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Abstract

We investigate complexity of checking various properties of interval matrices. The
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In this chapter we investigate complexity of checking various properties of interval
matrices; an interval matrix is a set of matrices whose coefficients range independently
of each other within prescribed bounds. The properties in question are regularity,
positive definiteness, P—property, stability and Schur stability, all of which are shown
to be NP—-hard to check even in the class of interval matrices with uniform coefficient
tolerances. Two additional sections handle complexity of computing eigenvalues and
determinants. The common basis for all these results is the NP-hardness of computing
the norm ||A||co1, established in the first section. We have not restricted ourselves to
proving the complexity results only, but in most cases we also present finitely verifiable
necessary and sufficient conditions to demonstrate the exponentiality inherent in all
these problems. In several cases we also add verifiable sufficient conditions to give
some hints on how to proceed in solving practical examples.

We shall use the following notations. For two matrices A, B of the same size, in-
equalities like A < B or A < B are understood componentwise. A is called nonnegative
if A > 0 and symmetric if AT = A (AT is the transpose of A). The absolute value
of a matrix A = (a;;) is defined by |A| = (|a;;|); properties like |[A + B| < |A| + | B|
or |[AB| < |A||B| are easy to prove. The same notations also apply to vectors that
are always considered one—column matrices. In particular, for « = (a;) and b = (b;),
alh =3, a;b; is the scalar product whereas ab? is the matrix (a;b;). Amin(A); Amax(A)
denote the minimal and maximal eigenvalue of a symmetric matrix A, respectively.
As is well known, Amin(A) = min,= el Az and A\pay(A) = MaX||g||,=1 2T Az hold.
Omin(A), Omax(A) denote the minimal and maximal singular value of A, and p(A) is
the spectral radius of A. [ denotes the unit matrix, e; is the jth column of I and
e = (1,...,1)T is the vector of all ones. Z denotes the set of all &1 vectors, i.e.,

Z ={z € R"; |z]| = e}.

1 The norm || Al

In this section we introduce the subordinate matrix norm || A/~ 1 and we prove that
its computation is NP-hard. For the purposes of various applications to be given later,
the result is presented in several different settings (Theorems 3 through 6).

1.1 Subordinate norms

Given two vector norms |[z||, in R™ and ||z]|g in R™, a subordinate matrix norm in
R™*"™ is defined by

[Alles = max [[Az]|s
lella=1

(see Golub and van Loan [18] or Higham [20]). |[A|lss is a matrix norm, i.e., it
possesses the three usual properties: 1) |[A|las > 0 and ||Al|og = 0 if and only if
A=0,2) [[A+Bllas < |Allas+11Bllas, 3) A Alla,s = [A]- | Alla,5. However, generally
it does not possess the property ||AB|la.s < [|Allasl|Bllas (it does e.g. if a = 3).

By combining the three most frequently used norms

2l = > ladl,
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2]l = VaTa,

il = ma [z,

we get nine subordinate norms, including the three usual norms

1A =l AT = max | ],
K3

[All2 = ([ Allz.2 = 1/ Amax(ATA),

[Allso := [|Alloc,00 = max} _fai|.
J

Yet it turns out that one of these nine norms has an exceptional behavior in the sense
that it is much more difficult to compute than the other ones: namely, the norm

[Alloo,r = max Azl
lelloo=1

This norm can be computed by a finite formula which, however, involves maximization
over the set 7 of all +1-vectors (whose cardinality is 2"):

Proposition 1 For each A € R™*" we have
[Alle = max [ Az, (1.1)
where
Z={z€ R"; zj € {—1,1} for each j}. (1.2)

Moreover, if A is symmetric positive semidefinite, then

|A]lcon = IZHGELZXZTAZ. (1.3)

Proof. 1) If ||#]|«c = 1, then = belongs to the unit cube {z; —e < « < e}, which
is a convex polyhedron, therefore & can be expressed as a convex combination of its
vertices which are exactly the points in Z:

r=Y Az, (1.4)

2€EZ

where A, > 0 for each z € Z and 3¢z A, = 1. From (1.4) we have

[Az]ly = || D A.Az|ly < max||Az][s,
et 2€Z
hence

max ||Az|y < max||Az|; < max || Az
[lo]]co=1 z€Z [J@]]co=1

(since ||z||oc = 1 for each z € Z) and (1.1) follows.
2) Let A be symmetric positive semidefinite and let z € Z. Define y € Z by y; =1
if (Az); > 0and y; = —1if (A2); <0 (j =1,...,n), then

[Az|y = y" Az,

3



Since A is symmetric positive semidefinite, we have

which implies

2T Az <yTAy + 2TAz < ZmeaZX T Az,

hence
|Az||l1 = yT Az < maxzT Az
z2€Z

and
| Allcon = gleaZXHAZHI < IZHGELZXZTAZ. (1.5)

Conversely, for each z € Z we have

2P Az <1 [Az] = [|Az]l < max|[Az]l = [[A]l,
hence
max 2! Az < | Al o1,
2€EZ
which together with (1.5) gives (1.3). |

In the next subsection we shall prove that computing || Al|sc.1 is NP=hard. This will
imply that unless P=NP, the formula (1.1) cannot be essentially simplified.
3

1.2 Computing || 4|/~ is NP-hard

In order to prove the NP—hardness for a possibly narrow class of matrices, we introduce
the following concept (first formulated in [40]):

Definition A real symmetric n x n matrix A = (a;;) is called an MC-—matrix® if
it is of the form

) =n ifi=
il e {0, -1} ifi;j
(i,j=1,...,n).
Since an M C-matrix is symmetric by definition, there are altogether 2*=1/2 \fC—

matrices of size n. The basic properties of M C'—matrices are summed up in the following
proposition:

Proposition 2 An MC-matriz A € R"™™ is symmetric positive definite, nonnega-
tive invertible and satisfies

[ Allos = ma T Az, (1.6)
n < JJA|looa < n(2n —1) (1.7)
and
A7, < 1.

3from “maximum cut” (see the proof of Theorem 3 below)
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Proof. A is symmetric by definition; it is positive definite since for « # 0,

ot Aw Z ey = 3 e = (0 + D)l = 2]} = [l=]l >0
i#]

(Jlx|x < /nl|z]|2 by Cauchy—Schwartz inequality [18]). Hence (1.6) holds by Proposi-
tion 1. Since |a;;| <1 for ¢ # j, for each z € Z and 7 € {1,...,n} we have

zi(Az); =n+ ) ajziz; €1, 2n — 1],
JFe

hence
n<:zl'Az < n(2n —1)

for each z € 7, and (1.6) implies (1.7). By definition, A is of the form
1
A:n]—A():n(]——Ao)
n

where Ag =nl — A >0 and H%AOHI < % < 1, hence

101 4
ATV =N (=4 >0
DINE
and |
AN < ————— < 1.
A7 < = <

The following basic result is due to Poljak and Rohn [33] (given there in a slightly
different formulation without using the concept of an M C-matrix).

Theorem 3 The following decision problem is NP-complete:
Instance. An MC'-matric A and a positive integer (.
Question. Is 2T Az > ( for some z € Z?

