
A Hierarchy for (1,+k)-branching programs with respect to k

Savický, Petr
1996

Dostupný z http://www.nusl.cz/ntk/nusl-33667

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 04.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33667
http://www.nusl.cz
http://www.nusl.cz


INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A hierarchy for ����k��branching programs
with respect to k

P� Savick�y� S� �Z�ak

Technical report No� ���

Institute of Computer Science� Academy of Sciences of the Czech Republic
Pod vod�renskou v��� �� �	� 
� Prague 	� Czech Republic

phone� 
����� �������� fax� 
����� 	�	��	�
e�mail� fstan�savickyg�uivt�cas�cz



INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A hierarchy for ����k��branching programs
with respect to k

P� Savick�y� S� �Z�ak �

Technical report No� ���

Abstract

Branching programs �b� p��s� or decision diagrams are a general graph	based model of
sequential computation� The b� p��s of polynomial size are a nonuniform counterpart of
LOG� Lower bounds for di
erent kinds of restricted b� p��s are intensively investigated�
An important restriction are so called k	b� p��s� where each computation reads each
input bit at most k times� Although� for more restricted syntactic k	b�p��s� exponential
lower bounds are proven and there is a series of exponential lower bounds for �	b� p��s�
this is not true for general �nonsyntactic� k	b�p��s� even for k 
 �� Therefore� so called
����k�	b� p��s are investigated�

For some explicit functions� exponential lower bounds for ����k�	b� p��s are known�
Investigating the syntactic ����k�	b� p��s� Sieling has found functions fn�k which are
polynomially easy for syntactic ����k�	b� p��s� but exponentially hard for syntactic
�����k � ���	b� p��s� In the present paper� a similar hierarchy with respect to k is
proven for general �nonsyntactic� ����k�	b� p��s�

Keywords
branching programs� lower bounds

�The research of both authors was supported by GA of the Czech Republic� grant No� ���������	
�



� Introduction

A branching program �b� p�� is a computation model for representing the Boolean
functions� The input of a branching program is a vector consisting of the values of
n Boolean variables� The branching program itself is a directed acyclic graph with
one source� The out	degree of each node is at most �� Every branching node� i�e� a
node of out	degree �� is labeled by an input variable and one of its out	going edges is
labeled by �� the other one by �� The sinks �out	degree �� are labeled by � and �� A
branching program determines a Boolean function as follows� The computation starts
at the source� If a node of out	degree � is reached� the computation follows the unique
edge leaving the node� In each branching node� the variable assigned to the node is
tested and the out	going edge labeled by the actual value of the variable is chosen�
Finaly� a sink is reached� Its label determines the value of the function for the given
input� By the size of a branching program we mean the number of its nodes�

The branching programs are a model of the con�guration space of Turing machines
where each node corresponds to a con�guration� Thus the polynomial size b� p��s
represent a nonuniform variant of LOG� Hence� a superpolynomial lower bound on
b� p��s for a Boolean function computable within polynomial time would imply P �

LOG�

In order to investigate the computing power of branching programs� restricted mod	
els were suggested� An important restriction are so called read	once branching pro	
grams ���b� p��s�� where the restriction is such that during each computation on any
input each variable is tested at most once�

The �rst exponential lower bounds for �	b� p��s were ���� and ����� These results
were improved in ���� These bounds are of magnitude ���

p
n�� The �rst lower bound

of magnitude ���n�� where n is the input size was �n�c lower bound for a large c for
the function �parity of the number of triangles in a graph�� see ���� The constant c in
this lower bound was improved� see ����� to a lower bound of magnitude �n����� for the
same function� For a di
erent function� a lower bound �n�o�n� was proved in ����� In
���� a lower bound �c

p
n is proved for multiplication�

Several generalizations of �	b� p��s are investigated� Recently� the most powerful
among them are so called k	b� p��s� where each computation is allowed to test each
variable at most k times� Since no superpolynomial lower bounds even for �	b� p��s
are known� even more restricted b� p��s are investigated� Namely� so called ����k�	
b� p��s� where for every input� there are at most k variables that are tested during the
computation more than once� If� moreover� the variables with repeated tests may be
read at most two times� we obtain a class that contain �	b� p��s and is contained in
�	b� p��s� For ����k�	b� p��s� an exponential lower bound for k up to n� for some �xed
positive � may be found in ���� ���� and ����� The results of ��� and ���� hold even for
� arbitrarily close to �� A superpolynomial lower bound for k 
 o�n� log n� is proved
in ����

The two restrictions mentioned above� namely k	b� p��s and ����k�	b� p��s can be
made even stronger� if the restriction of repeated tests is applied not only to valid
computation paths� but to every possible path from the source to a sink in the b� p��
including inconsistent paths� In this way� we obtain so called syntactic k	b� p��s and
syntactic ����k�	b� p��s� Note that each ��b� p� is a syntactic ��b� p�� while for k�b� p��s�
k � � this is not true in general�

�



For syntactic k	b� p��s� exponetial lower bounds are known� see ���� ���� ���� for some
k 
 ��log n�� The result of ��� and ��� hold even for nondeterministic k	b� p��s� For
syntactic ����k�	b� p��s� a strict hierarchy according to k was proved in ���� and ����
for k at most roughly n����

In the present paper� we generalize the last mentioned result in such a way that it
holds also for �nonsyntactic� b� p��s for k � ��� � n��� log���	 n� Namely� we present
functions fn�k which are polynomially easy for ����k�	b� p��s� but exponentially hard
for �����k � ���	b� p��s�

In order to prove the hierarchy result� an exponential lower bound for ����k�	b� p��s
is proved� In comparison to ���� ���� and ���� the exponential lower bound is reached in a
smaller range of k� On the other hand� while all the three mentioned results use in fact
the same method� the present paper is based on a di
erent method� The method of ����
���� and ���� may be applied only to functions f satisfying the following requirement
or its dual� If f�x� 
 f�y� 
 �� then either x 
 y or the Hamming distance of x and y
is at least n� for some positive �� The function used for the lower bound in the present
paper does not have this property�

The structure of the paper is as follows� In Section �� a function fn�k of n variables
is de�ned and some its properties are proved� In Section � an exponential lower bound
for fn�k in �����k � ����b� p��s is proved using two theorems proved later in Sections �
and �� In Section �� we present a polynomial size ����k�	b� p� for fn�k and summarize
the main result�

� The function and its basic properties

In this section� we de�ne the function fn�k and prove some properties of the function�
Informally� the function is de�ned as follows� The n variables are divided into k blocks
of length m� For every j 
 �� �� � � � � k� a weighted sum of the bits of block j determines
an index ij of some of the input bits� Then� the value of the function is the parity of
the bits determined by ij for j 
 �� �� � � � � k� The exact de�nition of fn�k requires some
technical notation�

For every natural number n� let p�n� be the smallest prime greater than n� Consider
the set f�� �� � � � � ng as a subset of Zp�n�� the �eld of the residue classes modulo p�n��
Then� for every t � Zp�n�� let ��t� 
 t� if t � f�� �� � � � � ng and ��t� 
 � otherwise�

De�nition ��� For every t 
 �t�� t�� � � � � tk� � f�� �� � � � � ngk and every x � f�� �gn� let
Par�x� t� 
 xt� � xt� � � � �� xtk �

De�nition ��� Let k divide n and letm 
 n�k� Then� let �n�k � f�� �gn 	 f�� �� � � � � ngk
be de�ned as follows� For every x let �n�k�x� 
def �t�� t�� � � � � tk�� where for every
j 
 �� �� � � � � k�

tj 
 �

�
mX
i
�

i x�j���m�i

�
�

where the sum is evaluated in Zp�n�� Moreover� let fn�k�x� 
def Par�x� �n�k�x���

In order to prove some required properties of �n�k� we shall use the following theorem
originally proved in ���� A di
erent proof of this theorem may be found in ����

�



Theorem ��� �Dias da Silva and Hamidoune� Let p be a prime and let h� and h� be
integers� Moreover� let h� � h� � p and let A 
 Zp such that jAj 
 h�� Let A� be the
set of all sums of h� distinct elements of A� Then� jA�j � min�p� h��h� � h�� � ���

Corollary ��� Let � 	 � be �xed� Then� for every n large enough� the following is
true� If A 
 Zp�n� and jAj � �� � ��

p
n� then� for every t � Zp�n�� there is a subset

B 
 A such that the sum of the elements of B is equal to t�

Proof� Let h� 
 b�� � ����
p
nc and h� 
 �h�� Choose any subset C of A of size

h�� By Theorem ���� there is at least min�p�n�� h�� � �� di
erent sums of h� distinct
elements of C� We have h�� � � � �� � ��n �O�

p
n�� Since p�n� 
 n � o�n�� see �����

we have min�p�n�� h�� � �� 
 p�n�� Hence� for every t � Zp�n�� there is a set B � A of
h� elements adding up to t� �

Lemma ��� For any �xed � 	 �� for every n large enough and for every k as above�
the following is true� If r is an integer such that n 	 r � k��� � ��

p
n� ��� and if at

most n � r of the variables of the function Par�x� �n�k�x�� are set to some constants�
the restricted function is still not a constant function�

Proof� For simplicity� let s 
 b�� � ��
p
nc� There are at least r � k�s � �� free

variables distributed among the k blocks� Let t be the number of blocks with at most
s free variables� Set the free variables in these t blocks in an arbitrary way� say� to
zeros� Now� these t blocks contain only �xed variables and it is possible to evaluate
the entries of �n�k�x� determined by these blocks� There are at most t di
erent input
variables the index of which is equal to some of these indices� Let us call these variables
marked�

The remaining blocks contain at least �k� t��s���� t free variables and� hence� at
least �k � t��s� �� free variables that are not marked� It follows that there is a block
with at least s� � free variables that are not marked� Choose s� � of these variables�
call them critical variables� and set the other free variables in the same block in an
arbitrary way� say to zeros�

There are still k � t � � blocks with some free variables di
erent from the block
with the critical variables� Each of these blocks contain at least s � � free variables�
marked or not marked� Set all free variables in each of these blocks in such a way that
the index determined by each of these k� t� � blocks belongs to the block itself� This
is possible according to Corollary ����

Now� the only remaining free variables are the critical variables and all these vari	
ables are in one block� The indices determined by the other blocks are �xed to values
di
erent from the indices of critical variables� The function obtained by this setting
of variables is not a constant function� since it is possible to set one of the critical
variables to � or � and the remaining ones in such a way that the index determined
by the block with critical variables is just the index of the �rst chosen critical variable
�Corollary ����� Hence� the value of the function may be both � and �� �

Lemma ��� If at most n�k � �
p
n of the variables of the function �n�k are set to

some constants� the restricted function still satis�es the following� For every choice of
� � i�� i�� � � � � ik � n� there is a setting of the free variables such that the value of �n�k

is equal to �i�� i�� � � � � ik��

�



Proof� In each blok� at least �
p
n variables are free� Using Corollary ���� each entry of

�n�k�x� may be set to any value from f�� �� � � � � ng independently of the other entries�
�

� The lower bound

In this section� we prove an exponential lower bound for fn�k in �����k � ���	b� p��s� if
k is not too large� There are several possibilities how to bound the number of repeated
tests in a path� We use the following de�nition� i�e�� we count only the number of
di
erent variables involved in the repeated tests� not the number of these tests�

De�nition ��� Let P be a b� p� For every input x� let R�x� be the set of indices of
input bits that are read more than once during the computation for x� The b� p� P is
called a ����k��b� p�� if for every x� jR�x�j � k�

For a path �� let 
��� be the set of variables tested in ��

De�nition ��� Let S be some set of paths in a b� p� going from a node u to a node
v� Then the number �����

�
��S


���

������min
��S

j
���j

will be called the �uctuation of S� If both occurrences of 
��� in the expression above
are replaced by 
���� I� where I is a set of variables� we call the resulting number the
�uctuation of S relative to I�

We say that an edge �u� v� is a test of a variable xi� if u is of degree � and xi is the
label of u�

De�nition ��� We say that a branching program P is �p� r�	well�behaved� if it satis�es
the following three conditions�
�i� Every path from the source of P to a sink contains at least p tests�
�ii� The �rst p tests on any path starting in the source of P test p di
erent variables�
�iii� If w is any node of P and S is the set of all paths with p tests leading from the
source to w� then the �uctuation of S is less than r�

One of the key steps of the proof is the following theorem� Its proof may be found
in Section ��

Theorem ��� Let n� k� p� r be integers such that r � n� �kp � n � r� Let f be
a Boolean function of n variables such that any setting of at most n � r variables to
constants still leads to a nonconstant function� Let P be a �����k�����b� p� computing
f � Then� there is a subprogram P � of P arising from P by setting at most ��k � ��p
variables to constants that is �p� r��well�behaved�

To prove the lower bound� we shall combine Theorem ��� with the following Theo	
rem ���� This theorem is implicitly used already in ����� For convenience of the reader�
we present a complete proof in Section ��

If vj is a vector� let vj�i be its i�th coordinate�

�



Theorem ��� Let k� p and m be integers and let k divide p� For j 
 �� �� � � � �m�
let vj � f�� �gI � where I is some index�set of size p� Assume that for every k�tuple
i�� i�� � � � � ik � I� there is a function � � f�� �gI 	 f�� �g such that
�	
 � is computable by a decision tree of depth at most k � ��
��
 For every j 
 �� �� � � � �m we have

��vj� 
 vj�i� � vj�i� � � � �� vj�ik �

Then� we have m � �p�����k��

Now� we can state and prove the lower bound result�

Theorem ��� Let n� k be integers� let k divides n and let k � p
n��� Then� every

�����k � ����b� p� computing fn�k has size at least

�

�
n

�k�
� �

p
n

�k�
� �k

p
n log n� �

�
�

Proof� First� let us introduce an auxiliary notation� For partial inputs u�� u�� � � � � us
specifying disjoint sets of bits� let �u�� u�� � � � � us� denote the �partial� input specifying
all the bits speci�ed in some of uj in the same way as in corresponding uj�

Let r 
 k�b�pnc���� q 
 n�k��
p
n and p 
 bq���k��ck� We have �kp � q � n�r�

By Lemma ���� setting of at most n � r variables in Par�x� �n�k�x�� 
 fn�k leads to
a nonconstant function� Hence� the function Par�x� �n�k�x�� satis�es the assumption
of Theorem ��� for our choice of k� p and r� Let P be a �����k � ����b� p� of size c
computing fn�k� Consider the subprogram P � of P guaranteed by Theorem ���� Let u
be the partial input with at most ��k � ��p �xed variables which yields P � and let w�

be the source of P �� We have that P � is a �����k�����b� p� of size at most c computing
the restriction of Par�x� �n�k�x�� according to u�

Let w� be the node of P � such that the number of paths starting at w�� ending in w�

and containing p tests is maximal� There is at least �p�c of such paths� Call the set of
these paths P�� Each path tests some set of variables� Since P � is �p� r�	well	behaved�
the �uctuation of P� is less than r and hence� there are at most

�
p�r
r

�
of di
erent sets of

variables tested along individual paths from P�� Let P� be some of the largest subsets
of P� of paths testing exactly the same set of variables� Then� we have

jP�j � �p

c
�
p�r
r

� �

Each path in P� together with u determines a partial input� For every partial input�
it is possible to evaluate its contribution to the k entries of the value of �n�k� By this�
we mean the sums from De�nition ��� restricted to bits with the value �xed by u and
the given path from P�� The number of possible contributions is at most nk� Hence�
there is a subset P� of P� of paths with the same contributions and such that its size
m 
def jP�j satis�es

m � �p

c
�
p�r
r

�
nk
� �����

�



Let v�� v�� � � � � vm be the list of elements of P� and let I be the set of indices of variables
set to a constant by inputs vj� By construction of P�� jIj 
 p� We are going to verify
that the inputs v�� v�� � � � � vm satisfy the assumption of Theorem ����

Let us �x some i�� i�� � � � � ik � I� Let x be a partial input such that �u� v�� x� is
a total input satisfying �n�k��u� v�� x�� 
 �i�� i�� � � � � ik�� Such an x exists� since the
number of bits �xed by �u� v�� is not larger than �kp � q � n�k � �

p
n and therefore

we may apply Lemma ����
Since all the partial inputs v�� v�� � � � � vm have the same contributions to the sums

in the De�nition ���� �n�k��u� vj� x�� 
 �i�� i�� � � � � ik� for all j 
 �� �� � � � �m�
Consider the restriction P �� of P � according to the values of input bits from the input

x� The only free input bits of P �� are the bits from I� For every vj� the computation
of P �� computes fn�k��u� vj� x�� 
 Par��u� vj� x�� �i�� i�� � � � � ik�� 
 vj�i� � vj�i� � � � �� vj�ik �
Moreover� for every vj� the computation of P �� reads all the bits from I� then it reaches
the node w� and in the rest of the computation� at most k � � variables with indices
in I are read� �Since P �� is also a �����k � ���	b� p��

Consider the subprogram of P �� starting in w� and let P ��� be the decision tree
obtained from this subprogram as follows� First� we expand the subprogram starting
at w� into a tree� In the second step� we delete all edges of the tree that are not visited
by any computation starting from w� for some of vj� After this� some of the nodes of
the tree might have out	degree �� In the last step� every such node is deleted and the
edge leading to it is redirect to the single successor of the considered node�

Every leaf of P ��� is reached by a computation for some vj� otherwise some of the
edges of the path leading to the leaf would have been deleted� Hence� each path of P ���

tests at most k�� variables� since it tests a subset of the set of variables read by some
computation of P �� after the node w� for some of vj�

Let � be the function computed by P ���� Clearly� � satis�es the assumption ��� of
Theorem ����

By construction of P ���� P �� and P ��� are equivalent on inputs vj� Thus� for each
j 
 �� � � � � �m� we have ��vj� 
 fn�k��u� vj� x�� 
 vj�i� � vj�i� � � � � � vj�ik � Hence� �
satis�es also the assumption ��� of Theorem ����

These arguments work for every k�tuple of indices from I� Hence� Theorem ���
implies m � �p�����k��

Together with ������ this implies

c � �p�k�
p�r
r

�
nk
�

Since
�
p�r
r

�
� nr� we have

c � �p�k�r logn�k logn� �����

The theorem now follows by substitution of the chosen values of p� r and k into the
last estimate� �

� The hierarchy

We shall prove an upper bound for the function fn�k on ����k�	b� p��s� Together
with the lower bound from the previous section� it gives that ����k�	b� p��s are more

�



powerful than �����k � ���	b� p��s�

Theorem ��� Let k 
 k�n� � ��� � n��� log���	 n� Then� for every n large enough� we
have �i
 There is a ����k��b� p� computing fn�k of size O�n���
�ii
 Every �����k � ����b� p� computing fn�k has size at least ���n�k

���

Proof� Let us start with �i�� We shall construct a ����k�	b�p� P computing fn�k�
Consider the input bits in the input x divided into k groups in the same way as in
the de�nition of �n�k� Let �n�k�x� 
 �i�� i�� � � � � ik�� In order to describe P � we shall
describe for every j 
 �� �� � � � � k a b� p� Pj computing xi� � xi� � � � �� xij � Then� P is
Pk�

Let x�� x�� � � � � xm be the bits in the �rst group� The b� p� P� is leveled and it
reads the bits in the �rst group in the natural ordering� For simplicity� assume that
each level consists of p�n� vertices corresponding to the residue classes mod p�n�� The
computation starts in level � in the node corresponding to �� After reading xj� the
computation reaches the j	th level in the node corresponding to the residue class x� �
�x���x�� � � ��jxj mod p�n�� For each j 
 �� �� � � � �m�� and each node w at level j�
this determines the two nodes at level j��� where the edges from w lead to� Consider
the node corresponding to t � Zp�n� at levelm� In this node� the variable ��t� is tested
and its value is the output of P��

The b� p� just described computes xi�� since the computation reaches the m	th level
in the node corresponding to x� � �x� � �x� � � � ��mxm mod p�n� and by de�nition
of �n�k� we have i� 
 ��x� � �x� � �x� � � � ��mxm��

Now� assume� Pj is constructed� In order to construct Pj��� append to each of
the two sinks of Pj a b� p�� computing xij in a way similar to the computation of xi�
in P�� We obtain a b� p� with four sinks corresponding to the four possible values of
xi��xi�� � � ��xij and xij��� Now� Pj�� is obtained by joining the sinks with the same
value of xi� � xi� � � � �� xij�� �

Note that� P� has size at most p�n�n�k� Moreover� for each j 
 �� �� � � � � k� the
b� p� Pj contains at most �p�n�n�k additional nodes w�r�t� Pj��� Hence� Pk is of size
at most �p�n�n 
 O�n���

In order to prove �ii�� note that� if k 
 k�n� � ��� � n��� log���	 n� then
�

�
� n

�k�
� �

p
n

�k�
� �k

p
n log n� � �

Using this� Theorem ��� implies �ii�� �

� Proof of Theorem ���

Let us start the proof by the following� Let an edge �u� v� be a test of a variable xi�
The Boolean value labeling this edge is called the value required by this test� Two
tests of the same variable are consistent� if they require the same value�

Now� we shall construct a sequence v�� v�� � � � � vt of nodes of P � where v� is the
source and vt is some of the sinks and a sequence T�� T�� � � � � Tt� where Ti is a set of
some paths from vi�� to vi� We shall construct these two sequences by a process starting
with v� beeing the source of P and with an empty sequence of sets� The process will be

�



described in steps� In step j� we start with some sequence v�� v�� � � � � vj�� of nodes and
a sequence of sets T�� T�� � � � � Tj��� we add a new node vj� a new set Tj and possibly
modify the sets Ti for i 
 �� � � � � j � �� The process stops� when vj becomes a sink of
P and we set t 
 j� In each step of the process� to each of the sets Ti a type A� B or
C is assigned� The type is assigned when the set is created and it may be modi�ed� if
the set is changed at some later step�

De�nition ��� Let T�� T�� � � � � Tj be the sets constructed at some step of the process�
Let t�� t� be tests of the same variable contained in T�� T�� � � � � Tj� Then� we say that
the test t� preceeds the test t�� if either for some i both t� and t� are in some path � � Ti
and t� preceeds t� in � or t� is contained in Ti� and t� in Ti� and i� � i�� Moreover�
we say that the rank of a test t is h� if h is the maximum integer� for which there are
tests t�� t�� � � � � th of the same variable� such that t 
 th and for all i 
 �� �� � � � � h� ti��
preceeds ti� A test is called a repeated test� if its rank is at least ��

In each step of the process� we require that the sequence T�� T�� � � � � Tj is consistent�
By this� we mean the following� If �i � Ti is any choice of one path from each of the
sets� the concatenation of �i is a consistent path in P � We will require even stronger
structural property� Our requirement is as follows�

Requirement � Let xi be any variable contained in a repeated test in T�� T�� � � � � Tj�
Then
�i� all its tests in T�� T�� � � � � Tj are consistent�
�ii� there is exactly one test of xi of rank �� say t��
�iii� there is exactly one test of xi of rank �� say t��
�iv� If j� � j� are such that t� is contained in �� � Tj� and t� is contained in �� � Tj��
then jTj�j 
 jTj�j 
 � and t� is the last test of ���

Note that if Requirement � is satis�ed� there may be inconsistent tests of some
variable in T�� T�� � � � � Tj� if all have rank �� In particular� all these tests have to be
contained in the same set Tj� for some j� 
 �� �� � � � � j�

Requirement � �i� If Ti is assigned type A� then it contains no test of rank ��
�ii� If Ti is assigned type B� then it contains no test of rank � and� moreover� it contains
exactly one path�
�iii� If Ti is assigned type C� then it contains exactly one path� this path contains
exactly one test of rank � and this test is the last test of the path�

The procedure of creating sets Tj and the assignment of types will be such that in
each step of the process� Requirements � and � will be satis�ed�

Let a sequence T�� T�� � � � � Tj�� satisfying Requirements � and � be given� Note that�
at the beginning of the process� i�e� if j 
 �� the sequence of sets is empty and� hence�
it satis�es both Requirements � and �� In order to describe the procedure of creating
the set Tj� choose any path � starting at vj�� and calculate the ranks of tests in �
according to the sequence T�� T�� � � � � Tj��� f�g of j sets�

De�nition ��� A path � starting in vj�� is called good� if there is no test of rank �
in ��

�



Let � be a good path starting at vj��� There are two kinds of tests in �� tests of
rank � and tests of rank at least �� Note that if some variable has a test of rank � in
�� then there is no other test of the same variable in � and also no test of the variable
in T�� T�� � � � � Tj��� Moreover� if some variable has a test of rank at least �� then also
the �rst test of this variable in � has rank at least �� Hence� the variable is repeated
already in T�� T�� � � � � Tj�� and then all occurrences of this variable in T�� T�� � � � � Tj��
are consistent� Hence� every test of such a variable in � is either consistent with all its
preceeding tests in T�� T�� � � � � Tj�� or with none of them�

De�nition ��� �i� A good path � is called consistent� if all tests in � of any variable
that is repeated in T�� T�� � � � � Tj�� are consistent with all the tests of the same variable
in T�� T�� � � � � Tj���
�ii� A good path is called maximal good path� if it leads to a sink or to a node labeled
by a variable xi� such that adding a test of xi to the path creates a test of rank ��

If a consistent good path is not maximal� then it leads to a node� such that the
variable xi tested in it is either repeated in T�� T�� � � � � Tj�� or has not test there� In the
former case� one of the edges leaving the node forms a consistent prolongation of the
path� In the latter case� both edges leaving the node lead to a consistent prolongation�
Hence� every consistent good path is a pre�x of a consistent maximal good path� i�e�
of a consistent path that is moreover a maximal good path�

We shall distinguish the following three cases� It is easy to see that if Case � does not
occur� then at least one of Cases � or � occurrs� If Case � and � occur simultaneously�
Case � has higher priority� Consider all consistent maximal good paths starting at
vj���

Case �� Every such path contains at least p tests of rank ��
Case �� Among these paths� there is a consistent good path � containing � p tests of
rank � and leading to a sink�
Case �� Among these paths� there is a consistent good path � containing � p tests
of rank � and leading to a node w in which a variable xi is tested� such that adding a
test of xi to the end of � produces a test of rank ��

Now� we describe the procedure of creating the set Tj� the assignment of type to
this set and the possible modi�cations in the previous sets�

In Case �� let S be the set of all consistent good paths containing exactly p tests
of rank � and such that the last test of the path has rank �� Note that no path of S is
a pre�x of another� If a consistent good path reaches a node adding a test of rank ��
then a consistent good path may continue along both edges leaving the node� Hence�
S consists of �p paths�

For every node u� let Su be the subset of paths from S leading to the node u� Now�
choose u so that the �uctuation of Su relative to the variables in tests of rank � be
maximal� Then� vj 
 u� Tj 
 Su and its type is chosen to be A�

In Case �� Tj 
 f�g and it will be considered of type B� In this situation� the
process stops and t is set to j�

In Case �� either there is some test of xi �mentioned in Case � above� of rank � in
T�� T�� � � � � Tj�� �Subcase �a� or there is some test of xi of rank � in � �Subcase �b��
Assume� Case � does not occurr� Then� the two subcases are handled as follows�

�



Subcase �a� Let j� be such that xi has a test in Tj� � If the type assigned to
Tj� is A� we choose a path 
 containing xi in Tj�� change the set Tj� to f
g and its
type is changed to B� After this change� the test of xi in 
 is the unique test of xi in
T�� T�� � � � � Tj��� Among the two edges leaving w� we choose the edge consistent with
the test of xi in 
� Let �� be the path consisting of � and the chosen edge� Finally� let
Tj 
 f��g and let its type be C�

Subcase �b� Let �� be the path consisting of � and the edge leaving w� which is
consistent with the test of xi already contained in �� Then� let Tj 
 f��g and let its
type be C�

It is easy to verify that in each case� the new sequence of sets T�� T�� � � � � Tj satis�es
Requirements � and ��

According to the description of the process� some tests contained in the new set Tj
may be later deleted� if Subcase �a occurrs� Note� however� that if some test is not
deleted until the end of the process� then� if its rank was �� � or �� it does not change
and if it was more than �� it is still at least � at the end of the process�

Assume� the process just described stopped with the sequence T�� T�� � � � � Tt� Con	
catenation of any choice of �i � Ti for i 
 �� �� � � � � t forms a valid computation testing
at most tp di
erent variables and ending in a sink� By the assumptions of the theorem�
setting of at most n � r variables does not lead to constant subfunction� Hence� we
have tp 	 n� r � �kp and so� t � �k � ��

The number of sets in the sequence T�� T�� � � � � Tt of type A� B or C will be denoted
a� b and c respectively� The type B may be assigned to a set in T�� T�� � � � � Tt only in
Case � and in Subcase �a� Case � may occur only as the last step of the process and
in Subcase �a the new set is assigned type C� Hence� c� � � b�

Assume for a moment that there is no set of type A among the �rst �k sets in the
sequence� Then� b� c 
 �k� Hence� we have �c � �k � � and so c � k� Since c is the
number of sets of type C� there is at least c tests of rank � occurring in sets Tj of size
�� Hence� these tests are repeated tests of di
erent variables in any computation which
may be created from T�� T�� � � � � Tt� It is a contradiction� since P is a �����k����	b� p�

Hence� there is a set Tj of type A among the �rst �k sets of T�� T�� � � � � Tt� Let Tj
be the �rst of such sets� All the sets T�� T�� � � � � Tj�� are of type B or C and hence
contain exactly one path� Let 
 be their concatenation� Note that 
 contains at most
��k���p tests of di
erent variables� If we set the variables occurring in 
 to the values
required in 
� we obtain a subprogram P � of P � in which vj�� is the source�

Those variables tested in Tj that are not �xed by 
 have no occurrence in Tj��� � � � � Tt�
Hence� if the �uctuation of Tj relative to these variables is at least r� it is possible to
choose �i � Ti for all i � j so that the path 
�j � � � �t contains no test of at least r
variables� This is a contradiction with the assumptions of the theorem� Hence� Tj has
�uctuation less than r relative to the variables not �xed by 
�

Let T �
�� T

�
�� � � � � T

�
j�� be the sequence T�� T�� � � � � Tj�� at the beginning of the step

j� Since Ti � T �
i � we have that 
 is a concatenation of some paths chosen from

T �
�� T

�
�� � � � � T

�
j��� In the following� we shall derive the properties of tests in paths in

P � using the properties of these tests in the context from the step j� in which Tj was
created� In particular� this means that the rank of tests in the paths starting in vj�� is
calculated according to T �

�� T
�
�� � � � � T

�
j��� Also the notions maximal and consistent good

path are considered according to the sequence T �
�� T

�
�� � � � � T

�
j��� If we consider a test in

��



this way� we say that we consider the test in the original context� As a shorthand� the
original rank refers to the rank considered in the original context�

Now� we are going to prove that P � is �p� r�	well	behaved� When created� the set Tj
was assigned type A� otherwise� it cannot have type A at the end of the process� This
may happen only in Case �� Hence� the consistent maximal good paths in P starting
at vj�� satisfy the requirements of Case � in the original context�

Consider a path �� in P � from the source to a sink� Let � denotes �� considered in
the original context� Let � be the longest pre�x of � that is good� It may be � itself
or it may end in a node w such that adding to � the edge from w which is contained in
� would create a test of rank �� In this latter case� adding any edge from w to � leads
to a test of rank �� Hence� in both cases� � is a maximal good path in P � Moreover� �
is consistent� It follows by the requirement of Case � that � contains at least p tests
of rank �� All these tests are not in�uenced by the setting according 
� This implies
condition �i� of the de�nition of �p� r�	well	behaved b� p�

Claim� In each path in P �� all of the �rst at most p tests have original rank ��

In order to prove the claim� let �� be any path in P � containing at least one test of
original rank �� Let �� be the pre�x of �� ending just before the �rst of such tests� Let
� denotes �� considered in the original context� It is a good path and any prolongation
of � by one edge contains a test of rank �� Hence� � is a consistent maximal good path
in P � Thus� it contains at least p tests of rank �� These tests are not in�uenced by
the setting according to 
� Hence� �� contains at least p tests of original rank � and no
test of original rank �� The claim follows�

The claim implies that no two of the �rst at most p tests in any path in P � starting
in the source may contain the same variable� This implies �ii� of the de�nition of
�p� r�	well	behaved b� p� Moreover� the claim also implies that the �uctuation of any
set of paths with p tests in P � is the same as the �uctuation of the set relative to tests
of original rank �� Together with the de�nition of sets S and Su in the description of
Case �� this implies that in every Su the �uctuation is at most the �uctuation of Tj�
which is by some previous paragraph at most r� This implies �iii� of the de�nition of
�p� r�	well	behaved b� p�

� Proof of Theorem ���

Let us start the proof by the following� W�l�o�g�� assume I 
 f�� �� � � � � pg� Let t 
 p�k�
Let �r for r 
 �� �� � � � � t be the function � guaranteed by the assumptions of the
theorem for the k�tuple k�r������ k�r������ � � � � kr� Hence� for every j 
 �� �� � � � �m
and every r 
 �� �� � � � � t� we have

�r�vj� 
 vj�k�r����� � vj�k�r����� � � � �� vj�rk�

Denote by Gr for any r 
 �� �� � � � � t the function de�ned for any x � f�� �gp by

Gr�x� 
 xk�r����� � xk�r����� � � � �� xrk � �r�x��

It is easy to see that for every j 
 �� �� � � � �m and every r 
 �� �� � � � � t� we have
Gr�vj� 
 �� It follows that m is at most the number of solutions in f�� �gp of the

��



system of equations Gr�x� 
 � for r 
 �� �� � � � � t� We shall use the following lemma�
which is proved in ���� as Lemma �� We use exactly the proof from �����

Lemma ��� �Sieling� For each J 
 f�� �� � � � � tg� J �
 
� there are exactly �p�� ele�
ments x of f�� �gp so that M

r�J
Gr�x� 
 �� �����

Proof� Let J � f�� �� � � � � tg� J �
 
 be given� We partition the set f�� �gp into classes
consisiting of two elements� Then� we show that for the two inputs x in each class�L

r�J Gr�x� takes di
erent values� Therefore� the number of inputs with
L

r�J Gr�x� 

� and

L
r�J Gr�x� 
 � are equal� This implies the lemma�

We describe the partition by a procedure that computes for each input x the other
member �x of the class x belongs to� The �	sum

L
r�J Gr�x� consists of the �	sumL

r�J �r�x� and a �	sum of jJ jk di
erent single variables� The decision tree for each
�r� r � J tests for the given input x at most k � � variables� Hence� there are at most
jJ j�k� �� variables tested by the decision trees for the given input� Therefore� some of
the jJ jk single variables contained in the �	sum is not tested for the given input x by
any of the decision trees� Among these variables� choose the variable with the smallest
index� We obtain �x by negating this variable� In the decision trees� the same paths are
selected for x and �x� since the variable di
ering these two inputs is not tested on any
of the paths� This implies ��x 
 x and therefore� this procedure really gives a partition
of f�� �gp into two	element sets�

Moreover� for every x � f�� �gp� Lr�J �r�x� 

L

r�J �r��x�� since in the decision
trees� the same paths are chosen� On the other hand� the �	sum of single variables
takes di
erent values� since the variable di
ering x and �x is contained there� Therefore�
we have

L
r�J Gr�x� �
Lr�J Gr��x�� �

Using Lemma ���� we shall prove the following statement�

Lemma ��� For every J 
 f�� �� � � � � tg and every choice of cr � f�� �g for all r � J �
the system of equations

Gr�x� 
 cr for r � J �����

has exactly �p�jJj solutions�

Here� we assume that every element of f�� �gp satis�es the system of equations� if
J 
 
� Lemma ��� implies Theorem ���� if we choose J 
 f�� �� � � � � tg and cr 
 � for
all r � J �
Proof� For J 
 
� the statement is trivial� Fix some nonempty J and some right hand
sides �RHSs� cr in the system ����� for all r � J � By induction� assume that the lemma
is true for every proper subset of J and any choice of the RHSs� Let cr��� 
 cr for
r � J � Let h be the number of r � J for which cr��� 
 �� Construct a sequence cr�i�
for r � J and i 
 �� �� � � � � h such that�

�i� For all r � J � cr�h� 
 ��
�ii� For every i 
 �� �� � � � � h� �� there is exactly one r � J such that cr�i� �
 cr�i� ���

For i 
 �� �� � � � � h� let ai be the number of solutions of ����� with the RHSs cr�i�� LetM

��



be the number of solutions of ����� with zero RHSs� First� we shall express ai in terms
of M � In particular� ah 
 M � In order to express the other ai� notice that for every
i 
 �� �� � � � � h� �� the number ai � ai�� is exactly the number of solutions of a system
of jJ j � � equations� obtained by removing the equation r� for which cr�i� �
 cr�i� ���
By the induction hypothesis� the number of solutions of this reduced system is �p�jJj���
This implies that for even i� ah�i 
 M and for odd i� ah�i 
 �p�jJj�� �M � Since cr���
was an arbitrary choice of the RHSs in ������ we have that for any choice cr of the
RHSs� the number of solutions of ����� is either �p�jJj�� �M or M if the number of
r � J for which cr 
 � is odd or even respectively�

In order to determine M � we use Lemma ���� Namely� we express the number of
solutions to ����� for our choice of J in terms of M and we compare the result with the
value given by Lemma ���� An element of f�� �gp is a solution of equation ������ if and
only if it is a solution of ����� with a RHS with an even number of ones� Clearly� two
di
erent choices of the RHSs in ����� lead to disjoint sets of solutions� Since we have
�jJj�� possibilities of the RHSs with an even number of ones� the number of solutions
of ����� is �jJj��M � By Lemma ���� this should be equal to �p��� hence M 
 �p�jJj� It
follows that for every choice of the RHSs� ����� has exactly �p�jJj solutions� �

As stated above� this implies Theorem ���� if we choose J 
 f�� �� � � � � tg and cr 
 �
for all r � J �

��



Bibliography

��� N� Alon� M� B� Nathanson and I� Z� Ruzsa� The polynomial method and
restricted sums of congruence classes� J� Number Theorey� to appear�

��� L� Babai� P� Hajnal� E� Szemeredi and G� Turan� A lower bound for
read	once	only branching programs� Journal of Computer and Systems
Sciences� vol� �� ������� ��������

��� A� Borodin� A�Razborov and R� Smolensky� On Lower Bounds for Read	
k	times Branching Programs� Computational Complexity � ������ � � ���

��� J� A� Dias da Silva and Y� O� Hamidoune� Cyclic spaces for Grassmann
derivatives and additive theory� Bull� London Math� Soc�� �� ������� ����
����

��� P� E� Dunne� Lower bounds on the complexity of one�time�only branching
programs� In Proceedings of the FCT� Lecture Notes in Computer Science�
��� ������� ������

��� S� Jukna� A Note on Read	k	times Branching Programs� RAIRO Theo�
retical Informatics and Applications� vol� ��� Nr� � ������� pp� ������

��� S� Jukna� A� A� Razborov� Neither Reading Few Bits Twice nor Reading
Illegally Helps Much� TR��	���� ECCC� Trier�

��� E� A� Okolnishkova� Lower bounds for branching programs computing
characteristic functions of binary codes �in Russian�� Metody diskretnogo
Analiza� �� ������� ������

��� S� J� Ponzio� A lower bound for integer multiplication with read	once
branching programs� Proceedings of ��
s Annual ACM Symposium on the
Theory of Computing� Las Vegas� ����� pp� ��������

���� K� Prachar� Distribution of Prime Numbers �in German��
Primzahlverteilung� Springer	Verlag� Berlin�G�ottingen�Heidelberg� �����

���� P� Savick y� S� !Z ak� A Lower Bound on Branching Programs Reading Some
Bits Twice� to appear in TCS�

���� P� Savick y� S� !Z ak� A Large Lower bound for �	branching programs� TR��	
���� ECCC� Trier�

��



���� D� Sieling� New Lower Bounds and Hierarchy Results for Restricted
Branching Programs� TR ���� ����� Univ� Dortmund� to appear in J�
of Computer and System Sciences�

���� D� Sieling and I� Wegener� New Lower bounds and hierarchy results for
Restricted Branching Programs� in Proc� of Workshop on Graph�Theoretic
Concepts in Computer Science WG
��� Lecture Notes in Computer Sci	
ence Vol� ��� �Springer�Berlin� ����� ��� � ����

���� J� Simon� M� Szegedy� A New Lower Bound Theorem for Read Only Once
Branching Programs and its Applications� Advances in Computational
Complexity Theory �J� Cai� editor�� DIMACS Series� Vol� ��� AMS ������
pp� ��������

���� I� Wegener� On the Complexity of Branching Programs and Decision Trees
for Clique Functions� JACM �� ������ ��� � ����

���� S� !Z ak� An Exponential Lower Bound for One	time	only Branching Pro	
grams� in Proc� MFCS
��� Lecture Notes in Computer Science Vol� ���
�Springer� Berlin� ����� ��� � ����

���� S� !Z ak� A superpolynomial lower bound for ����k�n��	 branching pro	
grams� in Proc� MFCS
��� Lecture Notes in Computer Science Vol� ���
�Springer� Berlin� ����� ��� � ����

��


