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Abstract

The paper studies the existence of solutions of Stetan-like problems describing solid-
ification and melting of rock and metallic alloys. The governing equations are derived
and the model problem is given. The main result represents the existence theorem. The
proof proceeds by a regularization of the non-linear degenerated terms and of the non-
differentiable functional j(.). Sequences of regularized solutions are obtained by the
Galerkin approximations. For proving the solution monotonicity arguments are used.
The problem investigated represents the model problem of solidification and melting
as well as simulation of geodynamic processes in the Earth and simulation of critical
situations (e.g. explosions of HLRWDSs) in regions, where high-level radioactive waste

disposal systems (HLRWDSs) will be situated.
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1 Introduction

Many physical processes connected with heat flow and diffusion involving phase-change
phenomena give rise to free boundary problems for parabolic partial differential equa-
tions of the Stefan type. Historically the first paper was given by Joseph Stefan (1835-
1893) ([35]) and was concerned with the melting of ice at 0°C. A concept of weak
solution of the Stefan problem was introduced by Kamenomotskaya [16], [17] and next
was analyzed by means of smoothing techniques as developed in [10], [19], [31] and of
monotonicity methods developed by Brezis [2] and Lions [21]. A very rich literature
exists for numerical solutions of Stefan problems. The problem is non-linear so that
numerically the problem was solved by finite difference and finite element methods, e.g.
[9], [30], [5], [13], [14], [8], [27], [28], [34], etc. and in variational inequality approach
in [6], [32], etc. The algorithms are then based on non-linear SOR method, devel-
oped e.g. in [38], [39], [8] or on non-linear conjugate gradient method. The coupled
contact-two-phase Stefan-like problem is solved in [24], [25], [26].

The interest of geophysical and technological disciplines for numerical modelling
has encouraged the development of corresponding numerical methods. Not otherwise
it is in geodynamics as well as in technological practice, where instead of processes
connecting with moving masses also processes connecting with heating (melting and
recrystallization) and freezing (solidification) play the important role. As a first step,
simulations related to this topic consist in studying the macroscopic heat transfer
mechanism, modelled by the so-called two-phase Stetfan problem. Since problems con-
necting with melting, recrystallization as well as solidification play an important role
in geodynamic processes in the core, mantle as well as in the lithosphere of the Earth,
investigations of corresponding high performance numerical methods have a great im-
portance for simulation and next understanding of geodynamic processes inside the
Earth and at present with application to the modelling and simulation geomechanic
and geodynamic processes in regions where the high level radioactive waste repositories
will be built. In “classical” problems of technology the two-phase Stefan problems with
convection in the fluid phase are investigated ([1], [4]). Similar problems are applied
also in geodynamics ([33]). In both problems the rheology is taken as Newtonian rhe-
ology oftentimes in the Bussinesq’s approximation ([1], [12], [33]). This approximation
depends on the Rayleigh’s, Prandtl’s,etc. numbers, which change in relatively great
value intervals. Therefore, the main goal of this paper is to give an optimal method,
i.e. optimal from the better physical and rheological approximation point of view as
well as from the high performance computation possibility point of view. The Bingham
rheology is an optimal rheology as for the case if the threshold of plasticity ¢ is equal to
zero then we have the usual present case of Newtonian rheology and if the threshold of
plasticity ¢ — oo then the medium is absolutely rigid and between them we can model
all types of visco-plastic materials. It is evident that both results can be compared
and as the threshold of plasticity is determined by the Mises relation and hence by the
velocities of seismic P and S waves and the density (Lamé coefficients and density),
and therefore the approximation of the rheology inside the Earth is closely to reality.
Moreover, together with two-phase Stefan problem the approximation of the reality
is much more realistic. It is evident that similar considerations are also valid for the



technological problems.

It is evident that due to the extremely complicated shape of the front for melting,
recrystallization or solidification, respectively, cannot be described in full. As a result
we practically obtain the phase change zones only, as the forecast of the fine geometry
would need a very expensive computation as well as the necessity of regularity of the
front, where both phases are parallelly at the same time (the so-called mushy zone).
To study these problems we have proposed to average variables over the phases ([37])
so that instead of the fine geometry a smoother phase change zone is investigated. The
principle of this average is based on the integration of the variables over an elemen-
tary domain, where each variable is in its own phase. The effect of these averaging
processes are to define zones of intermediate state (mushy zones), in between both
phases. Within these mushy zones, the relative proportion of each phase is given by
the volumic fractions fs, fr, where fs + f;, = 1. In the mushy zones both phases are
microscopically parallelly present. From the mathematical point of view by the mushy
zones it 1s meant the regions where the operator of heat equation is degenerated. In the
phase diagram, this corresponds to the phase changes either at null concentration and
temperature of melting (fusion), or at concentration ¢ from the interval, corresponding
to the concentration for which the solid rock begins to melt and the concentration for
which the liquid rock begins to solidify and eutectic temperature, i.e. temperature,
under which no liquid remains, whatever the concentration. The latent heat represents
the energy necessary for a complete change of phase of a unit volume at temperature
of fusion (melting) and null concentration.

2 Physical model

The physical model is derived from the conservation principle. The conservation of
momentum in its differential form gives the equation of motion, the mass conservation
specifies the rocks as the incompressible rocks and gives also the solute equation. The
energy conservation then gives the heat equation. The “classical” approach in the
phase change problems of the first order (melting, recrystallization, solidification) is
based upon Boussinesq’s hypothesis assuming that the density variation is neglected
except in the force term. Then the obtained equation is valid in the liquid phase only
as the solid phase is assumed to be static. These assumptions lead to the Navier-Stokes
equations. But in this paper for better approximation of the rheology we shall assume
that the rheology is of the visco-plastic Bingham’s type.

In the case of thermo-visco-plastic Bingham’s rheology from the conservation of
momentum we obtain the equations of motion

8ui 8u2 8735 ..
U = ; In Qx1, 1,7=1,2(3), = (gt 2.1
(Gt gt) = 5 =LA = (n), ()
where u; are components of flow velocity vector, pf; components of body forces.
The stress-strain rate relation-the constituent law, can be derived from the dissi-
pation function 7;;D;;, where 7;; is the stress tensor and D;; is the strain-rate tensor

defined as



B 1 6u2 au]‘ ..
DZ] - 5 (6:1;] + 6:1;2) ) ] = 172(3)7 (22)

assuming that the dissipation function depends only on the strain rate tensor, and
where u = (u;) is the flow velocity vector. Then we can write

7i;Di; = D1(D) + Do(D),

where D; and D, are positive homogeneous functions of order 1 and 2, respectively, in
the components of the strain rate tensor D. Let us put

0Dy 1 0D,
I Dy, Dy=-
aDkl ki 2

Since, we shall assume that the rocks are incompressible, then

D, Di. (2.3)

divv = 0, le. Dkk = 0, (24)
which follows from the mass conservation law. Hence, (2.3) and (2.2) we find

8@1 n 1 8@2

6Dij 2 6D” ’
where p is a scalar, independent of the strain rate tensor D;; and represents the spherical
part of the stress tensor and has a meaning of the pressure and ¢;; is the Kronecker

symbol.
In the next, we shall assume that rocks are assumed to be isotropic, then the scalars

Ty = —pbi; + (2.5)

D, and D, are functions of the invariants of the strain rate tensor D;; only. For the
case of the Bingham’s rheology

.y . 1
Dl = 29D12[7 D2 == 4IMD[[, D[[ == §DijDZ’]‘, (26)

where Dy is invariant of the strain rate tensor D;;, and ¢, fi represent the thresholds
of plasticity and viscosity. Due to [29] the thermal stress 7'5 satisfies

7= Bi,(T — Ty),

where f3;; is a coefficient of thermal expansion, T'(x,1), To(x), To(x) > 0, are a tem-
perature and an initial temperature in which the medium is in the initial stress-strain
state. Thus the constituent law is as follows

_1 X
Tij = —pdi; + ¢Di; D + 20 Dyj + Bi(T — To), (2.7)
having sense for D # 0 only. To derive the inversion stress-strain rate relations for

the Bingham’s part of the stress tensor we firstly define the invariant of the stress
tensor as

1
T = 57'»1?7'»1? (2.8)



where 7'5 =T — %Tkk(%j is the deviator of the stress tensor. Then with (2.7) we find
12
TIr = (f] + QﬂDfI) . (29)
Hence,
1
T 2 9, (2.10)
and thus
_1
Dij = (24)"" (1 - 97112) 7S} (2.11)

Hence and (6¢)

Then

and

1 1
Dir#0 for 775—¢>0, iefor 774>4.

Then the inverse constituent law in the thermo-Bingham rheology can be written in
the form

1

Tflgfl = DZ']‘ZO,

1 . o J—

> g e Dy =7 (1=grt) 8 4 (T - To) (212

If g = 0 then (2.7) represents the constituent law for the Newtonian fluid, i.e. for the
well-known viscous incompressible fluid. For § — oo we have the absolute rigid types
of materials and for small ¢ we have the Bingham rheology closed to a Newtonian fluid.
The last types of materials are closed to real rocks in the melted (strongly visco-plastic)
parts of the Earth. Moreover, we see that the threshold of plasticity (yield point or
yield limit) ¢ is defined by the Mises’ type relation

1 .
57’57’5 < 4. (2.13)

The momentum equation in Bussinesq’s approximation, representing classical ap-
proach for melting and solidification, is valid in the liquid zone, since the solid is
assumed to be static. The additional term M(fs(c,T))v in (2.1), based on empirical
observations, describes the density variation in the mushy zone and has a meaning of
body forces. The density and the dynamic viscosity i are assumed to be piecewise
constant. For the mushy zones the additional term M ( fs)v, was found ([1], [12]) as



M(y) = Coy*(1 —y)™®, (o an empirical constant, (2.14)

and where the mushy zones are empirically modelled as a porous media. In Bingham’s
approximation both phases, liquid and solid, are represented by a strongly visco-plastic
fluid, closed to viscous liquid and characterized by the lower value of the threshold of
plasticity ¢ in the first case, and by the viscous fluid with sufficiently high threshold of
plasticity ¢ in the second one, for which the volumic fractions are satisfied.

