narodni
N U dlozisté
1 L Sedé
6 literatury

Computational Experience with Globally Convergent Descent Methods for Large
Sparse Systems of Nonlinear Equations

Luksan, Ladislav
1996

Dostupny z http://www.nusl.cz/ntk/nusl-33651

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 04.06.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33651
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Computational Experience with Globally
Convergent Descent Methods for Large Sparse
Systems of Nonlinear Equations

Ladislav Luksan Jan Vlcek

Technical report No. V-668

April 1996

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+4202) 66053260 fax: (+4202) 8585789
e-mail: luksan@uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Computational Experience with Globally
Convergent Descent Methods for Large Sparse
Systems of Nonlinear Equations

Ladislav Luksan? Jan Vlcek
Technical report No. V-668
April 1996
Abstract

This paper is devoted to globally convergent Armijo-type descent methods for solv-
ing large sparse systems of nonlinear equations. These methods include the discrete
Newton method and a broad class of Newton-like methods based on various approx-
imations of the Jacobian matrix. We propose a general theory of global convergence
together with a robust algorithm including a special restarting strategy. This algo-
rithm is based on the truncated preconditioned smoothed CGS method for solving
nonsymmetric systems of linear equations. After reviewing 12 particular Newton-like
methods, we propose results of extensive computational experiements. These results
demonstrate high efficiency of the proposed algorithm.

Keywords
Nonlinear equations, Armijo-type descent methods, Newton-like methods, truncated
methods, global convergence, nonsymmetric linear systems, conjugate gradient-type
methods, residual smoothing, computational experiments

AMS classification. 62J02

!This work was supported by the Grant Agency of the Czech Republic under grant 201/96/0918

1 Introduction

Let f be a continuously differentiable mapping from R" to R"™ in the form f(z) =
(fi(x), f2(x), ..., fo(x))T and consider the system of nonlinear equations

flz)=0 (1.1)

for some unknown point @ € R". Let J(x) denote the Jacobian matrix of the mapping

f with

Uy =20 cicni <<
al']‘

Let z; € R, ' > ||f(z1)]] and A > 0. Denote
L(F) = {z € R": | f()] < T}
and
D(F,A)={z € R": ||z — y|| <A for somey € L(F)}

Throughout the paper we will use Euclidean vector norm and spectral matrix norm
respectively and suppose the following assumptions hold:

Al: The Jacobian matriz J(z) is defined and bounded on D(F,A), i.e.
[J(2)| < J, Vo€ D(F,A)
A2: The Jacobian matriz J(z) is Lipschitz continuous on D(F,A), i.e.

1(y) = J(@)| < Llly — x| Va,y € D(F,A)

In this paper, we will concentrate on a class of Armijo-type descent methods for the
solution to the system (1.1), which generate the sequence of points x; € R", i € N,
such that

Tit1 = T + ;8 1 € N, (12)

where s; € R™ 1s the direction vector determined as an inexact solution of the linear
system A;s+ f; = 0 and where the stepsize «; is selected to guarantee sufficient decrease
of | f(x)]|. Here A; is an approximation of the matrix J; = J(;) and f; = f(x;).

For investigating Armijo-type descent methods we also use the objective function

F(x) =)P, (13)

which has the same local and global minima as the norm || f(x)||, and denote F; = F(x;),
gi = g(x;), 1 € N, where g(x) = JT(z)f(x) is the gradient of F(z).

While the influence of inexactness of the solution of the system A;s+ f; = 0 on global
convergence was succesfully studied in [6]-[7], [L7]-[18], [24], the influence of inexactness

1

of the approximation A; of the Jacobian matrix J; has not been considered, with the
exception of the case of finite difference approximation of the Jacobian matrix studied
in [5], which deals only with local convergence. Therefore, we consider both of these
inexactnesses in this paper.

The paper is organized as follows. In Section 2, we propose a class of Armijo-
type descent methods and formulate conditions for their global convergence. These
conditions (especially assumption A4) cannot be verified in general, but our theory
is useful for particular algorithmic realizations. To globalize Newton-like methods, we
propose an implementable algorithm, based on restarts, which does not use assumption
A4, while it is still globally convergent (if standard assumptions hold). Furthermore,
we give a short description of the preconditioned smoothed CGS algorithm used for
direction determination. Section 3 is devoted to the description of various Newton-like
methods which can be realized by Algorithm 1. Finally, Section 4 contains results of
computational experiments which demonstrate high efficiency of Newton-like methods
realized by Algorithm 1 with preconditioned smoothed CGS subalgorithm.

2 Descent methods

We begin with the definition of a class of Armijo-type descent methods for the solu-
tion to a system of nonlinear equations. More detailed information can be found in

Algorithm 1.

Definition 1 We say that the basic method x;41 = x; + a;s;, 1 € N, for solution to a
system of nonlinear equations f(x) = 0 is an Armijo-type descent method (D), if the
following conditions hold:

D1: Direction vectors s; € R", i € N, are determined so that

[Aisi + fill < @[l (2.1)

where 0 < < 1.
D2: Steplengths o; > 0, i € N, are chosen so that o is the first member of the sequence
of, j €N, where of =1 and fa} < o™ < Bad with 0 < B < B <1, satisfying

Fipn = F; < =2p(1 =)o I, (2.2)
where 0 < p < 1.
Condition (2.2) is closely related to the condition
[fivall = LAl < =p(1 = D)eul| il
used in [18].

In subsequent considerations, we frequently use the following assumptions:
A3: Matrices J7' = J7Y(x;), 1 € N, are defined and uniformly bounded on the sequence
of points x; € L(F), i € N, generated by the Armijo-type descent method (D), i.e.

|J7Y < 1/d, VieN.

