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Abstract

A fully iterative algorithm for large sparse equality constrained nonlinear program-
ming problems is proposed. This algorithm is based on the smoothed conjugate gra-
dient method with special indefinite preconditioner. The efficiency of our algorithm is
demonstrated by extensive numerical experiments.
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1 Introduction
Consider the problem of finding a point z* € R", such that

T :arggg}lF(x), (1.1)

where F C R" is a feasible set defined by the system of equations
F={x€R":¢(x)=0,1 <k <m}. (1.2)

where m < n (in fact we consider only local minimum). Here F : R" — R and
c. : R* — R, 1 < k < m, are twice continuously differentiable functions, whose
gradients and Hessian matrices will be denoted by VF(x), Ver(x), 1 < k < m,
and V*F(z), Vici(z), 1 < k < m, respectively. Furthermore, we use the notation
c(z) = [e1(z), ..., en()]T and A(z) = [a1(2),...,an(2)] = [Vei(z),...,Ven(z)] and
we suppose that the matrix A(x) has a full column rank. Then the solution * € R" of
the problem (1.1)-(1.2) satisfies the Karush-Kuhn-Tucker (KKT) conditions, i.e. there

exists a vector u* € R™, such that

V.L(z*,u*) = VF(2")+ A(a™)u™ =0, (1.3)
VuL(z"u™) = e(a™) =0,

where

L{z,u) = F(x)+ uTc(:L') (1.5)

is the Lagrangian function, whose gradient and Hessian matrix will be denoted by

glx,u) = V,.L(z,u)=VF(x)+ kij: uEVeg(x),

G(z,u) = ViL(z,u)=V*F(z)+ i upViex(z),

k=1

and (z*,u*) € R™™ is the KKT pair (first order necessary conditions). Let Z(z) be
the matrix whose columns form an orthonormal basis in the null space of AT(z) so
that AT(z)Z(x) = 0 and ZT(2)Z(x) = I. Tf, in addition to (1.3)-(1.4), the matrix
ZT(2*)G(x*, u*) Z(x*) is positive definite, then the point * € R" is a solution of the
problem (1.1)-(1.2) (second order sufficient conditions).

Basic methods for a solution of the problem (1.1)-(1.2) are iterative and their iter-
ation step has the form

v = x+ad, (1.6)

ut = U+ av,

where (d,v) € R™™ is a direction pair (d € R" is a direction vector) and o > 0 is a
stepsize. In this contribution, we confine our attention to methods derived from the



Newton method used for a solution of the KKT system (1.3)-(1.4). The iteration step
of the Newton method has the form (1.6)-(1.7), where o = 1 and

l le(g(vxu)) Agx) ] l i] = l s ] : (1.8)

This is a system of n 4+ m linear equations with n + m unknowns (d,v) € R"*™ whose
matrix is always indefinite. Moreover, the matrix G/(x,u) is not positive definite in
general even if the matrix Z(z)TG(z,u)Z(x) is. This fact can lead to some difficulties
when standard positive definite preconditioners are used. In this case, it is advanta-
geous to transform the system (1.8) in such a way as to contain, if possible, a positive
definite matrix in the left-upper corner. This can often be done by addition of the
second equation, multiplied by pA, to the first equation (cf. Theorem 1), which yields

L)1 w

B =G+ pAAT (1.10)

where

and

b=g+ pAc=VF+ Au+ pAc. (1.11)

If the matrices A and B are large and sparse, we can solve the system (1.9) either
directly using the sparse Bunch-Parlett [1] decomposition or iteratively using the pre-
conditioned conjugate gradient type method. In this contribution, we will concentrate
on the preconditioned smoothed conjugate gradient method which has similar proper-
ties to the MINRES method but which uses simpler recursions. Great attention will
be devoted to efficient preconditioning.