Proof. Let (N, E) be a graph with N = {1,...,n}. Let A = (a;;) be given by
a;j =nif ¢ = j, a;; = —1if ¢ # 5 and the nodes ¢, are connected by an edge, and
a;j = 0if 2 # j and ¢,j are not connected. Then A is an M C-matrix. For S C N,
define the cut ¢(.5) as the number of edges in £ whose one endpoint belongs to S and
the other one to NV \ S. We shall prove that

_ _ 2
|A]lcon = 4%%@(5) 2Card(F) +n (1.8)

holds. Given a S C N, define a z € Z by

[ 1fies
T -1 ifié S,



Then we have

T 2
2P Az = Z aijziz) = Z aijziz; +n
0]

i#]
1
= 2l-gai(z =) +ayl + 0’
i#]

1
= —5 > aijlzi— )+ ) ay+

2 zizy=—1 i#]

1 2
= -3 Yo a4+ Y a4 n?,

zizy==1 i#]
hence

2T Az = 4¢(S) — 2Card(E) 4 n’. (1.9)

Conversely, given a z € Z, then for S = {1 € N; z; = 1} the same reasoning implies
(1.9). Taking maximum on both sides of (1.9), we obtain (1.8) in view of (1.6).
Hence, given a positive integer L, we have

e(S)> L (1.10)
for some S C N if and only if
LAz >4l — 2Card(F) + n?

for some z € Z. Since the decision problem (1.10) is NP—complete (“simple max—cut
problem”, Garey, Johnson and Stockmeyer [17]), we obtain that the decision problem

LAz > (1.11)

(¢ positive integer) is NP-hard. It is NP—complete since for a guessed solution z € Z
the validity of (1.11) can be checked in polynomial time. [ ]

In this way, we have also proved the following result:
Theorem 4 Computing || Al is NP-hard for MC-matrices.

In a sharp contrast with this result, the norm ||Al|1 o (with indices swapped) can
be computed in polynomial time:

1Al o0 = max |ay| (1.12)

(Higham [20]).

To tacilitate formulations of some subsequent results, it is advantageous to remove
the integer parameter ¢ from the formulation of Theorem 3. This can be done by
using M—matrices instead of M C—matrices. Let us recall that A = (a;;) is called an
M-matrix if a;; < 0 for ¢ # j and A™* > 0 (a number of equivalent formulations
may be found in Berman and Plemmons [5]); hence each M C—matrix is an M-matrix
(Proposition 2). Since a symmetric M—matrix is positive definite [5], this property is
not explicitly mentioned in the following theorem:

6



Theorem 5 The following decision problem is NP-hard:

Instance. An n x n symmetric rational M-matriz A with ||A|ly <2n — 1.
Question. Is ||Al|co1 > 17

Proof. Given an M (C—matrix A and a positive integer ¢, the assertion
2TAz > ( for some z € 7

is equivalent to ||Al|s.1 > ¢ and thereby also to
1
el 2 0
g 0,1

where %A is a symmetric rational M-matrix with H%AHI < J|A|lx £ 2n — 1. Hence the
decision problem of Theorem 3 can be reduced in polynomial time to the current one,

which is then NP-hard. ]

Finally we shall show that even computing a sufficiently close approximation of

| Al|co.1 is NP=hard:

Theorem 6 Suppose there exists a polynomial-time algorithm which for each MC'—
matriz A computes a rational number v(A) satisfying

1
#(4) = | Allsoa < 5,

Then P=NP.

Proof. If such an algorithm exists, then ||Al|1 < v(A) + % < ||Al|so1 + 1, hence

Al = [v(4) + 5]

(since ||A||coq is integer for an M C—matrix A, see (1.6)), hence the NP-hard problem
of Theorem 4 can be solved in polynomial time, 3implying P=NP. ]

2 Regularity

In the rest of this chapter we shall investigate complexity of checking various properties
of square interval matrices. An interval matrix A’ is a set of matrices of the form

Al = [AA] = {A; A< A <A, (2.1)

where the inequalities are understood componentwise and A < A. Introducing the
center matrix

1 _



and the nonnegative radius matrix

we can also write the interval matrix (2.1) in the form

A

Al =[A. — A A+ A (2.2)

which in many contexts turns out to be more useful than (2.1)%.

A square interval matrix A’ is said to be regular if each A € A’ is nonsingular, and it
is called singular otherwise (i.e., if it contains a singular matrix). Regularity of interval
matrices plays an important role in theory of linear interval equations (Neumaier [30]),
but it is also useful in some other respects since checking several properties of interval
matrices (studied in the subsequent sections) can be reduced to checking regularity.

This section is devoted to the problem of checking regularity of interval matrices.
We prove that the problem is NP-hard (Theorem 9) and describe some necessary
and/or sufficient regularity conditions (subsection 2.2). In the last subsection it is
proved that computing (even approximately) the radius of nonsingularity is NP-hard.

2.1 Checking regularity is NP—hard

Let us introduce the matrix of all ones

11 1
E=cel = ! 1 !
11 1

The basic relationship of the current problem to the contents of the previous section is
provided by the following equivalence:

Proposition 7 For a symmetric positive definite matriz A, the following assertions
are equivalent:

(i) |Alloon = 1,
(ii) the interval matriz
(A7 — B, AT + B (2.3)

is singular,

(iii) the interval matriz (2.3) contains a symmetric singular matriz A" of the form

ZZT

A/ — A—l _
T Az

(2.4)

for some z € Z.

4the “I” in A’ is an abbreviation of the word “interval” and has nothing to do with the unit
matrix [



Proof. (i)=-(iii): Due to Proposition 1, if (i) holds, then

|A]lcon = max T Az > 1,
z2€Z
hence zT Az > 1 for some z € Z. Since

2z
< F
2TAz| —

Y

the matrix A’ defined by (2.4) belongs to [A™' — E, A™' + E] and satisfies

2(2T Az)

A'Az = 2 — T

=0,

where Az # 0 (A is nonsingular since it is positive definite), hence A’ is singular, and
obviously also symmetric.

(iii)=-(ii) is obvious.

(i1)=(i): Let A’z = 0 for some A” € [A™! — E,A~' + E] and x # 0. Define z € Z
by z; =1 if #; > 0 and z; = —1 otherwise (j = 1,...,n). Then we have

ela| = 2T = 2TA(A™ — A" < |ZTA(A™ — AMz| < |27 Aleel |2,
hence
L< [ Ale = [l Azll < [|Allc,
which is (i). |

The next result was published by Poljak and Rohn in a report form [32] in 1988
and in a journal form [33] in 1993:

Theorem 8 The following problem is NP-complete:
Instance. A nonnegative symmetric positive definite rational matriz A.

Question. Is [A — E, A+ F] singular?
Proof. For a symmetric rational M-matrix A (which is positive definite [5]),
[Alloon > 1 (2.5)
is according to Proposition 7 equivalent to singularity of
[A™' — E AT 4+ E],

where A™! is rational, nonnegative and symmetric positive definite. Since computing
A~! can be done by Gaussian elimination in polynomial time (Edmonds [14]), we have
a polynomial-time reduction of the NP—hard problem (2.5) (Theorem 5) to the current
problem, which is thus also NP-hard.

If [A— E, A+ FE]is singular, then it contains a rational singular matrix of the form

ZZT

ZTA-L,

A

9



for some z € Z (Proposition 7, (ii)<(iii)) which can be guessed (generated by a nonde-
terministic polynomial-time algorithm) and then checked for singularity by Gaussian
elimination in polynomial time [14]. Thus the problem is in the class NP, hence it it
NP-complete. [ ]

The result immediately implies NP-hardness of checking regularity:

Theorem 9 The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matriz A.

Question. Is [A — E, A+ E] regular?