The diffusion equation for rock’s liquid mixture (alloy) follows from the mass con-
servation law

dp )
e + div (pu) = 0. (2.15)

For rock mixtures (metallic alloys) the definition of velocity must be defined by a
new way.

In the case if the diffusion is absented, then composition of every given element of
fluid remains unknown during his movement. It means that % =0, i.e.

% + ugrad ¢ = 0. (2.16)
Hence and (2.15) yield
% + div(upc) = 0. (2.17)

In the integral form (2.17) is of the form

%/pcdx = —j{pcuds. (2.18)

In the case if the diffusion is assumed, then

%/pcdx = —j{pcuds — j{ids, (2.19)

where i denotes the density of diffusion flow. In the differential form (2.19) is as follows

a(aptc) = —div(pcu) — div 1. (2.20)
Hence and (2.15) we find
dc L.
P\ 5 +ugrad ¢| = —divi in Q x [, (2.21)

representing the equation of diffusion and where (see [20])

i=—pD(grad ¢+ kT 'grad T + k,p~'grad p), (2.22)

where D is the coefficient of diffusion, k7D represents the coefficient of thermodiffusion
and k,D represents the coefficient of barodiffusion, T' is the temperature, p is the
pressure.



Finally, the energy conservation law gives the generalized heat equation in the form

oT(x,t
pe (Pt 4 warad T+ e ) -
= div(r(T)grad T') + Qo(x,t,T) in Q. (2.23)

The coupled system of equations (2.1), together with (2.7), and (2.21)-(2.23) gives
governing equations for melted and solidified materials. The boundary and initial
conditions then must describe the real situation of the investigated problem.

Remark: By a “liquid” phase we shall mean the strongly viscoplastic material with
low threshold of plasticity ¢(¢ — 0) and by a “solid” phase we shall mean the visco-
plastic material with threshold of plasticity g to be sufficiently large. Moreover, we can
put d = pD, where e.g. d ~ 107 for Al-Si (Al;Si04) alloy. Furthermore, the liquid
concentration ¢y, is the concentration ¢ in the liquid zone (¢ = frep + fscs, where fr,
fs are the relative proportion of both phases-solid (visco-plastic) (.5) and liquid (1),
and fr, + fs = 1), ¢s is the concentration ¢ in solid visco-plastic phase. The diffusion
factor d does not account for the different diffusivity of the solute in the liquid and
solid (visco-plastic) phases. But both are very small, and the convective effect easily
override the diffusive one (e.g. d ~ 1072 for Al-Si alloy). Moreover, compared to the
heat diffusivity, the effect of the diffusion is much slower for the concentration. The
body force term in (2.1) can be found as

F(Xv l,c, T) = pgT3 + le(ﬂ(T - TO)) + pg(COCL(Xv l,c, T) +al + 02)7 (224)

where the first term are body forces due to gravity effect, the second one represents
thermal stresses and the third one represents the effect due to the concentration of
“liquid” phase (or gas) in the rocks. The effects of friction and Joule’s heat can be also
assumed.

We shall assume that the domain investigated Q@ = |J U Q"°, where ©* denotes
=1 s=1
subdomains of €} characterized by the material properties and indices

the domains with the phase changes of rocks (melting, recrystallization, solidification,
respectively).

“s” characterize

3 Mathematical formulation of the problem

Let Q = Enj Q' c RN, N = 2(3) be a bounded domain occupied by the interior of the

Earth or Sitls parts, or by a metal body in technological practice, respectively, with a
smooth boundary 9Q = I', UT'- UR, R the set of zero measure. Let [ = (%o,11) and
let Qr = Q< 1, 907 = 90 x I, Q; = Q x (to,t), I = IN x (to, 1), t € I. We suppose
that the components of ) are smooth enough to admit a normal n almost everywhere
in the sense of the surface measure on 9€). Moreover, we shall assume incompressible
materials. Furthermore, we shall assume that I'*, ¢« = 1,...,m, s = 1,...,r, denote

6



n — 1 dimensional open sets in the relative topology of €2, i.e. surfaces which devide
Q into r open sets 2°. We denote the respective portions of the boundaries of 2"*
and Q“*t! by 9Q“* and 90*T!. We shall assume that the components I'** = R"*(¢) of
I' = U TI'?* are smooth enough to also admit normals 7* almost everywhere in the sense

of the surface measures on I'* = R“*(¢). We shall assume that Q“*, Q“**! constitutes
other state of materials, i.e. “solid”, “liquid” or other types of recrystallized rocks.
Thus I'* = R"*(t) denote the interfaces between two different phase states of rocks and
we speak about the phase change boundaries or phase transitient boundaries (zones).
Here Q“*, Q-1 1% are unknowns that must be determined as part of the solution.
We denote by T"*(x,t) the temperature of rocks in 2“* and by u“*(x,t) and p“*(x,t)
the velocity and pressure in 2* and by ¢"*(x,t) and ¢"*(x,t) the concentrations and
sources of concentrations in (2“*.
Then we shall investigate the nonstationary incompressible coupled two-phase Stefan-

Bingham problem:

Problem (7P): Consider the problem of finding functions T'(x,1), u(x,1), p(x,t) and
¢(x,1) defined on the clossure Q" of open sets Q2 such that Q = [JQ" and satisfying

[ aTL 13 aTL 13 13 13 A 13 a 13 aTL
pCe ( ot + Ukal'k) + P 6ijT06ij(u ) = QO(X7t) + a—xZ (/{ij 8:1;]) (31)
in Q' x1,1,5=1,2(3),
ou! ou! or};
¢t 7 L T — ? FL ] QL ] ) 9 — 1 2 3 3-2
P (8t —I_Ukal'k) ax]—l_ 7 m XL, ] ’ ()7 ( )
divu'=0 in Q x /[, (3.3)
aCL 13 4 13 4 13 : 13
at—l—ugradc:)\Ac +¢" in Q" x 1, (3.4)
and boundary and initial conditions
0 t
T(th) = Tl(th)(: 0)7 Tij(th)n] = POi(th)v C(aX7 ) =0 (35)
n
on I'y x I,4,5=1,2(3),
oT'(x,t d t
o e =k 0. utx = wxo. S0 )
on I'y x I,4,7=1,2(3),
ar: |\’ ar: |\’
Ta,s _ Ta,s _ Ta,s ¢ ¢ _ ¢ ¢ L S 3.7
S L R » (/{2] ax] VZ)S (/{2] ax] VZ)L P v, ( )
on R"*(1),
T (x,t0) = Ty(x), u‘(x,t0) =ug(x), c(x,t0)=cy(x) in O, (3.8)
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where 7;; is defined by the constituent law (2.7) and where p“® is a density associated
with Qv T¢°, Tp®, Ty are temperatures in Q“*, where rocks (metals) are in a solid-
visco-plastic state (7¢°) or in a liquid (strongly visco-plastic with low threshold of
plasticity ) state (7T}°) or temperatures of phase changes, resp., 7*° is a normal to the
phase change boundary R“*(t) = I'** pointing towards Q¢°, v2°® = 82:5 = 0,9"° are
the speeds of R"*(t) along 7"*, L"* are the latent heats of the phase changes (melting,

recrystallization, solidification) (The latent heat represents the energy necessary for a

complete phase change of a unit volume at melting temperature and null concentration.
It is positive in the case of melting and recrystallization and negative in the case of
solidification) and R“*(t) represent hypersurfaces lying in Qy°, Qg7 are domains lying
in Q° and bounded by R“*(t) and 99;°. Furthermore, let ®“*(x,¢) be a C'* function
in Q7 such that

Rty ={(x.1) € Qp, @ (x,1) =0}, V0" (x,1) £0 on R"(1),

O (x,t) <0 in QF xI, ®°(x,¢)>0 in Q7 x1I

and

Rty =JR’(), to<t<t

is the phase change or free boundary. The functions T4(x), T} (x,1), ug(x), us(x,1),
co(x) are the initial and boundary data on I'; x [ or I', x I, respectively, ¢! (x) are
specific heat in O, &} (x) are the thermal conductivity in Q* and Q*(x,1), ¢'(x,t) are
thermal sources and sources of concentration, respectively, in Q" x [, « = 1,...,m.
All the functions used in this paper are real valued. Further, we shall investigate the
2D model problem (N = 2) only.

To analyze the Stefan problem we shall introduce a new variable @ by the Kirchhoff

transformation

T(x,t) -
@:Gmuﬂ:/) w(x,1,E)de,  (x,1) € O
0

Since kg < K(x,t,€) < gy for (x,t,6) € Q x I x R, ko, k1 = const. > 0, then the
mapping 1" — O(x,?,T) is one-to-one and T' = G~ (x,t,0), G~'(x,t,0) is its inverse.
We introduce the enthalpy by

T(x,t) 0 it T < @R(X,t),
Hoe ) = [ e (GG () e+ (0,0) 7= Onlx0)
Q 1 > Op(x,1),

where we denoted by ¢(x,t) = p(x,t)c.(x,t), and Opr(x,t) = G(x,t,Tr), Tr is the
temperature of a phase change, o = pL.

