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Abstract

This paper is devoted to globally convergent Armijo�type descent methods for solv�
ing large sparse systems of nonlinear equations� These methods include the discrete
Newton method and a broad class of Newton�like methods based on various approx�
imations of the Jacobian matrix� We propose a general theory of global convergence
together with a robust algorithm including a special restarting strategy� This algo�
rithm is based on the truncated preconditioned smoothed CGS method for solving
nonsymmetric systems of linear equations� After reviewing �� particular Newton�like
methods	 we propose results of extensive computational experiements� These results
demonstrate high e
ciency of the proposed algorithm�
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� Introduction

Let f be a continuously di�erentiable mapping from Rn to Rn in the form fx� �
f�x�� f�x�� � � � � fnx��T and consider the system of nonlinear equations

fx� � � ����

for some unknown point x � Rn� Let Jx� denote the Jacobian matrix of the mapping
f with

Jx��ij �
�fix�
�xj

� � � i � n� � � j � n�

Let x� � Rn	 F � kfx��k and � � �� Denote

LF � � fx � Rn � kfx�k � Fg
and

DF ��� � fx � Rn � kx� yk � � for some y � LF �g
Throughout the paper we will use Euclidean vector norm and spectral matrix norm
respectively and suppose the following assumptions hold�

A�� The Jacobian matrix Jx� is de�ned and bounded on DF ���� i�e�

kJx�k � J� �x � DF ���

A�� The Jacobian matrix Jx� is Lipschitz continuous on DF ���� i�e�

kJy�� Jx�k � Lky � xk �x� y � DF ���

In this paper	 we will concentrate on a class of Armijo�type descent methods for the
solution to the system ����	 which generate the sequence of points xi � Rn	 i � N 	
such that

xi�� � xi � �isi� i � N � ����

where si � Rn is the direction vector determined as an inexact solution of the linear
systemAis�fi � � and where the stepsize �i is selected to guarantee su
cient decrease
of kfx�k� Here Ai is an approximation of the matrix Ji � Jxi� and fi � fxi��

For investigating Armijo�type descent methods we also use the objective function

F x� �
�
�
kfx�k�� ����

which has the same local and global minima as the norm kfx�k	 and denote Fi � F xi�	
gi � gxi�	 i � N 	 where gx� � JT x�fx� is the gradient of F x��

While the in�uence of inexactness of the solution of the systemAis�fi � � on global
convergence was succesfully studied in �������	 ���������	 ����	 the in�uence of inexactness
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of the approximation Ai of the Jacobian matrix Ji has not been considered	 with the
exception of the case of �nite di�erence approximation of the Jacobian matrix studied
in ���	 which deals only with local convergence� Therefore	 we consider both of these
inexactnesses in this paper�

The paper is organized as follows� In Section �	 we propose a class of Armijo�
type descent methods and formulate conditions for their global convergence� These
conditions especially assumption A�� cannot be veri�ed in general	 but our theory
is useful for particular algorithmic realizations� To globalize Newton�like methods	 we
propose an implementable algorithm	 based on restarts	 which does not use assumption
A�	 while it is still globally convergent if standard assumptions hold�� Furthermore	
we give a short description of the preconditioned smoothed CGS algorithm used for
direction determination� Section � is devoted to the description of various Newton�like
methods which can be realized by Algorithm �� Finally	 Section � contains results of
computational experiments which demonstrate high e
ciency of Newton�like methods
realized by Algorithm � with preconditioned smoothed CGS subalgorithm�

� Descent methods

We begin with the de�nition of a class of Armijo�type descent methods for the solu�
tion to a system of nonlinear equations� More detailed information can be found in
Algorithm ��

De�nition � We say that the basic method xi�� � xi � �isi� i � N � for solution to a
system of nonlinear equations fx� � � is an Armijo�type descent method 	D
� if the
following conditions hold�
D�� Direction vectors si � Rn� i � N � are determined so that

kAisi � fik � �kfik� ����

where � � � � ��
D�� Steplengths �i � �� i � N � are chosen so that �i is the �rst member of the sequence
�j
i � j � N � where ��

i � � and 	�j
i � �j��

i � 	�j
i with � � 	 � 	 � �� satisfying

Fi�� � Fi � ��
�� ���iFi� ����

where � � 
 � ��

Condition ���� is closely related to the condition

kfi��k � kfik � �
�� ���ikfik
used in �����

In subsequent considerations	 we frequently use the following assumptions�

A�� Matrices J��i � J��xi�� i � N � are de�ned and uniformly bounded on the sequence
of points xi � LF �� i � N � generated by the Armijo�type descent method 	D
� i�e�

kJ��i k � ��J � �i � N �

�



A�� A� holds and a constant � � � � ����� � ��J exist� such that

kAi � Jik � �� �i � N �

A� Matrices A��i � i � N � are de�ned and uniformly bounded� i�e�

kA��i k � ��A� �i � N �

Lemma � Let assumption A� be satis�ed and let 	���
 hold� Then a constant � �
 � � exists� such that

kJisi � fik � kfik� �i � N � ����

Proof Since A� holds	 we can write

kAisik � kJisik � kAi � Ji�sik � J � ��ksik� ����

Similarly	 ���� implies
kAisik � � � ��kfik� ����

Coupling both these inequalities	 we obtain

ksik � � � �

J � �
kfik� ����

so that we can write

kJisi � fik � kAisi � fik� kJi �Ai�sik � �kfik� �ksik
�

�
� � �

� � �

J � �

�
kfik �� kfik�

Using the inequality � � � � ����� � ��J 	 we get � �  � �� �

Lemma � shows that the inexactness of the Jacobian matrix can be transformed to
the inexactness of the solution to the linear system	 so that almost all theoretical results
concerning the inexact Newton method e�g� results from ��� or ����� can be used when
assumption A� is satis�ed� Unfortunately	 assumption A� can be neither veri�ed	 if
the Jacobian matrix is not known	 nor guaranteed in the general case� Therefore	 we
have to use a di�erent approach for building a globally convergent algorithm� One such
possibility is the application of a suitable restarting strategy� If we apply the simple
decision

D�� If Ai �� Ji and 	���
 has been violated in j� consecutive Armijo steps� then set
Ai � Ji and repeat the iteration�

we obtain either Ai � Ji	 so that a theory developed for the inexact Newton method
can be used	 or Ai �� Ji and �i � 	j�	 which eliminate assumption A� from the proof
of global convergence cf� Theorem ��� The following algorithm realizes above ideas�

Algorithm �

Data� � � 	 � 	 � �	 � � 
 � �	 � � � � �	 � � �	 i � �	 � � j � j� � j�	

� � k � � � is allowed��
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Step �� Initiation� Choose an initial point x� � Rn and compute the vector f� ��

fx��� Set k �� � and i �� ��

Step �� Test on convergence� If kfik � � then terminate the computations the

solution is obtained�� If i � i then terminate the computations too many

iterations��

Step �� Direction determination� If k � � then compute the matrix Ji �� Jxi�

and set Ai � Ji� Determine � � �i � � and compute the vector si � Rn

satisfying the condition kAisi�fik � �ikfik	 e�g� by Algorithm � described

below�

Step �� Backtracking� a� Set ��
i �� � and j �� ��

b� Set xi�� �� xi ��j
i si and compute fi�� �� fxi���� If ���� holds then

go to Step ��

c� If k � � and j � j�	 then terminate the computations the algorithm

fails�� If k � � and j � j�	 then set k �� � and go to Step �� Otherwise

select the value 	�j
i � �j��

i � 	�j
i 	 set j �� j � � and go to Step �b�

Step �� Update� If j � j and k � k then compute the matrix Ai�� using some

Newton�like method	 set k �� k � �	 i �� i� � and go to Step �� If j � j

or k � k then set k �� �	 i �� i� � and go to Step ��

Now we prove that the sequence of points xi � Rn	 i � N 	 generated by Algorithm �	
is globally convergent provided the failure in Step � was not indicated� Moreover	 we
formulate conditions for eliminating this failure� Since required results cannot be easily
found in ��� or ���� we give relatively short complete proofs�

Theorem � Let the Jacobian matrix of the function f � Rn 	 Rn be de�ned on
DF ��� and let xi � Rn� i � N � be a sequence generated by Algorithm �� which does
not fail in Step �� Then fi 	 �� If� in addition� A holds� then xi 	 x� and fx�� � ��

Proof Using ���� we get

kfikkfi��k � kfik� � �
�
kfi��k� kfik�kfi��k � kfik� � Fi�� � Fi

� ��
� � ���iFi � �
�� ��	j
�kfik��

Thus

kfi��k � �� 
� � ��	j
��kfik �� �kfik�
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where � � � � �	 and	 therefore

�X
i��

kfik �
�

�� �
kf�k ���

which implies fi 	 �� If A� holds	 then kAisik � Aksik	 which together with ����
gives

�X
i��

kxi�� � xik �
�X
i��

�iksik � � � �

A

�X
i��

kfik ��

so that the sequence xi	 i � N 	 satis�es the Cauchy condition� Therefore	 xi 	 x�	
which together with fi 	 � gives fx�� � �� �

Theorem � Let assumptions A� � A� be satis�ed� let xi � LF �� Ai � Jxi� and let
D� hold� Then integer j�� independent on i � N � exists� such that the Armijo rule

D� �nds� after at most j� steps� a steplength �i � 	j
� satisfying 	���
 with a given

� � 
 � ��

Proof a� Assume that ���� does not hold with xi�� � xi � �isi	 i�e�

F xi � �isi�� F xi� � ��
�� ���iFi � �
� � ���ikfik��
On the other hand	 using assumptions A�	 A� and the inequality

gTi si � fT
i Jisi � fi�� fT

i fi � ��� ��kfik�� ����

which holds when Ai � Ji	 we can write

F xi � �isi�� F xi� � �is
T
i gxi � ��isi�

� �i

�
gTi si � ksikkgxi � ��isi�� gxi�k

�
� �i

�
�� � ��kfik� � �iJ

�
� LF �ksik�

�
�

where � � � � �	 since

kgxi � ��isi�� gxi�k � kJT xi � ��isi�fxi � ��isi�� JT xi�fxi�k
� kJT xi � ��isi�fxi � ��isi�� fxi��k

�kJT xi � ��isi�� JT xi��fxi�k
� Jkfxi � ��isi�� fxi�k� L��iksikkfik
� Jk

Z �

�
Jxi � ���isi���isid�k� L��iksikkfik

� J
�
� LF ��iksik�

By coupling both of these inequalities and using relation ����	 where we set � � �	 we
obtain

�� � � 
� � ���kfik� � �iJ
�
� LF �ksik� � �iJ

�
� LF �

�� � �

J

��

kfik��
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so that �i � �	 where

� � � �
�� 
��� ��J�

J
�
� LF �� � ���

� �� ����

b� Let j� be the lowest integer so that 	
j� � �� Since 	j� � �i � 	

j� holds after j�
Armijo steps	 then ���� necessarily holds after at most j� Armijo steps by part a� of
the proof� �

Theorem � can be immediately applied to Algorithm �� Since the failure in Step �
can be indicated only if Ai � Ji	 we can eliminate this case by choosing the su
ciently

large integer j�	 namely 	
j
� � �	 where � is given by ����� Estimation ���� is usually

unnecessarily strong and Algorithm � works well in practice with a relatively small
value j� � �� as it is demonstrated in Section ��

Now we focus our attention on details which are necessary for the implementation
of descent methods� First we state several comments concerning Algorithm ��

�� Matrices Ji	 i � N 	 occuring in Step �	 can be computed either analyticaly or by
automatic di�erentiation or by numerical di�erentiation� We used the last possibility
in our computational experiments to make the Newton method comparable with other
Newton�like methods numerical di�erentiation described in Section � is very e
cient
for large sparse systems�� Notice that the matrices Ji	 i � N 	 may not be computed
explicitly if a transpose�free iterative method is used for the direction determination�
In this case	 we obtain a matrix�free method that uses numerical di�erentiation instead
of multiplication by the Jacobian matrix�

�� The inequality � � �i � � � �	 required in Step �	 can be easily satis�ed
by setting �i � �� Nevertheless	 a more careful choice of �i can slightly improve
the e
ciency of the inexact Newton�like method� We have used the value �i �
minmaxkfik� � �kfik�kfi��k���� ��i� ��	 with � � ���	 � � �	 � � � �

p
����	 in

our numerical experiments� This choice is a combination of values introduced in ����
and ���� and it implies superlinear convergence of the method	 since �i 	 � as i	�
see ������

�� Experimentally	 we have found the values j � �	 j� � �	 j� � �� suitable ones in
Step �c� The value j has no theoretical importance	 it controls a frequency of restart
in case the Newton�like method might be ine
cient� An experience shows that greater
values of j increase the total computational time�

�� The value 	�j
i � �j��

i � 	�j
i 	 computed in Step �c	 can be determined by constant

reduction or by more sophisticated procedures such as quadratic or cubic interpolation�
We examined all these possibilities and found constant reduction with 	 � 	 � ��� a
suitable robust strategy for our collection of test problems�

�� If k ��	 then restarting is triggered only by backtracking failures� The �nite value
k is essential for limited memory quasi�Newton methods which cannot store more than
Ok� vectors� Setting k � �	 we obtain the discrete Newton method�

Now we concentrate our attention on the determination of the direction vector� The
vector si � Rn	 i � N 	 satisfying the inequality kAisi � fik � �kfik is most frequently
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obtained as an approximate solution to the linear subproblem Ais � fi � � using
some iterative method� In order to simplify the notation we omit the outer iteration
index i in the remainder of this section	 so that we write A	 f 	 x instead of Ai	 fi	 xi�
On the other hand	 we use the inner iteration index j for the description of iterative
methods for linear subproblems� To satisfy the condition kAs � fk � �kfk	 for an
arbitrary � � � � �	 we need iterative methods which terminate after a �nite number
of steps� Moreover	 computational experiments show that it is advantageous when
these methods generate a sequence of iterates sj 	 j � N 	 and corresponding residual
vectors rj � Asj � f 	 j � N 	 so that the norms krjk	 j � N 	 do not increase� This
requirement can be ful�lled by the choice of some residual minimizing or smoothed
conjugate gradient�type method� Moreover	 since the system matrix A is not always
explicitly known but can be given by the di�erence formula	 we consider only the
iterative methods which do not involve multiplication by the transpose of the matrix
A transpose�free methods��

One of the best�known and most widely used schemes of this type is the GMRES
method presented by Saad and Schultz in ����� Unfortunately	 this method uses long
recurrences On�� operations and On�� storage in the unrestarted case or Om�n�
operations and Omn� storage in the m�steps restarted case� so that it may not be e
�
cient for large�scale problems� We have had a good experience with the preconditioned
smoothed CGS method	 presented in ���� and given by the following algorithm�

Algorithm �� Preconditioned smoothed CGS method�

Compute s � �C��f and r � As� f� If krk � �kfk� then stop�

Otherwise set s� � �� s� � �� r� � f� r� � f� p� � f� u� � f�

for j � �� �� �� � � � do

If krjk � �kfk� then set s � sj � r � rj and stop� Otherwise set

vj � AC��pj � �j � fT rj�f
Tvj�

qj � uj � �jvj�

sj�� � sj � �jC
��uj � qj��

rj�� � rj � �jAC
��uj � qj�� 	j � fTrj���f

T rj�

uj�� � rj�� � 	jqj�

pj�� � uj�� � 	jqj � 	jpj��

��j � �j�
T � arg min

����	T�R�

krj�� � �rj � rj��� � �vjk�

sj�� � sj�� � �jsj � sj��� � �jC
��pj �

rj�� � rj�� � �jrj � rj��� � �jvj�

end do

The matrix C serves for preconditioning� We used an incomplete LU decomposition
of the matrix A � �diagA� as a preconditioner� Here diagA� is a diagonal matrix
which has the same diagonal as the matrix A and � � � is a small number� Since the
two parameter�minimal residual smoothing of the original CGS method ���� is used	
the sequence of residual norms is non�increasing� The smoothed CGS method uses
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short recurrences On� operations and storage requirement per iteration step�	 but it
can break down if either fT rj � � or fTvj � �� The solution of a linear system is
obtained after at most n iterations if breakdown does not occur and if rounding errors
do not deteriorate the �nite termination of the method�� Note	 that breakdown rarely
appears� We have not met this situation in any of our computational experiments�

� Review of Newton�like methods for nonlinear

equations

In this section	 we describe a set of methods for solving systems of nonlinear equations	
which can be realized by Algorithm �� All methods di�er from each other only by the
approximation of the Jacobian matrix Jx�� Since we need the true Jacobian matrix for
restarts	 we begin with the numerical di�erentiation� For convenience	 we denote the
sparsity pattern of Jx� by S� Then i� j� � S if	 and only if	 Jijx� �� � structurally��

The Jacobian matrix can be determined numerically by using two di�erent ways�
The �rst way	 elementwise di�erentiation	 is based on the approximation

Jijx� �
fix� �jej�� fix�

�j
� ����

for all i� j� � S� Thus we need m scalar function evaluations i�e� m�n equivalent
vector function evaluations� where m is the number of nonzero elements in Jx��

The second way	 groupwise di�erentiation	 is based on a division of columns of
Jx� into groups Ck	 � � k � p	 so that each column belongs to only one group and	
moreover	 i� j�� � S	 i� j�� � S	 j� �� j� imply j� � Ck� 	 j� � Ck� 	 k� �� k�� Then	 for
each group Ck	 � � k � p	 we compute the di�erence fx�

P
j�Ck �jej�� fx� and set

Jijx� �
eTi fx�

P
j�Ck

�jej�� fx��

�j
� ����

for all i� j� � S 
 Ck we use the notation S 
 Ck � fi� j� � S � j � Ckg and
SnCk � fi� j� � S � j �� Ckg�� Therefore	 we need p vector function evaluations�
Since the number of groups cannot be less then the number of nonzero elements in
an arbitrary row	 the number of vector function evaluations is usually slightly greater
than the one connected with the elementwise di�erentiation� On the other hand	 the
computation can now be organized better the expressions which are common for all
scalar functions can be computed only p times�	 so that the groupwise di�erentiation
is usually faster� Groupwise di�erentiation was �rst proposed in ����� The optimum
division of columns into groups and the equivalent graph coloring problem were studied
in ����� E
cient implementation of the resulting algorithm is given in ����� We used
this algorithm in all of our experiments only the discrete Newton method was tested
with both the elementwise and the groupwise di�erentiation��

Now we are in the position to describe individual methods for solving systems of
nonlinear equations� The notation refers to Algorithm ��
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�� The discrete Newton method with elementwise di�erentiation DNE�� This method
uses the value k � �� Elements of Jx� are computed by �����

�� The discrete Newton method with groupwise di�erentiation DNG�� This method
uses the value k � �� Elements of Jx� are computed by �����

�� The Broyden�Schubert BS� method� This method was introduced in ��� and �����
If k � k	 then we use the update

A�
ij � Aij �

eTi y �Ad�djP

i�k��S d

�
k

�i� j� � S� Here d � x� � x and y � fx��� fx�� Clearly	 A�
ij � � if i� j� �� S� We

set k �� in our computational experiments�

�� The Bogle�Perkins BP� method� This method was proposed in ���	 If k � k	 then
we use the update

A�
ij � Aij �

eTi y �Ad�A�
ijdjP


i�k��S A
�
ikd

�
k

�i� j� � S� Here d � x� � x and y � fx��� fx�� Clearly	 A�
ij � � if i� j� �� S� We

set k �� in our computational experiments�

�� The Li LI� method� This method	 proposed in ����	 is based on the groupwise
di�erentiation� If k � k	 then only one group of columns is updated by numerical
di�erentiation� Other columns remain unchanged� In other words	 we set l �� l � � if
l � p and l �� � if l � p l � � is the starting value� and then substitute

A�
ij �

eTi fx�
P

j�Cl
�jej�� fx��

�j
�

�i� j� � S 
 Cl and

A�
ij � Aij�

�i� j� � SnCl� Clearly	 A�
ij � � if i� j� �� S� We set k � � in our computational

experiments�

�� The combination LIBS� of the Li and the Broyden�Schubert methods� This method
is again based on the groupwise di�erentiation� If k � k	 then only one group of
columns is updated by numerical di�erentiation� Other columns are updated using the
Broyden�Schubert algorithm� In other words	 we set l �� l � � if l � p and l �� � if
l � p l � � is the starting value� and then substitute

A�
ij �

eTi fx�
P

j�Cl
�jej�� fx��

�j
�

�



�i� j� � S 
 Cl and

A�
ij � Aij �

eTi y �Ad�djP

i�k��SnCl

d�k
�

�i� j� � SnCl� Here d � x� � x and y � fx�� � fx�� Clearly	 A�
ij � � if i� j� �� S�

We set k �� in our computational experiments�

�� The modi�ed Newton MN� method� We set A� �� A	 if k � k� This method needs
a �nite value k� The value k � � was obtained experimentally�

�� The row scaling RS� method� We set A� �� DA	 if k � k	 where the diagonal
matrix D is determined from the quasi�Newton condition DAd � y	 i�e�

eTi Dei �
eTi y

eTi Ad

for all � � i � n here d � x� � x and y � fx�� � fx��� The row scaling method
was proposed in ���� in connection with the complete LU decomposition� This method
needs a �nite value k� The value k � � was obtained experimentally�

�� The limitedmemory good Broyden LMB� method� This method is a modi�cation of
the good Broyden method introduced in ��� and it is based on a compact representation
of quasi�Newton matrices proposed in ����� Denote by D � �d� d��� � � � � d�k� and Y �
�y� y��� � � � � y�k� the matrices constructed from the last k di�erences d � x��x	 d�� �
x � x��	 � � �	 d�k � x��k � x�k and y � fx�� � fx�	 y�� � fx� � fx���	 � � �	
y�k � fx��k�� fx�k� respectively	 and de�ne the upper triangular matrix

R �

�
���	
dTd� dTd��� � � � � dTd�k
�� dT��d�� � � � � dT��d�k
� � � � � � � � � � � � � � �
�� �� � � � � dT�kd�k



���� �

Then	 if k � k	 we set

A� � A�k � Y �A�kD�R��DT �

The limited memory Broyden method needs a �nite value k� We obtained k � �
experimentally�

��� The limitedmemory column update LMC� method� This method is a modi�cation
of the column update method introduced in ���� and is based on a compact represen�
tation of quasi�Newton matrices proposed in ����� Let D and Y be the same matri�
ces as in the previous case� Denote e � arg maxei jeTi dj	 e�� � arg maxei jeTi d��j	 � � �	
e�k � arg maxei jeTi d�kj arg max is taken over all ei	 � � i � n� set E � �e� e��� � � � � e�k�
and de�ne the upper triangular matrix

R �

�
���	
eTd� eTd��� � � � � eTd�k
�� eT��d�� � � � � eT��d�k
� � � � � � � � � � � � � � �
�� �� � � � � eT�kd�k
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��



Then	 if k � k	 we set

A� � A�k � Y �A�kD�R��ET

Note that the vectors e	 e��	 � � �	 e�k do not need to be stored� We only use indices of
their unique nonzero elements� The limited memory column update method needs a
�nite value k� We obtained k � � experimentally�

��� The limited memory inverse column update LMI� method� This method	 which
was introduced in ����	 uses an approximation S � A�� of the inverse Jacobian matrix
J��x�� Therefore	 if k � k	 we simply set s �� �Sf instead of using Algorithm ��
Denote e�� � argmaxei jeTi y��j	 � � �	 e�k � arg maxei jeTi y�kj arg max is taken over all
ei	 � � i � n�� Then the vector Sf can be computed by the formula

Sf � S�kf �
eT��f

eT��y��
v�� � � � ��

eT�kf

eT�ky�k
v�k�

where v�� � d�� � S��y��	 � � �	 v�k � d�k � S�ky�k� These vectors can be computed
recursively by the formula

Sy � S�ky �
eT��y

eT��y��
v�� � � � ��

eT�ky

eT�ky�k
v�k�

In both of these formulae we use the matrix S�k � L�kU�k���	 where L�kU�k is the
incomplete LU decomposition of the Jacobian matrix Jx�k�� Note that the vectors
e��	 � � �	 e�k do not need to be stored� We only use indices of their unique nonzero
elements� The limited memory column update method needs a �nite value k� We
obtained k � � experimentally�

��� The discrete Newton method with successive di�erentiation DNS�� This method	
proposed in ����	 does not use Jacobian matrices� The products Av � Jv	 which appear
in Algorithm �	 are replaced by the numerical di�erentiation

Av �
fx� v��kvk�� fx�

��kvk
where � is a small di�erence usually � � ���� for a double precision arithmetic��
Since the Jacobian matrix is not computed explicitly	 we cannot use the incomplete
LU decomposition of the Jacobian matrix as a preconditioner� Instead	 we numerically
compute	 using di�erences	 the tridiagonal part of the Jacobian matrix and then apply
this tridiagonal matrix as a preconditioner�

� Numerical experiments

In this section we present results of a comparative study of the Newton�like methods	
described in Section �	 which were realized as Armijo�type descent methods Algo�
rithm �� with inexact iterative solution of linear subproblems by the preconditioned

��



smoothed CGS method Algorithm ��� These methods were implemented by using the
modular interactive system for universal functional optimization UFO ����� We used
the values 	 � 	 � ���	 
 � ���	 � � ���	 � � �����	 i � ���	 j � �	 j� � �	 j� � ��
in Algorithm �� All test results were obtained by using �� sparse problems� Names
and sizes of these problems	 together with their sources	 are given in Table � n is the
number of equations and m is the number of nonzeroes in the Jacobian matrix��

��



Table �� Test problems for nonlinear equations�

No� Problem n m
� Countercurrent Reactor Problem �	 ��� ���� �����
� Countercurrent Reactor Problem �	 ��� ���� �����
� Trigonometric System	 ���� ���� �����
� Trigonometric�Exponential System � Trigexp �	 ���� ���� �����
� Trigonometric�Exponential System � Trigexp �	 ���� ���� �����
� Singular Broyden System	 ���� ���� �����
� Tridiagonal System	 ���� ���� �����
� Five�Diagonal System	 ���� ���� �����
� Seven�Diagonal System	 ���� ���� �����
�� Structured Jacobian Problem	 ���� ���� �����
�� Extended Freudenstein and Roth Problem	 ��� ���� �����
�� Extended Powell Singular Problem	 ���� ���� �����
�� Extended Cragg and Levy Problem	 ���� ���� ����
�� Broyden Tridiagonal System	 ���� ���� �����
�� Broyden Banded System	 ���� ���� �����
�� Extended Powell Badly Scaled Problem	 ���� ���� �����
�� Extended Wood Function	 ���� ���� �����
�� Tridiagonal System	 ��� ���� �����
�� Discrete Boundary Value Problem	 ���� ���� �����
�� Discrete Boundary Value Problem	 ��� ���� �����
�� Troesch Problem	 ���� ���� �����
�� Flow in a Channel	 ��� ���� �����
�� Swirling Flow	 ��� ���� �����
�� Bratu problem	 ���� ���� �����
�� Poisson Problem	 ���� ���� �����
�� Poisson Problem	 ���� ���� �����
�� Porous Medium Problem	 ���� ���� �����
�� Convection�Difussion Problem	 ���� ���� �����
�� Nonlinear Biharmonic Problem	 ���� ���� �����
�� Driven Cavity Problem	 ���� ���� �����

The �rst �� problems have a standard form and their complete description can be
found in the cited references while the last � problems require more detailed comments�
Problem ��� This is a �nite di�erence analogue of the following nonlinear ordinary
di�erential equation

u
����

� Ru
�

u
�� � uu

���

�� R � ���

over the unit interval � with the boundary conditions u�� � �	 u
�

�� � �	 u�� � �	
u

�

�� � �� We used standard ��point �nite di�erences on an uniform grid having
���� internal nodes� The initial approximate solution was a discretization of u�x� �
x� ������
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Problem ��� This is a �nite di�erence analogue of the following system of two non�
linear ordinary di�erential equations

u
����

�Ruu
���

� vv
�

� � �

v
��

�Ruv
�

� u
�

v� � �� R � ���

over the unit interval � with the boundary conditions u�� � u
�

�� � u�� � u
�

�� � �	
v�� � ��	 v�� � �� We used standard ��point �nite di�erences on an uniform grid
having ���� internal nodes� The initial approximate solution was a discretization of
u�x� � x� ����� and v�x� � x� ����
Problem ��� This is a �nite di�erence analogue of the following nonlinear partial
di�erential equation

�u�R expu� � �� R � ���

over the unit square � with Dirichlet boundary conditions u � � on ��� We used
standard ��point �nite di�erences on a uniform grid having �� � �� internal nodes�
The initial approximate solution was a discretization of u�x� y� � ��
Problem ��� This is a �nite di�erence analogue of the following nonlinear partial
di�erential equation

�u �
u�

� � x� � y�

over the unit square � with Dirichlet boundary conditions u�� y� � �	 u�� y� �
��expy�	 ux� �� � �	 ux� �� � ��expx�� We used standard ��point �nite di�erences
on a uniform grid having ��� �� internal nodes� The initial approximate solution was
a discretization of u�x� y� � ���
Problem ��� This is a �nite di�erence analogue of the following nonlinear partial
di�erential equation

�u� sin��u� � sin

�
��

�u

�x

�
� sin

�
��

�u

�y

�
� fx� y� � ��

where fx� y� � ����x � ����� � y � ������	 over the unit square � with Dirichlet
boundary conditions u � � on ��� We used standard ��point �nite di�erences on a
uniform grid having �� � �� internal nodes� The initial approximate solution was a
discretization of u�x� y� � ��
Problem ��� This is a �nite di�erence analogue of the following nonlinear partial
di�erential equation

�u� �R

�
�u�

�x
� fx� y��

�
� �� R � ��

where f����� ����� � � and fx� y� � � for x� y� �� ����� �����	 over the unit square
� with Dirichlet boundary conditions u�� y� � �	 u�� y� � �	 ux� �� � �	 ux� �� � ��
We used standard ��point �nite di�erences on a uniform grid having �� � �� internal
nodes� The initial approximate solution was a discretization of u�x� y� � �� xy�

��



Problem �	� This is a �nite di�erence analogue of the following nonlinear partial
di�erential equation

�u�Ru

�
�u

�x
�
�u

�y

�
� fx� y� � �� R � ���

where fx� y� � ����x� � x�y�� y�	 over the unit square � with Dirichlet boundary
conditions u � � on ��� We used standard ��point �nite di�erences on a uniform grid
having ��� �� internal nodes� The initial approximate solution was a discretization of
u�x� y� � ��
Problem ��� This is a �nite di�erence analogue of the following nonlinear partial
di�erential equation

��u�R
�
max�� u� � signx� �

�
�
�
� �� R � ���

over the unit square � with the boundary conditions u � � on �� and �u�� y���x � �	
�u�� y���x � �	 �ux� ����y � �	 �ux� ����y � �� We used standard ���point �nite
di�erences on a shifted uniform grid having �� � �� internal nodes ����� The initial
approximate solution was a discretization of u�x� y� � ��
Problem �
� This is a �nite di�erence analogue of the following nonlinear partial
di�erential equation

