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Abstract

A description of continuous probability distributions by means of influence and weight
functions of distribution has been developed. The applicability of the new concepts is
briefly discussed. It is shown that in the case of special probability distribution these
functions correspond to “irrelevance” and “fidelity” of the gnostical theory. Gnostical
model of uncertainty, claimed by its author to be independent of probabilistic concepts,
can be thus replaced by a special case of the classical probabilistic model.
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1 Introduction of the influence function of a con-
tinuous distribution

R denotes real line. Let T' C R be an open interval and By the o-field of its Borel
subsets. Let Ur : T'— R be a (continuous) random variable with distribution Pr,
Pr{T} = 1. Fr denotes the distribution function and py the density of random variable
Urp. U7 denotes the set of all absolutely continuous distributions on (7', B7) with
densities twice continuously differentiable a.e.

Recall the concept of the score function of random variable Ur : R — R, defined
by

d Pr(x)

hale) = (= logpa(x)) = L (1.1)

It is known from robust statistics (cf. [8]) that, for 7' = R and the location model,
the score function is proportional to the influence function of the maximum likelihood

estimator.

A generalization of the score function for distributions defined on (T, Br), where
T # R, has been proposed in [4], [5]. It has been assumed that the set Iy is an image
of the set Iz by using of some suitable diffeomorphism ¢ : R — T'. In other words,
any Uz on (T,B7) has a “prototype” Ug on (R, Bg) given by Ug = ¢! (Ur).

Such Ur and Ugr and their distributions we call ¢o—related. The relation between
their distribution functions is obviously

Pr(u) = Fr(e™ (u)). (1.2)

The generalized score function belonging to Ur with distribution Pr € Iz, here called
the influence function of the distribution of Uz, is defined as an image in T' of the score
function of its prototype under the mapping ¢.

Definition 1. Let Ui be a random variable with distribution Pr € Ilp and with
score function hp. Let T C R be an open interval. Let a mapping ¢ : R — T be strictly
increasing diffeomorphism and let Uy = ¢(Ug). Real-valued function hy : T — R,
given by

() = ha(o™(w) (13)

will be called the influence function of random variable Uy or the influence function of

its distribution (IFD) Py.

Due to properties of the mapping ¢, hr exists. By the choice of the identical
mapping ¢ : R — R, ¢(u) = u, the influence function of random variable Ug is the
score function (1.1). An explicit form of the influence function of random variable Uy,
T # R is given by the following theorem.

Theorem 1. The influence function of random variable Uz specified in Definition

1 is given by L
hr(u) = ——(=L(u)pr(u)), (1.4)




where

d
L) = 220 (15)
Proof. Denote v = ¢~ *(u). According to (1.2), the density of Uy is

pru) = LT RO ) (1.6

by the formula for the inverse function derivative. By (1.3) and (1.1)

ha(u) = (o) = — o =pr(0) = G~ Lla)pr() - (o)

The relation inverse to (1.4) is

pr(u) = ¢ exp (— [ L @lhru) + £(w) du) (1.7)

(supposing that ¢ = [, pr(u)du exists).

We specify the mapping ¢ for the case T'= RT = (0,00). Weset X = Ur, Z = Up+
and

7 =p(X)=¢", (1.8)

so that X = ¢™%(Z) =1In Z. Denote by p(z), h(2), = € RT the corresponding density
and influence function of Z. Then

L(z) =z, (1.9)

IFD of Z is given by
M=) = 1 — =/ (=) fol). (1.10)
and (1.7) reduces to

p(z) = ¢ lexp (—/Z_l[h(z) + 1] dz) : (1.11)

This choice of the mapping ¢ for T'= RT seems to be in the spirit of statistics. Positive
data are often logarithmically transformed and some pairs of distributions on Rt and
R (the lognormal and normal, the log-Cauchy and Cauchy etc.) are known to be
“logarithmically related”. We only generalize this concept to all Pr+ € llg+.

