as well as solidi�cation play an important role
in geodynamic processes in the core� mantle as well as in the lithosphere of the Earth�
investigations of corresponding high performance numerical methods have a great im�
portance for simulation and next understanding of geodynamic processes inside the
Earth and at present with application to the modelling and simulation geomechanic
and geodynamic processes in regions where the high level radioactive waste repositories
will be built� In �classical� problems of technology the two�phase Stefan problems with
convection in the 
uid phase are investigated 	���� ���
� Similar problems are applied
also in geodynamics 	����
� In both problems the rheology is taken as Newtonian rhe�
ology oftentimes in the Bussinesq�s approximation 	���� ����� ����
� This approximation
depends on the Rayleigh�s� Prandtl�s�etc� numbers� which change in relatively great
value intervals� Therefore� the main goal of this paper is to give an optimal method�
i�e� optimal from the better physical and rheological approximation point of view as
well as from the high performance computation possibility point of view� The Bingham
rheology is an optimal rheology as for the case if the threshold of plasticity �g is equal to
zero then we have the usual present case of Newtonian rheology and if the threshold of
plasticity �g �� then the medium is absolutely rigid and between them we can model
all types of visco�plastic materials� It is evident that both results can be compared
and as the threshold of plasticity is determined by the Mises relation and hence by the
velocities of seismic P and S waves and the density 	Lam� coe�cients and density
�
and therefore the approximation of the rheology inside the Earth is closely to reality�
Moreover� together with two�phase Stefan problem the approximation of the reality
is much more realistic� It is evident that similar considerations are also valid for the

�



technological problems�
It is evident that due to the extremely complicated shape of the front for melting�

recrystallization or solidi�cation� respectively� cannot be described in full� As a result
we practically obtain the phase change zones only� as the forecast of the �ne geometry
would need a very expensive computation as well as the necessity of regularity of the
front� where both phases are parallelly at the same time 	the so�called mushy zone
�
To study these problems we have proposed to average variables over the phases 	����

so that instead of the �ne geometry a smoother phase change zone is investigated� The
principle of this average is based on the integration of the variables over an elemen�
tary domain� where each variable is in its own phase� The e�ect of these averaging
processes are to de�ne zones of intermediate state 	mushy zones
� in between both
phases� Within these mushy zones� the relative proportion of each phase is given by
the volumic fractions fS � fL� where fS � fL � �� In the mushy zones both phases are
microscopically parallelly present� From the mathematical point of view by the mushy
zones it is meant the regions where the operator of heat equation is degenerated� In the
phase diagram� this corresponds to the phase changes either at null concentration and
temperature of melting 	fusion
� or at concentration c from the interval� corresponding
to the concentration for which the solid rock begins to melt and the concentration for
which the liquid rock begins to solidify and eutectic temperature� i�e� temperature�
under which no liquid remains� whatever the concentration� The latent heat represents
the energy necessary for a complete change of phase of a unit volume at temperature
of fusion 	melting
 and null concentration�

� Physical model

The physical model is derived from the conservation principle� The conservation of
momentum in its di�erential form gives the equation of motion� the mass conservation
speci�es the rocks as the incompressible rocks and gives also the solute equation� The
energy conservation then gives the heat equation� The �classical� approach in the
phase change problems of the �rst order 	melting� recrystallization� solidi�cation
 is
based upon Boussinesq�s hypothesis assuming that the density variation is neglected
except in the force term� Then the obtained equation is valid in the liquid phase only
as the solid phase is assumed to be static� These assumptions lead to the Navier�Stokes
equations� But in this paper for better approximation of the rheology we shall assume
that the rheology is of the visco�plastic Bingham�s type�

In the case of thermo�visco�plastic Bingham�s rheology from the conservation of
momentum we obtain the equations of motion
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� �fi in � � I� i� j � �� �	�
� I � 	t�� t�
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where ui are components of 
ow velocity vector� �fi components of body forces�
The stress�strain rate relation�the constituent law� can be derived from the dissi�

pation function �ijDij � where �ij is the stress tensor and Dij is the strain�rate tensor
de�ned as
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Dij �
�
�
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�xj

�
�uj
�xi

�
� i� j � �� �	�
� 	���


assuming that the dissipation function depends only on the strain rate tensor� and
where u � 	ui
 is the 
ow velocity vector� Then we can write

�ijDij � D�	D
 �D�	D
�

where D� and D� are positive homogeneous functions of order � and �� respectively� in
the components of the strain rate tensor D� Let us put

D� �
�D�

�Dkl
Dkl� D� �

�
�
�D�

�Dkl
Dkl� 	���


Since� we shall assume that the rocks are incompressible� then

div v � �� i�e� Dkk � �� 	���


which follows from the mass conservation law� Hence� 	���
 and 	���
 we �nd

�ij � �p�ij �
�D�

�Dij

�
�
�
�D�

�Dij

� 	���


where p is a scalar� independent of the strain rate tensorDij and represents the spherical
part of the stress tensor and has a meaning of the pressure and �ij is the Kronecker
symbol�

In the next� we shall assume that rocks are assumed to be isotropic� then the scalars
D� and D� are functions of the invariants of the strain rate tensor Dij only� For the
case of the Bingham�s rheology

D� � ��gD
�
�
II � D� � ���DII � DII �

�
�
DijDij � 	���


where DII is invariant of the strain rate tensor Dij � and �g� �� represent the thresholds
of plasticity and viscosity� Due to ���� the thermal stress �Tij satis�es

�Tij � 	ij	T � T�
�

where 	ij is a coe�cient of thermal expansion� T 	x� t
� T�	x
� T�	x
 
 �� are a tem�
perature and an initial temperature in which the medium is in the initial stress�strain
state� Thus the constituent law is as follows

�ij � �p�ij � �gDijD
� �

�
II � ���Dij � 	ij	T � T�
� 	���


having sense for DII �� � only� To derive the inversion stress�strain rate relations for
the Bingham�s part of the stress tensor we �rstly de�ne the invariant of the stress
tensor as

�II �
�
�
�Dij �

D
ij � 	���
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where �Dij � �ij � �
�
�kk�ij is the deviator of the stress tensor� Then with 	���
 we �nd

�II �
�
�g � ���D

�
�
II

��
� 	���


Hence�

�
�
�
II � �g� 	����


and thus

Dij � 	���
��
�
�� �g�

� �
�

II

�
�Dij � 	����


Hence and 	�c


DII �
�
�
DijDij � 	���
��

�
�
�
�
II � �g

��
�

Then

DII � � for �
�
�
II � �g � �� i�e� for �

�
�
II � �g

and

DII �� � for �
�
�
II � �g 
 �� i�e� for �

�
�
II 
 �g�

Then the inverse constituent law in the thermo�Bingham rheology can be written in
the form

�
�
�
II � �g � Dij � ��

�
�
�
II 
 �g � Dij � 	���
��

�
�� �g�

� �
�

II

�
�Dij � �ij	T � T�
� 	����


If �g � � then 	���
 represents the constituent law for the Newtonian 
uid� i�e� for the
well�known viscous incompressible 
uid� For �g �� we have the absolute rigid types
of materials and for small �g we have the Bingham rheology closed to a Newtonian 
uid�
The last types of materials are closed to real rocks in the melted 	strongly visco�plastic

parts of the Earth� Moreover� we see that the threshold of plasticity 	yield point or
yield limit
 �g is de�ned by the Mises� type relation

�
�
�Dij �

D
ij � �g�� 	����


The momentum equation in Bussinesq�s approximation� representing classical ap�
proach for melting and solidi�cation� is valid in the liquid zone� since the solid is
assumed to be static� The additional term M	fs	c� T 

v in 	���
� based on empirical
observations� describes the density variation in the mushy zone and has a meaning of
body forces� The density and the dynamic viscosity �� are assumed to be piecewise
constant� For the mushy zones the additional term M	fS
v� was found 	���� ����
 as

�



M	y
 � C�y
�	� � y
��� C� an empirical constant� 	����


and where the mushy zones are empirically modelled as a porous media� In Bingham�s
approximation both phases� liquid and solid� are represented by a strongly visco�plastic

uid� closed to viscous liquid and characterized by the lower value of the threshold of
plasticity �g in the �rst case� and by the viscous 
uid with su�ciently high threshold of
plasticity �g in the second one� for which the volumic fractions are satis�ed�

The di�usion equation for rock�s liquid mixture 	alloy
 follows from the mass con�
servation law

��

�t
� div 	�u
 � �� 	����


For rock mixtures 	metallic alloys
 the de�nition of velocity must be de�ned by a
new way�

In the case if the di�usion is absented� then composition of every given element of

uid remains unknown during his movement� It means that dc

dt
� �� i�e�

�c

�t
� ugrad c � �� 	����


Hence and 	����
 yield

�	�c

�t

� div	u�c
 � �� 	����


In the integral form 	����
 is of the form

�

�t

Z
�cdx � �

I
�cuds� 	����


In the case if the di�usion is assumed� then

�

�t

Z
�cdx � �

I
�cuds �

I
ids� 	����


where i denotes the density of di�usion 
ow� In the di�erential form 	����
 is as follows

�	�c

�t

� �div	�cu
 � div i� 	����


Hence and 	����
 we �nd

�

�
�c

�t
� ugrad c

�
� �div i in � � I� 	����


representing the equation of di�usion and where 	see ����


i � ��D	grad c� kTT
��grad T � kpp

��grad p
� 	����


where D is the coe�cient of di�usion� kTD represents the coe�cient of thermodi�usion
and kpD represents the coe�cient of barodi�usion� T is the temperature� p is the
pressure�

�



Finally� the energy conservation law gives the generalized heat equation in the form

�ce

�
�T 	x� t


�t
� u grad T 	x� t

 � �	ijT�eij	u
 �

� div	�	T 
grad T 
 �Q�	x� t� T 
 in �t� 	����


The coupled system of equations 	���
� together with 	���
� and 	����
�	����
 gives
governing equations for melted and solidi�ed materials� The boundary and initial
conditions then must describe the real situation of the investigated problem�

Remark� By a �liquid� phase we shall mean the strongly viscoplastic material with
low threshold of plasticity �g	�g � �
 and by a �solid� phase we shall mean the visco�
plastic material with threshold of plasticity �g to be su�ciently large� Moreover� we can
put d � �D� where e�g� d 	 ���� for Al�Si 	Al�SiO�
 alloy� Furthermore� the liquid
concentration cL is the concentration c in the liquid zone 	c � fLcL � fScS � where fL�
fS are the relative proportion of both phases�solid 	visco�plastic
 	S
 and liquid 	L
�
and fL � fS � �
� cS is the concentration c in solid visco�plastic phase� The di�usion
factor d does not account for the di�erent di�usivity of the solute in the liquid and
solid 	visco�plastic
 phases� But both are very small� and the convective e�ect easily
override the di�usive one 	e�g� d 	 ���� for Al�Si alloy
� Moreover� compared to the
heat di�usivity� the e�ect of the di�usion is much slower for the concentration� The
body force term in 	���
 can be found as