Then we shall investigate the nonstationary incompressible coupled two-phase Ste-
fan in the Bingham rheology and in the enthalpy formulation:



Problem (P): Consider the problem of finding functions H"*(x, 1), ©"*(x,1), ¢"*(x,1),
u"*(x,t) (and p"*(x,t)) defined on the clossure Q" of open sets Q“* such that Q =
UQ" and satisfying

(6[{‘ 00
+ Up

a1 axk) + ' B1;0pei;(u') = Q'(x,1) + AO'(x,1) in Q x I, (3.9)

4 { ¢ t ot} 7t ;g
P’ (Mﬂ/ O, )) SIS Lm0kl =12 (310)

8t k 8:1;k al']‘
divu' =0 in Q" x [, (3.11)
de'(x, 1) ,
5 +u'(x,1) grad ¢ (c'(x,1),0'(x,t)) = X (x)Ac'(x,t) + ¢'(x,1) in Q x [,
(3.12)
O'(x,t) =T'(c'(x,t), H(x,1)) in Q° x I, (3.13)
and boundary and initial conditions
1
Hixt) =0, w6 0m, = Buxr), 290 g (3.14)
on I'; x I,
00(x,1 de(x,t
a(n ) =q(x,t), u(x,t)=u(x,1), (8r1 ) =0 (3.15)
on Iy x I,
Mk 1) = Hyx), wixto) =uwx), clxt)=a(x)  (316)
in ', where
7ij = —=pbij + §Di; D7 + 2 Di; + Bi(T — To) (3.17)

and where D;; = %(@ui +0iuj), Dip = %DiJDiJ7 and Hj(x), ch(x), A'(x), uj(x) are the

given positive functions. For simplicity we shall assume that uy(x,t) = 0.

In the next we shall also use the following notation: dyr = %, where r is a scalar
or vector function, respectively and dyr(y1,y2) = %;5,2)7 s = 1,2, and similarly,
Ojv; =v;; = g”" . Further, for simplicity indices ¢ and s will be omitted.

Z;

Furthermore, we shall assume that

(Al) Q@ = Enj Q' C R? is an open bounded connected domain with Lipschitzian bound-
=1
ary 00 =T,UI';UR.

On the domain {2 for functions 7', ¢z, multipliers m and the initial and boundary
data we shall assume:



(A2) For the function T* : R2 — R, where Ry denotes the set of non-negative reals,

we assume that

(i) T*is uniformly Lipschitzian,

(i) T%(2,0) = 0 Ve € Ry,
(iii) there exist (possibly empty) open sets O; C B2, ¢ € N, such that 7" is con-
stant on each O; and such that there is a function a* € C°({0,00)) N C*((0, 00))

verifying:
(a”)" is decreasing, ;Lrgo(oz”(x))‘ > 0, and T (z,y) > ((¢'(2))")" for a.e.

(z,y) € R, x Ry\ U Ox.
1EN

_1
(A3) Since the term §'D;;(u’) D/’ (u') creates in the variational formulation the non-
differential functional, then we introduce the multipliers m* = (m(;), ¢,j = 1,2,

by
(ii) mimi <1 ae. in Q x [,
(ifi) my; Dy (') = (Dyj(u')Dyi(u)? = 25 D7 (u') ae. in Q x I.
)

(iv) Then the constituent law (2.7) can be rewritten as
TZ'L]' = _pb5¢]‘—|-2,u Dij(u )—|—22g mij_ﬂij(T _TO)'

(A4) The functions ¢} : B2 — R, representing a concentration in a liquid (strongly
visco-plastic with low ¢) part of the medium and stem from the constitutive law

(phase diagram) satisfy
() ¢ € COR) ML= (RY),
(i) ¢z (0,y) =0Vy € Ry,
(iii) Je; = const. > 0 such that |¢}(z,y)] < ai[(e”(2))]72 V(z,y) € R x Ry,
where o' satisfies (A2) (iii).
(A5) The initial data satisfy
(i) Ho(x) € L*(2), Ho(x) > 0 a.e in ,
(i) uo(x) € H(Q) = {v|v € [L*()]*, divv =0, v=0o0n I',}, ug(x) > 0 a..
in €,
(iii) co(x) € L*(Q), co(x) > 0 a.e. in €.

3Let M be a measurable subset of RY and let 7': M — RN be a mapping satisfying the Lipschitz
condition on M with a constant « > 0, i.e. |T(z) — T(y)| < a|e — y| Yo,y € M.

10



(A6) The physical data are sufficiently smooth, i.e.

Q'(x,1) € LI L*()), F'(x,t) € L*(L;[L*(Q")]),
Pl(xt) € L1 L)), qlx,t) € L*(1; L*(I'y)),
P(x,t) € L*(L;[L*(T)]%), &'(x,t) € L*(1;CHQY)),
i1(x),§'(x) = const. >0, BL(x)/dx; € L=(Q) Vi, ],
N(x) € CHQY).

Remark: The conditions (iii) in assumptions (A2) and (A4) are satisfied if there exist
positive constants ¢1, ¢2 and a real 6 € (0,2) such that (the symbol “/” is omitted)

(i) 0T (x,y) > c1 min(a?, 1) for almost every (z,y) € R3\ U/\/ O; and
ic

(ii) |en(z,y)| < e min(:z;%‘s, 1) V(2,y) € R. In that case, the function a is such that

(iii)
a7t 2 <,
et x> 1.

Because of assumption (A2) (iii), the system of equations for determining 7'(x,t) and
c(x,1) is generally degenerated and equation (3.1) is similar to classical Stefan’s equa-
tion.

Remark: The function ¢ in the mushy zone can be written as (see the phase diagram)
c=cpfr+esfs = cn(1—fs)+esfs, where fr, fs represent the relative portion of visco-
plastic (solid) and strongly visco-plastic with low ¢ (liquid) phases, respectively and will
be determined as a result of computations, where the portion of “solid” and “liquid”
parts are controled means of the threshold of plasticity g. In the phase diagram T}y is
the temperature of melting, T is the eutectic temperature, under which no “liquid”
remains; ¢g(7') is the concentration of the solute for which the “solid” rock begins to
melt, ¢, (T') is the concentration of the solute for which the “liquid” rock begines to
solidify. The mushy zone corresponds to points (¢, T'), where ¢ € (es(T),er(T)) and
T e <TE, TM>

11



Fig.1. Phase diagram (¢, T') (simple version).

4 Variational formulation

Let us denote by C*(Q), 0 < k < oo, the space of all functions f defined on € which
have continuous derivatives up to the order k on Q; for k = 0 we put C°(Q) = C(Q).
We denote by H'(Q2) the Sobolev space of scalar (or vector, respectively) functions
such that f € L*(Q), 0;f € L*(Q), i = 1,..., N, where L*(2) is the space of square
summable scalar (or vector, respectively) functions on © and the derivatives 0;f are
taken in the sense of distributions on . By L>(£) we denote the space of all mea-
surable functions f defined a.e. on ) and such that there exists a constant ¢ > 0 such
that

lf(x)| <e VxeQ\E, ECQ, meas(F)=0.

By L?(I; X), where X is a functional space, 1 < p < oo, we denote the space of
functions f : I — X such that || f(.) |[x€ LP(I) and by H'(I; X) the space of
functions f: I — X for which || f(.) |[x€ H'(I).

Let us define the spaces

W= {z]lz€ HY(Q),z=0 on I'}, *V = {wlwe H' ()},
V = {vlve [H' ()] divv=0,v=0 on [},
H(QY) = {vlvel[l*(Q)]? divv=0,v=0 on [},

LW 2V V! be dual spaces of 'V, 2V and V, respectively,

Woc L*Q)c W, *VcIl*Q)c V', VCcHcV,

12



W= HTUQ), V= (HY(Q),
W= (el e LAV 2(x0) =0}, W = {wlw € LI V), w(x, to) = 0},
W= {vlve ALV, v € LI H), v(x.to) = 0}.

Then we have the following variational (weak) formulation of the coupled problem
defined in enthalpy:

Problem (P.ni): find a tetrad {H(x,1),0(x,1),u(x,t),¢c(x,t)}, i.e. enthalpy H,

generalized temperature O, velocity u and concentration ¢, satistying

/I{(&H(t), 2~ 0(1)) + (u(t)grad ©, 2 — O(1)) + ao(O(1), z — O(1)) +
Fby(u(t), 2 — O(1) — (Q(t), 2 — O@)}dt >0 Yz el W, (4.1)

/I{((?tU(t% v —u(l)) + pau(t), v —u(t)) + b(u(t), u(t),v —u(t)) +

+97(v) = gj(u(t)) + b;(0(t) — ©o, v —u(t)) —
—(F(t),v—u(t)}dt =0 Yvew, (4.2)

/I{(atc(t), d—c(t))+ (u(t)grader (e, ©),d — ¢(t)) +

tac(c(t),d —c(t)) — (p(t),d — c(t))}dt >0, Vde* W, (4.3)
O)="T(c(t),H(t)), H>0,¢c>0 a.e. in QxI, (4.4)
H(x,ty) = Ho(x), u(x,tp) =uo(x), c(x,t)=co(x) a.e. in €, (4.5)

where H~() stands for (H}(Q))" and where u,v € [HY(Q)]%, 0, z, cand d € H'(Q),
©,Q € L*(Q), F € [L*(Q2)]? and

ae(0,z) = / grad O grad z dx, a(u,v)= 2/ D;j(u)D;;(v)dx,

Q Q

a.(c,d) = / Agrad ¢ grad d dx, be(u,0,z) = (ugrad 0, z),
Q
b(u,v,w) = / puivj,iwjdx = (pll grad va)v
Q
d
bs(©, V) :/Qa—%(ﬂij@)vidx, by(v,9) 2/99(905@%‘961&
be(u,e,d) = (ugrad ¢,d), (u,v)= / uividx, (0,z) = / Ozdx,
Q Q
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(Q,2) :/ dex—/ qzds, (F,V):/Fividx— Po;vdx,
Q Ty Q r,

j(v) = Q/Q(DII(V))%CZX.