Let now ©® C R™ be an open convex set. Let Pr = {FP]|0 € O} be a parametric
family of distributions on (7, Br), dominated by Lebesgue measure, with densities
{pr(u|0)|§ € ©}. A generalization of the influence function of the distribution for the
parametric set Pr is straightforward: it is a parametric set {hr(u|8)|0 € O}, where

ha(u0) =~ < (= Lu)pr (o) (1.12)

and where L(u) is given by (1.5).



Consider a special case of a parametric family with location and scale structure.
When T' = R, the location parameter xq € R represents a shift of the mode of the
density pr along real line and pr(x|zo,0) = o7 'p((z — x0)/0o) where p is the parent
(“prototype”) density and o € R* is the scale parameter. The score function is, by
(1.1), hr(z|zo,0) = o™ h((x — x0) /o) where h is the “prototype” score function.

We define the generalized location parameter ug € T' of the ¢-related distribution
Pr on (T, Br) by the relation ug = ¢(x). Densities in the location and scale model on

(R*,Bra) are, by (1.6),
p(zlz0,0) = 2o (o (In = — In z0)) = 2~ Yo~ p(In(z/20) /7). (1.13)
and the corresponding IFDs
h(z|z0,0) = o h(In (2/20)"7). (1.14)

2 Some properties of the influence function of the
distribution

We briefly mention some properties of IFD’s, discussed in more details in [5]-[7].

i/ IFD represents an equivalent and usually simpler description of the distribution
as density.

Due to assumptions, (1.4) and (1.7) represent a one-to-one correspondence between
density and IFD of a continuous probability distribution. The simplicity of IFD’s is
apparent from some examples given in Table 1.

TABLE 1 [FDs and densities of distributions on (R,Bgr) and of e*—related
distributions on (RY,Br+)

hr(z) pr(x) h(z) p(z)
x \/%—We_xrz/z In 2 \/21726_5111 z
e’ —1 efe™ 2 —1 =7
eh(e/2) leosh™(ef2) (- DfG+1) Lz +1)
sinh 2 ﬁ(l)e_COth %(Z —1/2) 21(01(1) ze_%(ZH/Z)

Here K is the Bessel function of the III. kind. In the first three rows of Table 1 are
standardized forms of pairs of e”-related distributions: normal and lognormal, double
exponential and exponential, logistic and log-logistic. The distribution with density pg
in the fourth row is not encountered in statistics, the e”-related one is Wald-type.

ii/ In a generalized location model, IFD is proportional to the partial maximum
likelihood score function.



Recall that the partial maximum likelihood score functions are defined as

0 .
ri(ul6) = (o plulf)), = 1,...om.
J

Theorem 2. Let ug be the location parameter of a parametric family { Pry|0 € O}
on (T, Br), where 6 = (ug, ), a = by, ..., 0,,. Let the partial maximum likelihood score
function r(u|ug, o) exists. Then

hy(u|ug, o) = L(ug)ri(u|ug, o).

Proof. Let Prg = ¢(Pprg) where §' = (29 = ¢~ (up), @) and denote
v =@ (u) — ¢ H(u) =z — 2. Analogically to (1.6), pr(u|) = L™'(u)pr(v|a). Then

1 Opr(ulf)
“(uw)_pT(UW) E
__L(w) AL (wpr(vle)) dv _ pr'(vle)
~ pr(vla) v dug pR(U|04)L (o)

= hr(v]a) L™ (uo) = L™ (uo)hr(uld).
O

i/ The [FD-moments are better numerical characteristics of continuous random
variables than the classical moments.

Consider T and ¢ specified in Definition 1. Let pr be the density and hr the
influence function of random variable Ur with distribution Prg € 7. Let £ € N. The
k-th IFD-moment of random variable Ur has been defined in [5,7] by the integral

My (0) = /Thi;(uw)pT(uw) du. (2.1)

It has been shown in [7] that the IFD-moments exist even in cases of distributions,
of which the usual moments do not exist (Cauchy and log-logistic distributions, for
instance).