The contribution is organized as follows. In Section 2, we propose some results
concerning system (1.9) for direction determination and show the correctness of the
Armijo type line search procedure. Section 3 is devoted to studying preconditioners
for the KKT system. Section 4 contains a detailed description of our algorithm for
large sparse equality constrained nonlinear programming problems together with results
obtained by extensive numerical experiments.

In this contribution, we denote by ||.|| the Euclidean (or spectral) norm.

2 Direction determination and stepsize selection

In this section we consider the system (1.9) with an arbitrary value p > 0 even if our
algorithm works well with the value p = 0. The following theorem demonstrates the
influence of the value p on properties of the system (1.9).

Theorem 1 Let the matric ZTGZ be positive definite. Then there exists a number
p > 0, such that the matriz B is positive definite whenever p > p.



Proof. See [4].

We will use the augmented Lagrangian function
Pla) = F(z+ ad) + (u + v)Tc(:L' + ad) + %Hc(:p + ozd)Hz, (2.1)

with ¢ > p, as a merit function for the stepsize selection. The derivative of this
function, for a = 0, is given by the formula

a dP(a)
 da

P'(0) oo = d* (b + Av) + (0 — p)d* Ae. (2.2)
The following theorem holds.
Theorem 2 Let (d,v) € R™™ be an inexact solution to the system (1.9) such that

2B||d|]? — dT Bd

2.
- cle (2.3)
and |
d'h + (o0 — p)cTr < §(dTBd + (o0 — p)cTc) (2.4)
hold, where
h=DBd+ Av+b (2.5)
and
r=ATd + ¢ (2.6)
are corresponding residuals. Then P'(0) < —B||d||*.
Proof. Using (2.2)-(2.6) we get
P'(0) = dT(b + Av) + (0 — p)dTAc — —d"Bd+d"h + (0 — p)(cTr — cTc)
1
< L@ Bd+ (o = p)") < ~Bd]®
O

Theorem 2 shows, that if o > p is sufficiently large and the system (1.9) is solved
sufficiently accurately, then the vector d € R™ is a descent direction for the merit
function (2.1). Besides (2.4), we need additional standard conditions for superlinear
rate of convergence of the inexact Newton method (see [3] as an example). These
conditions have to be related to the original system (1.8). Using (1.10)-(1.11) and
(2.5)-(2.6), we obtain

Gd+ Av+ g = Bd+ Av+b— pAATd — pAc = h — pAr,
so that standard conditions for superlinear rate of convergence are satisfied when
[h = pAr|| < wmin(||g]],9) (2.7)

and
[r]] < wmin(][c]|,), (2.8)
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where 0 < w < 1 and w < (]|g||+|[¢]|) hold simultaneously. The constants g and € serve
as safeguards against unboundedness. Note that conditions (2.7)-(2.8) are considered
separately since individual residuals of the system (1.9) can have considerably different
norms.

Let (d,v) € R™™ be an inexact solution to the system (1.9) satisfying assumptions
of Theorem 2. Then we can use the standard Armijo rule for steplength determination
i.e. a > 0in (1.6)-(1.7) is chosen so that it is the first member of the sequence 37,
7=0,1,2,...,0 < 8 <1, such that B

P(a) — P(0) < zaP'(0), (2.9)

where 0 < & < 1.
In the subsequent considerations, we will assume that the matrix B is uniformly

bounded and the matrix
KA B A
| AT 0

is uniformly nonsingular, i.e. there exist constants B and K, independent of the curent
iteration, such that [|B|| < B and ||[Kw| > K|jw]|| Yw € R™™ (the matrix B can be
preliminarily modified if ||B|| > B). Furthermore we will suppose that ¢ < & and
that there exist constants g, G, ¢, A, independent of the current iteration, such that
IVF(z + ad)|| < 7, IV?F(z + ad)|| < G, |le(z + ad)| <7, |A(z + ad)|] < A,
|V2ck(z + ad)|| < G, 1 <k < m, hold, respectively, for all 0 < a < 1.