Definition 1 We said that the tetrad {H,0©,u,c} is a weak solution of the problem
(Peenen) tf H € L>(L; LA(Q) N HY(I; H1(Q)), 0 € LAH(;'V),u e L>(I; L*(Q)N L*(; V),
ce L*(IPVYNHYI;(HYQ)), H>0,c>0and © =T(c,H) a.e. inQx1I and (4.1)-
(4.3), (4.5) hold.

Preliminary results and main theorem:
In the sequal the following lemmas will be used:

Lemma 1 [t holds
v; € LF(Q) VYvevV, i,j=1,2
Proof: If v € V, then v, ; € L*(Q). The proof is a consequence of Lemma 3.1 of [7].

Lemma 2 (Gronwall) Let g(t) € C(I), g(t) > 0, p(t) € C(I), p(t) > 0, g(t) be the
nondecreasing function with increasing t.
Let p(t) be a solution of the inequality

¢
p(t) < co/ p(r)dr + g(t), to<t<ty, ¢y = const.
to
Then there exists ¢; = const, ¢; = ¢1(co, to, 1) such that
P(t) < C1g(t) Vi, to <t <ty

For the proof see [22].
Further, we have the following estimates: Firstly, from the above given assumptions
the symmetry conditions

ae(0,z) =ae(z,0), a(u,v)=qa(v,u), a.lc,d)=a.dc)

hold. Moreover, it yield that for © € 'V, u € V, ¢ € %V there exist constant cg > 0,
¢y > 0, ¢, > 0 such that

106(0,0) 2 co | 02, YOE WV, afuu)ze, |ul, YueV,
alec) > c|?,  Vee V.

For u, y, z it holds be(u,y,2) + be(u,z,y) =0, u € H, y, z € H(Q) and there
exist positive constants cs, cg, ¢r independent of u, y, z such that
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bo(wy, o)l < es Il el o ls@ll {052} llos
< ol ol v vl =l
1 1 1 1

< e wllEal wlEl v 10y I = fl

and similarly for b.(u,c, d).
For a vector field u, v, w on £ we put

b(u,v,w) = / uivi7jwidx
Q
and [b(u,v,w)| < ¢ || u lme@pll W llze@p 211 Divj llog, 245 = 1.
27]

Using Lemma 1 we find that

[b(u, v, w)| < el uflmr@pll W llwr@pll v -
Moreover, the inequality of convexity

v <ellvIilviz, wem@), t=Lt Iyl
(LP(Q)]? = i2 0,2 o), —=5-75 =

holds and

1 1 1 1
[b(u, v, w)| < el u izl wllgell wllFzll wllsell vl -

For u, v, w it holds

b(u,v,w)+ b(u,w,v) =0, bv,v,v)=0.

The main result of the paper gives the following theorem.

Theorem 1 Let assumptions (Al)-(A6) be satisfied for every t € (0,1). Then there
exist scalar functions H, © and ¢ and a vector function u such that

H e L(1 HYQ) (VL2 LAQ). 01 € LI (H™ (%),
ue ALV L= H), due LIV,

e € DI ') (VI (1, 1)), e € LT (' ()
and satisfying (4.1)-(4.5).
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5 Proof of Theorem 1

To prove Theorem 1 the regularization of (4.1)-(4.3) will be used. The technique
used will be similar of that of [23] and results of [1] will be also used. Firstly, we
define extension of functions 7" and ¢z on R? by setting T(x,y) = T(2T,y*) and
cr(z,y) = cp(at,y™), where r* = max(r,0). Then the regularization of T" and ¢y, is
the following:

Let D(R?) be the space of functions C'*° with compact support in R?, let {R.} C
D(R?) be a family of mollifiers* such that

supp (R.) C B((0,0),¢) = {(z,y) € R?|=* +y* <&}, e €(0,1).
The regularizations of T and ¢, are defined by

T (x,y) =cy + / R.(x+2e—ry—c—s)T(r",st)drds,
R2

¢ (z,y) = /1%2 R.(x —e—r,y—s)ep(rt, st)drds,

where rt = max(r,0), s* = max(s,0). These regularized functions ©°, ¢ have the
following properties given in the next lemma (see [1], [12]).

Lemma 3 Let assumptions (A1), (A2), (A}), (A5) are satisfied. Let o be the function
satisfying (A2)(iii), (A4)(iii) and let ¢ € (0,1). Then the reqularized functions T and
¢, salisfy

(i) T*(,0)=0 Ve R,
(i) ¢;(0,y) =0 VyeR,

(iii) there exists a function C' = C(e) such that

ci(z,y)| < Cla| V(z,y) € R xR,

(iv) there exists ¢; =const. satisfying (A4)(iii) such that

Lz )l S erl@”(w+ )™ V() € Ry x R,

where Ry is a set of non-negative reals,

“Let ¢ > 0, let ¢ be a function satisfying ¢ € C§°(R?), p(z) > 0 Vo € R?, [n. o(x)de = 1,
supp ¢ = {x € R%;|z| < 1}. For u € LY(Q) put

(+) (Rew)(z) = ¢ /ﬂ (2 — y)eVuly)dy,

1.e.

(Reu)(x) =¢72 u(x — ey)p(y)dy, where B(0,1) = {y € R*|y| < 1}.
B(0,1)

The mapping R. defined by (+) is called mollifier. By S; we denote a set of all mollifiers.
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v) there exists ¢y =const., independent of ¢, such that
J p J

0T (2, y)|

< " .
T y) = cd(x+¢) V(r,y)€ Ry xR

Proof: The proof of (i)-(iv) follows from the definitions of T and ¢j and from as-
sumptions (A2),(A4).
To prove (i), then from the definition of T, we find

T%(x,0) = / Rz +2s—r,—c—s)T(rT,sT)drds = 0
R2

as T(r*,s%) > 0 only for s > 0 and R.(x —2c —r,—e —s) = 0.

To prove (ii) the same technique for ¢ (0,y) can be used.

To prove (iii), we see that regularization ¢5 is of class C''(R?). Since ¢5(0,y) = 0
we can write

Gilany) = cilay) = i (0.y) = [ i ()

Hence

(o)l = [ oci(rdrl < [ el iy Nl dr < Clal,

where [di¢f(r,y)| < c|| dicg || (r2) depending on e.
To prove (iv) we start from the definition of ¢j. The asumption (A4)(iii), applying
on the integrand, was also used.

To prove (v), we assume that Q. = B((2 +2e,y —¢),e) R\ U O;) and (z,y) €
ieN

R4 x R, where B((x + 2e,y — £),¢) is the open ball with the centre at (x + 22,y — ¢)
and radius .

In the case if meas(£.) = 0 then since 0, T.(x,y) = 0 the assertion trivially follows.
In the case if meas(€2.) > 0 then due to definition of T we have

|0V T(z,y)| < Ja. Be(x + 26 —r,y — e — s)|0/T'(r,s)|drds L.

02Tz, y)] ~ e+ [, R(x+2e—r,y —e—5)0T(r,s)drds — e+ I

Since, due to the definition of mollifier

]EE/RE(J}—I-QaS—T,y—@—S)deSSl,
Q

then
1. Lorar MaX(, ,)eR2 |0 T (x,y)] vrai MaX(, ,)eR2 |0y T (2, y)|
e+ (a(x+¢))t -

< a'(x 4 e)orai max_ |4 T (z,y)| < c2a”(x + ¢€),
(z.y)ER]

< - <
e+l = e+ Lvraimaxgyyeq, WT (2, y) —

which completes the proof. Q.E.D.
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Since j(v(t)) = 2 fQ(DH(V))%dX is the nondifferentiable functional and since J(v) =
Jo gj(v(t))dt then J.(v) denotes a regularized functional J(v), defined by

1) = [astva

where

g > 0, for which

(Ji(v),w) = /QX[Q(DH(V))%(E_I)D”‘(V)Dij(w)dxdt.

Then the weak regularized solution to Problem (P.eni), can be defined. The idea
is to approximate the variational inequality by the variational equality.

Let assumptions (A1)-(A5) be satisfied for every e € (0,1). Let H* € L*(I;* V)N H'(I; H~'(Q)),
u e L>(I; H)YNL*(; V), & € LA(I;*V)NHY(I; (HY(Q))). Then the tetrad { H®, ©<,u*, ¢*}

is a weak solution to the regularized problem to Problem (P.c.i ), if the following hold:

/I{(atﬂs(t)a 2= 0%(1) + be(u(t),0°(t),z = O(1)) + ae(0°(f),z — O°(1)) +
b b (ut(t), 2 — O%(1) — (QU) 2 — O 20 (5.1)
Vzel W,

/I{((?tus(t),v —u'(t)) + ja(ui(t),v—u(t))+ b(u*(t),u(t),v —u(l)) +
+ 97:(V) = g (u(1)) + b,(O°() — Oo, v — u'(t)) —
— (F),v—w(t)}dt >0 YveWw, (5.2)

/I{(&scs(t% d—c (1) + be(u(t),cp(t),d — (1)) + ac(c(t),d — (1)) —
— (p(t),d—c(t)}dt >0, Vde* W, (5.3)

He(x,ty) = Ho(x), u’(x,tg) =up(x), ¢ (x,%)=co(x) a.e.in Q, (5.4)

where ©° = T*(¢°, H*).
The method of the proof is the following:

(a) The existence of the solution of (5.1)-(5.4) based on the Galerkin approximation
will be proved.

(b) A priori estimates I and 11 independent of £ will be derived.
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(c¢) Limitation processes over m and &.

(d) Limitation process ¢ — 0 and the existence of multipliers.

The existence of {H®,0°,u®, "} will be proved by means of the finite-dimensional
approximation. Let (£}, {¢;} be two orthogonal bases of the space L?(2), composed
of eigenfunctions of the operator —A over the domain (), where the first is relative to
the Dirichlet homogeneous boundary conditions and the second one to the Neumann
homogeneous boundary conditions, and {w;} be a countable basis of the space V
composed of eigenfunctions of the canonical isomorphism A of V. — V' ie. ((w;,v)) =
Aj(wj,v) Vv € V| |w;| =1, i.e. each finite subsets of bases {¢;}, {(;} and {w;} are
linearly independent and span{¢;|7 = 1,2,...}, span{w;|j = 1,2,...} and span{(;|j =
1,2,...} are dense in H}(Q), orin V', or in H'(), respectively, as Hy(Q2), V, H'(Q) are
separable spaces. Let 'V™ V™ 2V™ be spaces spanned by {{;|1 < 7 < m}, {w,;|]1 <
J < m} and {(;|1 < j < m}, respectively. Then the approximations H:, € V™,
u: e V™ ¢ € ?V™ of the order m satisfy

(0:H 75, (1), 25) + bo (7, (1), O4,(1), ) + ae(07,(1), 2) + by(uz, (1), 2)) —
— (Q(t),z) =0, 1<j<m, (5.5)

(O, (1), v;) + fra(us, (1), v;) + b(ug, (1), ug, (1), vi) + 952 (s, (1)), v;) +
+ b5(05,(t) — Op,v;) — (F(t),v;) =0 1<j5<m, (5.6)

(015, (), dj) + be(us, (1),
(p(t),d;) =0, 1<j<m, (5.7)

verified for almost every ¢ € I, for every z € 'V™ v € V™ d € V™ and the initial
conditions

m m

H; (x,10) = ;(Hmfi)fi(x) ;o u (X, t) = ;(uo,wz')Wi(X),
&, (%, 1o) = §;<co,<i><i<x> , (5.8)

verified for a.e. x € Q. Since {{;}7L,, {w;}7L,, {(;}7L, are linearly independent, the
system (5.5)-(5.8) is a regular system of ordinary differential equations of the first order
and therefore (5.5)-(5.8) uniquely define { H:,, O, uZ, ., ¢, } on the interval I,,, = (to,1,,).

Therefore, (5.5)-(5.8) is valid for every test functions

m m

2() =Y a; ()&, v(t) =D bi(twy, d(t)= i%(t)di, tel,,
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where a;, b;, v; are continuously differentiable functions on [,,,, ¢ = 1,...,m. Particu-

larly, it holds for z(t) = H;, (1), v(t) = ui, (1), d(t) = ¢, (1), t € Ip,.

A priori estimates I and II:

A priori estimates I:
Let us introduce the notation

Xm = bS(G)in - ®Ovuin) + bp(uim 6;)

Let 08;;/0x; = 0;58;; € L>=() Vi, j. Then there exists a positive constant ¢, indepen-
dent of m and ¢, such that

[ Xin| = [65(07, — O0,u;,) + by(uy,. 07 < (14 || ©7,(1) 1]l ur(t) [lo2 +
+ 1 05.(1) lloall u, () fl1.2)-
(5.9)

In the next we shall denote all used constants by the type ¢ without any indices (if
possible). Via integration of (5.8) with z = H: (1), v(t) = u,(¢), d(t) = ¢;,(t) in time
t over I, = (to, 1), we obtain

/{&Hs Ho (1) 4 (Oag, (), ug, (1)) + (9, (1), <5, (1)) +
+ ae(0],(1), Hy (1)) + fia(ug, (1), u7, (1) + ac(, (1), &, (1) +
+ bo(u, (1), 05,(1), Hy (1) + b(ur, (1), ur, (1), uz (1)) +
+ o be(up (1), e (1), €5, (1)) + b5(O7, (1) — O, 1y, (1)) +
+ bp(u, (1), 07,(1) + 9(5" (w5, (1)), ug, (1)) — (Q(1), H (1)) —

— (F(t),u,(t)) — (@(1), ¢, (1)) bdt = 0.
We find

(J'(u5, (1)), us, (1) :/m 9(2(us, (1), us, (1))dt =0, as (52(v),v) = 0.

[ @ut (0, 12,0 = 5 [ (00— 5 [ (0 ()

and similarly for remaining terms.

Since ©° = T°(¢,, H:,), then using Green’s theorem, after modification grad 7°
by the chain rule, using (A2)(i)(ii), 0,7° > ¢ and resulting estimate |T°(z,y)| <
| 92T || oo (r2y |y], we obtain
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]| (ao(O3, () HE (1) + bolu, (1), ©3,(0), Hy, (1)t =
- / /grade(f(),H;(t))gradH;(t)dde
+ /m/ tgrad T=(c5, (1), HE (1)) HE (1) dxdt =
- /m/grad T(&, (1), HE (1))grad HE, (1)dxdi —
= [ ] T () (e 5, (1) dxdt <
< of [ llerad HE () |17, dxdt -
— 0T Moy [ [ THE ()] P (rad (1) dedt
— 1T (€0 ()] levad € (1)grad H (1) dser

Likewise we estimate
[ (@l (0), 6,0 + bl (1), 6,0, (1))
To estimate :
| 0u7%(0) ooy [ TH (O] g ()grad 27, (8t <
< 0T ooy [ V(O] 03, (2) | evad 8, (0) | dxcdt <
< 30 1105, (0) =g /Q|Hf ()] | grad 1, (1) | dxdt <

§7125_1/ /Q(H;;( Vdxdt + 5/ /H grad HE () ||? dxdt,

where v = 70 || U, () ||re(axr), Where 7o is the Lipschitz constant and the Young’s
inequality® was applied. Similarly,

[ [ 1o t), HE ()] lerad ¢, (t)grad H, (1) dxdt <
Im JQ

< T () HE (1) ey [ [ grad 6,(0) ||| gvad HE (1) ] dat <
/ / | grad ¢ (1) || dxdt + 5/ / | grad HE (1) ||? dxdt.
®We say that @ is a Young’s function if ®(¢ f o(7)dr, t > 0, where the real-valued function

¢ € {0,00) is of properties: (i) ¢(0) = 0, (ii) ( ) > 0 for 7 > 0, (iii) ¢ is right continuous at any
point 7 > 0, (iv) ¢ is nondecreasing function on {0, 00), ( ) hmgp( ) = 0. Moreover, we say that
the function ¥ is the complementary function to ® if (¢ fo T)d7, where ¢(t) = sup 7,¢t>0.

p(r)<t
Young’s inequality: Let &, ¥ be a pair of complementary Young’s functions. Then for all functions

u,v € {0,00) uv < ®(u) + ®(v) and equality holds if and only if v = ¢(u) or u = ¥ (v).
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Moreover,

/ (F(1),u5, (1)dt < /Im W) 1l 05 (8) [z + [ Po(@) Ll wh, (1) [1.2] dt,

m

where by || f || we denote the norm in V' ¢, and furthermore,

2 [ NE@ U w0 o dt < i [ as (@) 110 de+ (i)™ [ EGQ) 2 dt

Similarly, we estimate [; (Q(t), H; (t))dl and [; (@(1),¢;, ())dt. Then, summing all
above obtained estimates, using (5.9) and the estimates of bilinear and trilinear forms,
applying the Gronwall’s lemma, after some modifications we find the estimates

1150 loa eole)s L€ Dns [ NHLW) o dE Scole),  (5.10)

Jw(t) floa< e el [ ()], di <

m

It loa<e. t€hn [ @ hadi<e =e(01),

where constants ¢ are independent of m and ¢ and ¢y is independent of m.
From these estimates we obtain

{H: (1), meN, £€(0,1)} isabounded subset in L*(I; V)| L™(I; L*(9)),
{u, (1), meN, e€(0,1)} isabounded subset in L*(1;V)[|L™(I; H(Q)),

{c.(1), meN, € (0,1)} isabounded subset in L*(I; *V)[|L>(; L*(Q)).
(5.11)

A priori estimates 1I:

Now we shall show that

{0,H:(t), me N, e€(0,1)} isa bounded subset in L*(I; H~'(1)),
{0 (1), me N, e€(0,1)} isabounded subset in L*(I;V’),
{0:c5.(t), m €N, e€(0,1)} isabounded subset in L*(I; (H'(R))), (5.12)

independent of m and ¢.
By virtue of estimates given above

[b(ug, (1), us, (), V)| < e [l ug,(2) Jlvall un (2) llo2ll v li.2

SWe define it as dual to || £ ||= sup |(f,v)]||~*
vev
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and since due to (5.10)

|b(us, (1), us, (8), V)| < e |l un () izl v [z,
then

and similarly,

bo (U}, (1), O7,(1), 2) = (hon(t),v), Vze 'V,

be(us (), ¢, (1), d) = (hem(t),d), Vde *V,

Pum, hom, hem remaining in bounded sets of L*(I; V') or L*(I; V') or L*(I; *V'),
respectively. The coupled terms are from L?*(Q2) or [L?(Q)]?, respectively, and therefore

are included into ) and F.
Linear forms © — ag(0, 2) for a fixed z € 'V is continuous on 'V so that

ao(0(t), 2) = (A6O(1),2), Ae € L'V, V). (5.13)

Similarly, forms u — a(u,v) and ¢ — a.(c,w) for fixed u € V or ¢ € *V, respectively,
are continuous on V or 2V, respectively, so that

a(u(t),v) = (A.u(t),v), A, € LV,V). (5.14)

ac(c(t),d) = (Acc(t),d), A.€ LEVEV). (5.15)
Then (5.5)-(5.8) are equivalent to

(OH:, 4+ Ae©O:, + hom — @, z;) =0, 1<j5<m,
(Ouy, + pA0g, + hym + f]];(llfn) —F.v;)=0, 1<j<m,
(Ores 4+ Accs, + hem — @, d;j) = 0, 1 <5 <m. (5.16)

Let
Sem be orthogonal projection L*(2) — W& = span{z;|1 < j < m},
Sum be orthogonal projection H — W™ = span{v,|l < j <m},
S.m be orthogonal projection L?(Q) — W = span{d;|1 < j < m},
then