A4: A3 holds and a constant 0 <9 < (1/2)(1 —w).J exist, such that
A= I <T, Vie.
A5: Matrices A7

K3 2

i € N, are defined and uniformly bounded, i.ec.
14T <1/4, Yie N,

Lemma 1 Let assumption Aj be satisfied and let (2.1) hold. Then a constant 0 <
7 < 1 exists, such that
| Jisi + fill <7 fill, VieN. (2.3)

Proof Since A4 holds, we can write
[Aisill = 1 isill = [[(Ai = Ji)sill = (L= D)lsi]l- (2.4)
Similarly, (2.1) implies
[Aisil| < (1+ D) fill- (2.5)
Coupling both these inequalities, we obtain

14w

lsill = Il (2.6)

so that we can write

[isi + fill < NAwsi+ fill + 10T = Ansill <D fll + 2]l sill

_ =14+© A _
< J = il = il
< (o + 7 22) 10 2 a5
Using the inequality 0 < J < (1/2)(1 —®).J, we get 0 <7 < 1. O

Lemma 1 shows that the inexactness of the Jacobian matrix can be transformed to
the inexactness of the solution to the linear system, so that almost all theoretical results
concerning the inexact Newton method (e.g. results from [7] or [18]) can be used when
assumption A4 is satisfied. Unfortunately, assumption A4 can be neither verified, if
the Jacobian matrix is not known, nor guaranteed in the general case. Therefore, we
have to use a different approach for building a globally convergent algorithm. One such
possibility is the application of a suitable restarting strategy. If we apply the simple
decision

D3: If A; # J; and (2.2) has been violated in j, conseculive Armijo sleps, then set
A; = J; and repeat the iteration,

we obtain either A; = J;, so that a theory developed for the inexact Newton method
can be used, or A; # J; and «a; > éjl, which eliminate assumption A4 from the proof
of global convergence (cf. Theorem 1). The following algorithm realizes above ideas:

Algorithm 1
Data: 0<8<3<1,0<p<1,0<T<1,2>0,7>0,0<j<7 <7

0 <k < oo (oo is allowed).

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Initiation. Choose an initial point x; € R™ and compute the vector fi :=
flx1). Set k:=1and ¢ := 1.

Test on convergence. If ||f;|| < & then terminate the computations (the
solution is obtained). If i > ¢ then terminate the computations (too many
iterations).

Direction determination. If & = 1 then compute the matrix J; := J(a;)
and set A; = J;. Determine 0 < @; < @ and compute the vector s; € R”
satisfying the condition ||A;s;+fi|| < @i||fi||, e.g. by Algorithm 2 described
below.

Backtracking. (a) Set o} :=1 and j := 1.

(b) Set @41 1= a; + ozfsi and compute fi1q := f(w;41). If (2.2) holds then
go to Step 5.

(¢) If k=1 and j > j,, then terminate the computations (the algorithm
fails). If & > 1 and j > j;, then set &k := 1 and go to Step 3. Otherwise
select the value éaf < ozf+1 < Bozf, set 7:=j 4 1 and go to Step 4b.
Update. If j < j and £ < k then compute the matrix A;y; using some
Newton-like method, set £ := % +1,7:=¢+ 1 and go to Step 2. If j > ;
or k > k then set k:=1,4:=1¢4 1 and go to Step 2.

Now we prove that the sequence of points x; € R™, i € N, generated by Algorithm 1,
is globally convergent provided the failure in Step 4 was not indicated. Moreover, we
formulate conditions for eliminating this failure. Since required results cannot be easily
found in [7] or [18] we give relatively short complete proofs.

Theorem 1 Let the Jacobian matriz of the function f : R* — R"™ be defined on
D(F,A) and let z; € R", i € N, be a sequence generated by Algorithm 1, which does
not fail in Step 4. Then f; — 0. If, in addition, A5 holds, then x; — «* and f(x*) = 0.

Proof Using (2.2) we get

Thus

1
LA foa | = FD < §(Hfi+1H + LD ol = L) = Figr — F

IA

~2p(1 = @) F; < —p(1 — 3)57 | fi]| .

il < (1= p(L —=@)B2)|I £l £ X £l

4

where 0 < X < 1, and, therefore

i 1
Ul = ——=|lAll < oo,
> 1l = {25 lAl < o0
which implies f; — 0. If A5 holds, then ||A;s;|| > A|ls;||, which together with (2.5)
gives

1+ &

00 o]
Slzisr — @il = D aillsil] < —=3_||fill < o0
=1 =1 A =1

so that the sequence z;, 1 € N, satisfies the Cauchy condition. Therefore, x; — x*,
which together with f; — 0 gives f(2*) = 0. O

Theorem 2 Let assumptions Al - A3 be satisfied, let z; € L(F), A; = J(x;) and let
D1 hold. Then integer j,, independent on 1 € N, exists, such that the Armijo rule

D2 finds, after at most j, steps, a steplength o; > é]é satisfying (2.2) with a given
0<p<l.

Proof (a) Assume that (2.2) does not hold with x;11 = x; + a3y, i.e.
P+ asi) = Fla:) > =2p(1 = B)oi Iy = —p(1 — D) | fi]]*.
On the other hand, using assumptions Al, A2 and the inequality
gisi= 11 (Jsi+ f) = [< =10 =@)|[i, (2.7)

which holds when A; = J;, we can write

Foi+ a;s;) — F(ay) OéZ'SZ'Tg(SI?i + pas;)
< a (of si+ Isillllg(a: + passi) = gla:)]))

i (1 =D)L+ ai(T° + TT)||s:]]?) .