Let ¢y = inf{u:u e T}, o =sup{u:u e T} By (1.4) and (1.6),
My = —L{u)pr(u)|2., = —pr(z)|Z, = 0. (2.2)

All the other IFD-moments are expressed by means of parameters only and not by
some non-elementary functions of parameters, as it often appears in the case of usual
moments. Estimate @ of the true parameter 6° given by equations

n

0 S Rk (ui]0) = My(0), k=1,..,m, (2.3)
i=1
where uq, ..., u, are observed values of independent, identically distributed (i.i.d.) ran-

dom variables with distribution P, are consistent and asymptotically normal.

4



The special form of (2.3) for distributions with the location and scale structure on
(R, Bg+) is, by (2.2) and (1.14),
h(In (z:/20)Y7) =0 (2.4)

1

K3

ST R*(In (2:/20)Y7) = 62 My (20, 6). (2.5)

i=1
According to Theorem 2, the first moment equation (2.4) is identical with the maximum
likelihood equation for the location parameter. It has been shown in [7] that in cases of
distributions with bounded IFDs, the asymptotic variances of estimates (2.3) are near
to the Cramer Rao bound. Simultaneously, IFD-moment estimates of both location
and scale parameters are robust, whereas the ML estimates of the scale parameter are
sensitive to outlier values.

iv/ The second IFD-moment is a generalization of the Fisher information.

The Fisher information F/(6) is usually defined and interpreted with respect to
parameters of parametric distributions. The definition of the Fisher information of the
distribution (without parameters) we found in [1, pp.494]. It is not sufficiently general,
however. The mean value of L3,

M, = / h2 () pr(u)du (2.6)

appears to be a correct generalization of the Fisher information for distributions defined
on arbitrary (T, Br), since Mj is, according to Theorem 2, proportional in the location
model to the Fisher information for the location parameter, Ms(ug) = L™ (ug)F 1 (uo),

even when 7" # R.

It is, hopetully, apparent from this short discussion that the IFD can be understood
as a fundamental concept connected to a continuous distribution.

3 Weight function of a distribution

Definition 2. Let At be the influence function of a distribution Prg € Pr C II7. A
real-valued function g7 : T — R, given by

dhy(ul|f)
du

will be called the weight function of the distribution (WFD) Pry.

gr(uld) = (3.1)

By means of the IFD, a distance in the sample space T can be introduced by the
formula

plur, uz|0) = |h(uz)d) — h(uq]0)] = /u2 gr(uld) du Uy, Uy € 6. (3.2)

U
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By Theorem 2, (3.2) is proportional to the distance, which is in fact introduced in
the sample space by the maximum likelihood estimator of the (generalized) location
parameter.

(3.2) appears to be a metric for a continuous, strictly increasing hy. The space
(T, g) is in such a case a one-dimensional Riemannian metric space. In accordance
to concepts of the Riemannian geometry (we refer to [9]), gr represents the weight
introduced in the space T.

It follows from the direct differentiation of (1.12) and Theorem 1 that weight func-
tions of p—related distributions are related by

gr(ul0) = L7 (u)gr(e™" (u]0)). (3-3)
The term

wr(ulf) = gr(e™" (ul)) (3-4)
is called in a further account the proper weight function of the distribution Pr. We
suppose that the proper WFD could represent a relative weight (i.e. a relative im-
portance) of a point u € T' (or of the observed value «) under the assumption of the
distribution Pry. We do not know, however, contrary to the case of the IFD, a direct
application of the WFD. The generalization of the WFD in a case of a parametric

family Pr is the metric tensor of the the statistical variety Pr (see [1]).
Consider for the sake of simplicity a distribution without parameters with density
pr(u) and IFD hp(u), so that the WFD is given by ¢gr(u) = dhyp(u)/du. Taking
derivatives of (1.1), (1.10) with respect to « and z, respectively, we obtain WFD’s on

(R,Bgr) and (R*, Bg+) expressed by densities as
(p’(Z))2 ')
p(z) p()

2

pﬁa(l‘)) Ph() P'(z)

gr(7) = - ) g(z) = — +z
o= () -G =5

Example. In Table 2, the proper weight functions w(z) of distributions from Table

1 are given.