This result was proved independently, also in 1993, by Nemirovskii [28] who employed
a different approach based on another subclass of interval matrices.

As a by—product of the equivalence (ii)<(iii) of Proposition 7 we obtain that the
problem of checking regularity of all symmetric matrices contained in [A — E, A + E]
is also NP-hard.

2.2 Necessary and/or sufficient conditions

In view of the NP-hardness result of Theorem 9, no easily verifiable necessary and
sufficient regularity conditions may be expected. Indeed, 13 such conditions are proved
in Theorem 5.1 in [37], all of which exhibit exponential behaviour. Probably the
most easily implementable criterion is that one by Baumann [3] (Theorem 11 below)
which employs matrices A,., y,z € R", defined for an n x n interval matrix Al =

[AC - AvAC + A] = [Av A] by
(Ay2)i = (Ac)ij — Aijuiz; (2.6)
(.,j=1,...,n). If y,z € Z, then we have

Ay i gz =1,
(Ayz)” o { A if Yiz; = 1

17

(2.7)

for each 7,7, hence A,. € Al in this case. We shall first formulate an auxiliary re-
sult which will form a basis for proofs of the other results in this subsection. It is a
consequence of the Oettli-Prager theorem [31].

Proposition 10 An interval matriz Al = [A. — A, A. + A] is singular if and only
if the inequality
|Acz| < Alz] (2.8)

has a nontrivial solution.
Proof. 1f A! contains a singular matrix A, then Az = 0 for some z # 0, which

implies

Ace| = (A — A)a] < Alel.

10



Conversely, let (2.8) hold for some « # 0. Define y € R" and z € Z by

g = { (Acx)i/(Alx])i if (Alz]); >0,
11 if (Alz]); =0

and

o 11f$]20,
TTY -1 ifa; <0

(¢, =1,...,n). Then for the matrix A,, given by (2.6) we have
(Ayzr)i = (Ac)i — yi(Ala])i = 0

for each i, hence A,. is singular, and since |y;| < 1 for each ¢ due to (2.8), from (2.6)
it follows that A,, € Al hence A! is singular. ]

Baumann’s criterion employs a finite set of test matrices A,. for y,z € Z (of

22n—1

cardinality at most since A_, _, = A,.).

Theorem 11 An interval matriz A is reqular if and only if determinants of all the
matrices Ay, y,z € Z are nonzero and of the same sign.

Proof. Let A be regular and assume that
(det A,.)(det Ayr) <0
holds for some vy, z,3y', 2" € Z. Define a real function ¢ of one real variable by
o(t) = det(Ay. + 1Ay — Ay2)), te][0,1].

Then ¢(0)p(1) < 0, hence there exists a 7 € [0, 1] with ¢(7) = 0. Thus the matrix
Ay, + 7(Ay — Ay.) is singular and belongs to Al (due to its convexity), which is a
contradiction. Hence

(det Ayz)(det Ay'z’) >0

holds for each vy, 2.y, 2" € Z.

Conversely, let A’ be singular. From the proof of Proposition 10 we know that
there exists a singular matrix of the form A,, for some |y| < e,z € Z. Let us introduce
the function

f(s) = det Ag,

for s € R", and define a vector ¥ = (¥;) € Z componentwise by induction on j =

1

,...,n as follows: if the function of one real variable

f(ylv'"7yj—17t7yj+17"'7yn) (29)

is increasing in #, set 77, := 1, otherwise set 7, := —1. Since the function (2.9) is linear
in ¢ due to (2.6), we have

f(ylv s 7yj—17yj7yj+17 . '7yn) < f(ylv <. 7yj—17yj7yj+17 <. 7yn)

11



for each j, and by induction

0=detA,. = f(y1,---.9n) < f(7y,...,7,) = det Ag.,

hence 0 < det Ay., 7,2z € Z. In an analogous way we may construct a y € Z satisfying
det A, < 0. Hence
- (det Ay.)(det Az.) <0

for some y,7, 2z € Z, which concludes the proof of the second implication. [ ]

In view of the exponentiality inherent in the necessary and sufficient conditions, in
practical computations we must resort to verifiable sufficient conditions. We survey
the most useful ones in the next theorem:

Theorem 12 Fach of the two conditions implies reqularity of [A. — A, A, + A]:
(i) o(JAZ'A) <1,
(11) Omax(A) < omin(A).
Furthermore, each of the following two conditions implies singularity of [A.— A, A.-+A]:
(iii) max;(AJAZY]);; = 1,
fiv) (A~ A > 0.
Proof. (i) Assume to the contrary that A’ is singular, then
| Acz| < Az (2.10)
for some x # 0 (Proposition 10), hence
'] < A[AT) < AJATY[2'|
holds for ' = A.x # 0, which implies
1< o(AJATY]) = o(]ATTA)

(Neumaier [30]), a contradiction.
(ii) Again assuming to the contrary that A’ is singular, we have that (2.10) holds
for some x # 0 which may be normalized so that ||x|2 = 1, hence also

| Ace [ Acx| < (Al (Af]).
which implies
orin(Ac) = )\min(AcTAc):lliﬂjgleAZAcx§(Ac:z;)T(Ac:z;)
< AT Aca| < (Al (Afx]) = |2[" ATAJ|
< max 2" ATAz = A (ATA) = 62, (A),

max
llfl2=1

12



hence

Umin(Ac) S UmaX(A)v

which is a contradiction.
i) Let (A[ATY]).; > 1 for some § and let e; denote the jth column of the unit
c 1)ij J J J
matrix /. Then

ej < AJATMe; = AJAT e
holds, hence for x = AZ'e; # 0 we have

[ Acz| < Alx]

and A is singular due to Proposition 10.
(iv) Let (A —|A:)™" > 0. Then for z = (A — |A.])"'e we have z > 0 and
(A — |A:])x = e > 0, hence

|Acx] < JAcle < Az = Alz|
and Proposition 10 implies singularity of A’. [ ]

The condition (i), which is most frequently used, is due to Beeck [4]; an interval matrix
satisfying (i) is called strongly regular (Neumaier [30]). The second condition is due to
Rump [44]. The condition (iii) is proved in [37], and (iv) comes from [42].

2.3 Radius of nonsingularity

Given an n X n matrix A and a nonnegative “directional” n x n matrix A, the radius
of nonsingularity is defined by

d(A,A) =inf{e > 0; [A — A, A+ cA] is singular} (2.11)

(i.e., d(A,A) = oo if no such e exists; if d(A, A) < oo, then the infimum is achieved
as minimum). This notion was seemingly first formulated by Neumaier [29] and was
since studied by Poljak and Rohn [32], [33], Demmel [12], Rohn [38] and Rump [46],
[45] (Demmel and Rump use the term “componentwise distance to the nearest singular
matrix”). A general formula for d(A, A) was given in [33]:

1
max{oo( AT T AT); [Th| = [Ty = 1}

d(A,N) = (2.12)

with convention % = 0o. Here gy denotes the real spectral radius defined by go(A) =

max{|A|; A is a real eigenvalue of A} and po(A) = 0 if no real eigenvalue exists. A
matrix 7' satisfying |T'| = [ is obviously a diagonal matrix with +1 entries on the
diagonal. There are 2" such matrices, hence the formula (2.12) is finite.