IA

where 0 < p < 1, since

gz + pagsi) — g(x)|| = |7 (20 + poysi) f (@i + poisi) — I (@) f (i)
[T (2 + paisi)(f(i + poysi) — flxi))]
J_FH(JT(% + pagsi) — JT(%))f(l‘i)H

JN(f (i + paisi) = fa:)|] + Lpas||s:||[£

= TN [i+ rpasspaisidr]| + TnodlslL i

< (J 4 TF)ass.

IA

IA

By coupling both of these inequalities and using relation (2.6), where we set J = 0, we
obtain

P) 2 N A
(1= = pll =D < T + TPl < (T + TF) (<77 AP,

5

so that a; > a, where

(1—p)(1 —w)J?

0<a=-——F—"=—
(J +LF)(14+©)2

<1. (2.8)

(b) Let 7, be the lowest integer so that 52 < a. Since $2 < a; < 3% holds after 7,
Armijo steps, then (2.2) necessarily holds after at most 7, Armijo steps by part (a) of
the proof. a

Theorem 2 can be immediately applied to Algorithm 1. Since the failure in Step 4
can be indicated only if A; = J;, we can eliminate this case by choosing the sufficiently
large integer j,, namely 3’2 < a, where a is given by (2.8). Estimation (2.8) is usually
unnecessarily strong and Algorithm 1 works well in practice with a relatively small
value j, = 10 as it is demonstrated in Section 4.

Now we focus our attention on details which are necessary for the implementation
of descent methods. First we state several comments concerning Algorithm 1:

1) Matrices J;, i € N, occuring in Step 3, can be computed either analyticaly or by
automatic differentiation or by numerical differentiation. We used the last possibility
in our computational experiments to make the Newton method comparable with other
Newton-like methods (numerical differentiation described in Section 3 is very efficient
for large sparse systems). Notice that the matrices .J;, 7 € A, may not be computed
explicitly if a transpose-free iterative method is used for the direction determination.
In this case, we obtain a matrix-free method that uses numerical differentiation instead
of multiplication by the Jacobian matrix.

2) The inequality 0 < @&, < & < 1, required in Step 3, can be easily satisfied
by setting t; = . Nevertheless, a more careful choice of W; can slightly improve
the efficiency of the inexact Newton-like method. We have used the value o, =
min(max(| 1,1 (L s)°), 1/1@), with v = 1/2, 4 = 1, a = (1 + v5)/2, in
our numerical experiments. This choice is a combination of values introduced in [16]
and [19] and it implies superlinear convergence of the method, since @; — 0 as ¢ — oo

(see [15]).

3) Experimentally, we have found the values j = 1, j; = 5, j, = 10 suitable ones in
Step 4c. The value j has no theoretical importance, it controls a frequency of restart
in case the Newton-like method might be inefficient. An experience shows that greater
values of j increase the total computational time.

4) The value ﬂozf < ozf"’l < Bozf, computed in Step 4c, can be determined by constant
reduction or by more sophisticated procedures such as quadratic or cubic interpolation.
We examined all these possibilities and found constant reduction with 3 = B=1/2a
suitable robust strategy for our collection of test problems.

5) If k = oo, then restarting is triggered only by backtracking failures. The finite value
k is essential for limited memory quasi-Newton methods which cannot store more than
O(k) vectors. Setting k& = 0, we obtain the discrete Newton method.

Now we concentrate our attention on the determination of the direction vector. The
vector s; € R™, 1 € N, satisfying the inequality ||A;s; + fi|| < @]/ f;|| is most frequently

obtained as an approximate solution to the linear subproblem A;s + f; = 0 using
some iterative method. In order to simplify the notation we omit the outer iteration
index ¢ in the remainder of this section, so that we write A, f, = instead of A;, f;, x;.
On the other hand, we use the inner iteration index j for the description of iterative
methods for linear subproblems. To satisfy the condition ||As 4+ f|| < @]/ f]|, for an
arbitrary 0 < @ < 1, we need iterative methods which terminate after a finite number
of steps. Moreover, computational experiments show that it is advantageous when
these methods generate a sequence of iterates s;, j € A/, and corresponding residual
vectors r; = As; + f, j € N, so that the norms ||r;||, 7 € N, do not increase. This
requirement can be fulfilled by the choice of some residual minimizing or smoothed
conjugate gradient-type method. Moreover, since the system matrix A is not always
explicitly known but can be given by the difference formula, we consider only the
iterative methods which do not involve multiplication by the transpose of the matrix
A (transpose-free methods).

One of the best-known and most widely used schemes of this type is the GMRES
method presented by Saad and Schultz in [34]. Unfortunately, this method uses long
recurrences (O(n”) operations and O(n?) storage in the unrestarted case or O(m?n)
operations and O(mn) storage in the m-steps restarted case) so that it may not be effi-
cient for large-scale problems. We have had a good experience with the preconditioned
smoothed CGS method, presented in [39] and given by the following algorithm.

Algorithm 2. Preconditioned smoothed CGS method.