TABLE 2 Densities pr, weight functions gr of distributions on (R, Bgr) from
Table 1 and proper densities q, weight functions g and proper weight func-
tions w of ¢"-related distributions on (R, Bp+)

Pr(2) gr(2) p(z) 9(=) w(z)
\/zl—me_%xZ) 1 \/%e_%ln% 1/z 1
e“e e’ e* 1 z
icosh_2 x %Cosh_2 x /(= +1)? 2/(z +1)? (\/5/(21/2 + 2_1/2))2
2]{1(1)6_C05hw coshx 21(01(1) ze_%(z—l—l/z) %(1 + 1/22) %(Z + 1/2)

The weight function of the distribution with the location and scale structure on

(R*,Bpry) is, using (3.1), (1.14) and (3.3), given by
9(z|z0,0) = o dh(In(z/2)7) Jdz = 07227 g(In(z/ z)"/7) (3.5)
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where § = I’ is the “prototype” weight on (R,BRr).

4 Gnostical theory

A very unusual theory of data treatment was presented by Kovanic [10]-[13]. The aim
of his "gnostical” theory is the same as that of statistics: to make inferences from data
observed under the influence of uncertainty. The theory is believed by its author to be
completely independent of the probabilistic model and of basic concepts in probability
theory.

Kovanic introduced a mathematical model of an individual uncertainty which is
contained in a single positive data item z in the form

2 = zge™™ (4.1)

where zg € R is an “ideal value” of z and € R the uncertainty, scaled (in [13]) by
parameter s € RT. Since (4.1) seems to be a general parametric model of positive data
items and any real measured data are in fact positive Kovanic considered that (4.1) is
a universal mathematical model of data which are “suffered from uncertainty”. Based
on this model, he derived two individual “gnostical” data characteristics that depend
on uncertainty. They are “fidelity” , given by the expression

F(zlz0,5) = cosh™(200) = 2/[(2/20)*/* + (2/20) /"], (4.2)
and “irrelevance” , given by

(2/20)*° — (2/20) %"

he(z|z0,8) = —tgh(29Q) = — , 4.3
( | 0 ) g ( ) (Z/ZO)Q/S—I-(Z/ZO)_Q/S ( )
with mutual relation to
hg(2|2075) =1 _f2(2|2075)' (44)
These are the two basic gnostical characteristics of one data item when the model (1)
is known.
On the other hand, having a sample Z,, = (z1,. .., z,) of data from one source (4.1),

each data item z; can be characterized, after Kovanic, by its fidelity and irrelevance.
They are in latent form because of unknown parameters zg, s which can, however, be
estimated from the data sample Z,. The simplest gnostical estimate of the ideal value
zo 1s obtained by Kovanic’s requirement of zero average irrelevance of the sample Z,,.
This gives the estimation equation

1 n

30 — Z he(z
=1

n =

20, 8,) = 0, (4.5)

where §, is a prior estimate of the scale parameter s. The function h. in (4.3) is
bounded,
|he(2]20)), )| < 1. A consequence of this fact is the insensitivity of estimates (4.5) to



outlying values in data, without introducing any of the robustifying functions of robust
statistics. The fact that the gnostical estimator (4.5) can be useful, was demonstrated
by its comparison with a large set of robust statistical estimators. They were all applied
to the well-known collection of Stiegler’s data [17]. The gnostical estimator, giving quite
realistic estimates, was found ([14]) to have the smallest mean square error.