Consider the special case of A = E and denote

d(A) = d(A, E).

d(A) is always finite and d(A) = 0 if and only if A is singular. We have this result [33]:
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Proposition 13 For each nonsingular A there holds

1
d(A) = —. (2.13)
A= oo
Proof. Since || Al|1,00 = max;; |a;;| (see (1.12)), Kahan’s theorem [22] gives
d(A) = min{e > 0; [A—cE, A+ cFE] is singular}
= min{|[|[A — A||1,00; A" is singular}
B 1
A= oo
|

The formula (2.13) implies this complexity result:

Proposition 14 The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matriz A.

Question. s d(A) <17
Proof. For a symmetric M-matrix A,
[Allecn 21
is according to (2.13) equivalent to

d(A™h) <1,
where A™! is rational, nonnegative symmetric positive definite, hence the NP-hard
problem of Theorem 5 can be reduced in polynomial time to the current one, which is

thus NP-hard as well. ]

As an immediate consequence we obtain [33]:

Theorem 15 Computing the radius of nonsingularity is NP-hard (even in the spe-
cial case A = F).

In the next theorem we prove that even computing a sufficiently close approximation
of the radius of nonsingularity is NP-hard.

Theorem 16 Suppose there exists a polynomial-time algorithm which for each non-
negative symmetric positive definite rational matrizx A computes a rational approxima-

tion d'(A) of d(A) satisfying

d'(A) — d(A)‘ - 1
d(A) ~ 4n?’

where n is the size of A. Then P=NP.

14



Proof. Let A be an n x n M(C-matrix, then A™! is rational nonnegative symmetric
positive definite, hence we have
d(A™1) —d(A™Y)
d(A-1)

1
< —.
T 4n?

Since || Alloo1 < n(2n—1) by Proposition 2, there holds 2||Al|cc1+1 < 4n*—2n+1 < 4n?,
hence

AT o1
dATT) | T T 2 Ay 11 2 Al - 1

which implies

2|| Al oo 1 1 d'(A71) 1 2|| Al oo 1
—_— =1 < — <1+ =
2/|AlJor +1 20| Aljecr +1 d(ATT) 20| Allecr =1 2[|Af[ocn =1
and by (2.13),
# < d’(A_l) < #
2[[Alloos +1 2[[Aloons — 1
and
1 1
——— — |A]| —.
d/(A_l) H H 1 < 2
Hence we have a polynomial-time algorithm for computing || A||oc1 With accuracy bet-
ter than %, which according to Theorem 6 implies that P=NP. ]

Bounds on the radius of nonsingularity can be derived from sufficient regularity or
singularity conditions. E.g., from Theorem 12 we have

1 1
< dA A< .
o(IAAy < MRS S R A,

Using a sophisticated reasoning, Rump [46], [45] recently proved a “symmetric” esti-
mation

1 6n
—— <dAA) < —m—.
o) = A = s

R3elated to the radius of nonsingularity is the structured singular value introduced
by Doyle [13]. The NP-hardness of its computation was proved by Braatz, Young,

Doyle and Morari [8] and independently by Coxson and DeMarco [10].

3 Positive definiteness

A square matrix A (not necessarily symmetric) is called positive definite if 27 Az > 0
for each @ # 0. Since for the symmetric matrix

1
&:§M+A5
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there holds #7 Az = 2T A,z for each x, we have that A is positive definite if and only
if A, is positive definite, and positive definiteness of a symmetric matrix A, may be
checked by Sylvester determinant criterion [27] using Gaussian elimination, hence it
can be done in polynomial time [14].

An interval matrix A’ is said to be positive definite if each A € Al is positive
definite. In this section we show that due to a close relationship between positive
definiteness and regularity (Theorem 17), the results of the previous section may be
applied to prove that checking positive definiteness is NP—hard even for symmetric
interval matrices (Theorem 20). In the last subsection we again give some necessary
and/or sufficient conditions for positive definiteness of interval matrices.

3.1 Positive definiteness and regularity

For a square interval matrix
, A, (3.1)
define
;.1 U Yp—
A= [L(A+ A7) S@+ A (3.2)

Hence, A € A" implies (A + AT) € AL and (Al), = AL An interval matrix (3.1)
is called symmetric if AT = AL Tt can be easily seen that (3.1) is symmetric if and
only if the bounds A and A are symmetric. Similarly, an interval matrix in the form
[A. — A, A, + A] is symmetric if and only if both A, and A are symmetric. Hence, a
symmetric interval matrix may contain nonsymmetric matrices (indeed, it is the case
if and only if A;; < A;; for some 7 # j).

In the next theorem we show that positive definiteness of interval matrices is closely
related to regularity [39]:

Theorem 17 An interval matriz A? is positive definite if and only if Al is regular
and contains at least one positive definite matrix.

Proof. Let AT = [A, — A, A. + A], so that Al = [A, — A/, A’ + A’], where
1
and |
N:§@+A%

We shall first prove that if Al is positive definite, then A! is also positive definite.
Assume to the contrary that Al is not positive definite, so that #7 A’z < 0 for some

A€ Al and z # 0. Since |27 (A’ — A)z| < |z|TA’|z|, we have
et A — |z|TAlz| = J}TA/CJ} — |z|TA|z| < J}TA/CJ} + :L'T(A’ — Ala = 2T Az <0. (3.3)

Define a diagonal matrix T' by 7;; = 1 if ; > 0 and Tj; = —1 otherwise. Then
|z| = Tz, and from (3.3) we have

:L'T(Ac —TAT)x <0,
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where |T'AT| = A, hence the matrix A, — TAT belongs to A! and is not positive
definite. This contradiction shows that positive definiteness of A’ implies positive
definiteness of AL, and thereby also regularity of AL

Conversely, let Al be regular and contain a positive definite matrix Ay. Assume to
the contrary that some A; € A! is not positive definite. Let Ag = %(Ao + AD), A =
%(Al + AT), hence both Ap and Ay are symmetric and belong to AL Ay is positive

definite whereas A; is not. Put
T =sup{t € [0,1]; Ag + t(A; — Ag) is positive definite}.
Then 7 € (0, 1], hence the matrix
A* = Ay + 7'(1211 — 1210)

belongs to AL (due to its convexity) and is symmetric positive semidefinite, but not
positive definite, hence Ayin(A*) = 0, which shows that A* is singular contrary to the
assumed regularity of Al. Hence A’ is positive definite, which completes the proof. m

In the introduction of this section we mentioned that a real matrix A is positive
definite if and only if Ay is positive definite. Theorem 17 now implies that the same
relationship holds for interval matrices:

Proposition 18 Al is positive definite if and only if AL is positive definite.

Proof. According to Theorem 17, A is positive definite if and only if A is reg-
ular and contains a positive definite matrix. If we apply the same theorem to Al
instead of Al in view of the obvious fact that (Al); = Al we obtain that Al is posi-
tive definite if and only if Al is regular and contains a positive definite matrix. These
two equivalences show that A is positive definite if and only if Al is positive definite. m

In the next subsection we shall employ the relationship between positive definiteness
and regularity established in Theorem 17 to prove NP—hardness of checking positive
definiteness.

3.2 Checking positive definiteness is NP—hard

Taking again into consideration the class of interval matrices of the form [A— F, A+ F],
we arrive at this property:

Proposition 19 Let A be a symmelric positive definite matriz. Then the interval
matriz [A — E, A+ FE] is positive definite if and only if it is regular.