Lemma 1 Let the assumptions of Theorem 2 be satisfied (together with (2.7)-(2.8)
and the assumptions of boundedness given above). Then there exists a constant K,
independent of the current iteration, such that

P(a) < P(0) + aP'(0) + *K||d|)? (2.10)
Vo< a<1.

Proof. Using (2.7)-(2.8) we get
Il <<

and

[R]] < \|h — pAr|| + [|pAr]] <7 + pAc.
Since (2.5)-(2.6) imply that
K[ d ]_I_[VF—FpAc]:[h],
u—+v c r
we can write

Klu+o| < <27+ pAe+e) 2 KU

K[ d
u—+v



(p is assumed to be constant). Applying the Taylor expansion to (2.1) and using (2.2),
we get

1 — 1 m _
Pla) < P(0)+aP'(0) + §a2GHdH2 + 509 > Jun 4 o] Gl
k=1
1 212 2 1 2 S val 2
t50a® A d? + 5007 Y |er[Clld]
2 2 1

P(0) + aP'(0) + %oﬂ (1 + TV +aey/m)G + oA ||d||”

P(0) + aP'(0) + o*K|d]||?

e IA

Vo< a <. O

Theorem 3 Let the assumptions of Lemma 1 hold and let d #£ 0. Then there exist an
integer k > 0 and a number a > 0, independent of the current ileralion, such that the
Armijo rule gives the value o = 37, satisfying (2.9), with j <k and o > a. Moreover

P(a) — P(0) < —aeB||d||*. (2.11)
Proof. Using Lemma 1 and Theorem 2, we can write

P(a) = P(0) < a(P'(0) + aK||d|[*) < aP'(0)(1 — a%)a

so that (2.9) holds whenever a < (B/K)(1 —¢). Let k >0 be chosen so that it is the
lowest integer such that ék < (B/K)(1 —¢) and let a = B3’ be given by the Armijo
rule to satisfy (2.9). Then

(1—g)2a. (2.12)
Using (2.12) and Theorem 2, we get

P(a) ~ P(0) < agP'(0) < —acB||d]]".

O
Now we focus our attention on the inexact solution of the equation (1.9). To simplify

the notation we put
| d b IR
y - v b <= c b S = 7 b

i.e. the system (1.9) will be written in the form s = Ky + z = 0. To solve this
system, we use the smoothed conjugate gradient method preconditioned by the matrix
C'. The resulting algorithm is based on the following philosophy. Step 2 realizes basic
preconditioned conjugate gradient method. In Step 3, the residual vector is smoothed.
Step 4 is devoted to testing a required accuracy. It serves as a switch for using additional
decisions. In Step 4, we compute the penalty parameter satisfying the condition (2.3).
Step 5 contains condition for descent (2.4) as a termination criterion.

5



Algorithm 1. Direction determination.
Data: p>0,0<o<7,8>0,0<w<1l,e¢>0,7>0.

Step 1: Initiation. Set o := 0, 3o := 2z Yo := Yo, S0 := o w := min(w, ||so||), and
7 :=0.

Step 2: CG iteration. If 7 > n+m+ 3, then go to Step 6, otherwise set 7 := 5+ 1.
Compute p;_y := C7'§;_; and [, := ﬁf_l%_l. If 5 = 1, then set
pj—1 = pj_1, otherwise set p;_1 := pj_1 + (Bj-1/8j-2)pj—2. Compute
gj—1 := Bpj_1 and ;-1 := Bi_1/pl_1¢i-1 and set g; == g1 + -1pio1,
8j 1= Sj-1 + Yj-19i-1-

Step 3: Residual smoothing. Compute A; := —(s;_1 —3;)73;/||s;_1 — 3;||* and set
yi =5 T Ai(Wior — i), s 0= 85+ Ai(sj — 55).

Step 4: Test for sufficient precision. If ||r;|| > wmin(]|c||,€), then go to Step 2.
Otherwise compute w; := h; — pAr;. If ||w;|| > wmin(]lg]|,7), then go to
Step 2.