Other gnostical data characteristics and estimation procedures take various forms,
some of them being restatements of well-known statistical principles with one basic dif-
ference: instead of raw data, the irrelevances are substituted into formulas. As an exam-
ple, the “gnostical correlation coefficient” is C.(k) = ﬁ sk he(zi|z0, 8)he(Zitk|20, 9).

The more advanced gnostical estimation procedures, which we do not discuss in the
present paper, are based on the “data composition law” of the gnostical theory, which

states that the “composite event” z. of a data sample Z,, is given by

n

he(zelzo,8) = Zhe(zﬂzo,s)/we, (4.6)

=1

where w, = ([0, f(2]20,8)])* + [0, he(z]20,8)]?)"/?, i.e. that the irrelevance of the
composite event is the weighted sum of individual irrelevances.

Kovanic believes that the “gnostical data processing” differ from that of statistics
in substance ([13], pp. 657). He also believes that the gnostical model of individual
uncertainty contained in data, given by (4.1), is generally applicable for small data
samples. He asserts that it can be used even in situations when a probabilistic model
of the data is unknown and cannot be guessed (“Let data speak for themselves”, [13],
pp.658).

The first serious argument against these assertions was given in [3]. The author
of the present paper noticed that the square of fidelity (4.2) is similar to the density
of a certain probability distribution, later identified as log-logistic. He also showed
that gnostical estimators are identical to the maximum-likelihood estimator or to a-
estimators introduced by Vajda [20], in the case of this distribution. Based on this
result, Vajda [21], [22] and Novovicova [15] studied properties of gnostical estimators.
Apart from Kovanic’s further attempts to consider only finite n-point “data varieties”,
they proved that gnostical estimators are the usual statistical M-estimators, strongly
consistent and asymptotically normal. They also derived their asymptotic variances.

The success of the estimator (4.5) applied to the Stiegler data sets can be explained
simply. The influence function of the robust estimator (4.5) is, contrary to usual robust
estimators, non-symmetrical. This coincides with the clear non-symmetry of Stiegler’s
data. Nevertheless, some questions concerning gnostical theory remain unanswered.
What does it the “fidelity” and “irrelevance” of one data item really mean 7 Why the
gnostical estimator (4.5) belongs to the class of statistical M-estimators, although the
maximum likelihood principle is not postulated in gnostical theory ?



5 Gmnostical irrelevance and fidelity as the influ-
ence function and the square root of the weight
function of special probability distributions

In the previous section we mentioned only one of Kovanic’s irrelevances. In fact, there
are two. By means of “estimating irrelevance” , given by (3), there are constructed
robust gnostical estimates. The second type is the “quantifying irrelevance”, given by

hy(z]z0,8) = sinh(22) = %[(Z/Zo)z/s — (2/20)7%"). (5.1)

The requirement of zero average of quantifying irrelevances of a data sample provides
sensitive gnostical estimates [13].

Theorem 3. Probability densities corresponding to two types of Kovanic’s irrele-
vances (4.3), (5.1) are

20/ 2m 1

= 5.2
p1(2|207 3) ZSF2(1/4) [(2/20)2/5 + (Z/Zo)_2/5]1/2 ( )
1 1 . Y
e )M (2 20) T 5.3
palelos) = oy © ’ (5:3)
respectively.
Proof. Let

hgi(u) = tgh(2u), hro(u) = sinh(2u) (5.4)

be score functions of some distributions. The corresponding densities are
pr1(u) = cl_le_ftgh(%) du — cl_lcosh_l/Q(Zu) (5.5)
pRz(U) — 02_16_ sinh(2u) du _ c;le—%cosh@u)‘ (56)