S@th) = Z(hG)ij)Zjv Sumhu - Z(hu,V]‘)V]‘, Scmhc = Z(hc7d])d]7

m m m
i=1 i=1 i=1

where {z,}, {v;}, {d;} are orthogonal bases of W§', or W™ or W, respectively. Then

from (5.16) and from the facts that Se,0H;, = O:H:,, SumOias, = 0, SenOic, =

0;c;,, we obtain



OH: = Som(Q— A0, — hem),
Oic, = Sem(p — AcCly — hem). (5.17)
Due to (5.10) and (5.11) Ag®:,, A,us,, A.c, are a bounded subsets of L*(1; V')

or L*(I; V') or L*(I; *V'), respectively.
Due to the definition

GA)w) = [ DI D (v) Dy (w)dxar
[t < el [ (Du(v)ydx)?,

where || . ||« denotes the dual norm, then j/(uf,) is a bounded subset of L*(I;V").
Thus (5.17) indicate that 9, H:, = Sempem, where pe,, € Po, C L*(I; H*(Q)), P, is
a bounded subset of L*(1; H~'(Q)). Similarly, d;u®, = S,nPum, where p,, € P, C
L*(I; V"), Py, is a bounded subset of L*(I;V’) and finally, 0,c = Sepnpem, where
Pem. € Pep C L*(I; L*(Q)), P, is a bounded subset of L*(I;(H*(R))). Moreover, due
to properties of eigenfunctions, then || Sempem [|1,,< ¢ || Pom |1, || SumPum [[v:< ¢ ||
Pum vy || Sempem HQV,g ¢ || pem HQV,, which completes this part of the proof.

Passages to the limit over m.

We shall prove the convergence of the finite-dimensional approximation for € being

fixed.

From the a priori estimates I and II as well as from (5.11), (5.12) the subsequences
{H (1), p € N}, {ui(t),p € N}, {c(t), p € N} of the sequences {H} (t),m € N},
{us,(t),m € N'} and {c, (t),m € N}, respectively, can be taken such that

H — H® in L*(I; L*(%2)) strongly,
H — H® in L*(1; Hy () weakly,
H — H® in HY(I; HTY(Q)) weakly,

u;, —u® in L¥([;H) *—weakly (weakly star),
u;, —u’ in L*(I; V) weakly,
u, —u® in L*(I; H) strongly,
duf, — Ju® in L*(I; V') weakly,
¢, — ¢ in L*(I; L*(%2)) strongly,
¢, — ¢ in L*(1; H' () weakly,
¢, — ¢ in L*(1;(H'(Q))) weakly, (5.18)

where H® € L*(I; HY(Q)NHY(I; HY(Q)), u® € L*(L; V)N L>(I; H),
¢ € LI HY(Q) N HY(1; (H(Q)))



Remark: The function f; — f s-weakly in L>(I; [L*(Q)]N) if [2(f;(1),0(t))dt —
w (1) p(t))dt weally Vo € L(I; [LA(Q))Y).

For the appropriate components u;, of uf, we have

ui, — ui weakly a.e. inQ x [, (5.19)

in
since u;, — u® in Lz(]'lﬂ) strorigly. Furthermore, {j'(u,)}, {uf,u5,}, due to estimate
Iuf ze@pe < e g 1101 v (72 Yu € [He ()%,

and (5.11), are a bounded subsets of spaces L2(I; V') and L*(I;[L*/*(Q)]?), respectively.

Then we also can assume that

je(u) — xo weakly in LAV,
uius, — =;; weakly in LQ(I;LP/Z(Q)). (5.20)

(g

From (5.19), u

— wu;u§ in the sense of distributions in {0 x [, which comparing

Ui, ]M
with (5.20) then gives
Eij = U; uj
But
b(ui,ui,wj) = —b(ui,wj,ui) — —b(ui,wj,ui) weakly in Lz(]) Ywj,

and similarly for the other trilinear forms.

Then from (5.5)-(5.7) for m = u we obtain

A1), (1)) + bo(u* (1), ©(1). 2,(1)) +

+a@<®f<> <>> b0 (1), 24(1)) = (Q(1), (1)}t = 0 ¥,

/{ OF(1), (1)) + b(u™(£), 4™ (1), (1)) + jra(u(1), v,(1)) +
<®E<> ®o,v]< ) = (B(2), vi(0) }at + (x(8),v,(1)) =0 ).

JHO (), (1)) + buu™ (1), 5.0), d5(0) +

taclc <>>,dj<t>>—< (1), ()}t =0 ), (5.21)

where we denoted by x(t) = J'(u®(t)).
But the systems of functions {z;}, {v;}, {w;} are complete in 'V or V or ?V,
respectively, so that from (5.21) we obtain

,u

/I{(atHE(t)a (1)) + bo(u(t), ©%(1), (1)) + ae(O°(t), 2(1)) +
+b,(u(t), 2(1)) = (Q(1), 2(t))}dt =0 Vze& 'V,
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/{ (O(2), v(1)) + bu® (1), w (1), v(1)) + frafu? (1), V(1)) +
®<> @0 v< ) = (F(), V() bt + (x(8),v(1) =0 WV eV,

/{ (Ouc(1 b (1), (1), (1) +

+a.(c <>> <>> (olt).d())}dt =0 ¥d € *V.

Since (5.1)-(5.3) and a-priori estimates (5.10) are satisfied then it is sufficient to prove
that

X(t) = Ji(u'(t)).
To prove this, the property of monotonicity will be used. Then the proof is parallel

to that of [23].
Let v € L*(I; V) such that v € L*(I; V'), v(to) = ug. Let us put

Xy = (1) = J(v(t), uu(t) —V(t))+ﬂ/la(uu(t) = v(t),uu(t) = v(t))dt +

+/atuﬂ —av(t),uu(t) — v(1))dt.

Using (5.2) we have

Xp = /I(F(t),uu(t))dt — (JL(a, (1), v(t)) = (JLUv (1), uu(t) — v(t)) —
_,&/ a(u,(t (v(t),u,(t) —v(t))]dt —
_/ (D, (t) (O (1), u,(t) — v(1))]dt.

Hence X, — X, where

—M/[a(us(t) V(1)) + a(v(t), u*(t) — v(i))ldt —
—/ D (1), v (1)) — (D (1), us (1) — v(1))]dt.
Since X, (t) > 0 for all ¢ then X(¢) > 0.
Let us put v.=u® — Aw, A > 0, where w € L*(I; V), g,w € L*(I; V'), w(to) = 0.
Substituting for v dividing by A we obtain

(x(1) = J2(u*(t) = Aw(t)), w(t)) + A/I{ﬂa(VV(t)ﬂ’V(t)) + (0w (t), w(t))}dl = 0.

Hence, in the limit A — 0 we obtain
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(x(t) = Ji(u*(1)), w(1)) 2 0 Vw,
from which the assertion y(¢) = J.(u®(t)) follows.

Therefore, we proved the existence of H, u®, ¢ satisfying (5.1)-(5.3) and the con-
ditions

is bounded in  L*(I;* V) (H'(I; (H'())"),
is bounded in  L*(I; (H*())").

He(t) isboundedin L*(I; 'V)(VH'(I; H'(Q)),
O:H®(t) is bounded in L*(I; H™'(Q)),
u’(t) isbounded in L*(I;V)(L*(I; H),
O (t) is bounded in  L*(I; V'),
(1) (
(1) (

To prove that H®(x,ty) = Ho(x), u®(x,%9) = ug(x), ¢°(x,t9) = co(x) the Arzela-
Ascoli’s theorem™ will be used. Due to this theorem, the sequences {H:}, {u3}, {c}},
p € N converge toward H® € C°(I; H~'(Q)) and/or toward u® € C°I;V’), and/or
toward ¢ € C°(I; (H'(£2))'), respectively, and therefore {H7(.,10)},

{u (., to)}, {c3 (. t0)}, p € N, converge toward H*(., o) in H~'(Q), or toward u®(.,to) €
V', or toward ¢*(., o) € (H'(Q))', respectively, and at the same time {H}(.,t0)}, p € N,
converges to Ho(x) in L*(Q) by definition. Similarly, for {uf(.,%0)}.en — uo(x)
and {¢(.,%0)}uen — co(x) in H(Q) or L*(Q), respectively, by the definition. Since
He € C°I; L*(Q)), the initial condition holds in L*(2) and therefore a.e. in Q. By a

similar way we finish the proof for ug(x) and co(x).

Limitation process ¢ — 0.

Now we shall prove that estimates of regularized enthalpy H® and its derivative
0, H* as well as regularized temperature T do not depend on e. The proof of that is
parallel of that of Lemma 3.4 of [1] (see also [2]).

Firstly, we prove the auxiliary estimate used later. Let assumptions (A2)(iii),
(A4)(iii) are satisfied. Let « satisfies (A2), (A4). Let ¢ = o/(¢" +¢) be a test function
(it is possible as ¢© > 0 in © x [ and o is uniformly Lipschitzian on (g,00)). Then
(49¢) yields

/ a(e(.,t) +e)d /Qozco—l—e dx—l—// (" +¢) | grad ¢ ||* dxdt —

—// (¢, Te(F, HY))a (¢F + e)u’grad ¢*dxdt = 0.

“Let K be a subset of C°(I; X), X is a Banach space. Then K is said to be equi-continuous if for
every € > 0 there exists a § = é(¢) > 0 such that || u(?) — u(s) ||x< ¢ holds for all v € K and all ¢,
s € I for which |t — s| < 6.