��u�R

�
�u

�y

��u

�x
� �u

�x

��u

�y

�
� �� R � ���

over the unit square � with the boundary conditions u � � on �� and �u�� y���x � �	
�u�� y���x � �	 �ux� ����y � �	 �ux� ����y � �� We used standard ���point �nite
di�erences on a shifted uniform grid having �� � �� internal nodes ����� The initial
approximate solution was a discretization of u�x� y� � ��

A summary of results for all of these problems is given in two tables presented below�
These tables consist of three parts� The �rst part introduces	 for each Newton�like
method	 geometric means of individual numbers of iterations IT	 function evaluations
FV	 CGS iterations CG or complete LU decompositions DC�	 backtracking steps LS
and computational times in seconds� The geometric mean of ni	 � � i � �� was

computed by the formula
�Q��

i��ni � ��
����� � �� The second part introduces total

numbers of iterations IT	 function evaluations FV	 CGS iterations CG or complete
LU decompositions DC�	 computational times in seconds and possible failures� Failures
caused by exceeding upper limits i and j� in Algorithm � sometimes appeared when
problems �	 �	 �	 �	 �� and �� were solved� Data for cases of failures are included in the
overall statistics� The third part contains total storage requirements for all problems
in kilobytes kB� Table �a corresponds to preconditioned smoothed CGS algorithm� We
used an incomplete LU decomposition of the matrix A� �diagA� as a preconditioner	
where � � � for problems ���� and � � ���� for ill�conditioned problems ������ Table
�b is comparative and it contains results obtained after replacing the preconditioned
smoothed CGS algorithm by complete LU decomposition we used the unsymmetric�
pattern multifrontal scheme implemented in the UMFPACK package ������

��



Table �a� Results for various Newton�like methods with preconditioned
smoothed CGS iterations�

Method IT FV CG LS time IT FV CG time fail kB
DNE �� �� � � ����� ��� ���� ���� ������ � ����
DNG �� �� � � ���� ��� ���� ���� ������ � ����
BS �� �� � � ����� ��� ���� ���� ������ � ����
BP �� �� � � ����� ��� ���� ���� ������ � ����
LI �� �� � �� ����� ��� ���� ���� ������� � ����
LIBS �� �� � � ����� ��� ���� ���� ������� � ����
MN �� �� � � ����� ��� ���� ���� ������ � ����
RS �� �� � � ����� ��� ���� ���� ������ � ����
LMB �� �� �� � ����� ��� ���� ���� ������ � ����
LMC �� �� �� � ����� ��� ���� ���� ������ � ����
LMI �� �� � � ���� ��� ���� ���� ������ � ����
DNS �� ��� �� � ������ ��� ����� ���� ������� � ���

Table �b� Results for various Newton�like methods with the complete
LU decomposition 	UMFPACK
�

Method IT FV DC LS time IT FV DC time fail kB
DNE �� �� �� � ����� ��� ���� ��� ������ � ����
DNG �� �� �� � ����� ��� ���� ��� ������ � ����
BS �� �� �� � ����� ��� ���� ��� ������� � ����
BP �� �� �� � ����� ��� ���� ��� ������� � ����
LI �� �� �� � ����� ��� ���� ��� ������� � ����
LIBS �� �� �� � ����� ��� ���� ��� ������� � ����
MN �� �� � � ����� ��� ���� ��� ������ � ����
RS �� �� � � ����� ��� ���� ��� ������ � ����
LMI �� �� � � ���� ��� ���� ��� ������ � ����

According to the results presented in the above tables	 we can make several con�
clusions which are	 of course	 in�uenced by our collection of test problems��

�� Newton like methods with preconditioned smoothed CGS iterations are competitive
measured by the total computational time� with methods based on complete LU
decomposition� On the other hand	 the former ones are more robust and have lower
storage requirements�

�� Discrete Newton methods DNE	 DNG� are more e
cient and more robust than
sparse quasi�Newton methods BS	 BP�� Methods based on cyclic di�erentiation LI	
LIBS� were shown as the worst ones measured by the computational time and the
number of failures� among all tested Newton�like methods with the exception of the
derivative free DNS method��

��



�� Limited memory quasi�Newton methods LMB	 LMC	 LMI� are more e
cient and
more robust than sparse quasi�Newton methods BS	 BP�� Particularly	 the LMI method
was shown as the best one measured by the computational time and the number of
failures� among all tested Newton�like methods�

�� The DNS method is neither e
cient nor robust since it cannot be implemented
with an e
cient preconditioner based on incomplete LU decomposition� Almost all
failures were caused by exceeding the maximum number ���� of function evaluations�
However	 this method has a minimum storage requirement and sometimes gives very
good results�

�� Algorithm � is very e
cient and robust at least in connection with the LMI method�
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