Compute s = —C7 f and r = As + f. If ||r|| < @||f]|, then stop.
Otherwise set 1, =0, 57 =0, m=f, mi=f, p1=f, vy = [.
for j=1,2,3,... do

If ||r|l <@l fll, then set s =s;, r =r; and stop. Otherwise set
vj = ACT'p;, aj = 175/ fhoj,

qj = u;j — ovj,

i1 =5+ 007w + g),

Tipt =T + G AC™ (uj 4 ¢5), B = [T/ 1T,

Ujrr =T + 545,

Pit1 = ujs1 + Bi(q; + Bipi),

o) = arg min 741+ Alrj = Tn) + pogl],
Sit1 = Sit1 + Aj(s; = Fj41) + 4,07 py,

Pt = Tipn £ A (1 = Tiga) 4 4505

end do

The matrix C' serves for preconditioning. We used an incomplete LU decomposition
of the matrix A + ediag(A) as a preconditioner. Here diag(A) is a diagonal matrix
which has the same diagonal as the matrix A and ¢ > 0 is a small number. Since the
two parameter-minimal residual smoothing of the original CGS method [36] is used,
the sequence of residual norms is non-increasing. The smoothed CGS method uses

short recurrences (O(n) operations and storage requirement per iteration step), but it
can break down if either fI7; = 0 or fTv; = 0. The solution of a linear system is
obtained after at most n iterations (if breakdown does not occur and if rounding errors
do not deteriorate the finite termination of the method). Note, that breakdown rarely
appears. We have not met this situation in any of our computational experiments.

3 Review of Newton-like methods for nonlinear
equations

In this section, we describe a set of methods for solving systems of nonlinear equations,
which can be realized by Algorithm 1. All methods differ from each other only by the
approximation of the Jacobian matrix J(x). Since we need the true Jacobian matrix for
restarts, we begin with the numerical differentiation. For convenience, we denote the
sparsity pattern of J(x) by S. Then (¢,7) € S if, and only if, J;;(x) # 0 (structurally).

The Jacobian matrix can be determined numerically by using two different ways.
The first way, elementwise differentiation, is based on the approximation

filz + 512;:) - fz’(@) (3.1)

Jij(x) =

for all (¢,7) € S. Thus we need m scalar function evaluations (i.e. m/n equivalent
vector function evaluations) where m is the number of nonzero elements in J(z).

The second way, groupwise differentiation, is based on a division of columns of
J(x) into groups Ci, 1 < k < p, so that each column belongs to only one group and,
moreover, (1,j1) € S, (i,72) € S, j1 # j2 imply j1 € Cx,, J2 € Ci,, k1 # ks. Then, for
each group Cy, 1 < k < p, we compute the difference f(z 4+ 3";cc, 6;¢;) — f(x) and set

ng(l‘) _ €; (f(l' + Zjeg; 5]61) - f(l'))7 (32)

for all (¢,7) € S NCy (we use the notation S NC, = {(¢,7) € § : j € Cx} and
S\Cr = {(i,7) € S : j & C}). Therefore, we need p vector function evaluations.
Since the number of groups cannot be less then the number of nonzero elements in
an arbitrary row, the number of vector function evaluations is usually slightly greater
than the one connected with the elementwise differentiation. On the other hand, the
computation can now be organized better (the expressions which are common for all
scalar functions can be computed only p times), so that the groupwise differentiation
is usually faster. Groupwise differentiation was first proposed in [13]. The optimum
division of columns into groups and the equivalent graph coloring problem were studied
in [11]. Efficient implementation of the resulting algorithm is given in [12]. We used
this algorithm in all of our experiments (only the discrete Newton method was tested
with both the elementwise and the groupwise differentiation).

Now we are in the position to describe individual methods for solving systems of
nonlinear equations. The notation refers to Algorithm 1.

1) The discrete Newton method with elementwise differentiation (DNE). This method
uses the value k = 0. Elements of J(z) are computed by (3.1).

2) The discrete Newton method with groupwise differentiation (DNG). This method
uses the value k = 0. Elements of J(z) are computed by (3.2).

3) The Broyden-Schubert (BS) method. This method was introduced in [9] and [35].
If k < k, then we use the update

e (y — Ad)d;
(i kyes i
V(i,j) € S. Hered = 2t —z and y = f(a¥) — f(x). Clearly, AL, =0if (i,j) ¢ S. We

set k = oo in our computational experiments.

A;; = Aij +

4) The Bogle-Perkins (BP) method. This method was proposed in [4], If k < k, then

we use the update

ef (y — Ad)Ajd;
Y myes ARd;,

V(i,j) € S. Here d = 2t — 2 and y = f(at) — f(x). Clearly, AL =01if (i,j) ¢ S. We

set k = oo in our computational experiments.

A;; = Aij +

5) The Li (LI) method. This method, proposed in [25], is based on the groupwise
differentiation. If k < k, then only one group of columns is updated by numerical
differentiation. Other columns remain unchanged. In other words, we set [:= {4 1 if
[<pandl:=1if [=p (I =0 is the starting value) and then substitute

AF = el (f(x+ Zjegl 6je;) — f(f]‘?))7

V(z,7) € SNC and

Al = Ay,
Y(i,7) € S\Ci. Clearly, Af; = 0if (i,j) ¢ S. We set k = oo in our computational
experiments.

6) The combination (LIBS) of the Li and the Broyden-Schubert methods. This method
is again based on the groupwise differentiation. If k& < k, then only one group of
columns is updated by numerical differentiation. Other columns are updated using the
Broyden-Schubert algorithm. In other words, we set [:={+1if [< p and [:= 1 if
[=p (I =0 is the starting value) and then substitute

e (f(z + Tjec, bie) — f(z))

At =
1] 5] ?

Y(2,7) € SNC and

el (y — Ad)d,

Cimesic

V(i,j) € S\Ci. Here d = 2t —z and y = f(a™) — f(x). Clearly, AL, =0if (4,5) € S.

We set k = oo in our computational experiments.

A;; = Aij +

7) The modified Newton (MN) method. We set A+ := A, if k < k. This method needs

a finite value k. The value k = 5 was obtained experimentally.

8) The row scaling (RS) method. We set A* := DA, if k < k, where the diagonal
matrix D is determined from the quasi-Newton condition DAd = y, i.e.