Arzela-Ascoli theorem: A subset K of CU(I; K) is relatively compact if and only if (i) K is equi-
continuous, (ii) the set A( ), K(t) = {u(t)|u € K}, is relatively compact in Banach space X for every
t €1, i.e. every sequence in K(t) contains a subsequence convergent in X.
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Hence, due to the Young inequality and the property of a as well as Lemma 3(iv), we
then obtain

// (¢ +¢) || grad ¢ ||* dxdt < / a(co + e)dx — mf( ) meas(Q2) +
[ e T (e o) [ u || grad ¢ | dxdt <
rJa
1
<c+ —// (¢ +e) | grad ¢ ||* dxdt +
2 J1Ja
1
+5 10 ey /I/Q 5 (¢, T2, HO)) P (¢ + £)dxdt < c. (5.22)
Now, let t € I be an arbitrary. Then (5.1) for z = y(¢)H*®, where {(¢) is a characteristic

function of the interval I, yields

1
0 = 2/ (H* (1)) dx = 5 [ (Ho)'dx +
+ [ [ gradTE(cs,HE)(azTE(cs,Hs))‘%(asz(cs,Hs))%Hsdxdt—|—
I1JQ

+// grad T%(c*, H¥)[grad T(c", H*) —
I1JQ
—OhTe(c, H)grad ¢°)(9,1¢(c*, H?)) ' dxdt.

Hence, after some modifications

(> 2 e & (> e & (> e & ey —1 _
2/ (H( )dx—l—//gradT(c,H)gradT(c,H)(agT (¢, H)) Ldxdt =
2/(1{0) dx—// grad T%(c*, HO) (0, T*(c*, HF)) 1o, T (¢, HF )grad < dxdt +
—I—/I/Qgrad T, HEY (0,75, HE )™ 5t (9,1 (¢, HF)) HE dxdt,

and after applying twice the Young inequality, we find

2/ (HE(. de+// | grad T5(c5, HY) || (9uT%(c, H?)) Ldxdt <
2/(1{0) dx + ~ // | grad T=(c5, HY) |2 (9,77(c5, HE)) " dxdt +
[ [0 BT ) | grad ¢ dxdi +
%/I/Q | arad T=(c%, HY) || (9,T°(c", HY))~\dxdt +
10 o @ 92755 H) iy [ [ (7).
Hence
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/Q(Hs(.,t))zdx—l-/l/g | grad Te(c, HE) |2 (9,75 (c%, H?)) " dxdt <

g/(Hg))?de// VT (5, HF)2(9,T%(c, HE))™t || grad ¢ ||? dxdt +
Q I1JQ

—|—c/I/Q(H5)2dxdt.

Hence, using Lemma 3(v), (5.22) and the Gronwall lemma, we obtain

| H || (rir20)< ¢, ¢ = const. independent of «. (5.23)

Since 07 is bounded from above, then

| T°(c°, H®) HL2(I;H3(Q))§ ¢, ¢ = const. independent of &. (5.24)
From (5.1) it follows

/I(atH ,2)dt = —/I(u grad T°(c, 1 ),z)dt—/la@(T (¢, H®), 2)dt <

<l u flsqany [ ) grad (e, H) lloall = o dt +

—I—/I | grad T=(c%, H?) ||o1]| grad z ||oq dt  Vz € Lz(]; H&(Q))

Since

2
12 12210y = /1 ( . (QSUP (va)) di
we é

)7||w||Hé(Q)S1

and using (5.24), then

| OH® || r2(na-10)< ¢, ¢ = const. independent of «. (5.25)

The existence of a weak solution of the problem (Pe.cnth ), Wwill be established as the
limit of a subsequance of weak solutions of the regularized problems. In the previous
steps we proved that

H* remains in a bounded set of L ([; L*(Q)),
O:H® remains in a bounded set of L>(I; H™'()),

T° remains in a bounded set of L*(I; Hy(9)),

u® remains in a bounded set of L*(I; V)| L™(1; H),
Ju®  remains in a bounded set of  L*([; V'),

¢ remains in a bounded set of L*°(I; H'(Q)),
Oi¢® remains in a bounded set of L°(I; (H'(Q))") (5.26)
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for any weak regularized solution {H®, 0%, u®, ¢*}.
In this part of the proof we shall prove that

H*— H in COUL; HH(Q)),
T — T stronglyin  C°; L*(2)),
u* —u *—weaklyin L™([; H) and weaklyin L*(I;V),
ou® — du weaklyin  L*(I; V'),
¢ — ¢ strongly in  C°(I; L*(Q)).

Due to (5.26) the set {H®(t),0 < ¢ < 1} is relatively compact in H=1(Q) Vt € T,
and then the family {H®|0 < ¢ < 1} is equi-continuous in H~'(Q). Then due to
the Arzela-Ascoli theorem there exists a subsequence {H%}, j € N, converging in

C°(I; H1(Q)). Moreover, due to (5.26) there exists a subsequence {u%}, j € N, such

that

u® () — u(t) in L®(I; H) weakly star and weakly in L*(I; V),
o (t) — du(t) weakly in L*(I; V).

For v € W let us put (the index j will be omitted)

/{ (0rv(0).v(1) = (1)) + jrau® (1), v(1) = (1)) +

+o(us(?), us(t%V(t)—us( ) + b5(0°(1) = O, V(1) —u(1)) -
—(F(1),0(t) = u*(1)) }dt + Jo(v(1)) = J(u*(2)).

By virtue of (5.2),

Vo= [(0(n) = (1), v(1) =t (0)dt + JL(v(1) = (b (1)) -
(T (1), v (1)~ ut(1).

(5.27)

Due to the initial conditions the first term is equivalent to 1[v(#;) — u(#;)|* and since
the functional v — j.(v) is convex, the second term > 0, and thus Y; > 0. Hence

/ {0 (1) v(1) = W (1)) + fa(w (1), 0(t)) — b(u?(1), v(1), w(1)) +
@f() @0, (1) = (1)) — (B(1), v(1) — u(1))]di
> i [ alu® (). w (@)t + (0" (0).

Hence and (5.27)
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/ [(Ga(t), v(1) = u(t)) + fra(u(t), v(1)) = b(u(t

<®<> @0, (1) = u(t)) = (F(1), (1)~ ()
> timninf ( [ [fa(u®(0), w (1) + g’ (1)) dt =
>/W u(t), u(t))dt + J(u(t)), (5.28)

as liminf [;[pa(u®(?),u(2))]dt > [;[pa(u(t),u(t))]dt (due to the fact that the function
u — [; fia(u,u)dt is lower semi-continuous on L?*([; V) with the weak topology) and
since

1/(1+4<) (

| e/(1+e)
[ itut)r < ( Dn(u(t))i(”s)dxdt) dxdt) ,
I Qx1

Qx1
hence

/ je(us(t))dt > c(e) (/Ij(us(t))dt)(prs), c(e) = |meas(Q x I)| 2,

hmmf/]6 (t))dt > hmmf/] ))dt. (5.29)

Since the function v — [; j(v(¢))dt is convex and continuous on L*(I; V), then it is
lover semi-continuous in the weak topology of the space L*(I; V) and thus

hminf/lj(us(t))dt > /Ij(u(t))dt

which together with (5.29) proves

hmmf/]6 ))dt >/

Then (5.27), (5.28), (5.29) yield that u satisfies (4.2).

Furthermore, due to (72f,g) there exists a subsequence {c7}, j € N, which strongly
converges to ¢(t) in C°(I; L*(Q)).

Now we shall prove the existence of a subsequence of {1 (¢%, H)}, j € A/, which
strongly converges in L*([; L*(Q)) towards T(c, H). The monotonicity arguments (see
[2], [3]) will be used. Above we proved that H% — H in C°(I; H'(Q)), ¢ — ¢
strongly in L2(1; L*(Q)), j — oo. Let {H’,c’}, 7 € N, be the corresponding sequence
and {T7(¢?, H?)}, j € N, the associated sequence. Further, for simplicity we shall
write H7, ¢/ instead of H® and c*, respectively. Then, due to Lemmata 4.1 of [1],
there exist subsequences, still indexed by 7, and null measure £ C [ such that, for any

teI\E

lim [ T7(c (1), HY(4))(H (1) — H(1))dQ = 0, (5.30)

J—0o0 JQ

lim |c]( y—c(®))Pdr=0 Vtel\L.

]—)-OO
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Due to assumptions (A2)(i),(ii) and (5.26), then there exists a subsequence
{T*(c*(., 1), H*(., 1))}, k € N, which is bounded in L?(f2). Hence, for every t € I\E
there exists a subsequence {T(c'(.,t), H'(.,))}, I € N, dependent on ¢ and such that
(see Lemmata 4.2. of [1])

TH (), HY (1) — T(e(., 1), H(.,1)) weakly in L*(9). (5.31)

It remains to prove that T7(c’, H?) — T(ec, H) strongly in L*(I; L*()).
Let {T7(¢/, H?)}, j € N, be the subsequence resulting from the associated sequence
defined above. Then, firstly we prove that

=T, H)=T(c, H) — 0 weaklyin L*(Q), VteI\E, (5.32)

where F is a null measure set defined above.

We prove (5.32) by contradiction. Let {f’}, j € A, be a subsequence, f # 0,
f € L*Q) function. Then, there does not be t € I'\E, a subsequence {f’} and a
function f # 0, f € L*(Q), such that {f*}, k¥ € N, weakly converges towards f in
L*(Q). Thus no subsequence {f*} — 0 weakly, k¥ € A'. But it is in contradiction
with (5.31). Hence, we deduce the existence of a subsequence {f’}, j € N, weakly
converging towards 0.

Let {wy}, k € NV, be a basis of L?(Q). Since for almost every ¢t € I\ E, the functions
17 € HY(Q), then due to Fridrichs’ lemma® for any ¢ > 0

20 B P00 Ty + 32 (f £/ tmtiax) . n =)

Hence, by integrating over ¢ € I and putting o7 (t) = (fq f7(x,1) wi(x)dx)? we
firstly, due to estimate (5.22) and the weak convergence of {f’}, j € N, find that
{a* (1)}, 7 € N, converges towards 0 in L'(I). Secondly, then there exists a constant
¢, independent of ¢, such that

Jim ] F ez axn= Jim ] T 1Y) = T(e, H) ||r2iaxn < ce.
Since the last estimate is valid for any ¢ > 0, then

T9(c  H)) — T(e,H) strongly in L*(I; L*(Q)).

