narodni
N U dlozisté
1 L Sedé
6 literatury

Bounds on Eigenvalues of Interval Matrices

Rohn, Jifi
1996

Dostupny z http://www.nusl.cz/ntk/nusl-33671

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 22.05.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .


http://www.nusl.cz/ntk/nusl-33671
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Bounds on Eigenvalues of Interval Matrices
Jifi Rohn

Technical report No. 688

October 1996

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+422) 66414244 fax: (4+422) 8585789
e-mail: uivt@uivt.cas.cz



INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Bounds on Eigenvalues of Interval Matrices'

Jiti Rohn?

Technical report No. 688
October 1996

Abstract

We describe a rectangle in the complex plane enclosing all eigenvalues of an interval
matrix AL, We give theoretical bounds (Theorem 1) that are exact for symmetric or
skew-symmetric matrices (Theorem 2) and practical bounds (Theorem 3) requiring
evaluation of 6 minimal or maximal eigenvalues of symmetric matrices. Some conse-
quences are mentioned.
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1 Theoretical bounds
We consider square interval matrices in the form
AT =[A, — A A+ A ={A; A —A <A< A+ A

where inequalities are understood componentwise; thus A. is the center matrix and A
is the radius matrix of A’

Theorem 1 Let Al = [A. — A, A. + A] be a square interval matriz. Then for each
eigenvalue \ of each A € Al we have

r<Red <T, (1.1)
1 <Im) <7, (1.2)
where
ro= min (2’ A — |of" Ala]),
T o= ngcr'll?i(l(xTAcx + |z|FAlz|),
t = ”(mggi)r'llz):l(xf(Ac — ADYay — Ao |zl — aq9al)),
7 = max (:Jcip(Ac — AZ)xQ + Ao |:1;1:1;;F — :1;2:1;? ).

[|(z1,22)[]2=1

Comments. Vectors are always considered column vectors, so that 7y is the
scalar product whereas xy? is the matrix (z;y;). In the formulae for i and 7, for

typographic reasons we write “||(x1,x2)||2 = 17 in the subscript instead of the correct
“@T, 2Ty =17, For A = (a;;) and B = (b;;) we use

Ao B = Zaijbij

]
(“scalar product of matrices”). Then we have

:L'TAy = inaijyj =Ao (:L'yT).

]
Proof. Let A = A\; 4 X7 be an eigenvalue of some A € A, Then
Az 4 z91) = (A + Agt) (21 + z97) (1.3)
for some real vectors xy,x3, 1 # 0 or x3 # 0, which may be normalized to achieve
:1:{:1;1 + :z:g:zjz = 1. (1.4)
Premultiplying (1.3) by the complex conjugate vector @1 — 22, we obtain

)\1 + )\2@ = (1'1 — $2i)TA($1 + Jfgi),
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which yields
ReA =X = :L'irA:zjl + ngwz,
ImA =X, = :L'irA:I;Q — ngwl.
1) To prove that Re A <7, denote r(A) = max,=1 7 Az, then we have
el Axy <r(A)aTay,
al Axy < r(A)ale,,

hence
:L'irA:zjl + ngwz < r(A)(:z;irxl + :1:5:1;2) =r(A) (1.7)
due to (1.4), and
r(A) = ”rr|1|a3<1 2T Az = ”rr|1|a3<1(:1;TAc:1; + :L'T(A — Ao)x) (1.8)
”rr|1|a3<1(:1;TAc:1; + z["Alz|) = 7.

Then from (1.5), (1.7) and (1.8) we obtain
ReX <7,

which is the right-hand side inequality in (1.1).
2) Since — A\ is an eigenvalue of —A which belongs to [—A. — A, —A.+ A], from the
result proved in 1) applied to [—A. — A, —A. + A] we obtain

—ReXl =Re(=)) < ”rr|1|a§1(—:1;TAc:1; + |z|FAlz|),

which implies

ReX > — ”rr|1|ax (—al Az + |z|TAlz]) = ”nﬁin (2T Az — |2/ Alz|) = 7,
xT 2:1 xT 2:1

which is the left-hand side inequality in (1.1).
3) Since
:L'ipA:I;Q — :L';FA:Ijl = :L'ipAc:I;g — :L';FAcxl + :L'ir(A — A)xg — :L';F(A — A)r
= :L'ir(Ac — AZ)xQ +(A—-A,)o (:1;1:1;5 — :1:2:1/'{)
< :L'ir(Ac — AZ)xQ + Ao |:1;1:1;g — :I;Q:I;ﬂ,

from (1.6) and (1.4) we get

ImA < " ma)>”< (2T (A, — AD)zy + Ao a2l — apal]) =1,
T1,X2 2:1

which is the right-hand side inequality in (1.2).
4) Since —\ is an eigenvalue of —A € [-A. — A, —A. + A], applying the result in
3) we obtain