Proof. Under the assumption, the interval matrix A7 = [A — E, A + E] satisfies
Al = AT and contains a symmetric positive definite matrix A. Hence according to
Theorem 17, A’ is positive definite if and only if it is regular. [ ]

As a direct consequence we prove NP-hardness of checking positive definiteness [40]:

17



Theorem 20 The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matriz A.

Question. Is [A — K, A+ FE] positive definite?

Proof. In view of Proposition 19, such an interval matrix is positive definite if and
only if it is regular. Checking regularity was proved to be NP—hard for this class of inter-
val matrices in Theorem 9. H3ence the same is true for checking positive definiteness. m

An interval matrix A’ is said to be positive semidefinite if each A € A’ is pos-
itive semidefinite. NP-hardness of checking positive semidefiniteness was proved by
Nemirovskii [28] by another means.

3.3 Necessary and/or sufficient conditions

A finite characterization of positive definiteness of interval matrices was seemingly first
given by Shi and Gao [47] who proved that a symmetric AT = [A, A] is positive definite
if and only if each symmetric matrix A € Al of the form A;; = A,;, A;; € {Aij,zﬁ}
for i # j, is positive definite. There are 2°("~V/2 such matrices. In [39] it was shown

279

that the number of test matrices may be reduced down to 2"~! if we employ instead
the set of matrices A.. defined for z € Z by

o Zij lf ZZ'Z]‘ = —1,
(Asz)yy = { A e =1 (3.4)

17

(., = 1,...,n). These are exactly the matrices A,. (see (2.7)) used in the Bau-
mann regularity criterion (Theorem 11), with y = 2. Each A,, is symmetric if Al is
symmetric.

Theorem 21 A’ is positive definite if and only if each A.., = € Z is positive defi-
nite.

Proof. The “only if” part is obvious since A.. € Al for each z € Z. The “if” part
was proved in the first part of the proof of Theorem 17 (a matrix A, — TAT is of the
form A.. where z is the diagonal vector of T'). [ ]

In practical computations we may use the following sufficient condition [39] (where
Amin denotes the minimal eigenvalue of a symmetric matrix and g is the spectral radius):

Theorem 22 An interval matriz A = [A. — A, A. + A is positive definite if
o(A") < Amin( A7)
holds, where A’ = %(Ac + Az) and A = %(A + AT).
Proof. For each A € Al and z with ||z]|; = 1 we have

eTAr = aTAa427(A - Ade > 2l A — |z|"Alz| = 2T Alx — |2|" Az
Z )\mln(A/c) - )\maX(A/) = )‘mlH(A/c) - Q(A/) > 07
hence A’ is positive definite. [ ]

18



4 P—property

An n x n matrix A is said to be a P—matrix (or, to have the P—property) if all its
principal minors are positive; principal minors are determinants of square submatrices
formed from rows and columns with the same indices (there are 2" — 1 of them). This
definition is due to Fiedler and Ptak who also proved the following characterization
[15]: A is a P-matrix if and only if for each & # 0 there exists an ¢ € {1,...,n} such
that «;(Ax); > 0. P—matrices play important role in several areas, e.g. in the linear
complementarity theory since they guarantee existence and uniqueness of the solution
of a linear complementarity problem (see Murty [27]).

A symmetric matrix A is a P-matrix if and only if it is positive definite (Wilkinson
[51]), hence it can be checked in polynomial time. However, the problem of checking
nonsymmetric matrices for P—property is NP-hard, as it was proved by Coxson [9] (the
proof of his result is added as an appendix in section 9).

An interval matrix A’ is called a P-matrix if each A € A’ is a P-matrix. In
this section we show that due to a close relationship between P—property and positive
definiteness (Proposition 24), the problem of checking P—property of interval matrices
is NP-hard even in the symmetric case (Theorem 25).

4.1 Necessary and sufficient condition

First we give a characterization similar to that of Theorem 21. We shall again employ
the matrices A.., z € Z defined in (3.4). The following theorem is due to Bialas and
Garloff [7], reformulation using matrices A.. comes from Rohn and Rex [43].

Theorem 23 A’ is a P-matriz if and only if each A,., = € Z is a P-matriz.

Proof. If AT is a P-matrix, then each A,. is a P-matrix since A., € A!, 2 € Z.
Conversely, let each A.., z € Z be a P-matrix. Take A € AL, 2 # 0, and let z € Z
be defined by z; = 1 if ; > 0 and z; = —1 otherwise (j = 1,...,n). Since A,, is a
P-matrix, according to the Fiedler-Ptak theorem there exists an ¢ € {1,...,n} such
that x;(A..x); > 0. Then we have

vi(Ar)i = Y (Adymix; + ) (A= Adyrin; 2 Y (AJywiw; = 3 Aijlwi )]
J J J

J
= D ((Ad)iy — Ayjzizj)asa; = wi(Asx)i > 0,
J
hence A is a P-matrix by the Fiedler-Ptédk theorem. This proves that A’ is a P
matrix. ]

4.2 P—property and positive definiteness

As quoted above, a symmetric matrix A is a P-matrix if and only if it is positive
definite. The following result [43], although it sounds verbally alike, is not a triv-
ial consequence of the previous statement since here nonsymmetric matrices may be
involved.
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Proposition 24 A symmetric interval matriz A’ is a P-matriz if and only if it is
positive definite.

Proof. All the matrices A.., z € Z defined by (3.4) are symmetric for a symmetric
interval matrix A’. Hence, A’ is a P-matrix if and only if each A.., 2 € Z is a P
matrix, which is the case if and only if each A.., z € Z is positive definite, and this is
equivalent to positive definiteness of A? (Theorem 21). [ ]

4.3 Checking P—property is NP-hard

In the introduction to this section we explained that checking a symmetric matrix for
P—property can be performed in polynomial time. Unless P#NP, this is not more true
for symmetric interval matrices (Rohn and Rex [43]):

Theorem 25 The following problem is NP-hard:
Instance. A nonnegative symmetric rational P-matriz A.

Question. Is [A — E, A+ F] a P-matriz?

Proof. Since A is symmetric positive definite, [A — F, A + E] is a P-matrix if and
only if it is positive definite (Proposition 24). Checking positive definiteness of this
class of interval matrices was proved to be NP-hard in Theorem 20. ]

5 Stability

A square matrix A is called stable (sometimes, Hurwitz stable) if ReA < 0 for each
eigenvalue A of A. For symmetric matrices, this is equivalent to Apax(A) < 0. An
interval matrix A’ is called stable if each A € A’ is stable.

Stability of interval matrices has been extensively studied in control theory due to
its close connection to the problem of stability of the solution of a linear time invariant
system #(t) = Ax(t) under data perturbations. Due to this fact, a number of sufficient
stability conditions exist. We shall not make an attempt to survey them here, referring
an interested reader to the survey paper by Mansour [26]. We shall focus our attention
on the problem of stability of symmetric interval matrices since they admit a finite
characterization (Theorem 27) and are a sufficient tool for proving NP-hardness of
checking stability (Theorem 29) and Schur stability (Theorem 31).

5.1 Necessary and/or sufficient conditions

The following proposition [39] establishes a link to our previous results.

Proposition 26 A symmelric interval matriz

AT = (A
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is stable if and only if the symmetric interval matrix
—Al= [ A4
is positive definite.

Proof. First notice that A € A’ if and only if —A4 € —A’. Let A’ be stable, and
consider a symmetric matrix A € —A!. Then —A € A’ is symmetric and stable,
hence Apax(—A) = —Amin(A) < 0, so that Apin(A) > 0, which means that A is positive
definite. Hence each symmetric A € — A’ is positive definite, which in view of Theorem
21 implies that — A’ is positive definite.