F	x� t� c� T 
 � �gx� � div			T � T�

 � �g	c�cL	x� t� c� T 
 � c�T � c�
� 	����


where the �rst term are body forces due to gravity e�ect� the second one represents
thermal stresses and the third one represents the e�ect due to the concentration of
�liquid� phase 	or gas
 in the rocks� The e�ects of friction and Joule�s heat can be also
assumed�

We shall assume that the domain investigated � �
mS
���

rS
s��

�
��s
� where �� denotes

subdomains of � characterized by the material properties and indices �s� characterize
the domains with the phase changes of rocks 	melting� recrystallization� solidi�cation�
respectively
�

� Mathematical formulation of the problem

Let � �
mS
s��

�� 
 RN � N � �	�
 be a bounded domain occupied by the interior of the

Earth or its parts� or by a metal body in technological practice� respectively� with a
smooth boundary �� �  u

S
 �
S
R� R the set of zero measure� Let I � 	t�� t�
 and

let �T � �� I� ��T � ��� I� �t � �� 	t�� t
� ��t � ��� 	t�� t
� t � I� We suppose
that the components of �� are smooth enough to admit a normal n almost everywhere
in the sense of the surface measure on ��� Moreover� we shall assume incompressible
materials� Furthermore� we shall assume that  ��s� 
 � �� � � � �m� s � �� � � � � r� denote

�



n � � dimensional open sets in the relative topology of �� i�e� surfaces which devide
� into r open sets ���s� We denote the respective portions of the boundaries of ���s

and ���s�� by ����s and ����s��� We shall assume that the components  ��s � R��s	t
 of
 �

S
��s
 ��s are smooth enough to also admit normals ����s almost everywhere in the sense

of the surface measures on  ��s � R��s	t
� We shall assume that ���s� ���s�� constitutes
other state of materials� i�e� �solid�� �liquid� or other types of recrystallized rocks�
Thus  ��s � R��s	t
 denote the interfaces between two di�erent phase states of rocks and
we speak about the phase change boundaries or phase transitient boundaries 	zones
�
Here ���s� ���s���  ��s are unknowns that must be determined as part of the solution�
We denote by T ��s	x� t
 the temperature of rocks in ���s and by u��s	x� t
 and p��s	x� t

the velocity and pressure in ���s and by c��s	x� t
 and ���s	x� t
 the concentrations and
sources of concentrations in ���s�

Then we shall investigate the nonstationary incompressible coupled two�phase Stefan�
Bingham problem!

Problem 	P�
! Consider the problem of �nding functions T 	x� t
� u	x� t
� p	x� t
 and
c	x� t
 de�ned on the clossure �

��s
of open sets ���s such that � �

S
��s
�
��s
and satisfying

��c�e

�
�T �

�t
� u�k

�T �

�xk

�
� ��	�ijT

�
�eij	 "u

�
 � Q�
�	x� t
 �

�

�xi

�
��ij

�T �

�xj

�
	���


in �� � I� i� j � �� �	�
�

��
�
�u�i
�t

� u�k
�u�i
�xk

�
�

�� �ij
�xj

� F �
i in �� � I� i� j � �� �	�
� 	���


div u� � � in �� � I� 	���


�c�

�t
� u�grad c� � ��#c� � �� in �� � I� 	���


and boundary and initial conditions

T 	x� t
 � T�	x� t
	� �
� �ij	x� t
nj � P�i	x� t
�
�c	x� t

�n

� � 	���


on  � � I� i� j � �� �	�
�

�ij
�T 	x� t

�xj

ni � q	x� t
� u	x� t
 � u�	x� t
�
�c	x� t

�n

� � 	���


on  u � I� i� j � �� �	�
�

T ��s
S � T ��s

L � T ��s
R �

�
��ij

�T �

�xj
��i

�s
S

�

�
��ij

�T �

�xj
��i

�s
L

� ����sL��sv��s� 	���


on R��s	t
�

T �	x� t�
 � T �
�	x
� u�	x� t�
 � u��	x
� c�	x� t�
 � c��	x
 in ��� 	���


�



where �ij is de�ned by the constituent law 	���
 and where ���s is a density associated
with ���s� T ��s

S � T ��s
L � T ��s

R are temperatures in ���s� where rocks 	metals
 are in a solid�
visco�plastic state 	T ��s

S 
 or in a liquid 	strongly visco�plastic with low threshold of
plasticity �g
 state 	T ��s

L 
 or temperatures of phase changes� resp�� ����s is a normal to the
phase change boundary R��s	t
 �  ��s pointing towards ���s

S � v
��s
� � �	��s

�t
� �t$��s are

the speeds of R��s	t
 along ����s� L��s are the latent heats of the phase changes 	melting�
recrystallization� solidi�cation
 	The latent heat represents the energy necessary for a
complete phase change of a unit volume at melting temperature and null concentration�
It is positive in the case of melting and recrystallization and negative in the case of
solidi�cation
 and R��s	t
 represent hypersurfaces lying in ���s

t � �
��s
St are domains lying

in ���s
t and bounded by R��s	t
 and ����s

t � Furthermore� let $
��s	x� t
 be a C� function

in �T such that

R��s	t
 �
n
	x� t
 � �T �$

��s	x� t
 � �
o
� rx$

��s	x� t
 �� � on R��s	t
�

$��s	x� t
 � � in ���s
S � I� $��s	x� t
 
 � in ���s

L � I

and

R	t
 �
�
��s

R��s	t
� t� � t � t�

is the phase change or free boundary� The functions T �
�	x
� T

�
�	x� t
� u�	x
� u�	x� t
�

c�	x
 are the initial and boundary data on  � � I or  u � I� respectively� c�e	x
 are
speci�c heat in ��� ��ij	x
 are the thermal conductivity in �

� and Q�	x� t
� ��	x� t
 are
thermal sources and sources of concentration� respectively� in �� � I� 
 � �� � � � �m�
All the functions used in this paper are real valued� Further� we shall investigate the
�D model problem 	N � �
 only�

To analyze the Stefan problem we shall introduce a new variable % by the Kirchho�
transformation

% � G	x� t� T 
 �
Z T 
x�t�

�
�	x� t� �
d�� 	x� t
 � �t�

Since �� � �	x� t� �
 � �� for 	x� t� �
 � � � I � R� ��� �� � const� 
 �� then the
mapping T � %	x� t� T 
 is one�to�one and T � G��	x� t�%
� G��	x� t�%
 is its inverse�
We introduce the enthalpy by

H	x� t� T 
 �
Z T 
x�t�

�
c
�
	G��	�

���	G��	�



�
d� �

�	

	�
� if T � %R	x� t
�
h�� �i if T � %R	x� t
�
� if T 
 %R	x� t
�

where we denoted by c	x� t
 � �	x� t
ce	x� t
� and %R	x� t
 � G	x� t� TR
� TR is the
temperature of a phase change� � � �L�

Then we shall investigate the nonstationary incompressible coupled two�phase Ste�
fan in the Bingham rheology and in the enthalpy formulation!
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Problem 	P
! Consider the problem of �nding functions H ��s	x� t
� %��s	x� t
� c��s	x� t
�
u��s	x� t
 	and p��s	x� t

 de�ned on the clossure �

��s
of open sets ���s such that � �S

��s
�
��s
and satisfying

�
�H �

�t
� u�k

�%�

�xk

�
� ��	�ij%

�
�eij	u

�
 � Q�	x� t
 � #%�	x� t
 in �� � I� 	���


��
�
�u�i	x� t


�t
� u�k

�u�i	x� t

�xk

�
�
�� �ij	x� t


�xj
� F �

i 	x� t
 in �� � I� i� j � �� �� 	����


div u� � � in �� � I� 	����


�c�	x� t

�t

� u�	x� t
 grad c�L	c
�	x� t
�%�	x� t

 � ��	x
#c�	x� t
 � ��	x� t
 in �� � I�

	����


%�	x� t
 � T �	c�	x� t
�H �	x� t

 in �� � I� 	����


and boundary and initial conditions

H	x� t
 � �� �ij	x� t
nj � P�i	x� t
�
�c	x� t

�n

� � 	����


on  � � I�

�%	x� t

�n

� q	x� t
� u	x� t
 � u�	x� t
�
�c	x� t

�n

� � 	����


on  u � I�

H �	x� t
 � H �
�	x
� u�	x� t�
 � u��	x
� c�	x� t�
 � c��	x
 	����


in ��� where

�ij � �p�ij � �gDijD
� �

�
II � ���Dij � 	ij	T � T�
 	����


and where Dij � �
�	�jui��iuj
� DII � �

�DijDij � and H �
�	x
� c

�
�	x
� �

�	x
� u��	x
 are the
given positive functions� For simplicity we shall assume that u�	x� t
 � ��

In the next we shall also use the following notation! �tr � �r
�t
� where r is a scalar

or vector function� respectively and �sr	y�� y�
 � �r
y��y��
�ys

� s � �� �� and similarly�

�jvi � vi�j � �vi
�xj

� Further� for simplicity indices 
 and s will be omitted�
Furthermore� we shall assume that

	A�
 � �
mS
���

�� 
 R� is an open bounded connected domain with Lipschitzian bound�

ary �� �  u
S
 �
S
R�

On the domain � for functions T � cL� multipliersm and the initial and boundary
data we shall assume!

�



	A�
 For the function T � ! R�
� � R� where R� denotes the set of non�negative reals�

we assume that

	i
 T � is uniformly Lipschitzian��

	ii
 T �	x� �
 � � 
x � R��

	iii
 there exist 	possibly empty
 open sets Oi 
 R�
�� i � N � such that T � is con�

stant on eachOi and such that there is a function �� � C�	h���


T
C�		���



verifying!
	���
� is decreasing� lim

x��
	���	x

� 
 �� and ��T

�	x� y
 � 		���	x

�
�� for a�e�

	x� y
 � R�� �R�n
S
i�N

Oi�

	A�
 Since the term �g�D�
ij	u

�
D
� �

�
II 	u

�
 creates in the variational formulation the non�
di�erential functional� then we introduce the multipliers m� � 	m�

ij
� i� j � �� ��
by

	i
 m�
ij � L�	�� � I
� m�

ij � m�
ji� 
i� j � �� �� m�

ii � ��

	ii
 m�
ijm

�
ij � � a�e� in �� � I�

	iii
 m�
ijDij	u�
 � 	Dij	u�
Dij	u�



�
� � �

�
�D

�
�
II 	u

�
 a�e� in �� � I�

	iv
 Then the constituent law 	���
 can be rewritten as

� �ij � �p��ij � ����Dij	u�
 � �
�
� �g�m�

ij � 	�ij	T
� � T �

�
�

	A�
 The functions c�L ! R�
� � R� representing a concentration in a liquid 	strongly

visco�plastic with low �g
 part of the medium and stem from the constitutive law
	phase diagram
 satisfy

	i
 c�L � C�	R�
�

T
L�	R�

�
�

	ii
 c�L	�� y
 � � 
y � R��

	iii
 �c� � const� 
 � such that jc�L	x� y
j � c��	���	x

���
�
� 
	x� y
 � R� � R��

where �� satis�es 	A�
 	iii
�

	A�
 The initial data satisfy

	i
 H�	x
 � L�	�
� H�	x
 � � a�e in ��

	ii
 u�	x
 � H	�
 � fvjv � �L�	�
��� div v � �� v � � on  ug� u�	x
 � � a�e�
in ��

	iii
 c�	x
 � L�	�
� c�	x
 � � a�e� in ��

�Let M be a measurable subset of RN and let T �M � RN be a mapping satisfying the Lipschitz
condition on M with a constant � � �
 i�e� jT �x�� T �y�j � �jx� yj �x� y �M �

��



	A�
 The physical data are su�ciently smooth� i�e�

Q�	x� t
 � L�	I�L�	��

� F�	x� t
 � L�	I� �L�	��
��
�

��	x� t
 � L�	I�L�	��

� q	x� t
 � L�	I�L�	 u

�

P	x� t
 � L�	I� �L�	 � 
�
�
� ��	x� t
 � L�	I�C�	�

�


�

���	x
� �g�	x
 � const� 
 �� �	�ij	x
��xj � L�	��
 
i� j�

��	x
 � C�	�
�

�

Remark� The conditions 	iii
 in assumptions 	A�
 and 	A�
 are satis�ed if there exist
positive constants c�� c� and a real � � h�� �
 such that 	the symbol �
� is omitted


	i
 ��T 	x� y
 � c�min	x�� �
 for almost every 	x� y
 � R�
�n

S
i�N

Oi and

	ii
 jcL	x� y
j � c�min	x
�
� �� �
 
	x� y
 � R�

�� In that case� the function � is such that

	iii


���	x
 �

�
c��x��� x � ��
c��� � x � ��

Because of assumption 	A�
 	iii
� the system of equations for determining T 	x� t
 and
c	x� t
 is generally degenerated and equation 	���
 is similar to classical Stefan�s equa�
tion�

Remark� The function c in the mushy zone can be written as 	see the phase diagram

c � cLfL�cSfS � cL	��fS
�cSfS� where fL� fS represent the relative portion of visco�
plastic 	solid
 and strongly visco�plastic with low �g 	liquid
 phases� respectively and will
be determined as a result of computations� where the portion of �solid� and �liquid�
parts are controled means of the threshold of plasticity �g� In the phase diagram TM is
the temperature of melting� TE is the eutectic temperature� under which no �liquid�
remains� cS	T 
 is the concentration of the solute for which the �solid� rock begins to
melt� cL	T 
 is the concentration of the solute for which the �liquid� rock begines to
solidify� The mushy zone corresponds to points 	c� T 
� where c � hcS	T 
� cL	T 
i and
T � hTE� TMi�

��



�

�T

TM

T

TE

cS	T 
 cL	T 
 cL	TE
 c

Fig��� Phase diagram 	c� T 
 �simple version��

� Variational formulation

Let us denote by Ck	�
� � � k � �� the space of all functions f de�ned on � which
have continuous derivatives up to the order k on �� for k � � we put C�	�
 � C	�
�
We denote by H�	�
 the Sobolev space of scalar 	or vector� respectively
 functions
such that f � L�	�
� �if � L�	�
� i � �� � � � � N � where L�	�
 is the space of square
summable scalar 	or vector� respectively
 functions on � and the derivatives �if are
taken in the sense of distributions on �� By L�	�
 we denote the space of all mea�
surable functions f de�ned a�e� on � and such that there exists a constant c 
 � such
that

jf	x
j � c 
x � �nE� E 
 �� meas	E
 � ��

By Lp	I�X
� where X is a functional space� � � p � �� we denote the space of
functions f ! I � X such that k f	�
 kX� Lp	I
 and by H�	I�X
 the space of
functions f ! I � X for which k f	�
 kX� H�	I
�

Let us de�ne the spaces

�V � fzjz � H�	�
� z � � on  �g�
�V � fwjw � H�	�
g�

V � fvjv � �H�	�
��� div v � �� v � � on  ug�

H	�
 � fvjv � �L�	�
��� div v � �� v � � on  ug�

�V �� �V �� V � be dual spaces of �V � �V and V � respectively�

�V 
 L�	�
 
 �V �� �V 
 L�	�
 
 �V �� V 
 H 
 V ��

��



�V � � H��	�
� �V � � 	H�	�

��
�W � fzjz � L�	I�� V 
� z	x� t�
 � �g� �W � fwjw � L�	I�� V 
� w	x� t�
 � �g�

W � fvjv � L�	I�V 
� v� � L�	I�H
� v	x� t�
 � �g�

Then we have the following variational 	weak
 formulation of the coupled problem
de�ned in enthalpy!

Problem 	Pcenth
! �nd a tetrad fH	x� t
�%	x� t
�u	x� t
� c	x� t
g� i�e� enthalpy H�
generalized temperature %� velocity u and concentration c� satisfying

Z
I
f	�tH	t
� z �%	t

 � 	u	t
grad %� z �%	t

 � a�	%	t
� z �%	t

 �

�bp	u	t
� z �%	t

� 	Q	t
� z �%	t

gdt � � 
z �� W� 	���


Z
I
f	�tu	t
�v� u	t

 � ��a	u	t
�v� u	t

 � b	u	t
�u	t
�v� u	t

 �

��gj	v
� �gj	u	t

 � bs	%	t
�%��v� u	t

�

�	F	t
�v� u	t

gdt � � 
v � W� 	���


Z
I
f	�tc	t
� d� c	t

 � 	u	t
gradcL	c�%
� d� c	t

 �

�ac	c	t
� d� c	t

� 	�	t
� d� c	t

gdt � �� 
d �� W� 	���


%	t
 � T 	c	t
�H	t

� H � �� c � � a�e� in �� I� 	���


H	x� t�
 � H�	x
� u	x� t�
 � u�	x
� c	x� t�
 � c�	x
 a�e� in �� 	���


where H��	�
 stands for 	H�
� 	�



� and where u�v � �H�	�
��� %� z� c and d � H�	�
�
��Q � L�	�
� F � �L�	�
�� and

a�	%� z
 �
Z


grad % grad z dx� a	u� v
 � �

Z


Dij	u
Dij	v
dx�

ac	c� d
 �
Z


� grad c grad d dx� b�	u�%� z
 � 	u grad %� z
�

b	u�v�w
 �
Z


�uivj�iwjdx � 	�u grad v�w
�

bs	%�v
 �
Z



�

�xj
		ij%
vidx� bp	v� g
 �

Z


�%�	ijvi�jgdx�

bc	u� c� d
 � 	u grad c� d
� 	u�v
 �
Z


uividx� 	%� z
 �

Z


%zdx�

��



	Q� z
 �
Z


Qzdx�

Z
�u
qzds� 	F�v
 �

Z


Fividx�

Z
��
P�ividx�

j	v
 � �
Z


	DII 	v



�
�dx�

De�nition � We said that the tetrad fH�%�u� cg is a weak solution of the problem
	Pcenth
 if H � L�	I�L�	�



T
H�	I�H��	�

� % � L�	I�� V 
� u � L�	I�L�	�



T
L�	I�V 
�

c � L�	I�� V 

T
H�	I� 	H�	�
�
� H � �� c � � and % � T 	c�H
 a�e� in ��I and ������

���	�� ���
� hold�

Preliminary results and main theorem!
In the sequal the following lemmas will be used!

Lemma � It holds

vi�j � L�	�
 
v � V� i� j � �� ��

Proof� If v � V � then vi�j � L�	�
� The proof is a consequence of Lemma ��� of ����

Lemma � 
Gronwall� Let g	t
 � C	I
� g	t
 � �� �	t
 � C	I
� �	t
 � �� g	t
 be the
nondecreasing function with increasing t�
Let �	t
 be a solution of the inequality

�	t
 � c�

Z t

t�
�	� 
d� � g	t
� t� � t � t�� c� � const�

Then there exists c� � const� c� � c�	c�� t�� t�
 such that

�	t
 � c�g	t
 
t� t� � t � t��

For the proof see �����
Further� we have the following estimates! Firstly� from the above given assumptions

the symmetry conditions

a�	%� z
 � a�	z�%
� a	u�v
 � a	v�u
� ac	c� d
 � ac	d� c


hold� Moreover� it yield that for % � �V � u � V � c � �V there exist constant c� 
 ��
cu 
 �� cc 
 � such that

a�	%�%
 � c� k % k���� 
% � �V� a	u�u
 � cu k u k
�
��� 
u � V�

ac	c� c
 � cc k c k
�
��� 
c � �V�

For u� y� z it holds b�	u� y� z
 � b�	u� z� y
 � �� u � H� y� z � H�
� 	�
 and there

exist positive constants c�� c�� c� independent of u� y� z such that

��



jb�	u� y� z
j � c� k u k�Lp

���k y kLp

�k fDizg k���

� c� k u k�Lp

���k y kLp

�k z k���

� c� k u k
�
�
���k u k

�
�
���k y k

�
�
���k y k

�
�
���k z k���

and similarly for bc	u� c� d
�
For a vector �eld u� v� w on � we put

b	u�v�w
 �
Z


uivi�jwidx

and jb	u�v�w
j � c k u k�Lp

���k w k�Lp

���
P
i�j
k Divj k���� �

p
� �

�
� ��

Using Lemma � we �nd that

jb	u�v�w
j � c k u k�Lp

���k w k�Lp

���k v k��� �

Moreover� the inequality of convexity

k v k�Lp

���� c k v k
�
�
���k v k

�
�
��� 
v � H�

� 	�
�
�
p
�
�
�
�
�
�
N�� �

�
�

holds and

jb	u�v�w
j � c k u k
�
�
���k u k

�
�
���k w k

�
�
���k w k

�
�
���k v k��� �

For u� v� w it holds

b	u�v�w
 � b	u�w�v
 � �� b	v�v�v
 � ��

The main result of the paper gives the following theorem�

Theorem � Let assumptions �A����A�� be satis�ed for every t � 	�� �i� Then there
exist scalar functions H� % and c and a vector function u such that

H � L�	I�H�
�	�





L�	I�L�	�

� �tH � L�	I� 	H��	�

�

u � L�	I�V 



L�	I�H
� �tu � L�	I�V �
�

c � L�	I�H�	�




L�	I�L�	�

� �tc � L�	I� 	H�	�

�


and satisfying ���������
��

��



� Proof of Theorem �

To prove Theorem � the regularization of 	���
�	���
 will be used� The technique
used will be similar of that of ���� and results of ��� will be also used� Firstly� we
de�ne extension of functions T and cL on R� by setting T 	x� y
 � T 	x�� y�
 and
cL	x� y
 � cL	x�� y�
� where r� � max	r� �
� Then the regularization of T and cL is
the following!