—ImA=1Im(=A) < max (27(AT — A)xy + Ao |zzl — 2al)|)

T l(enm2)ll2=1

and thereby also

ImA > " mi)r|1| l(xir(Ac — AD)zy — Ao |zyal — zyal]) =14,
1,22 )||2=

which concludes the proof. [ ]



2 The bounds are exact in special cases

A real matrix A is called symmetric if AT = A and skew-symmetric if AT = —A. An
interval matrix A’ is said to be symmetric if

AIT — AI
and skew-symmetric if
AIT — _AI
where
AT = {AT; A e A"}
and

—Al ={—A; A e AT},

Hence, A = [A. — A, A. + A] is symmetric if and only if [AT — AT, AT + AT] =
[A. — A, A. + A], which is equivalent to symmetry of both A. and A. Similarly, A is
skew-symmetric if and only if A, is skew-symmetric and A is symmetric.

Theorem 2 The bounds (1.1) are exact (i.c., achieved over Al) if Al is symmetric
and the bounds (1.2) are exact if Al is skew-symmetric.

Proof. 1) Let Al be symmetric, so that A, and A are symmetric. Since the con-
tinuous mapping = — 2! A.x + |z|TAlz| achieves its maximum over the unit sphere
{x; ||z]|2 = 1}, there exists an x satisfying

7=al Az + |z|TAlz| (2.1)

and |[z]|s = 1. Define a diagonal matrix S by

S“_ 1 lfl’]ZO,
s —1 ifl‘j<0

(j =1,...,n), then |z| = Sa and from (2.1) we have
F=al Az + 2T SASz = :L'T(Ac + SAS)z < Apax(Ac + SAS), (2.2)

where Apax(A:.4+5SAS) denotes the maximal eigenvalue of A.+SAS (which is symmetric
since both A, and A are symmetric). Since |[SAS| = A, the matrix A. + SAS belongs
to A, hence

Amax(Ac + SAS) <F

by Theorem 1, which combined with (2.2) gives
T = Amax(A4c + SAS),

hence 7 is achieved over A? (even more, it is achieved at a symmetric matrix in A!, cf.
Hertz [1]). The proof for r is analogous; in this case we obtain

= Amin(A: — SAS).
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2) Let A be skew-symmetric, so that A, is skew-symmetric and A is symmetric.

We have
7=al (A, — AD)ay + Ao |ayal — zyal| (2.3)

x
for some @1, x2 satisfying |[(x1,23)||2 = 1. Define
{ =1 if (z1)i(w2); — (w2)i(21); <0,
i =

0 if (21)i(22); — (w2)i(w1); =0,
Lt (1)i(w2); — (22)i(21);

=
[\]
=
—~
=
—
~—
<
vV
o

(., =1,...,n), then z; = —zj; for each ¢, j, hence the matrix A defined by
Aij = 2i;

(4,7 =1,...,n) is skew-symmetric (since A is symmetric). Let
A=A +A,

then A € Al and A is skew-symmetric (since both A, and A are skew-symmetric).
Next, from (2.3) we have

1= af (A= AD)er 4D Ajjzij(aaay — waai)y;
9]
= #F(Ac = ANy + Ao (el — anal)
= oT(Ac— A2y + 2T Azy — 2l Ay

= :L'ipA:L'Q — ngwl
. 1 4 0 A 1
- L9 —-A 0 L9 ’

( O ) (2.4)

is symmetric since A is skew-symmetric. Denote by A the maximal eigenvalue of (2.4)

where the matrix

(which is real), then from the above expression for 7 we have

7< A (2.5)
Y2
() ()= (n),

Ay +y2t) = =Ay2 + Miyr = Mi(yr + y21),

thus Az is an eigenvalue of A. Hence

and there exists a vector h 0 satisfyin
ying

which implies
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by Theorem 1, which combined with (2.5) gives
7=X=1Im(\),

hence 7 is achieved as the imaginary part of an eigenvalue of a matrix in A?. To prove
an analogous result for ¢, let us apply the result just proved to the interval matrix
[—A. — A, —A.+ A], which is also skew-symmetric. Then we have

fmA = ||(901n;013))||<2:1(x1T(Ag —Acra + Ao |$1:L'§ — le'ﬂ)

for an eigenvalue A of some A € [—A. — A, A, 4+ A], hence

Im(—}) = —ImA = ||(x1r£12iﬁl|2:1(x1T(Ac — AD)wy — Ao fuya] —wonf|) =i

for the eigenvalue — A of —Ae [A.—A, A.+A], which shows that ¢ is achieved as well. m