Conversely, let —A’ be positive definite. Then a similar argument shows that each
symmetric matrix in Af is stable, and from Bendixson’s theorem (see Stoer and Bulirsch
[49]) we have that each eigenvalue A of each A € A! satisfies

1
Red < Ama(5(A + AT) <0

(since %(A + AT) € AI), hence Al is stable. ]
Consider now the matrices A,. defined by (2.7) with y = —z, i.e. the matrices
satisfying

. Zij if ZiRj = 1,
(A—Z,Z)ZJ - { A if 225 = —1

)

(1, = 1,...,n). Each A_,, is symmetric for a symmetric AL.
Theorem 27 A symmetric A? is stable if and only if each A_. ., z € 7 is stable.

Proof. A’ is stable if and only if —A’ is positive definite which in view of Theorem
21 is the case if and only if each —A_, ., z € Z is positive definite, and this is equivalent
to stability of all A_, ., » € Z. [ ]

FEach matrix A_, ., z € Z is a so—called vertex matrix, i.e., it satisfies (A_,.);; €
{Aij,zij} for each 7,5. The first attempt to use vertex matrices for characterization
of stability was made by Bialas [6] who showed that a general interval matrix Al is
stable if and only if all the vertex matrices are stable. His result, however, was shown
to be erroneous by Karl, Greschak and Verghese [23] and by Barmish and Hollot [2],
see also Barmish, Fu and Saleh [1]. Soh proved later [48] that a symmetric interval
matrix is stable if and only if all the 27°(**1/2 symmetric vertex matrices are stable.
Theorem 27, where the number of vertex matrices to be tested is reduced to 2"~ (since
A_.. = A,_.), was proved in another form by Hertz [19] and Wang and Michel [50],
in the present form in [39]. A branch—-and-bound algorithm for checking stability of
symmetric interval matrices, based on Theorem 27, was given in [41].

For practical purposes we may use the following sufficient condition valid for the
nonsymmetric case [39], [11]:
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Theorem 28 An interval matriz [A. — A, A. + A] is stable if
Amax(AL) + o(A") <0 (5.1)
holds, where A’ = %(Ac + Az) and A = %(A + AT).

Proof. If (5.1) holds, then p(A") < Apin(—AL), hence [-AL— A’ — AL+ A'] is positive
definite by Theorem 22 and [A! — A’; A” + A'] is stable by Proposition 26. Stability of
[A. — A, A. 4+ A] then follows by using Bendixson’s theorem as in the proof of Propo-
sition 26. [

5.2 Checking stability is NP—-hard
NP-hardness of checking stability now follows obviously [40]:

Theorem 29 The following problem is NP-hard:
Instance. A nonpositive symmetric stable rational matriz A.

Question. Is [A — E, A+ F] stable?

Proof. By Proposition 26, [A — E, A+ E] is stable if and only if [-A— F, —A+ F]
is positive definite, where —A is a nonnegative symmetric positive definite rational
matrix. Hence the result follows from Theorem 20. ]

Nemirovskii [28] proved NP-hardness of checking stability for general (nonsymmetric)
interval matrices.

5.3 Schur stability

A square matrix A is called Schur stable if p(A) < 1 (where p denotes the spectral
radius). In order to avoid difficulties caused by complex eigenvalues, we define Schur
stability only for symmetric interval matrices in this way: a symmetric A’ is said to
be Schur stable if each symmetric A € A’ is Schur stable. Hence, we do not take into
account the nonsymmetric matrices contained in A’. This definition is in accordance
with the approach employed in [48] and [19]. Then we have this equivalence:

Proposition 30 A symmetric interval matriz [A, A] is stable if and only if the
symmetric interval matriz

[+ oA T+ ozZ]

is Schur stable, where

2
o = — .
A+ 1A = Al +2

(5.2)
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Proof. Let [A, A] be stable. Then for each symmetric A’ € [I + aA, I + oA] we
have A’ = I + aA for some symmetric A € [A, A], hence Apax(A’) = 1 + adpmax(A) < 1.

Furthermore, from
— 2
Aumin(A)] < o(A) = Al = Al + 1A = Al <~

we have

)\min(A/) =1+ Oé)\min(A) > —1,

hence A’ is Schur stable and thereby [ + aA, I + ozZ] is Schur stable.

Conversely, if [I + oA, I + aA] is Schur stable, then each symmetric A € [A, A]
is of the form A = (A’ — I) for some symmetric A’ € [I + aA, I + «A], hence
Amax(A) = é()\maX(A’) —1) <0, and A is stable. Stability of all symmetric matrices in

[A, A] implies stability of [A, A] due to Theorem 27. |

5.4 Checking Schur stability is NP—hard

As a consequence of Proposition 30 we obtain this NP-hardness result [40].

Theorem 31 The following problem is NP-hard:
Instance. A symmetric Schur stable rational matriz A with A < I, and a rational
number a € [0, 1].
Question. Is [A — aF, A + aFE] Schur stable?

Proof. For a nonpositive symmetric stable rational matrix A, the symmetricinterval
matrix [A — £, A+ FE] is stable if and only if [({ + a«A) — aE, (I + aA) + aF] is Schur
stable, where « is given by (5.2). Here [ + oA is a symmetric Schur stable rational
matrix with I + «A < I, and a € [0,1]. Hence we have a polynomial-time reduction
of the NP—hard problem of Theorem 29 to the current problem, which shows that it is
NP-hard as well. ]

This result differs from those of previous sections where NP-hardness was established
for the class of interval matrices of the form [A— F, A4 E]. This is explained by the fact
that regularity, positive definiteness and stability are invariant under multiplication by
a positive parameter whereas Schur stability is not.

5.5 Radius of stability

Similarly to the radius of nonsingularity d(A, A) introduced in subsection 2.3, we may
define radius of stability by

s(A,A) =inf{e > 0; [A — A, A+ ¢A] is unstable}.

Hence, [A — cA, A+ cA] is stable if 0 <& < s(A, A) and unstable if ¢ > s(A, A).
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Proposition 32 Let A be symmetric stable and A symmetric nonnegative. Then
we have

s(A,A) = d(A, A).

Proof. [A —eA A+ cA] is stable if and only if [-A — A, —A + ¢A] is positive
definite (Proposition 26) if and only if [-A — eA, —A 4+ £A] is regular (Theorem 17) if
and only if [A — eA, A + cA] is regular. Therefore the values of s(A, A) and d(A, A)

are equal. [ ]

Hence, we may apply the results of subsection 2.3 to the radius of stability. In
particular, for a symmetric stable matrix A we have

1

B Fl

(Proposition 13) and computing s(A, ) is NP-hard (Theorem 15), even approximately
(Theorem 16).

6 Eigenvalues

Since regularity, positive definiteness and stability can be formulated in terms of eigen-
values, the results of the previous sections may be applied to obtain some results
regarding the eigenvalue problem for interval matrices.

6.1 Checking eigenvalues is NP—hard

Theorem 33 The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matriv A and a
rational number \.
Question. Is X an eigenvalue of some symmetric matriz in [A — K, A+ K¢

Proof. [A— FE, A+ E]is singular if and only if 0 is an eigenvalue of some symmetric
matrix in [A — F, A+ E] (Proposition 7). Hence the NP-hard problem of Theorem 9

can be reduced in polynomial time to the current problem, which is thereby NP~hard. m

[t is interesting that rational eigenvectors can be checked in polynomial time, see [38].