Let D	R�
 be the space of functions C� with compact support in R�� let fR�g 

D	R�
 be a family of molli�ers� such that

supp 	R�
 
 B		�� �
� �
 � f	x� y
 � R�jx� � y� � ��g� � � 	�� �i�

The regularizations of T and cL are de�ned by

T �	x� y
 � �y �
Z
R�
R�	x� ��� r� y � �� s
T 	r�� s�
drds�

c�L	x� y
 �
Z
R�
R�	x� �� r� y � s
cL	r�� s�
drds�

where r� � max	r� �
� s� � max	s� �
� These regularized functions %�� c�L have the
following properties given in the next lemma 	see ���� ����
�

Lemma � Let assumptions �A��� �A
�� �A��� �A
� are satis�ed� Let � be the function
satisfying �A
��iii�� �A���iii� and let � � 	�� �i� Then the regularized functions T � and
c�L satisfy

�i� T �	x� �
 � � 
x � R�

�ii� c�L	�� y
 � � 
y � R�

�iii� there exists a function C � C	�
 such that

jc�L	x� y
j � Cjxj 
	x� y
 � R �R�

�iv� there exists c� �const� satisfying �A���iii� such that

jc�L	x� y
j � c�	�
��	x� �

�� 
	x� y
 � R� �R�

where R� is a set of non�negative reals�

�Let � � �
 let � be a function satisfying � � C�� �R��
 ��x� � � �x � R�

R
R� ��x�dx � �


supp � � fx � R�� jxj � �g� For u � L���� put

��� �R�u��x� � ���
Z
�

���x� y�����u�y�dy�

i�e�

�R�u��x� � ���
Z
B�����

u�x� �y���y�dy� where B��� �� � fy � R�� jyj � �g�

The mapping R� de�ned by ��� is called molli�er� By S� we denote a set of all molli�ers�

��



�v� there exists c� �const�� independent of �� such that

j��T �	x� y
j
��T �	x� y


� c��
��	x� �
 
	x� y
 � R� �R�

Proof� The proof of 	i
�	iv
 follows from the de�nitions of T � and c�L and from as�
sumptions 	A�
�	A�
�

To prove 	i
� then from the de�nition of T �
m we �nd

T �	x� �
 �
Z
R�
R�	x� ��� r���� s
T 	r�� s�
drds � �

as T 	r�� s�
 
 � only for s 
 � and R�	x� �� � r���� s
 � ��
To prove 	ii
 the same technique for c�L	�� y
 can be used�
To prove 	iii
� we see that regularization c�L is of class C�	R�
� Since c�L	�� y
 � �

we can write

c�L	x� y
 � c�L	x� y
� c�L	�� y
 �
Z x

�
��c

�
L	r� y
dr�

Hence

jc�L	x� y
j � j
Z x

�
��c

�
L	r� y
drj �

Z x

�
c k ��c

�
L	r� y
 kL�
R�� dr � Cjxj�

where j��c�L	r� y
j � c k ��c�L kL�
R�� depending on ��
To prove 	iv
 we start from the de�nition of c�L� The asumption 	A�
	iii
� applying

on the integrand� was also used�
To prove 	v
� we assume that �� � B		x���� y� �
� �


T
	R�

�n
S
i�N

Oi
 and 	x� y
 �

R� �R� where B		x� ��� y � �
� �
 is the open ball with the centre at 	x� ��� y � �

and radius ��

In the case if meas	��
 � � then since ��T�	x� y
 � � the assertion trivially follows�
In the case if meas	��
 
 � then due to de�nition of T � we have

j��T �	x� y
j
j��T �	x� y
j

�

R

�
R�	x� ��� r� y � �� s
j��T 	r� s
jdrds

��
R

�
R�	x� ��� r� y � �� s
��T 	r� s
drds

�
I��

�� I��
�

Since� due to the de�nition of molli�er

I� �
Z


R�	x� ��� r� y � �� s
drds � ��

then

I��
�� I��

�
I�vraimax
x�y��R�

�
j��T 	x� y
j

�� I�vraimax
x�y��
�
��T 	x� y


�
vraimax
x�y��R�

�
j��T 	x� y
j

�� 	���	x� �

��
�

� ���	x� �
vrai max

x�y��R�

�

j��T 	x� y
j � c��
��	x� �
�

which completes the proof� Q�E�D�

��



Since j	v	t

 � �
R

	DII 	v



�
�dx is the nondi�erentiable functional and since J	v
 �R


 �gj	v	t

dt then J�	v
 denotes a regularized functional J	v
� de�ned by

J�	v
 �
Z
I
�gj�	v	t

dt�

where

j�	v	t

 �
�

� � �

Z


	DII	v	t



�
� 
����dx�

� 
 �� for which

	J ��	v
�w
 �
Z

�I

�g	DII	v


�
�

����Dij	v
Dij	w
dxdt�

Then the weak regularized solution to Problem 	Pcenth
v can be de�ned� The idea
is to approximate the variational inequality by the variational equality�

Let assumptions 	A�
�	A�
 be satis�ed for every � � 	�� �i� LetH� � L�	I�� V 

T
H�	I�H��	�

�

u� � L�	I�H

T
L�	I�V 
� c� � L�	I�� V 


T
H�	I� 	H�	�

�
� Then the tetrad fH��%��u�� c�g

is a weak solution to the regularized problem to Problem 	Pcenth
v if the following hold!

Z
I
f	�tH�	t
� z �%�	t

 � b�	u�	t
�%�	t
� z �%�	t

 � a�	%�	t
� z �%�	t

 �

� bp	u
�	t
� z �%�	t

� 	Q	t
� z �%�	t

gdt � � 	���



z �� W �

Z
I
f	�tu�	t
�v� u�	t

 � ��a	u�	t
�v� u�	t

 � b	u�	t
�u�	t
�v� u�	t

 �

� �gj�	v
� �gj�	u
�	t

 � bs	%

�	t
�%��v� u�	t

�

� 	F	t
�v� u�	t

gdt � � 
v � W� 	���


Z
I
f	�tc

�	t
� d� c�	t

 � bc	u
�	t
� c�L	t
� d� c�	t

 � ac	c

�	t
� d� c�	t

�

� 	�	t
� d� c�	t

gdt � �� 
d �� W� 	���


H�	x� t�
 � H�	x
� u�	x� t�
 � u�	x
� c�	x� t�
 � c�	x
 a�e� in �� 	���


where %� � T �	c��H�
�
The method of the proof is the following!

	a
 The existence of the solution of 	���
�	���
 based on the Galerkin approximation
will be proved�

	b
 A priori estimates I and II independent of � will be derived�

��



	c
 Limitation processes over m and ��

	d
 Limitation process �g � � and the existence of multipliers�

The existence of fH��%��u�� c�g will be proved by means of the �nite�dimensional
approximation� Let 	�jg� f�jg be two orthogonal bases of the space L�	�
� composed
of eigenfunctions of the operator �# over the domain �� where the �rst is relative to
the Dirichlet homogeneous boundary conditions and the second one to the Neumann
homogeneous boundary conditions� and fwjg be a countable basis of the space V
composed of eigenfunctions of the canonical isomorphism & of V � V �� i�e� 		wj �v

 �
�j	wj�v
 
v � V � jwj j � �� i�e� each �nite subsets of bases f�jg� f�jg and fwjg are
linearly independent and spanf�j jj � �� �� � � �g� spanfwj jj � �� �� � � �g and spanf�j jj �
�� �� � � �g are dense in H�

� 	�
� or in V � or inH
�	�
� respectively� as H�

� 	�
� V � H
�	�
 are

separable spaces� Let �V m� V m� �V m be spaces spanned by f�j j� � j � mg� fwj j� �
j � mg and f�jj� � j � mg� respectively� Then the approximations H�

m � �V m�
u�m � V m� c�m �

�V m of the order m satisfy

	�tH
�
m	t
� zj
 � b�	u

�
m	t
�%

�
m	t
� zj
 � a�	%

�
m	t
� zj
 � bp	u

�
m	t
� zj
�

� 	Q	t
� zj
 � �� � � j � m� 	���


	�tu
�
m	t
�vj
 � ��a	u�m	t
�vj
 � b	u�m	t
�u

�
m	t
�vj
 � �g	j ��	u

�
m	t

�vj
 �

� bs	%
�
m	t
�%��vj
� 	F	t
�vj
 � � � � j � m� 	���


	�tc
�
m	t
� dj
 � bc	u

�
m	t
� c

�
m	t
� dj
 � ac	c

�
m	t
� dj
�

� 	�	t
� dj
 � �� � � j � m� 	���


veri�ed for almost every t � I� for every z � �V m� v � V m� d � �V m and the initial
conditions

H�
m	x� t�
 �

mX
i��

	H�� �i
�i	x
 � u�m	x� t�
 �
mX
i��

	u��wi
wi	x
�

c�m	x� t�
 �
mX
i��

	c�� �i
�i	x
 � 	���


veri�ed for a�e� x � �� Since f�jgmj��� fwjgmj��� f�jg
m
j�� are linearly independent� the

system 	���
�	���
 is a regular system of ordinary di�erential equations of the �rst order
and therefore 	���
�	���
 uniquely de�ne fH�

m�%
�
m�u

�
m� c

�
mg on the interval Im � ht�� tmi�

Therefore� 	���
�	���
 is valid for every test functions

z	t
 �
mX
i��

ai	t
�i� v	t
 �
mX
i��

bi	t
wi� d	t
 �
mX
i��

�i	t
di� t � Im�

��



where ai� bi� �i are continuously di�erentiable functions on Im� i � �� � � � �m� Particu�
larly� it holds for z	t
 � H�

m	t
� v	t
 � u�m	t
� d	t
 � c�m	t
� t � Im�

A priori estimates I and II!