Step 5: Determination of the penalty parameter. Compute the value x; := dedj
and set o; := min(7, max(a, p, p + (2B]|d|]* — &;)/||c||*)). Set r; := &; +
(o5 = p)llel®

Step 6: Test for sufficient descent. Set p; = dlh; + (0 — p)clr;. If pj > x;/2,
then go to Step 2. Otherwise set y := y;, 0 := o, P'(0) := p; — £; and
terminate the computation.

Note that the main reason for residual smoothing in Step 3 are conditions (2.7)-(2.8)
which require the corresponding norms to be as small as possible.

3 Preconditioning

The main purpose of the preconditioner C' is to change a spectrum of the matrix K to
obtain more clustered eigenvalues, which usually leads to acceleration of convergence.
Ideally, the matrix €' should be as close to matrix K as possible but multiplication by
the matrix €' has to be easily computed. If the matrix B is nonsingular, then we
can write

B~'— B-YA(ATB 1A)'ATB~1  B-LA(ATB-1A)"!

A1
K= (ATB1A)1 AT B —(ATB AT |

(3.1)

so that the matrix €' should have a similar structure but it should be realized by
sparse decompositions. We concentrate our attention to the following preconditioners:

1) Block diagonal positive definite preconditioner

= l LgT h ] (3.2)



(see [8]), where LLT is an incomplete Gill-Murray [5] decomposition of the matrix B
and D is a positive definite diagonal matrix. In this case

ot = l (LLOT)_I DO_I ] . (3.3)

2) More complicated positive definite preconditioner

LIt A
C= [ AT AT(LLTY'A 4 D ] (3.4)

(see [8]), where LLT is an incomplete Gill-Murray [5] decomposition of the matrix B
and D is a positive definite diagonal matrix. In this case

(- [ (LLT)™' 4 (LLT) " AD"AT(LLT)™"  —(LL")"'AD™! ] ' (3.5)

_D—IAT(LLT)—I D—l

If LLT = B (i.e. if LLT is a complete Choleski decomposition of the matrix B), then

o T 0
Ke™ = [ (I + ATB'AD-1)ATB-'  —ATB-1AD"! (3.6)

3) New indefinite preconditioner

-1 _ -1 T p\—1 AT n-1 -1 T py—1
C_lle D 'A(RTR)"'ATD D= 'A(R"R) ] (3.7)

(RTR)—IATD—I _(RTR)—I

where RT R is an incomplete Choleski decomposition of the matrix AT D~'A and D is
a positive definite diagonal matrix. In this case

CQ[D A].

AT 0 (3.8)
If RTR = ATD7'A (i.e. if RTR is a complete Choleski decomposition of the matrix
ATD=1A), then (3.8) holds with equality and

KO-l = I+(BD™ ' —I)(I—-AATD A ATDYYy  (BD™! — HA(ATD1A)!
0 1

(3.9)

The first two preconditioners were studied in [8]. They were developed for problems

with positive definite matrix B, but KKT systems for equality constrained nonlinear

programming problems do not have this property in general. Therefore, the efficiency

of these preconditioners depends strongly on the value p appearing in (1.10) as will

be mentioned in the next section. In this section, we will study properties of the

indefinite preconditioner defined by (3.7). The main advantage of this preconditioner

is a surprisingly excellent efficiency which is experimentally demonstrated in the next
section.



Theorem 4 Let K be nonsingular and (3.8) holds with equality. Then the matrix
KC™' has at least 2m unit eigenvalues.