6.2 Computing the maximal eigenvalue is NP—hard

For an interval matrix A? define
A(A") = max{Re ); X is an eigenvalue of some A € A’}

If A7 is symmetric, then an obvious reasoning based on Bendixson’s theorem as in
section 5 shows that

AMAT) = max{Anax(A); A symmetric, A € AT}

24



We shall show that computing A\(A?) approximately with relative error less than 1 is
NP-hard already for symmetric interval matrices:

Theorem 34 Suppose there exists a polynomial-time algorithm which for each in-
terval matriz of the form A = [A—E, A+ E], A rational nonpositive symmetric stable,
computes a rational number A(A!) satisfying

<1

‘X(AI) — A
AT

if MAT) £ 0 and M(A') > 0 otherwise. Then P=NP.

Proof. Under the assumptions, S\(AI) < 0 if and only if A(A?) < 0, and this is
equivalent to stability of A?. Hence we have a polynomial-time algorithm for solving

the NP-hard problem of Theorem 29, which implies P=NP. ]

6.3 Checking enclosures is NP—hard

Before formulating the result, we prove an auxiliary statement concerning the set of
maximal eigenvalues of all symmetric matrices in A,

Proposition 35 For a symmetric interval matriz AY, the set

M (AD) i= {Anax(A); A symmetric, A € AT}

max

is a compact interval.
Proof. Let

MAYY = min{Amax(A); A symmetric, A € A’}
MAY = max{Amax(A); A symmetric, A € A’}

By continuity argument, both bounds are achieved, hence
AAY) = Anax(Ar),
MADY = Anax(Ag)
for some symmetric Ay, Ay € A’. Define a real function ¢ of one real variable by
p(t) = (AL +1(Ay — Ay)), e [0,1],
where

f(A) = max 2T Ax.

ll{l2=1

@ is continuous since f(A) is continuous [39], and ¢(0) = f(A1) = Inax(A1) =
MAD, p(1) = f(A3) = Amax(A2) = A(AT), hence for each A € [M(AL), A\(AT)] there
exists a ¢y € [0, 1] such that

A=op(ty) = f(A1 +t:(As — A1) = Anax (A1 + 12 (A — Ay)).
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Hence each A € [A(A?), A(AT)] is the maximal eigenvalue of some symmetric matrix in
Al and we have

Anax (A7) = [A(AT), A(AT)].

max

In the last result of this section we show that checking enclosures of AL (Af) is

NP-hard: -

Theorem 36 The following problem is NP-hard:
Instance. A nonpositive symmetric stable rational matriz A, and rational numbers

a, b, a <b.
Question. Is A

I JA—E, A+ E])C (a,b)?
Proof. For each symmetric A’ € [A — E, A + E] we have
[Amax(A)| < o(A") < [|A[x < AL+ [[E]ly = [Allh + n < a = A1 +n + 1.
Hence due to Theorem 27, [A — I, A 4+ E] is stable if and only if
Mo ([A-E,A+E) C (—a,0)

max

holds. This shows that the NP-hard problem of checking stability of [A — F, A + E]
(Theorem 29) can be reduced in polynomial time to the current problem, which is thus

NP-hard. ]

7 Determinants

Determinants of interval matrices have been scarcely studied in the literature so far.
We include here some results that might be of interest.

7.1 Edge theorem

The following theorem was proved in [35]:

Theorem 37 Let Al = [A, A] be an interval matriz. Then for each A € Al there
exists an A’ € A? of the form

[ (A AY () # (ko).
Aife{mwﬂ if (i, ) = (k,m) (7.1)

for some (k,m) such that
det A = det A’
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Proof. For each A € A denote by h(A) the number of entries with A;; ¢ {A;, Aij},
i,j=1,...,n. Given an A € Al, let A’ be a matrix satisfying A’ € A!, det A’ = det A
and

h(A') = min{h(A); A € A’ det A = det A}. (7.2)

If h(A') > 2, then there exist indices (p,q),(r,s),(p,q) # (r,s) such that A’ €
(A Apg), AL, € (A, Ars). Then we can move these two entries within their in-
tervals in such a way that at least one achieves its bound, and the determinant is kept
unchanged. Then the resulting matrix A” satisfies h(A”) < h(A’), which is a contra-
diction. Hence A’ defined by (7.2) satisfies h(A’) < 1, which shows that it is of the

form (7.1), and det A = det A’ holds. [ ]

A matrix of the form (7.1) belongs to an edge of the interval matrix A! considered
a hyperrectangle in R™ . Hence the theorem says that the range of the determinant
over Al is equal to its range over the edges of A’. In particular, for zero values of the
determinant we have this “normal form” theorem [37].

Theorem 38 If Al is singular, then it contains a singular matriz of the form (7.1).

As a consequence we obtain that real eigenvalues of matrices in A’ are achieved at the
edge matrices of A’.

Theorem 39 If a real number X\ is an eigenvalue of some A € Al then it is also
an eigenvalue of some matriz of the form (7.1).

Proof. If X is a real eigenvalue of some A € Al = [A, A], then A — A is a singular
matrix belonging to [A — A, A — AI], which is thus singular, hence by Theorem 38
it contains a singular matrix A’ — AI, where A’ is of the form (7.1). Then A is an
eigenvalue of A’. ]

A general “edge theorem” for complex eigenvalues was proved by Hollot and Bartlett
in [21].
7.2 Computing extremal values of determinants is NP—hard

For an interval matrix A, consider the extremal values of the determinant over A’
given by

det(AT) = max{det A; A € A"},
det(AT) = min{det A4; A € A'}.

Since the determinant is linear in each entry, Theorem 37 implies that the extremal
values are achieved at some of the 27 vertex matrices, i.e. matrices of the form

A e {A

779

Zij}, i,jzl,...,n.

We have this result:
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Theorem 40 Computing det(A!), det(A?) is NP-hard for the class of interval ma-
trices of the form Al = [A — E, A+ E], A rational nonnegative.

Proof. For an interval matrix of the form A! = [A — E, A + E], where A is a
nonnegative symmetric positive definite rational matrix, singularity of A is equivalent
to

det(Al) >0, (7.3)

where Al = Al if det A < 0 and Al is constructed by swapping the first two rows of A!
otherwise (which changes the sign of the determinant). Here Al = [Ag — E, Ay + F],
where Ag is a nonnegative rational matrix. Hence the NP—hard problem of checking
regularity (Theorem 9) can be reduced in polynomial time to the decision problem (7.3)
which shows that computing det(A’) is NP-hard in this class of interval matrices. The
proof for det(A?’) is analogous. ]

8 Nonnegative invertibility and M—matrices

So far we have shown a number of properties of interval matrices that are NP-hard
to check. Finally we present two useful properties whose checking may be done in
polynomial time.

8.1 Nonnegative invertibility

An interval matrix is said to be nonnegative invertible if A=! > 0 for each A € A’
The following result is due to Kuttler [25]; we use here the elementary proof from [36].

Theorem 41 An interval matriz A = [A, A] is nonnegative invertible if and only

ifA™ >0 and A" > 0.