A priori estimates I!
Let us introduce the notation

Xm � bs	%
�
m �%��u

�
m
 � bp	u

�
m�%

�
m
�

Let �	ij��xj � �j	ij � L�	�
 
i� j� Then there exists a positive constant c� indepen�
dent of m and �� such that

jXmj � jbs	%
�
m �%��u

�
m
 � bp	u

�
m�%

�
m
j � c	�� k %�

m	t
 k���k u
�
m	t
 k��� �

� k %�
m	t
 k���k u

�
m	t
 k���
�

	���


In the next we shall denote all used constants by the type c without any indices 	if
possible
� Via integration of 	���
 with z � H�

m	t
� v	t
 � u�m	t
� d	t
 � c�m	t
 in time
t over Im � 	t�� tm
� we obtain

Z
Im
f	�tH�

m	t
�H
�
m	t

 � 	�tu�m	t
�u

�
m	t

 � 	�tc�m	t
� c

�
m	t

 �

� a�	%�
m	t
�H

�
m	t

 � ��a	u�m	t
�u

�
m	t

 � ac	c�m	t
� c

�
m	t

 �

� b�	u
�
m	t
�%

�
m	t
�H

�
m	t

 � b	u�m	t
�u

�
m	t
�u

�
m	t

 �

� bc	u
�
m	t
� c

�
m	t
� c

�
m	t

 � bs	%

�
m	t
�%��u

�
m	t

 �

� bp	u�m	t
�%
�
m	t

 � �g	j�	u�m	t

�u

�
m	t

� 	Q	t
�H�

m	t

�

� 	F	t
�u�m	t

� 	�	t
� c�m	t

gdt � ��

We �nd

b	u�m	t
�u
�
m	t
�u

�
m	t

 � ��

	J �	u�m	t

�u
�
m	t

 �

Z
Im
�g	j��	u

�
m	t

�u

�
m	t

dt � �� as 	j��	v
�v
 � ��

Z
Im
	�tH

�
m	t
�H

�
m	t

dt �

�
�

Z


	H�

m	t


�dx�

�
�

Z


	H�

m	t�


�dx

and similarly for remaining terms�
Since %� � T �	c�m�H

�
m
� then using Green�s theorem� after modi�cation grad T �

by the chain rule� using 	A�
	i
	ii
� ��T � � � and resulting estimate jT �	x� y
j �
k ��T � kL�
R�� jyj� we obtain

��



Z
Im
	a�	%

�
m	t
�H

�
m	t

 � b�	u

�
m	t
�%

�
m	t
�H

�
m	t

dt �

�
Z
Im

Z


grad T �	c�m	t
�H

�
m	t

grad H

�
m	t
dxdt�

�
Z
Im

Z


u�m	t
grad T

�	c�m	t
�H
�
m	t

H

�
m	t
dxdt �

�
Z
Im

Z


grad T �	c�m	t
�H

�
m	t

grad H

�
m	t
dxdt�

�
Z
Im

Z


T �	c�m	t
�H

�
m	t

u

�
m	t
grad H

�
m	t
dxdt �

� �
Z
Im

Z


k grad H�

m	t
 k
�
��� dxdt�

� k ��T
�	t
 kL�
R��

Z
Im

Z


jH�

m	t
j ju
�
m	t
grad H

�
m	t
jdxdt�

�
Z
Im

Z


j��T

�	c�m	t
�H
�
m	t

j jgrad c

�
m	t
grad H

�
m	t
jdxdt�

Likewise we estimateZ
Im
	ac	c

�
m	t
� c

�
m	t

 � bc	u

�
m	t
� c

�
m	t
� c

�
m	t

dt�

To estimate

k ��T
�	t
 kL�
R��

Z
Im

Z


jH�

m	t
j ju
�
m	t
grad H

�
m	t
jdxdt �

�k ��T
�	t
 kL�
R��

Z
Im

Z


jH�

m	t
j k u
�
m	t
 k k grad H

�
m	t
 k dxdt �

� �� k u
�
m	t
 kL�

�I�

Z
Im

Z


jH�

m	t
j k grad H
�
m	t
 k dxdt �

� ����
��
Z
Im

Z


	H�

m	t


�dxdt�

�
�
�
Z
Im

Z


k grad H�

m	t
 k
� dxdt�

where �� � �� k u�m	t
 kL�

�I�� where �� is the Lipschitz constant and the Young�s
inequality� was applied� Similarly�

Z
Im

Z


j��T

�	c�m	t
�H
�
m	t

j jgrad c

�
m	t
grad H

�
m	t
jdxdt �

�k ��T
�	c�m	t
�H

�
m	t

 kL�
R��

Z
Im

Z


k grad c�m	t
 k k grad H

�
m	t
 k dxdt �

� ����
��
Z
Im

Z


k grad c�m	t
 k dxdt�

�
�
�
Z
Im

Z


k grad H�

m	t
 k
� dxdt�

	We say that � is a Young�s function if ��t� �
R t
� ��	 �d	 
 t � �
 where the real�valued function

� � h���� is of properties� �i� ���� � �
 �ii� ��	 � � � for 	 � �
 �iii� � is right continuous at any
point 	 � �
 �iv� � is nondecreasing function on h����
 �v� lim���� � �� Moreover
 we say that

the function � is the complementary function to � if ��t� �
R t
� 
�	 �d	 
 where 
�t� � sup

�����t
	 
 t � ��

Young�s inequality� Let �
 � be a pair of complementary Young�s functions� Then for all functions
u� v � h���� uv � ��u� � ��v� and equality holds if and only if v � ��u� or u � 
�v��

��



Moreover�

Z
Im
	F	t
�u�m	t

dt �

Z
Im
�k f	t
 k�k u�m	t
 k��� � k P�	t
 k�k u�m	t
 k���� dt�

where by k f k� we denote the norm in V � �� and furthermore�

�
Z
Im
k F	t
 k�k u

�
m	t
 k��� dt � c��

Z
Im
k u�m	t
 k

�
��� dt� 	c��
��

Z
Im
k F	t
 k�� dt�

Similarly� we estimate
R
Im
	Q	t
�H�

m	t

dt and
R
Im
	�	t
� c�m	t

dt� Then� summing all

above obtained estimates� using 	���
 and the estimates of bilinear and trilinear forms�
applying the Gronwall�s lemma� after some modi�cations we �nd the estimates

k H�
m	t
 k���� c�	�
� t � Im�

Z
Im
k H�

m	t
 k��� dt � c�	�
� 	����


k u�m	t
 k���� c� t � Im�
Z
Im
k u�m	t
 k

�
��� dt � c�

k c�m	t
 k���� c� t � Im�
Z
Im
k c�m	t
 k��� dt � c� � � 	�� �i�

where constants c are independent of m and � and c� is independent of m�
From these estimates we obtain

fH�
m	t
� m � N � � � 	�� �ig is a bounded subset in L�	I� �V 




L�	I�L�	�

�

fu�m	t
� m � N � � � 	�� �ig is a bounded subset in L�	I�V 



L�	I�H	�

�

fc�m	t
� m � N � � � 	�� �ig is a bounded subset in L�	I� �V 



L�	I�L�	�

�

	����


A priori estimates II!

Now we shall show that

f�tH
�
m	t
� m � N � � � 	�� �ig is a bounded subset in L�	I�H��	�

�

f�tu
�
m	t
� m � N � � � 	�� �ig is a bounded subset in L�	I�V �
�

f�tc
�
m	t
� m � N � � � 	�� �ig is a bounded subset in L�	I� 	H�	�

�
� 	����


independent of m and ��
By virtue of estimates given above

jb	u�m	t
�u
�
m	t
�v
j � c k u�m	t
 k���k u

�
m	t
 k���k v k���


We de�ne it as dual to k f k� sup
v�V

j�f �v�j k��

��



and since due to 	����


jb	u�m	t
�u
�
m	t
�v
j � c k u�m	t
 k���k v k����

then

b	u�m	t
�u
�
m	t
�v
 � 	hum	t
�v
� 
v � V�

and similarly�

b�	u
�
m	t
�%

�
m	t
� z
 � 	h�m	t
�v
� 
z � �V�

bc	u�m	t
� c
�
m	t
� d
 � 	hcm	t
� d
� 
d � �V�

hum� h�m� hcm remaining in bounded sets of L�	I�V �
 or L�	I� �V �
 or L�	I� �V �
�
respectively� The coupled terms are from L�	�
 or �L�	�
��� respectively� and therefore
are included into Q and F�

Linear forms %� a�	%� z
 for a �xed z � �V is continuous on �V so that

a�	%	t
� z
 � 	A�%	t
� z
� A� � L	
�V� �V �
� 	����


Similarly� forms u� a	u�v
 and c� ac	c� w
 for �xed u � V or c � �V � respectively�
are continuous on V or �V � respectively� so that

a	u	t
�v
 � 	Auu	t
�v
� Au � L	V� V �
� 	����


ac	c	t
� d
 � 	Acc	t
� d
� Ac � L	
�V�� V �
� 	����


Then 	���
�	���
 are equivalent to

	�tH
�
m �A�%

�
m � h�m �Q� zj
 � �� � � j � m�

	�tu
�
m � ��Auu

�
m � hum � �gj��	u

�
m
� F�vj
 � �� � � j � m�

	�tc�m �Acc
�
m � hcm � �� dj
 � �� � � j � m� 	����


Let
S�m be orthogonal projection L�	�
� Wm

� � spanfzjj� � j � mg�
Sum be orthogonal projection H � Wm � spanfvjj� � j � mg�
Scm be orthogonal projection L�	�
�Wm

c � spanfdj j� � j � mg�
then

S�mh� �
mX
j��

	h�� zj
zj� Sumhu �
mX
j��

	hu�vj
vj� Scmhc �
mX
j��

	hc� dj
dj �

where fzjg� fvjg� fdjg are orthogonal bases ofWm
� � or W

m� or Wm
c � respectively� Then

from 	����
 and from the facts that S�m�tH�
m � �tH

�
m� Sum�tu

�
m � �tu

�
m� Scm�tc

�
m �

�tc
�
m� we obtain

��



�tH
�
m � S�m	Q�A�%�

m � h�m
�

�tu
�
m � Sum	F� ��Auu

�
m � �gj��	u

�
m
� hum
�

�tc
�
m � Scm	��Acc

�
m � hcm
� 	����


Due to 	����
 and 	����
 A�%�
m� Auu

�
m� Acc

�
m are a bounded subsets of L�	I� �V �


or L�	I�V �
 or L�	I� �V �
� respectively�
Due to the de�nition

	J ��	v
�w
 �
Z

�I

�gDII	v

�
� 
����Dij	v
Dij	w
dxdt�

k j��	v
 k� � c	
Z


	DII	v

�dx


�
� �

where k � k� denotes the dual norm� then j ��	u
�
m
 is a bounded subset of L�	I�V �
�

Thus 	����
 indicate that �tH�
m � S�mp�m� where p�m � P�p 
 L�	I�H��	�

� P�p is

a bounded subset of L�	I�H��	�

� Similarly� �tu�m � Sumpum� where pum � Pup 

L�	I�V �
� Pup is a bounded subset of L�	I�V �
 and �nally� �tc�m � Scmpcm� where
pcm � Pcp 
 L�	I�L�	�

� Pcp is a bounded subset of L�	I� 	H�	�

�
� Moreover� due
to properties of eigenfunctions� then k S�mp�m k�V �� c k p�m k�V � � k Sumpum kV �� c k
pum kV �� k Scmpcm k�V �� c k pcm k�V � � which completes this part of the proof�

Passages to the limit over m�

We shall prove the convergence of the �nite�dimensional approximation for � being
�xed�

From the a priori estimates I and II as well as from 	����
� 	����
 the subsequences
fH�

		t
� � � Ng� fu�		t
� � � Ng� fc�		t
� � � Ng of the sequences fH�
m	t
�m � Ng�

fu�m	t
�m � Ng and fc�m	t
�m � Ng� respectively� can be taken such that

H�
	 � H� in L�	I�L�	�

 strongly�

H�
	 � H� in L�	I�H�

� 	�

 weakly�

H�
	 � H� in H�	I�H��	�

 weakly�

u�	 � u� in L�	I�H
 � �weakly 	weakly star
�

u�	 � u� in L�	I�V 
 weakly�

u�	 � u� in L�	I�H
 strongly�

�tu
�
	 � �tu

� in L�	I�V �
 weakly�

c�	 � c� in L�	I�L�	�

 strongly�

c�	 � c� in L�	I�H�	�

 weakly�

c�	 � c� in L�	I� 	H�	�

�
 weakly� 	����


where H� � L�	I�H�
� 	�



T
H�	I�H��	�

� u� � L�	I�V 


T
L�	I�H
�

c� � L�	I�H�	�


T
H�	I� 	H	�

�
�

��



Remark� The function fj � f ��weakly in L�	I� �L�	�
�N
 if
R t�
t�
	fj	t
� �	t

dt �R t�

t�
	f	t
� �	t

dt weakly 
� � L�	I� �L�	�
�N
�
For the appropriate components u�i	 of u

�
	 we have

u�i	 � u�i weakly a�e� in�� I� 	����


since u�	 � u� in L�	I�H
 strongly� Furthermore� fj �	u�m
g� fu
�
i	u

�
j	g� due to estimate

k u�	 k�Lp

���� c k u�	 k
�
�
���k u

�
	 k

�
�
�L�

��� 
u � �H�

� 	�
�
��

and 	����
� are a bounded subsets of spaces L�	I�V �
 and L�	I� �Lp
�	�
��
� respectively�
Then we also can assume that

j��	u
�
	
� �� weakly in L�	I�V �
�

u�i	u
�
j	 � 'ij weakly in L�	I�Lp
�	�

� 	����


From 	����
� u�i	u
�
j	 � u�iu

�
j in the sense of distributions in � � I� which comparing

with 	����
 then gives

'ij � u�iu
�
j�

But

b	u�	�u
�
	�wj
 � �b	u�	�wj �u

�
	
��b	u�	�wj �u

�
	
 weakly in L�	I
 
wj�

and similarly for the other trilinear forms�
Then from 	���
�	���
 for m � � we obtain

Z
I
f	�tH

�	t
� zj	t

 � b�	u
�	t
�%�	t
� zj	t

 �

�a�	%
�	t
� zj	t

 � bp	u

�	t
� zj	t

� 	Q	t
� zj	t

gdt � � 
j�Z
I
f	�tu

�	t
�vj	t

 � b	u�	t
�u�	t
�vj	t

 � ��a	u�	t
�vj	t

 �

�bs	%�	t
�%��vj	t

� 	F	t
�vj	t

gdt� 	�	t
�vj	t

 � � 
j�Z
I
f	�tc

�	t
� dj	t

 � bc	u
�	t
� c�L	t
� dj	t

 �

�ac	c�	t

� dj	t

� 	�	t
� dj	t

gdt � � 
j� 	����


where we denoted by �	t
 � J �	u�	t

�
But the systems of functions fzjg� fvjg� fwjg are complete in �V or V or �V �

respectively� so that from 	����
 we obtain

Z
I
f	�tH

�	t
� z	t

 � b�	u
�	t
�%�	t
� z	t

 � a�	%

�	t
� z	t

 �

�bp	u
�	t
� z	t

� 	Q	t
� z	t

gdt � � 
z � �V�

��



Z
I
f	�tu�	t
�v	t

 � b	u�	t
�u�	t
�v	t

 � ��a	u�	t
�v	t

 �

�bs	%
�	t
�%��v	t

� 	F	t
�v	t

gdt� 	�	t
�v	t

 � � 
v � V�Z

I
f	�tc�	t
� d	t

 � bc	u�	t
� c�L	t
� d	t

 �

�ac	c
�	t

� d	t

� 	�	t
� d	t

gdt � � 
d � �V�

Since 	���
�	���
 and a�priori estimates 	����
 are satis�ed then it is su�cient to prove
that

�	t
 � J ��	u
�	t

�

To prove this� the property of monotonicity will be used� Then the proof is parallel
to that of �����

Let v � L�	I�V 
 such that v � L�	I�V �
� v	t�
 � u�� Let us put

X	 � 	J ��	u		t

� J ��	v	t

�u		t
� v	t

 � ��
Z
I
a	u		t
� v	t
�u		t
� v	t

dt�

�
Z
I
	�tu		t
� �tv	t
�u		t
� v	t

dt�

Using 	���
 we have

X	 �
Z
I
	F	t
�u		t

dt� 	J ��	u		t

�v	t

� 	J ��	v	t

�u		t
� v	t

�

���
Z
I
�a	u		t
�v	t

 � a	v	t
�u		t
� v	t

�dt�

�
Z
I
�	�tu		t
�v	t

� 	�tv	t
�u		t
� v	t

�dt�

Hence X	 � X� where

X �
Z
I
	F	t
�u�	t

dt� �	�	t
�v	t

� 	J ��	v	t

�u

�	t
� v	t

��

���
Z
I
�a	u�	t
�v	t

 � a	v	t
�u�	t
� v	t

�dt�

�
Z
I
	�tu

�	t
�v	t

� 	�tv	t
�u
�	t
� v	t

�dt�

Since X		t
 � � for all � then X	t
 � ��
Let us put v � u� � �w� � � �� where w � L�	I�V 
� �tw � L�	I�V �
� w	t�
 � ��

Substituting for v dividing by � we obtain

	�	t
� J ��	u
�	t
� �w	t

�w	t

 � �

Z
I
f��a	w	t
�w	t

 � 	�tw	t
�w	t

gdt � ��

Hence� in the limit �� � we obtain

��



	�	t
� J ��	u
�	t

�w	t

 � � 
w�

from which the assertion �	t
 � J ��	u
�	t

 follows�

Therefore� we proved the existence of H�� u�� c� satisfying 	���
�	���
 and the con�
ditions

H�	t
 is bounded in L�	I� �V 



H�	I�H��	�

�

�tH
�	t
 is bounded in L�	I�H��	�

�

u�	t
 is bounded in L�	I�V 



L�	I�H
�

�tu
�	t
 is bounded in L�	I�V �
�

c�	t
 is bounded in L�	I�� V 



H�	I� 	H�	�

�
�

�tc
�	t
 is bounded in L�	I� 	H�	�

�
�

To prove that H�	x� t�
 � H�	x
� u�	x� t�
 � u�	x
� c�	x� t�
 � c�	x
 the Arzel(a�
Ascoli�s theorem� will be used� Due to this theorem� the sequences fH�

	g� fu
�
	g� fc

�
	g�

� � N converge toward H� � C�	I�H��	�

 and)or toward u� � C�	I�V �
� and)or
toward c� � C�	I� 	H�	�

�
� respectively� and therefore fH�

		�� t�
g�
fu�		�� t�
g� fc

�
		�� t�
g� � � N � converge towardH�	�� t�
 inH��	�
� or toward u�	�� t�
 �

V �� or toward c�	�� t�
 � 	H�	�

�� respectively� and at the same time fH�
		�� t�
g� � � N �

converges to H�	x
 in L�	�
 by de�nition� Similarly� for fu�		�� t�
g	�N � u�	x

and fc�		�� t�
g	�N � c�	x
 in H	�
 or L�	�
� respectively� by the de�nition� Since
H� � C�	I�L�	�

� the initial condition holds in L�	�
 and therefore a�e� in �� By a
similar way we �nish the proof for u�	x
 and c�	x
�

Limitation process �� ��

Now we shall prove that estimates of regularized enthalpy H� and its derivative
�tH

� as well as regularized temperature T � do not depend on �� The proof of that is
parallel of that of Lemma ��� of ��� 	see also ���
�

Firstly� we prove the auxiliary estimate used later� Let assumptions 	A�
	iii
�
	A�
	iii
 are satis�ed� Let � satis�es 	A�
� 	A�
� Let � � ��	c� � �
 be a test function
	it is possible as c� � � in � � I and �� is uniformly Lipschitzian on h���

� Then
	��c
 yields

Z


�	c�	�� t�
 � �
dx�

Z


�	c� � �
dx�

Z
I

Z


���	c� � �
 k grad c� k� dxdt�

�
Z
I

Z


c�L	c

�� T �	c��H�

���	c� � �
u�grad c�dxdt � ��

�Let K be a subset of C��I�X�
 X is a Banach space� Then K is said to be equi�continuous if for
every � � � there exists a � � ���� � � such that k u�t� � u�s� kX� � holds for all u � K and all t

s � I for which jt� sj � ��
Arzel�a�Ascoli theorem� A subset K of C��I�K� is relatively compact if and only if �i� K is equi�
continuous
 �ii� the set K�t�
 K�t� � fu�t�ju � Kg
 is relatively compact in Banach space X for every
t � I
 i�e� every sequence in K�t� contains a subsequence convergent in X�

��



Hence� due to the Young inequality and the property of � as well as Lemma �	iv
� we
then obtain

Z
I

Z


���	c� � �
 k grad c� k� dxdt �

Z


�	c� � �
dx� inf

R�

	�
 meas	�
 �

�
Z
I

Z


jc�L	c

�� T �	c��H�

j���	c� � �
 k u� k k grad c� k dxdt �

� c�
�
�

Z
I

Z


���	c� � �
 k grad c� k� dxdt�

�
�
�
k u� kL�

�

Z
I

Z


jc�L	c

�� T �	c��H�

j����	c� � �
dxdt � c� 	����


Now� let t � I be an arbitrary� Then 	���
 for z � ��	t
H�� where ��	t
 is a characteristic
function of the interval I� yields