3 Practical bounds

Theorem 3 Let Al = [A, — A, A, + A] be a square interval matriz. Then for each
eigenvalue \ of each A € Al we have

)\mln(A/c) - )\maX(A/) S Re A S )\maX(A/c) + )\maX(A/)a (31)
)\min(A/c/) - )\max(A”) S Im A S )\max(A/c/) + )\max(A”)a (32)

where

1
A/c = 5(‘40 + AZ)?

1
A= (A4 AT,

A// — 0 %(AC - A?)
C ey )
0 A
"o
oo (5
Comments. Ay, Apmax denote the minimal and maximal eigenvalue of a symmetric
matrix, respectively. Notice that all the matrices A’ A’, A” A" are symmetric by

definition. Since Apmax(D) = o(D) (spectral radius) holds for a nonnegative symmetric
matrix D, the formulae (3.1), (3.2) may also be written in the form

)\min(A/c) - Q(A/) S Re)\ S )\maX(A/c) + Q(A/)’
)\min(A/c/) - Q(A”) S Im A S )‘maX(A/c/) + Q(A”)'

Proof. Let X be an eigenvalue of a matrix A € A,
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1) Since

=
I

max (27 Acx + |z|TAlz])

llfl2=1

< max 2’ Az + max |z|TAlz]
llz[l2=1 llz[l2=1

= max ' Az + max |z|TA|z]
llz[l2=1 |z[l2=1

= Amax(AL) 4+ Amax(A),
by Theorem 1 there holds
Re A < Amax(A") + Amax(A),
which is the right-hand side inequality in (3.1).
2) The proof of the left-hand side inequality is analogous since

r> min 2! A.x — max |:1;|TA|:1;| = Amin(AL) — Amax(A").

T lell=1 ll=ll=1
3) We have
" ma)>”< (2T (A, — AD)zy + Ao a2l — oyl
@1,72)||2=1

< max (:I;ipAc:ch — :L';FAcxl) 4+  max (|:1;1|TA|:1;2| + |:1;2|TA|:1;1|)
[|(z1,22)||]2=1 [|(z1,22)[]2=1

|

= e () (5 8 ) wmnn (D) (5 8) ()
(e w2)ll2=1 \ T2 —A. 0 Ty lem)lp=1 \ [22] A0 |2

. max 1 4 0 %(Ac — AZ) 1
T )=t \ 22 (AT — A 0 2

T
Wll) ( 0 l@3+-AT)) (kﬁl)
4+  max 2
|Mm%ﬂ(wﬂ F(A+AT) 0 |2
— )\maX(A/c/) + )\maX(A”)-
Hence Theorem 1 gives
Im A S 7 S )\maX(A/c/) + )\maX(A//)a

which is the right-hand side inequality in (3.2).
4) An analogous reasoning gives

;I = min (:Jcip(Ac — AZ)xQ — Ao |:1;1:1;;F — :I;Q:I;ﬂ)
[[(z1,22)[]2=1

T 1 T
. 1 0 —(Ac — A ) 1

> 2 ¢
—|w$ﬁF1(m) (%M?—AJ 0 T3

o (|x1| )( 0 %<A+AT>)(|x1|
@)=t \ |72l (A 4+ AT) 0 |24]
— )\min(A/c/) - )‘maX(A//)a

which in view of Theorem 1 implies the left-hand side inequality in (3.2).

)



4 Consequences

We keep the notations A, A’, A7, A” introduced in Theorem 3.

Corollary 1 If
)\maX(A/c) + )\maX(A/) < 07

then Al is (Hurwitz) stable.

Proof. Indeed, in this case Theorem 3 implies Re A < 0 for each eigenvalue A of
each A ¢ AL ]

We note that a symmetric interval matrix may contain nonsymmetric matrices with
complex eigenvalues. Similarly, a skew-symmetric interval matrix may contain matrices
with nonzero real parts.

Corollary 2 If A” is symmetric, then
[Tm A| < Apax(A)
for each eigenvalue \ of each A € A’.
Proof. The result follows from (3.2) since A” = 0 in view of symmetry of A., hence

Amin(AY) = Amax(AY) = 0. |

Corollary 3 If A" is skew-symmetric, then
|Re A| < Amax(A')
for each eigenvalue \ of each A € A’.

Proof. The assertion is a consequence of (3.1) since A, = 0. ]
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