Proof. The “only if” part is obvious. To prove the “if” part, denote Dy = A

A), then Dy > 0 and

(A

(1= Do) =(A A =ATA=T4+ A (A= 4) >0,
hence o(Dy) < 1. Then for each A € Al we have Q(Z_I(Z —A)) < o(Dp) < 1, and

from the identity
A=AI-A" (A= A)

we obtain

Hence, checking nonnegative invertibility of an interval matrix A? with rational bounds
can be performed in polynomial time [14].
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8.2 M-matrices

An interval matrix A! is called an M-matrix if each A € A! is an M-matrix (i.e.,
A;; <0fori#jand A~ > 0). As a consequence of Kuttler’s theorem we have this
characterization:

Theorem 42 An interval matriz A = [A, A] is an M -matriz if and only if A and
A are M -matrices.

Proof. The “only if” part is obvious. Conversely, if both A and A are M -matrices,
then A= > 0 and A > 0, hence each A € Al satisfies A= > 0 (Theorem 41) and
Ay < sz <0 for:=#j,ie Aisan M-matrix. [

9 Appendix: Regularity and P—property

In section 4 we mentioned Coxson’s NP-hardness result for checking P—property of real
(noninterval) matrices. We add the result here as an appendix since it is of independent
interest and is based on a nice equivalence of regularity of interval matrices with P—
property of associated real matrices, which is also due to Coxson [9].

9.1 Regularity and P—property I

Consider an n x n interval matrix AT = [A, A] which we shall write in the form Al =
[A, A + 2A], where A = (A — A) as before. Assuming nonsingularity of A, for each
i,7 € {1,...,n} define the vector

Ci; = Q(Anél_jl, AiQAQ_]‘la cee AinA;]‘l)T
(where we write A,Zjl for (A7")1;), and the matrix
Cij = cije’,

where e is the n—vector of all ones. Hence, C;; is an n x n matrix whose all columns
are identical and equal to the vector ¢;;. Finally, define the real matrix

] 0 0 011 012 Cln
con=| LT
00 ... I Coi Cha ... Chy

whose all blocks are n x n matrices, hence C(A') is of size n? x n%. For each y,2 € 7,
let us define the yz—minor of C'(A?) as the determinant of the principal submatrix of
C(A?) consisting of rows and columns with indices (z — 1)n + 7, where y;2; = —1. The
equivalence (1)< (ii) of the following theorem is due to Coxson [9], equivalence (i)<(iii)
is added here as a consequence of the Baumann theorem 11 to show that the number
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of determinants to be checked for positivity can be decreased from 2%° —1 to 227~ — 1,
The specific feature of this result consists in the fact that regularity of an n x n interval
matrix Al is characterized in terms of an n? x n? real matrix C'(Af). Nevertheless, the
number of operations involved still remains exponential in n.

Theorem 43 For an interval matriz A”, the following conditions are equivalent:
(i) Al is regular,

(i) A is nonsingular and C(Al) is a P-matriz,

(iii) A is nonsingular and each yz-minor of C(A!) is positive, y,z € 7.

Proof. (i)&(ii): Put

T of .. of
of T ... 0of

F = ] ,
O‘T O‘T .. e‘T

where all the blocks are n—dimensional vectors, hence I is of size n x n%, and

A11€1 A12€2 . Alnen
A2161 A22€2 . Aznen

G = . . , . :
Anlel Angez . Amen

where e; denotes the jth column of the n X n unit matrix I, hence G is of size n? x n.
Consider any vertex matrix A of A’, i.e. a matrix satisfying

Ay e {4, Ay}, ij=1,....n.

A straightforward computation shows that A can be written in the form
A=A+2FDG,
where D is the n? x n? diagonal matrix satisfying

1 if A;; = Ay,
D(i—1yntji-1yn+i = 0 if Aj; = A

(., =1,...,n). Then we have
det A = (det A)(det(I 4+ 2A7'F DG)). (9.1)

Since

det(I +2A7"FDG) = det(l,2 + 2DGA™'F) (9.2)

(see Gantmacher [16]; I, is the n? x n? unit matrix), and since

2GAT'F = C(AY) — I (9.3)
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(as it can be easily verified), from (9.1)-(9.3) we obtain
det A = (det A)(det(1,» + D(C(AT) — 1,2))), (9.4)

where

det(12 + D(C(A") — 1,2)) (9.5)
is obviously the determinant of the principal submatrix formed from rows and columns
of C(A!) with indices (¢ — 1)n + j for which A;; = A;;.

Now, if A? is regular, then each principal minor of C'(A’) can be written in the
form (9.5) for an appropriately chosen vertex matrix A. Since (det A)(det A) > 0 due
to regularity, (9.4) implies that (9.5) is positive. Conversely, if each principal minor of
C(A) is positive, then (det A)(det A) > 0 for each vertex matrix A of A’ due to (9.4),
which implies that A’ is regular (Theorem 11). Hence (i) and (ii) are equivalent.

To prove (i)« (iii), notice that each matrix A,, € Al,y,z € Z defined by (2.6)
satisfies

(Ayz)ij :Aij —I-(l —in]‘)AZ’]‘, Z,j = 1,...,n,
hence it can be written as

Ayz — A‘I’ FDyZG7

where F' and G are as above and D, is the n? x n* diagonal matrix satisfying

(Dyz)i—tynti(imtynts = L —¥izj, 6,5 =1,...,m.

Then we obtain as before that
1
det A,. = (det A)(det(I,2> + §DyZ(C(AI) —12))),

where

1
det (1,2 + §DyZ(C(AI) —1,2))

is exactly the yz-minor of C(A!) defined earlier in this section. Hence an obvious
reasoning based on Baumann’s theorem 11 leads to the conclusion that A’ is regular
if and only if all the yz-minors of C(Af) are positive, y,z € 7. [ ]

9.2 Checking P—property is NP-hard for real matrices

Coxson’s result [9] is obtained as an immediate consequence of the previous character-
ization.

Theorem 44 Checking P—property of real matrices is NP-hard.

Proof. According to the equivalence (i)<(ii) of Theorem 43, the problem of checking
regularity of an interval matrix A’ with rational bounds can be reduced in polynomial
time to the problem of checking P-property of a rational matrix C(Af). Since the
former problem is NP-hard (Theorem 9), the same is true for the latter one as well. m
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9.3 Regularity and P—property II

It should be noted that there also exists another relationship between regularity and
the P—property, which proved to be a very useful tool for deriving some nontrivial
properties of inverse interval matrices and of systems of linear interval equations. The
following theorem was published in a report form [34] in 1984 and in a journal form

[37] in 1989.
Theorem 45 If A” is reqular, then AT Ay is a P-matriz for each Ay, Ay € AT,

Proof. Assume to the contrary that A7'A, is not a P-matrix for some A, A, €
Al = [A. — A, A. + A]. Then according to the Fiedler-Ptak theorem [15] (quoted at
the beginning of section 4) there exists an x # 0 such that x;( A7 Ayx); < 0 for each 1.
Put 2’ = A7' Ayz, then

v, <0 (i=1,...,n) (9.6)

and

v #a (9.7)

holds. In fact, since @ # 0, there exists a 7 with 2; # 0; then :1;? > 0 whereas (9.6)
implies x;2% < 0, hence z; # 2. Now we have

|A(2" — 2)| = [(Ae — A2’ + (A — Az < Al2'| + Alz| = Az’ — 2| (9.8)

since || 4 |z| = |2’ — x| due to (9.6). Hence Proposition 10 in the light of (9.8) and
(9.7) implies that A’ is singular, which is a contradiction. [ ]

For applications of this result, see [37].
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