� �
�
�

Z


	H�	�� t

�dx�

�
�

Z


	H�
�dx�

�
Z
I

Z


u�gradT �	c��H�
	��T �	c��H�

�

�
� 	��T �	c��H�



�
�H�dxdt�

�
Z
I

Z


grad T �	c��H�
�grad T �	c��H�
�

���T
�	c��H�
grad c��	��T �	c��H�

��dxdt�

Hence� after some modi�cations

�
�

Z


	H�	�� t

�dx�

Z
I

Z


grad T �	c��H�
grad T �	c��H�
	��T �	c��H�

��dxdt �

�
�

Z


	H�


�dx�
Z
I

Z


grad T �	c��H�
	��T

�	c��H�

����T
�	c��H�
grad c�dxdt�

�
Z
I

Z


grad T �	c��H�
	��T

�	c��H�

�
�
�u�	��T

�	c��H�


�
�H�dxdt�

and after applying twice the Young inequality� we �nd

�
�

Z


	H�	�� t

�dx�

Z
I

Z


k grad T �	c��H�
 k� 	��T

�	c��H�

��dxdt �

�
�
�

Z


	H�


�dx�
�
�

Z
I

Z


k grad T �	c��H�
 k� 	��T

�	c��H�

��dxdt�

�
Z
I

Z


j��T

�	c��H�
j�	��T
�	c��H�

�� k grad c� k� dxdt�

�
�
�

Z
I

Z


k grad T �	c��H�
 k� 	��T �	c��H�

��dxdt�

� k u� kL�

�I�k ��T
�	c��H�
 kL�

�I�

Z
I

Z


	H�
�dxdt�

Hence

��



Z


	H�	�� t

�dx�

Z
I

Z


k grad T �	c��H�
 k� 	��T �	c��H�

��dxdt �

�
Z


	H�

�


�dx� �

Z
I

Z


j��T

�	c��H�
j�	��T �	c��H�

�� k grad c� k� dxdt�

�c
Z
I

Z


	H�
�dxdt�

Hence� using Lemma �	v
� 	����
 and the Gronwall lemma� we obtain

k H� kL�
I �L�

��� c� c � const� independent of �� 	����


Since ��T � is bounded from above� then

k T �	c��H�
 kL�
I�H�
�

��

� c� c � const� independent of �� 	����


From 	���
 it follows

Z
I
	�tH

�� z
dt � �
Z
I
	u�grad T �	c��H�
� z
dt�

Z
I
a�	T

�	c��H�
� z
dt �

�k u� kL�

�I�

Z
I
k gradT �	c��H�
 k���k z k��� dt�

�
Z
I
k grad T �	c��H�
 k���k grad z k��� dt 
z � L�	I�H�

� 	�

�

Since

k z k�L�
I�H��

���
Z
I

�
B� sup
w�H�

� 

��kwkH�
�
���
	�

	z�w


�
CA
�

dt

and using 	����
� then

k �tH
� kL�
I �H��

��� c� c � const� independent of �� 	����


The existence of a weak solution of the problem 	Pcenth
v will be established as the
limit of a subsequance of weak solutions of the regularized problems� In the previous
steps we proved that

H� remains in a bounded set of L�	I�L�	�

�

�tH
� remains in a bounded set of L�	I�H��	�

�

T � remains in a bounded set of L�	I�H�
�	�

�

u� remains in a bounded set of L�	I�V 



L�	I�H
�

�tu
� remains in a bounded set of L�	I�V �
�

c� remains in a bounded set of L�	I�H�	�

�

�tc
� remains in a bounded set of L�	I� 	H�	�

�
 	����


��



for any weak regularized solution fH��%��u�� c�g�
In this part of the proof we shall prove that

H� � H in C�	I�H��	�

�

T � � T strongly in C�	I�L�	�

�

u� � u � �weakly in L�	I�H
 and weakly in L�	I�V 
�

�tu
� � �tu weakly in L�	I�V �
�

c� � c strongly in C�	I�L�	�

�

Due to 	����
 the set fH�	t
� � � � � �g is relatively compact in H��	�
 
t � I�
and then the family fH�j� � � � �g is equi�continuous in H��	�
� Then due to
the Arzela�Ascoli theorem there exists a subsequence fH�jg� j � N � converging in
C�	I�H��	�

� Moreover� due to 	����
 there exists a subsequence fu�jg� j � N � such
that

u�j 	t
� u	t
 in L�	I�H
 weakly star and weakly in L�	I�V 
�

�tu
�j 	t
� �tu	t
 weakly in L�	I�V �
� 	����


For v � W let us put 	the index j will be omitted


Y� �
Z
I
f	�tv	t
�v	t
� u�	t

 � ��a	u�	t
�v	t
� u�	t

 �

�b	u�	t
�u�	t
�v	t
� u�	t

 � bs	%
�	t
�%��v	t
� u�	t

�

�	F	t
� v	t
� u�	t

gdt� J�	v	t

� J�	u�	t

�

By virtue of 	���
�

Y� �
Z
I
	�tv	t
� �tu

�	t
�v	t
� u�	t

dt� J�	v	t

� J�	u
�	t

�

�	J ��	u
�	t

�v	t
� u�	t

�

Due to the initial conditions the �rst term is equivalent to �
�jv	t�
� u�	t�
j� and since

the functional v� j�	v
 is convex� the second term � �� and thus Y� � �� Hence

Z
I
f	�tv	t
�v	t
� u�	t

 � ��a	u�	t
� v	t

� b	u�	t
�v	t
�u�	t

 �

�bs	%�	t
�%��v	t
� u�	t

� 	F	t
�v	t
� u�	t

�dt� J�	v	t

 �

� ��
Z
I
a	u�	t
�u�	t
dt� J�	u

�	t

�

Hence and 	����


��



Z
I
f	�tu	t
�v	t
� u	t

 � ��a	u	t
�v	t

� b	u	t
�v	t
�u	t

 �

�bs	%	t
�%��v	t
� u	t

� 	F	t
�v	t
� u	t

gdt� J	v	t

 �

� liminf
�Z

I
���a	u�	t
�u�	t

 � �gj�	u

�	t

�
�
dt �

�
Z
I
��a	u	t
�u	t

dt� J	u	t

� 	����


as liminf
R
I���a	u

�	t
�u�	t

�dt �
R
I ���a	u	t
�u	t

�dt 	due to the fact that the function

u �
R
I ��a	u�u
dt is lower semi�continuous on L�	I�V 
 with the weak topology
 and

since

Z
I
j	u	t

dt �

�Z

�I

DII	u	t


�
� 
����dxdt

��

���� �Z

�I

dxdt
��

����

�

hence

Z
I
j�	u

�	t

dt � c	�

�Z

I
j	u�	t

dt

�
����
� c	�
 � jmeas	� � I
j���

liminf
Z
I
j�	u

�	t

dt � liminf
Z
I
j	u�	t

dt� 	����


Since the function v �
R
I j	v	t

dt is convex and continuous on L�	I�V 
� then it is

lover semi�continuous in the weak topology of the space L�	I�V 
 and thus

liminf
Z
I
j	u�	t

dt �

Z
I
j	u	t

dt�

which together with 	����
 proves

liminf
Z
I
j�	u�	t

dt �

Z
I
j	u	t

dt�

Then 	����
� 	����
� 	����
 yield that u satis�es 	���
�
Furthermore� due to 	��f�g
 there exists a subsequence fc�jg� j � N � which strongly

converges to c	t
 in C�	I�L�	�

�
Now we shall prove the existence of a subsequence of fT �j	c�j �H�j
g� j � N � which

strongly converges in L�	I�L�	�

 towards T 	c�H
� The monotonicity arguments 	see
���� ���
 will be used� Above we proved that H�j � H in C�	I�H��	�

� c�j � c
strongly in L�	I�L�	�

� j ��� Let fHj � cjg� j � N � be the corresponding sequence
and fT j	cj�Hj
g� j � N � the associated sequence� Further� for simplicity we shall
write Hj� cj instead of H�j and c�j � respectively� Then� due to Lemmata ��� of ����
there exist subsequences� still indexed by j� and null measure E 
 I such that� for any
t � InE

lim
j��

Z


T j	cj	t
�Hj	t

	Hj	t
�H	t

d� � �� 	����


lim
j��

Z


jcj	t
� c	t
j�d� � � 
t � InE�

��



Due to assumptions 	A�
	i
�	ii
 and 	����
� then there exists a subsequence
fT k	ck	�� t
�Hk	�� t

g� k � N � which is bounded in L�	�
� Hence� for every t � InE
there exists a subsequence fT l	cl	�� t
�H l	�� t

g� l � N � dependent on t and such that
	see Lemmata ���� of ���


T l	cl	�� t
�H l	�� t

� T 	c	�� t
�H	�� t

 weakly in L�	�
� 	����


It remains to prove that T j	cj�Hj
� T 	c�H
 strongly in L�	I�L�	�

�
Let fT j	cj�Hj
g� j � N � be the subsequence resulting from the associated sequence

de�ned above� Then� �rstly we prove that

f j � T j	cj�Hj
� T 	c�H
� � weakly in L�	�
� 
t � InE� 	����


where E is a null measure set de�ned above�
We prove 	����
 by contradiction� Let ff jg� j � N � be a subsequence� f �� ��

f � L�	�
 function� Then� there does not be t � InE� a subsequence ff jg and a
function f �� �� f � L�	�
� such that ffkg� k � N � weakly converges towards f in
L�	�
� Thus no subsequence ffkg � � weakly� k � N � But it is in contradiction
with 	����
� Hence� we deduce the existence of a subsequence ff jg� j � N � weakly
converging towards ��

Let fwkg� k � N � be a basis of L�	�
� Since for almost every t � InE� the functions
f j � H�	�
� then due to Fridrichs� lemma� for any � 
 �

k f j	�� t
 k�L�

�� � k f j	�� t
 k�H�
�

�

�
nX

k��

�Z


f j	x� t
wk	x
dx

��
� n � n	�
�

Hence� by integrating over t � I and putting �k�j	t
 � 	
R

 f

j	x� t
 wk	x
dx
� we
�rstly� due to estimate 	����
 and the weak convergence of ff jg� j � N � �nd that
f�k�j	t
g� j � N � converges towards � in L�	I
� Secondly� then there exists a constant
c� independent of �� such that

lim
j��

k f j kL�

�I�� lim
j��

k T j	cj�Hj
� T 	c�H
 kL�

�I�� c��

Since the last estimate is valid for any � 
 �� then

T j	cj �Hj
� T 	c�H
 strongly in L�	I�L�	�

�

Summing all these results we �nd that if 	H��u�� c�
� � � 	�� �i� is a weak regularized
solution� then there are a sequence indexed by j and a tetrad fH�%�u� cg satisfying
the regularity conditions in De�nition � such that