Proof. Let

[(C‘llx]:)\lx]. (3.10)
¥ ¥

Using the last group of rows of (3.9), we can write y = Ay, so that A # 1 = y = 0. Let
A # 1, so that y = 0 . Using the first group of rows of (3.9), we get

(BD™' — (I — A(ATD" AP ATD e = (A — 1)a, (3.11)

which is an eigenvalue problem of the dimension n. Since the matrix A has full column
rank by the assumption, there exist m linearly independent vectors of the form x = Au,
for which the left hand side in (3.11) is zero, i.e. which are eigenvectors of (3.11) with
zero eigenvalue A — 1. This implies that the original problem (3.10) has at most n —m
nonunit eigenvalues. O

Theorem 4 shows that the eigenvalues of the matrix KC~! tend to be clustered. If
m = n, i.e. if the matrix A is square and nonsingular, then all eigenvalues of the matrix
KC~! are units. On the other hand the matrix K C~! is nonsymmetric and can have a
complex structure. This is a consequence of indefiniteness of the matrix ' which does
not have a square root. For this reason, we cannot apply the standard estimates to rate
of convergence of the conjugate gradient method. On the other hand, the conjugate
gradient method with indefinite preconditioner still terminates after at most n + m
iterations and it is simpler than methods developed for nonsymmetric systems.

We have examined indefinite preconditioners (3.7) with various diagonal matrices
D = diag{D;;}. The best results were obtained with the choice

Dy =A, if |Byl <A,
D;; = |Byl|, if A<|Byl <A,

where A = 1072 and A = 10°.

4 Numerical experiments

Now we summarize results from the previous section and give a detailed description of
our algorithm. This algorithm uses the indefinitely preconditioned smoothed conjugate
gradient method for direction determination and the classical Armijo rule for stepsize
selection. Before description of the algorithm, we have to note that it is advantageous
to use some restart procedure, which treats the cases when the matrix A is unsuitable
for direction determination. These cases are characterized by a large value of the
derivative P’(0). For this purpose we set 7 = 107, if ¢ = max(g,p), or 7 = 1071,
otherwise. If —P’'(0) < 7||d||||g]|, then we repeat computation of the direction pair



using the diagonal matrix B = diag{ By} instead of B, where

; . gl
B, =1, it —|B;| <UL,
I T

B = M|Bn’|, it I'< M|Bn| <T,
10 10

where I' = 0.005 and I' = 500.0. This procedure was obtained experimentally.

Algorithm 2. Equality constrained optimization (CG).

Data: p>0,0<c<7,B>0,B>0,0<w<1,0<8<1,0<e<1,§>0,
c>0,g>0.

Input: Sparsity pattern of the matrices VZF and A. Initial choice of the vector x.

Step 1: Initiation. Determine sparsity pattern of the matrix B. Compute the
value F':= F(x) and the vector ¢ := ¢(x). Set v :=0 and ¢ := 0.

Step 2: Termination. Compute the matrix A := A(z) and the vector g := g(z, u).
If ||e]| <6 and ||g|| < 6, then terminate the computation (the solution is
found). Otherwise set ¢ = + 1.

Step 3: Approximation of the Hessian matrix. Compute an approximation GG of
the Hessian matrix G(x,u), using differences of gradient g(x,u) as in [2].
Compute the matrix B := GG 4 pAAT and modify it when its elements are
larger than B.

Step 4: Direction determination. Choose the diagonal matrix D by (3.12) and
compute the matrix AT D' A together with its incomplete Choleski de-
composition RTR. Set w = min(1/i,@). Determine the direction pair
(d,v) and the derivative P'(0) using Algorithm 1.

Step 5: Restart. Set 7 = 107" if ¢ = max(g,p), or 7 = 10_1,~0therwise. If
—P'(0) < 7||d|[||g|l then determine the diagonal matrix B by (4.1), set

B := B and go to Step 4. Otherwise set a := 1 and compute the value of
the merit function P(«).

Step 6: Termination of the stepsize selection. If P(a) — P(0) < caP’(0) , then set
r:=x+ ad, u:=u+ av and go to Step 2.

Step 7: Continuation of the stepsize selection. Set « := fa, compute the value of
the merit function P(«) and go to Step 6. B

The computational efficiency of Algorithm 2 was tested using 18 sparse problems,
proposed in [6], which had either 50 or 100 variables. We used parameters ¢ = 1.5,
=10 B=10"% B=¢c=g=10 38=05¢c=10"% © =009, 6§ = 1075, in
all numerical experiments. Values of the parameter p depended on the preconditioner
used. We set p = 0 if indefinite preconditioner (3.7) was applied. In all the other cases
we used various nonzero values of the parameter p which were chosen to give good
results.