€'y

el Ad

for all 1 <i <n (here d = 2t — 2 and y = f(z%) — f(z)). The row scaling method

was proposed in [20] in connection with the complete LU decomposition. This method
needs a finite value k. The value £ = 5 was obtained experimentally.

T
e; De; =

9) The limited memory good Broyden (LMB) method. This method is a modification of
the good Broyden method introduced in [8] and it is based on a compact representation
of quasi-Newton matrices proposed in [10]. Denote by D = [d,d_1,...,d_;] and Y =
[y,y_1,--.,y_k] the matrices constructed from the last & differences d = 2t —z, d_; =
T =T 1y oy, dgp = w1 —x_p and y = f(aT) — f(2), y-1 = f(z) — f(z=1), ...,
Yy—r = f(x1-k) — f(x_)) respectively, and define the upper triangular matrix

dtd, dtd_,, ..., dTd_j
R — 07 dzld_l ey dzld—k
0, 0, ..., di,d

Then, if k < k, we set
AT = A+ (Y — AL D)RT'DT.
The limited memory Broyden method needs a finite value k. We obtained k& = 5

experimentally.

10) The limited memory column update (LMC) method. This method is a modification
of the column update method introduced in [29] and is based on a compact represen-
tation of quasi-Newton matrices proposed in [10]. Let D and Y be the same matri-

ces as in the previous case. Denote ¢ = arg max,, |eld|, e_; = arg max., |eld_4], ...,
c_p = argmax,, el d_;| (arg maxis taken overall e;, 1 <7 < n)set £ = [e,e_1,...,¢c_4]
and define the upper triangular matrix
eld, eTd_qy, ..., eld_y
e 0, efdy ..., eLdy
ey e ey
0, 0, ceey efkd_k

10

Then, if k < k, we set
AT = A+ (Y — A D)RET

Note that the vectors e, e_q, ..., e_; do not need to be stored. We only use indices of
their unique nonzero elements. The limited memory column update method needs a
finite value k. We obtained k& = 5 experimentally.

11) The limited memory inverse column update (LMI) method. This method, which
was introduced in [30], uses an approximation S = A™! of the inverse Jacobian matrix
J7Y(x). Therefore, if k < k, we simply set s := —Sf instead of using Algorithm 2.
Denote ¢_; = argmax,, |ely_1], ..., e_; = argmax,, el y_i| (arg max is taken over all
€, 1 < <n). Then the vector Sf can be computed by the formula

T T
el f el f
Sf=5_f+ Tl L R Tk v_g,
€_1Y-1 € Y-k
where v_y =d_1 — S_qy_1, ..., v_p = d_ — S_ry_r. These vectors can be computed
recursively by the formula
T T
e e
Sy =S_ry+ T—1?J v+ ...+ T_ky V_j.
€_1¥-1 €_rY-k

In both of these formulae we use the matrix S_; = (L_U_g)™", where L_zU_}, is the
incomplete LU decomposition of the Jacobian matrix J(x_j). Note that the vectors
€_1, ..., €. do not need to be stored. We only use indices of their unique nonzero
elements. The limited memory column update method needs a finite value k. We
obtained k = 6 experimentally.

12) The discrete Newton method with successive differentiation (DNS). This method,
proposed in [26], does not use Jacobian matrices. The products Av = Jv, which appear
in Algorithm 2, are replaced by the numerical differentiation

o flz o8/l — f)

o/ |lv]l
where ¢ is a small difference (usually § = 107® for a double precision arithmetic).
Since the Jacobian matrix is not computed explicitly, we cannot use the incomplete

LU decomposition of the Jacobian matrix as a preconditioner. Instead, we numerically
compute, using differences, the tridiagonal part of the Jacobian matrix and then apply
this tridiagonal matrix as a preconditioner.

4 Numerical experiments

In this section we present results of a comparative study of the Newton-like methods,
described in Section 3, which were realized as Armijo-type descent methods (Algo-
rithm 1) with inexact iterative solution of linear subproblems by the preconditioned

11

smoothed CGS method (Algorithm 2). These methods were implemented by using the
modular interactive system for universal functional optimization UFO [27]. We used
the values §=3=05,p=10"* ©=04,=10""97=200,j=1,7, =5, j, = 10
in Algorithm 1. All test results were obtained by using 30 sparse problems. Names
and sizes of these problems, together with their sources, are given in Table 1 (n is the
number of equations and m is the number of nonzeroes in the Jacobian matrix).

12

Table 1: Test problems for nonlinear equations.

No. | Problem n m
1 | Countercurrent Reactor Problem 1, [4] 5000 19996
2 | Countercurrent Reactor Problem 2, [4] 5000 24993
3 | Trigonometric System, [38] 5000 25000
4 | Trigonometric-Exponential System - Trigexp 1, [38] 5000 14998
5 | Trigonometric-Exponential System - Trigexp 2, [38] 4999 19993
6 | Singular Broyden System, [20] 5000 14998
7 | Tridiagonal System, [25] 5000 14998
8 | Five-Diagonal System, [25] 5000 24994
9 | Seven-Diagonal System, [25] 5000 34988
10 | Structured Jacobian Problem, [20] 5000 39984
11 | Extended Freudenstein and Roth Problem, [3] 5000 10000
12 | Extended Powell Singular Problem, [31] 5000 10000
13 | Extended Cragg and Levy Problem, [31] 5000 8750
14 | Broyden Tridiagonal System, [31] 5000 14998
15 | Broyden Banded System, [31] 5000 34984
16 | Extended Powell Badly Scaled Problem, [31] 5000 10000
17 | Extended Wood Function, [22] 5000 12500
18 | Tridiagonal System, [3] 5000 14998
19 | Discrete Boundary Value Problem, [31] 5000 14998
20 | Discrete Boundary Value Problem, [2] 5000 14998
21 | Troesch Problem, [33] 5000 14998
22 | Flow in a Channel, [1] 5000 24994
23 | Swirling Flow, [1] 5000 34998
24 | Bratu problem, [23] 4900 24220
25 | Poisson Problem, [20] 4900 24220
26 | Poisson Problem, [28] 4900 24220
27 | Porous Medium Problem, [19] 4900 24220
28 | Convection-Difussion Problem, [24] 4900 24220
29 | Nonlinear Biharmonic Problem, [21] 2500 31504
30 | Driven Cavity Problem, [23] 2500 31504