Summing all these results we find that if (H*,u®, ¢*), ¢ € (0, 1), is a weak regularized
solution, then there are a sequence indexed by j and a tetrad {H,0,u,c} satisfying
the regularity conditions in Definition 1 such that

8Fridrich’s lemma: Let ©Q be a domain with a Lipschitz boundary I'. Then there exist non-
negative constants ¢y, ¢o, dependent on the considered domain but independent of the functions from
M = (the linear set of functions u(x) which are continuous with their partial derivatives of the 1st

_ _ N
order in Q (i.e. the set C1(2))}, such that fﬂ(u(x))zdx <ay. fﬂ(&'u)zdx—i— co fr(u(s))zds holds for
i=1

every function u € M.
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OH’ — O, H weaklyin L*(I; H'(Q)),
O’ — Oic weakly in  L*(1; (HY())),
grad ¢ — grad ¢ weakly in  L*(I; L*(Q)),
grad T9(¢/, H') — grad © weakly in  L*(I; L*(Q)),
cr(, (' H))) = ep(e,T) strongly in  L*(I; L*(Q)),

where © = T'(¢, H).
Due to [7] for ¢ = 0 it follows that the Bingham rheology leads to the Newtonian
liquid, and then

u — uy;, weaklyin L*(I;V),
omu — duy, weakly in L*(1; V'), (5.33)

where by uy we denoted the solution corresponding to the liquid state. The proof of
(5.33) is parallel of that of Theorem 5.1. of ([7],p.306-307), where in addition by(© —
0o, v) € L*(I;[L*()]*) was assumed to be a part of body forces.

Now we prove this assertion in more details. We proved above that for g > 0 there
exists a weak solution of a coupled two-Stefan-like problem in a Bingham visco-plastic
rheology. It was shown, that in the mushy zones both phases, solid (visco-plastic)
and liquid (strongly visco-plasic with low ¢) are microscopically parallelly present.
Therefore, we must show that for the threshold of plasticity g tends to zero, i.e. if
g — 0, the Bingham visco-plastic rheology leads to the Newtonian viscous fluid. It
means to prove (5.33) if ¢ — 0.

We proved above that

H u HL2(I;V) + H atu HL2(I;V')§ C for all f] > 0,

where ¢ is bounded. Now, let us assume that ¢ — 0. Then we can take out a sequence,
we denote it again by {u}, such that

u—w in weakly,

ou — dyw in L? weakly,

LA(I;
LA(1; V’)
u; — w; in L*(Q x I) strongly in L*(I; L*(R)) and a.e.in Q x I,
LA(1; L*(9)), (5.34)

where u;, w; are components of u and/or w, where w is a solution of the Navier-Stokes

problem: uy, € L*(I;V), duy € L*(I; V')

wu; — wiw;  In

(Grur(l),v) + fra(ur(l),v) + b(ur(t),ur(t),v) = (F(t),0) VveV,
up(x,tg) = ue(x), (5.35)
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where the coupled term was included into the body forces as above. Then, similarly as
above

b(u,u,v) = —b(u,v,u) — —b(w,v,w) in L*(I) weakly, VveV. (5.36)

Let us put v =v(¢), v € L*(I; V), then

J @), v(0) — u(t)) + fatu(t), v(t) = u(t)) + bu(t), u(t), (1)) -
—(F (1), v(1) = u(O)dt + J(v(1)) — J(u(t)) > 0,

then

J (@), v(0)) + pa(u(t), () = bu(t), (), u(t) -
~(F(1), v<t> <>>]dt+J< (1) = J(
> [ (@), () + jia(u(t), ()l >

+u/ u(
1

Hence, (80), (5.36) and since [; gj(u(t))dt — 0, we obtain

c
=
v

/I[(atw, V) + pa(w,v) — b(w,v,w) — (F,v — w)]dt >

> limint %|u(t1)|2 - %|u0|2 + ﬂliminf/la(u(t),u(t))]dt >
> St = ol 4 [ atwi(t), wit))di =

= [ [(@rw.w) + jra(w (1), (1))l de.

Hence,

/I[(atvv(t), v(t) = w(t)) + pa(w(t),v(t) = w(t)) = b(w(t), v(t),w(t)) —
—(F(t),v(t) —w(t)]dt >0 Vv L*I;V)

and therefore, for almost everywhere on [

Hence, putting v =w(t) £ &, & € V, it follows
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(Ow(£),3) + fia(w(£),3) — Bw(t), 3, w(t) - (B(1,3) 20 V3eV. (537
As it is known (see e.g.[36]) that the Navier-Stokes problem (5.35) has a unique
solution, then from (5.37) follows that
w(t) = ur(t),
which proves (5.33). Moreover, due to (5.21) it follows that

onu(t) — dup(t) weaklyin L*(I;V) and * —weakly in L*(I; H). (5.38)

At the end we shall prove that there exist functions m = {m;;}, the so-called
multipliers, satisfying assumptions (A3), which continuously depend on ¢ in a suitable
topology. For this case from (4.2) we have

/{ ;v —u(t)) + fra(u(t),v —u(t)) + b(u(t),u(t), v —u(l)) +
+b,(O(1 ) @OaV—u( ) — (F(1), V—u( )}ydt+ J(v) = J(u(t)) =
— J(v)— . 2g/ mij, Diy(v) — Di(u))]dt = X >0 Vv € W(5.39)

as due to the assumptions (A3)(ii),(iii), j(u) = 2(my;, D;;(u)), we find

2mis Dy(v)) < 2 [ (Dy(v) Dy(v))dx = j(v);
and therefore X > 0.
The existence of the multipliers m;; parallelly follows from the ideas of [7].
Let us define B(u,v) € V by
b(u,v,w)=(B(u,v),w), u,v,welV,

and set

F = 0,u— Au+ B(u,u) — Fy, (5.40)
where Fo = F — b,(0 — Og,u), as b(0 — Og,u) € L*(Q) Vt. Then F € L*(I; V') and

the variational inequality can be written in the form

(E(),v)+ 95 (v) = [(E(),u(t)) + gj(u))] 20 VveV (5.41)
Let us put v.= +£Av, A > 0, then (5.41) leads to

AIE(ER), v) + 35 (v)] = [(E(), u(t)) + g7 (u(t))] = 0.

Hence, putting v = v(t), where t — v(t) € L*(I; V), then integrating over ¢ € I, we
have
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A [i /I(E(t),v)dt + J(v)] - [/I(E(t),u(t))dt )] =0, Yve L2 V), va > 0.

(5.42)
Hence,
| /I (B(t),v)dt] < J(v) Wve LXI;V), (5.43)
and
/I(E(t), u(t))dt + J(u(t)) = 0. (5.44)

From (5.42) it follows that [;(E(f),u(t))dt + J(u(?)) < 0 and since, due to (5.43),
[ LE®), u(t))dt + J(u(t)) > 0, then (5.44) is valid.

Let us introduce the space
Wo = {w|w = {wy;}, wy; = wji,wi; € L'(Q x 1)},
with the norm
1
| w [[w,= /QXI(wij,wij)2dth.

Let P:v — Dy(v) = %(@vi + d;v;) be the mapping of L*(I;V) — Wy. Then (5.43)

is equivalent to

| [ @0Vt < 325 | Py, (5.45)
Applying the Hahn-Banach theorem,” then there exists
m € Wi = {w|lw = {w;;},w;; = wjj,w; € L(Q x 1)
such that
/ (B(t),v)dt = —§2% | myDyj(v)dxdt (5.46)
I I
and such that

I < 1. (5.47)

It is evident that we can take {m;;} in W{ such that mg = 0 as Dy = 0, W] is dual
to Wh.

(5.47) is equivalent to m;;m;; < 1 a.e. in  x I. On virtue of definition of F, (5.46)
is equivalent to

0;mij + fi = powv;,  with 7,; defined by (A3)(iv).

“Hahn-Banach theorem: Let ¢ be a continuous linear functional defined on a linear subset M of
a normed linear space X. Then, there exists a continuous functional ®, defined on X, such that
(u) = (u) for ue M and || & [[=]| ¢ |.
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Using (5.46) then (5.44) is equivalent to

mijDij(u)dth = / (D”(u)D”(u))%dxdt

Qx1 Qx1

Hence, since due to (A3)(ii) m;;m;; <1 ae. in  x [, then

(I

mijDij(u) = (D”(u)D”(u)) a.e.in Q x [.

Moreover, (5.44) is equivalent to

Opui + Ojuuy = 0;mij + [iy

which completes this part of the proof.
Summing all the above obtained results we proved the existence of the weak solution
of the problem investigated. Q.E.D.

Remark: In the reality the mushy zone is created not only by liquid and solid phases,
but instead of the pure liquid there exist microscopical elements of strongly viscoplastic
rocks, but near to the liquid phase and having consistency of alloy of both phases. To
determine the boundary between this phase and the solid viscoplastic phase is very
difficult and can be determined throughout determination of the threshold of plasticity
g, determining it by the voluminic fractions of both phases, the visco-plastic and the
strongly visco-plastic with a low threshold of plasticity, so that fs + fr = 1. The
dependence of the pressure and the temperature plays a fundamental role as show the
phase diagrams. Therefore, the future problems must be studied with physical coeffi-
cients depending on the temperature and the pressure. Solving the problem (Peenth)v
numerically, then we find the pressure p directly (as a result of the Uzawa algorithm)
and then put it into the physical parameters of rocks. The temperature will be ob-
tained as a solution of the thermal part of the problem. By such a way we can study
directly influences of temperatures and pressures in anomalous zones of the Earth as
well as in anomalous conditions of technologic problems.
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