The summary of results for all 18 problems is given in Table 1. This table contains
the total number of iterations NIT, the total number of function evaluations NFV,
the total number of gradient evaluations NGR, the total number of conjugate gradient
iterations NCG, the total number of restarts NRS, the total number of failures NFL
and the total CPU time on Pentium PC (90 MHz) for double precision arithmetic im-
plementation. The rows correspond to our method (CG) realized by Algorithm 2 with
various preconditioners (PO - without preconditioner, P1 - positive definite precondi-
tioner (3.2), P2 - positive definite preconditioner (3.4), P3 - indefinite preconditioner
(3.7)), the range space method (GM+CGQ) proposed in [6] and the direct method with
the Bunch-Parlett (BP) decomposition of the matrix B. All methods presented in Ta-
ble 1 were implemented using the modular interactive system for universal functional
optimization UFO [T7].

n~ 50 | NIT NFV NGR NCG NRS NFL CPU
CG-PO 297 395 2153 15309 18 1 21.15

CG-P1 285 408 2063 5100 22 - 12.57
CG-P2 275 436 2041 3951 34 - 13.56
CG-P3 252 319 1828 1025 20 - 5.49
GM+CG | 258 298 1847 1089 - - 5.60
BP 249 344 1775 28 - 7.25

n~ 100 | NIT NFV NGR NCG NRS NFL CPU
CG-PO 384 521 2735 42180 37 1 117.87

CG-P1 340 957 2357 7386 27 - 37.02

CG-P2 320 627 2266 4135 36 - 30.32

CG-P3 260 292 1868 1021 18 - 12.25

GM+CG | 265 293 1889 1370 - - 12.52

BP 296 410 2078 - 51 - 16.64
Table 1

For better demonstration of the efficiency of indefinite preconditioner (3.7), we in-
troduce Table 2. This table contains numbers of iterations of preconditioned smoothed
conjugate gradient method applied to 18 linear KKT systems. These systems occured
in the first iteration of Algorithm 2 applied to 18 test problems which served for ex-
periments reported in the lower part of Table 1

10



No. n m| PO P1 P2 P3
1100 98 | 1465 174 200 7
21100 93| 1214 747 (%) 17
31100 2| 139 328 305 261
41100 98 | 1465 174 200 7
51100 96 | 1241 90 85 9
6| 99 49| 606 (*) (*) 119
71100 4] 162 17 12 7
81100 98 | 1188 39 29 11
91100 6| 162 176 161 162

10 | 100 98 | 1465 174 200 162
11 ] 98 64| 775 811 1095 293
120 97 721 975 272 259 110
131 98 64| 577 936 1077 59
141 98 64| 516 414 666 67
151 97 721 359 250 283 40
16| 97 72 734 76 61 35
171 97 721 734 76 61 35
181 97 721 734 76 61 35

Table 2

All linear systems were solved with high precision (w = 107'%). Columns of Table 2
correspond to preconditioners PO, P1, P2, P3, respectively. Asterisks denote failures
(more than 10(n + m) iterations).

According to results presented in the above tables, we can give several conclusions.
First, the most important observation is the fact, that the fully iterative method (CG)
with indefinite preconditioner (3.7) applied to the KKT system is more efficient that
methods (GM+4CG) and (BP) which use direct solvers and, therefore, have larger stor-
age requirements. Second, a very useful property of our algorithm is the fact, that it
is not sensitive to ill conditioning or indefiniteness of the matrix B and, therefore, it
works well with the choice p = 0. Third, we have to note, that the conjugate gradi-
ent method with indefinite preconditioner (3.7) can theoretically lead to breakdown.
However this situation never appeared in our computational experiments.
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