�Fridrich�s lemma� Let � be a domain with a Lipschitz boundary �� Then there exist non�
negative constants c�
 c�
 dependent on the considered domain but independent of the functions from
M � �the linear set of functions u�x� which are continuous with their partial derivatives of the �st

order in � �i�e� the set C�����g
 such that
R
�
�u�x���dx � c�

NP
i
�

R
�
��iu��dx� c�

R
�
�u�s���ds holds for

every function u �M �

��



�tH
j � �tH weakly in L�	I�H��	�

�

�tc
j � �tc weakly in L�	I� 	H�	�

�
�

grad cj � grad c weakly in L�	I�L�	�

�

grad T j	cj�Hj
� grad % weakly in L�	I�L�	�

�

cL	c
j� T 	cj�Hj

� cL	c� T 
 strongly in L�	I�L�	�

�

where % � T 	c�H
�
Due to ��� for �g � � it follows that the Bingham rheology leads to the Newtonian

liquid� and then

u� uL weakly in L�	I�V 
�

�tu� �tuL weakly in L�	I�V �
� 	����


where by uL we denoted the solution corresponding to the liquid state� The proof of
	����
 is parallel of that of Theorem ���� of 	����p��������
� where in addition bs	% �
%��v
 � L�	I� �L�	�
��
 was assumed to be a part of body forces�

Now we prove this assertion in more details� We proved above that for �g 
 � there
exists a weak solution of a coupled two�Stefan�like problem in a Bingham visco�plastic
rheology� It was shown� that in the mushy zones both phases� solid 	visco�plastic

and liquid 	strongly visco�plasic with low �g
 are microscopically parallelly present�
Therefore� we must show that for the threshold of plasticity g tends to zero� i�e� if
�g � �� the Bingham visco�plastic rheology leads to the Newtonian viscous 
uid� It
means to prove 	����
 if �g � ��

We proved above that

k u kL�
I�V � � k �tu kL�
I�V ��� c for all �g 
 ��

where �g is bounded� Now� let us assume that �g � �� Then we can take out a sequence�
we denote it again by fug� such that

u� w in L�	I�V 
 weakly�

�tu� �tw in L�	I�V �
 weakly�

ui � wi in L�	�� I
 strongly in L�	I�L�	�

 and a�e� in �� I�

uiuj � wiwj in L�	I�L�	�

� 	����


where ui� wi are components of u and)or w� where w is a solution of the Navier�Stokes
problem! uL � L�	I�V 
� �tuL � L�	I�V �


	�tuL	t
�v
 � ��a	uL	t
�v
 � b	uL	t
�uL	t
�v
 � 	F	t
� v
 
v � V�

uL	x� t�
 � u�	x
� 	����


��



where the coupled term was included into the body forces as above� Then� similarly as
above

b	u�u�v
 � �b	u�v�u
��b	w�v�w
 in L�	I
 weakly� 
v � V� 	����


Let us put v � v	t
� v � L�	I�V 
� then

Z
I
�	�tu	t
� v	t
� u	t

 � ��a	u	t
�v	t
� u	t

 � b	u	t
�u	t
�v	t

�

�	F	t
�v	t
� u	t

�dt� J	v	t

� J	u	t

 � ��

then

Z
I
�	�tu	t
� v	t

 � ��a	u	t
�v	t

� b	u	t
�v	t
�u	t

�

�	F	t
�v	t
� u	t

�dt� J	v	t

� J	u	t

 �

�
Z
I
�	�tu	t
�u	t

 � ��a	u	t
�u	t

�dt �

�
�
ju	t�
j� �

�
�
ju�j

� �

���
Z
I
a	u	t
�u	t

�dt�

Hence� 	��
� 	����
 and since
R
I �gj	u	t

dt� �� we obtain

Z
I
�	�tw�v
 � ��a	w�v
� b	w�v�w
� 	F�v�w
�dt �

� liminf
�
�
ju	t�
j

� �
�
�
ju�j

� � �� liminf
Z
I
a	u	t
�u	t

�dt �

�
�
�
jw	t�
j

� �
�
�
ju�j

� � ��
Z
I
a	w	t
�w	t

�dt �

�
Z
I
�	�tw�w
 � ��a	w	t
�w	t

�dt�

Hence�

Z
I
�	�tw	t
�v	t
�w	t

 � ��a	w	t
�v	t
�w	t

� b	w	t
�v	t
�w	t

�

�	F	t
�v	t
�w	t

�dt � � 
v � L�	I�V 


and therefore� for almost everywhere on I

	�tw	t
�v�w	t

 � ��a	w	t
�v�w	t

� b	w	t
�v�w	t

�

�	F	t
�v�w	t

 � � 
v � V�

Hence� putting v � w	t
� ��� �� � V � it follows

��



	�tw	t
� ��
 � ��a	w	t
� ��
� b	w	t
� ���w	t

� 	F	t
� ��

 � � 
�� � V� 	����


As it is known 	see e�g�����
 that the Navier�Stokes problem 	����
 has a unique
solution� then from 	����
 follows that

w	t
 � uL	t
�

which proves 	����
� Moreover� due to 	����
 it follows that

�tu	t
� �tuL	t
 weakly in L�	I�V 
 and � �weakly in L�	I�H
� 	����


At the end we shall prove that there exist functions m � fmijg� the so�called
multipliers� satisfying assumptions 	A�
� which continuously depend on �g in a suitable
topology� For this case from 	���
 we have

Z
I
f	�tu	t
�v� u	t

 � ��a	u	t
�v� u	t

 � b	u	t
�u	t
�v� u	t

 �

�bs	%	t
�%��v� u	t

� 	F	t
�v� u	t

gdt� J	v
� J	u	t

 �

� J	v
� J	u	t

� ��g
Z
I
�	mij�Dij	v
�Dij	u

�dt � X � � 
v � W�	����


as due to the assumptions 	A�
	ii
�	iii
� j	u
 � �	mij �Dij	u

� we �nd

�	mij�Dij	v

 � �
Z


	Dij	v
Dij	v



�
�dx � j	v
�

and therefore X � ��
The existence of the multipliers mij parallelly follows from the ideas of ����
Let us de�ne B	u�v
 � V by

b	u�v�w
 � 	B	u�v
�w
� u�v�w � V�

and set

F � �tu� ��#u�B	u�u
� F�� 	����


where F� � F � bs	% �%��u
� as bs	%� %��u
 � L�	�
 
t� Then F � L�	I�V �
 and
the variational inequality can be written in the form

	F	t
�v
 � �gj	v
� �	F	t
�u	t

 � �gj	u

� � � 
v � V� 	����


Let us put v � ��v� � 
 �� then 	����
 leads to

���	F	t
�v
 � �gj	v
�� �	F	t
�u	t

 � �gj	u	t

� � ��

Hence� putting v � v	t
� where t � v	t
 � L�	I�V 
� then integrating over t � I� we
have

��



�
�
�
Z
I
	F	t
�v
dt� J	v


�
�
�Z

I
	F	t
�u	t

dt� J	u	t



�
� �� 
v � L�	I�V 
� 
� � ��

	����

Hence�

j
Z
I
	F	t
�v
dtj � J	v
 
v � L�	I�V 
� 	����


and Z
I
	F	t
�u	t

dt� J	u	t

 � �� 	����


From 	����
 it follows that
R
I	F	t
�u	t

dt� J	u	t

 � � and since� due to 	����
�R

I �	F	t
�u	t

dt� J	u	t

 � �� then 	����
 is valid�
Let us introduce the space

W� � fwjw � fwijg� wij � wji� wij � L�	�� I
g�

with the norm

k w kW��
Z

�I

	wij� wij

�
�dxdt�

Let P ! v � Dij	v
 � �
�
	�jvi � �ivj
 be the mapping of L�	I�V 
 � W�� Then 	����


is equivalent to

j
Z
I
	F	t
�v
dtj � �g�

�
� k Pv kW� � 	����


Applying the Hahn�Banach theorem�� then there exists

m � W �
� � fwjw � fwijg� wij � wji� wij � L�	�� I


such that Z
I
	F	t
�v
dt � ��g�

�
�

Z

�I

mijDij	v
dxdt 	����


and such that

k m kW �

�
� �� 	����


It is evident that we can take fmijg in W �
� such that mkk � � as Dkk � �� W �

� is dual
to W��

	����
 is equivalent to mijmij � � a�e� in �� I� On virtue of de�nition of F� 	����

is equivalent to

�j�ij � fi � ��tvi� with �ij de�ned by 	A�
	iv
�

�Hahn�Banach theorem� Let � be a continuous linear functional de�ned on a linear subset M of
a normed linear space X� Then
 there exists a continuous functional �
 de�ned on X
 such that
��u� � ��u� for u �M and k � k�k � k�

��



Using 	����
 then 	����
 is equivalent toZ

�I

mijDij	u
dxdt �
Z

�I

	Dij	u
Dij	u


�
�dxdt�

Hence� since due to 	A�
	ii
 mijmij � � a�e� in �� I� then

mijDij	u
 � 	Dij	u
Dij	u


�
� a�e� in �� I�

Moreover� 	����
 is equivalent to

�tui � �juiuj � �j�ij � fi�

which completes this part of the proof�
Summing all the above obtained results we proved the existence of the weak solution

of the problem investigated� Q�E�D�

Remark� In the reality the mushy zone is created not only by liquid and solid phases�
but instead of the pure liquid there exist microscopical elements of strongly viscoplastic
rocks� but near to the liquid phase and having consistency of alloy of both phases� To
determine the boundary between this phase and the solid viscoplastic phase is very
di�cult and can be determined throughout determination of the threshold of plasticity
�g� determining it by the voluminic fractions of both phases� the visco�plastic and the
strongly visco�plastic with a low threshold of plasticity� so that fS � fL � �� The
dependence of the pressure and the temperature plays a fundamental role as show the
phase diagrams� Therefore� the future problems must be studied with physical coe��
cients depending on the temperature and the pressure� Solving the problem 	Pcenth
v
numerically� then we �nd the pressure p directly 	as a result of the Uzawa algorithm

and then put it into the physical parameters of rocks� The temperature will be ob�
tained as a solution of the thermal part of the problem� By such a way we can study
directly in
uences of temperatures and pressures in anomalous zones of the Earth as
well as in anomalous conditions of technologic problems�

��
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