By the use of integrals

v—1

o0 2
/ cosh™Vaz dx =
0

F2 9 /OO a-1_—(pz -|—q/z)d —9 Oz/?[fa 9
() (v/2), | 2" e z = 2(q/p)" " Ka(2y/pq)

where I' is the gamma function and K, the modified Bessel function of the third
kind (see [15]), norming constants are ¢; = T'*(1/4)/2v/27, ¢ = Ko(1/2). By the
substitution

u=1In(z/z)"* (5.7)

into (5.4) and using (1.14), one obtains influence functions of searched distributions in
the form

hi(z|z0,8) = S_Itgh(ln(z/zo)Q/s) = —5""h.(2|20, 5) (5.8)
ha(z|z0,8) = S_ISinh(ln(z/zo)Q/s) = s hy(2]z0, 5), (5.9)



where —h, and h, are gnostical irrelevances given by (4.3) and (5.1). Substituting (5.7)
into (5.5) and (5.6) and using transformation relations (1.6), one obtains the searched
densities (5.2) and (5.3).

The opposite sign of the estimating irrelevance with respect to IFD, as well as the
constant factor, plays no role in practical applications of gnostical algorithms. Also,
considering the one-to-one correspondence of IFDs and densities, the assertion holds.
O

Theorem 4. Square of the gnostical fidelity is, apart from the constant, the weight
function of the distribution of the family given by (5.2).

Proof. Weight functions of distributions with densities (5.5), (5.6) are, using (3.1)
and (5.4)
g1(u) = 2cosh™(2u), g2(u) = 2cosh(2u). (5.10)

After substitution (5.7) and by the use of (3.5),
g1(2]20,8) = 25722 Leosh ™2 (In(2/20) %) = 257227 f2(2| 20, 5) (5.11)

92(2]20,8) = 2522 Tcosh(In(z/ z)%*) = 257227 F 7 (2|20, 5),

where f is the fidelity (4.2). After comparing to (3.5) and (3.4) and apart from the
constant factor, f? is the proper weight function of the distribution (5.2) (and, similarly,
f~! is the proper weight function of the distribution (5.3)). O

6 Conclusion

Given a model of a statistical experiment in the form of a parametric set Pr, the
observed values uq,...,u,, the realizations of i.i.d. random variables Uy,...U, with
distribution Pyp € Pr are no longer merely an observed collection of data items. For
each data item u; are, by the assumed model, prescribed the a priori data characteris-
tics: the value of the influence function of the distribution, hz(u;]0?), and the value of
the proper weight function of the distribution, wr(u;|6°). They are, similarly as with
the likelihood, in latent form because of an unknown °. They can be approximately
determined after an estimate 6 of the true value 6° is found.

Bearing it in mind, theorems in the previous section give a possible statistical
explanation of gnostic characteristics of “one data item”. The “ideal value” zy can
be understood as the (generalized) location parameter, the scale s as the usual scale
parameter and the “irrelavance” and “fidelity” as the influence function and the square
root of the weight function of distributions (5.2) and (5.3). We thus give an explanation
of Kovanic’s “non-statistical” notions of irrelevance and fidelity of individual data in
a rather unexpected fashion by including their general equivalents into the probability
theory.

The Kovanic’s heuristic estimate given by (4.5) appears to be the first IFD-moment
estimate in the special model (5.2). By iii/ of section 2, (2.4) yields the maximum like-
lihood estimate of the location parameter without a need of the maximum likelihood
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principle (e.g. without a need of differentiation with respect to the location param-
eter). To this fact, together with the boundedness of the influence function of the
distribution (5.2)), the success of the gnostical estimator of the location parameter can
be attributed. The difficulties with gnostical estimation of the scale parameter (which
we did not mentioned in our account) could be removed by the use of the second
[FD-moment estimation equation (2.5).

It should be noted that we did not explain Kovanic’s estimation procedures based on
his “data composition law”. We suppose that, in probabilistic terms, the composition
law (4.6) can be considered to be a “finite equivalent” of some limit theorem concerning
sums of ii.d. random variables, weighted by a special way. “Qualitatively”, (4.6)
asserts that the weighted sum of i.i.d. random variables is distributed according to the
original probability law. This idea might be interesting, but it should be proved or
disproved.
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