The first 21 problems have a standard form and their complete description can be
found in the cited references while the last 8 problems require more detailed comments:
Problem 22: This is a finite difference analogue of the following nonlinear ordinary
differential equation

i ! 1 1t

v =Ruu —uu), R=500

over the unit interval Q with the boundary conditions «(0) = 0, w'(0) = 0, u(1) = 1,

u'(1) = 0. We used standard 5-point finite differences on an uniform grid having
5000 internal nodes. The initial approximate solution was a discretization of ug(z) =
(x —1/2)%

13

Problem 23: This is a finite difference analogue of the following system of two non-
linear ordinary differential equations

i

u + R(uum + vv/) =0
o'+ R(uv/ + ulv) =0, R=500

over the unit interval with the boundary conditions u(0) = u'(0) = u(1) = u'(1) = 0,
v(0) = —1, v(1) = 1. We used standard 5-point finite differences on an uniform grid
having 2500 internal nodes. The initial approximate solution was a discretization of
ug(z) = (z — 1/2)* and vo(x) = =z — 1/2.

Problem 24: This is a finite difference analogue of the following nonlinear partial
differential equation

Au+ Rexp(u) =0, R=6.38

over the unit square Q with Dirichlet boundary conditions v = 0 on 9. We used
standard 5-point finite differences on a uniform grid having 70 x 70 internal nodes.
The initial approximate solution was a discretization of ug(x,y) = 0.

Problem 25: This is a finite difference analogue of the following nonlinear partial
differential equation

u3

Avp=—
Tty

over the unit square with Dirichlet boundary conditions u(0,y) = 1, u(l,y) =
2—exp(y), u(x,0) =1, u(x,1) = 2—exp(x). We used standard 5-point finite differences
on a uniform grid having 70 x 70 internal nodes. The initial approximate solution was
a discretization of ug(x,y) = —1.

Problem 26: This is a finite difference analogue of the following nonlinear partial
differential equation

) . Ju) du
Au + sin(27u) + sin (ZWa—x) + sin (Qﬂ'a—y) + f(z,y) =0,

where f(x,y) = 1000((x — 1/4)* 4+ (y — 3/4)*), over the unit square Q with Dirichlet
boundary conditions u = 0 on 9. We used standard 5-point finite differences on a
uniform grid having 70 x 70 internal nodes. The initial approximate solution was a
discretization of ug(x,y) = 0.

Problem 27: This is a finite difference analogue of the following nonlinear partial
differential equation

9 ou®
Auv"+ R|—+ f(z,y),] =0, R=50
dx
where f(1/71,1/71) =1 and f(x,y) = 0 for (x,y) # (1/71,1/71), over the unit square
Q) with Dirichlet boundary conditions u(0,y) =1, u(1,y) =0, u(x,0) = 1, u(x,1) = 0.
We used standard 5-point finite differences on a uniform grid having 70 x 70 internal
nodes. The initial approximate solution was a discretization of ug(x,y) =1 — zy.

14

Problem 28: This is a finite difference analogue of the following nonlinear partial
differential equation

Au — Ru (g—Z—I— g—Z) + f(z,y) =0, R =20,
where f(x,y) = 2000x(1 — 2)y(1 —y), over the unit square 2 with Dirichlet boundary
conditions v = 0 on J€). We used standard 5-point finite differences on a uniform grid
having 70 x 70 internal nodes. The initial approximate solution was a discretization of
uo(x,y) = 0.
Problem 29: This is a finite difference analogue of the following nonlinear partial
differential equation

1
AAu+ R (maX(O, u) + sign(a — 5)) =0, R=500

over the unit square € with the boundary conditions v = 0 on 9Q and Jdu(0,y)/dx = 0,
Ju(l,y)/0x = 0, du(x,0)/dy = 0, du(x,1)/dy = 0. We used standard 13-point finite
differences on a shifted uniform grid having 50 x 50 internal nodes [23]. The initial
approximate solution was a discretization of ug(x,y) = 0.

Problem 30: This is a finite difference analogue of the following nonlinear partial
differential equation

a_uaAu B 8_uaAu
dy Oz dx Oy

AAu—l—R():0, R = 500

over the unit square € with the boundary conditions v = 0 on 9Q and Jdu(0,y)/dx = 0,
Ju(l,y)/0x = 0, du(x,0)/dy = 0, Ju(x,1)/dy = 1. We used standard 13-point finite
differences on a shifted uniform grid having 50 x 50 internal nodes [23]. The initial
approximate solution was a discretization of ug(x,y) = 0.

A summary of results for all of these problems is given in two tables presented below.
These tables consist of three parts. The first part introduces, for each Newton-like
method, geometric means of individual numbers of iterations IT, function evaluations
FV, CGS iterations CG (or complete LU decompositions DC), backtracking steps LS
and computational times in seconds. The geometric mean of n;, 1 < ¢ < 30 was

1/3
computed by the formula (Hf’gl(m + 1)) /
numbers of iterations IT, function evaluations FV, CGS iterations CG (or complete
LU decompositions DC), computational times in seconds and possible failures. Failures

0
— 1. The second part introduces total

caused by exceeding upper limits z and j, in Algorithm 1 sometimes appeared when
problems 1, 2, 5, 8, 17 and 23 were solved. Data for cases of failures are included in the
overall statistics. The third part contains total storage requirements for all problems
in kilobytes kB. Table 2a corresponds to preconditioned smoothed CGS algorithm. We
used an incomplete LU decomposition of the matrix A +ediag(A) as a preconditioner,
where ¢ = 0 for problems 1-28 and & = 1072 for ill-conditioned problems 29-30. Table
2b is comparative and it contains results obtained after replacing the preconditioned
smoothed CGS algorithm by complete LU decomposition (we used the unsymmetric-
pattern multifrontal scheme implemented in the UMFPACK package [14]).

15

Table 2a: Results for wvarious Newton-like methods with preconditioned
smoothed CGS iterations.

Method | IT FV CG LS time | IT ¥V CG time fail | kB
DNE 11 59 3 0 10.54 | 414 2289 1271 524.82 0 | 1440
DNG 11 63 3 0 9.78 | 414 2454 1271 507.35 0 | 1760
BS 17 45 4 5 13.99 | 657 1997 2456 T778.95 2 1760
BP 18 49 5 5 17.94 | 769 2642 2778 998.54 1 1760
LI 19 85 4 10 16.92 | 805 5092 3614 1288.88 4 | 1760
LIBS 16 59 5 5 15.53 | 757 2556 3504 1179.74 4 | 1760
MN 21 57 4 4 1217 | 776 2332 2287 674.92 2 1760
RS 15 54 4 5 12.63 | 586 2637 2573 803.07 3 | 1760
LMB 15 42 20 2 13.80 | 572 1800 1923 677.89 1 | 2220
LMC 14 46 18 2 1274 | 554 2032 2002 659.82 1 | 2060
LMI 19 49 3 3 8.77 | 670 1857 1414 498.62 0 | 2000
DNS 10 249 32 1 173.99 | 386 17113 7430 6473.46 9 620

Table 2b: Results for various Newton-like methods with the complete
LU decomposition (UMFPACK).

Method | IT FV DC LS time | I'T FV DC time fail | kB
DNE 10 60 10 14.75 | 445 3021 445 790.81 3 16300

DNG 10 64 10 14.68 | 441 3158 441 792.52 6460
BS 14 41 14 18.11 | 606 2028 626 1128.94 6460
BP 14 41 15 20.32 | 643 2203 664 1065.39 6460

LIBS 14 55 15 19.56 | 735 2812 788 1269.99 6460
MN 20 60 5 12.11 | 795 2850 208 574.52 6460
RS 14 47 5 10.92 1 560 2015 206 560.02 6500

1

1 3

4 4

4 4

LI 17 79 20 9 24.07 | 765 4998 950 1721.37 6 | 6460
4 3

4 2

3 2

LMI 14 37 3 2 9.09 | 537 1383 136 406.07 1 | 6700

According to the results presented in the above tables, we can make several con-
clusions (which are, of course, influenced by our collection of test problems):

1) Newton like methods with preconditioned smoothed CGS iterations are competitive
(measured by the total computational time) with methods based on complete LU
decomposition. On the other hand, the former ones are more robust and have lower
storage requirements.

2) Discrete Newton methods (DNE, DNG) are more efficient and more robust than
sparse quasi-Newton methods (BS, BP). Methods based on cyclic differentiation (LI,
LIBS) were shown as the worst ones (measured by the computational time and the

number of failures) among all tested Newton-like methods (with the exception of the
derivative free DNS method).

16

3) Limited memory quasi-Newton methods (LMB, LMC, LMI) are more efficient and
more robust than sparse quasi-Newton methods (BS, BP). Particularly, the LMI method
was shown as the best one (measured by the computational time and the number of
failures) among all tested Newton-like methods.

4) The DNS method is neither efficient nor robust since it cannot be implemented
with an efficient preconditioner based on incomplete LU decomposition. Almost all
failures were caused by exceeding the maximum number 1200 of function evaluations.
However, this method has a minimum storage requirement and sometimes gives very

good results.

5) Algorithm 1 is very efficient and robust at least in connection with the LMI method.

17

Bibliography

1]

[10]

[11]

Averick, B.M., and Carter, R.G., and Moré, J.J., The Minpack-2 Test Problem
Collection, Research Report No. ANL/MCS-TM-150, Mathematics and Computer

Science Division, Argonne National Laboratory, Argonne 1991.

Alefeld, G., and Gienger, A., and Potra, F., Efficient Validation of Solutions of
Nonlinear Systems, SIAM Journal on Numerical Analysis, Vol 31, pp. 252-260,
1994.

Bing, Y., and Lin, G., An Efficient Implementation of Merrill’s Method for Sparse
of Partially separable systems of Nonlinear Equations, STAM Journal on Optimiza-
tion, Vol 2, pp. 206-221, 1991.

Bogle, I.D.L., and Perkins, J.D., A New Sparsity Preserving Quasi-Newton Up-
date for Solving Nonlinear Fquations, STAM Journal on Scientific and Statistical
Computations, Vol 11, pp. 621-630, 1990.

Brown, P.N.; A Local Convergence Theory for Combined Inexact-Newton/Finite-
Difference Projection Methods, SIAM Journal on Numerical Analysis, Vol. 24, pp.
407-434, 1987.

Brown, P.N., and Saad, Y., Hybrid Krylov Methods for Nonlinear Systems of
Equations, STAM Journal on Scientific and Statistical Computations, Vol. 11, pp.
450-481, 1990.

Brown, P.N., and Saad, Y., Convergence Theory of Nonlinear Newton-Krylov
Algorithms, STAM Journal on Optimization, Vol. 4, pp. 297-330, 1994.

Broyden, C.G., A Class of Methods for Solving Simultaneous Equations, Mathe-
matics of Computation, Vol. 19, pp. 577-593, 1965.

Broyden, C.G., The Convergence of an Algorithm for Solving Sparse Nonlinear
Systems, Mathematics of Computation, Vol. 25, pp. 285-294, 1971.

Byrd, R.H, and Nocedal J., and Schnabel R.B., Representations of Quasi-Newton
Matrices and their Use in Limited Memory Methods, Mathematical Programming,
Vol. 63, pp. 129-136, 1994.

Coleman, T.F., and Moré, J.S., Estimation of Sparse Jacobian and Graph Coloring
Problem, STAM Journal on Numerical Analysis, Vol. 20, pp. 187-209, 1983.

18

[12]

[13]

[14]

[15]

[16]

[17]

[21]

[22]

Coleman, T.F., and Garbow, B.S., and Moré, J.S., Software for Estimating Sparse
Jacobian Matrices, ACM Transactions of Mathematical Software, Vol. 10, pp.
329-345, 1984.

Curtis, A.R., and Powell, M.J.D., and Reid, J.K., On the estimation of sparse
Jacobian matrices, IMA Journal of Aplied Mathematics, Vol. 13, pp. 117-119,
1974.

Davis, T.A., User’s Guide for the Unsymmetric-Pattern Multifrontal Package
(UMFPACK), Research Report No. TR-93-020, Computer and Information Sci-

ences Department, University of Florida, Gainesville, Florida, 1993.

Dembo, R.S, Eisenstat, S.C., and Steithaug T., Inezact Newton Methods, STAM J.
on Numerical Analysis, Vol. 19, pp. 400-408, 1982.

Dembo, R.S., and Steithaug T., Truncated Newton Algorithms for Large-Scale Op-
timization, Mathematical Programming, Vol. 26, pp. 190-212, 1983.

Dennis, J.E., and Schnabel, R.B., Numerical Methods for Unconstrained Opti-
mization and Nonlinear Fquations, Prentice-Hall, Englewood Cliffs, New Jersey,

1983.

Eisenstat, S.C., and Walker, H.F., Globally convergent Inexact Newton Methods,
SIAM Journal on Optimization, Vol. 4, pp. 393-422, 1994.

Eisenstat, S.C., and Walker, H.F., Choosing the Forcing Terms in an Inexact
Newton Method, STAM Journal on Scientific Computation, Vol. 17, pp. 16-32,
1996.

Gomez-Ruggiero, M.A., and Martinez, J.M., and Moretti, A.C., Comparing Al-
gorithms for Solving Sparse Nonlinear Systems of Fquations, STAM Journal on
Scientific and Statistical Computations, Vol. 13, pp. 459-483, 1992.

Hlavacek, L., and Lovisek, J., Optimal Design of an Elastic or Elasto-plastic Beam
with Unilateral Elastic Foundation and Rigid Supports, Zeitschrift fur Angevandte
Mathematik und Mechanik, Vol. 72, pp. 29-43, 1992.

Incerti, S., and Zirilli, F., and Parisi, V., Algorithm 111. A Fortran Subroutine for
Solving Systems of Nonlinear Simultaneous Equations, Computer Journal, Vol 24,

pp- 87-91, 1981.

Kaporin, I.E., and Axelsson, O., On a Class of Nonlinear Equation Solvers Based

on the Residual Norm Reduction Over a Sequence of Affine Subspaces, SIAM
Journal on Scientific and Statistical Computations, Vol 16, pp. 228-249, 1995.

Kelley, C.T., [terative Methods for Linear and Nonlinear Fquations, SIAM,
Philadelphia, Pennsylvania, 1995.

Li, G., Successive Column Correction Algorithms for Solving Sparse Nonlinear
Systems of Equations, Mathematical Programming, Vol. 43, pp. 187-207, 1989.

19

[26]

[27]

28]

[29]

30]

33]

[34]

[35]

[36]

Luksan, L., Inexact Trust Region Method for Large Sparse Systems of Nonlinear
FEquations, Journal of Optimization Theory and Applications, Vol. 81, pp. 569-590,
1994.

Luksan, L., and Siska, M., and Ttma, M., and VI¢ek, J., and Ramesovéa, N.,
Interactive System for Universal Functional Optimization (UFO), Version 199/,

Research Report No. V-599, Institute of Computer Science, Academy of Sciences
of the Czech Republic, Prague, Czech Republic, 1994.

Martinez, J.M., A Quasi-Newton Method with Modification of One Column per
Iteration, Computing, Vol. 33, pp. 353-362, 1984.

Martinez, J.M., SOR-Secant Methods, STAM Journal on Numerical Analysis, Vol.
31, pp. 217-226, 1994.

Martinez, J.M., and Zambaldi, M.C., An Inverse Column-Updating Method for
Solving Large-Scale Nonlinear Systems of Fquations, Optimization Methods and
Software, Vol. 1, pp. 129-140, 1992.

Moré, J.J., and Garbow, B.S., and Hillstrém, K.E., Testing Unconstrained Op-
timization Software, ACM Transactions on Mathematical Software, Vol. 7, pp.
17-41, 1981.

Powell, M.J.D., On the Global Convergence of Trust Region Algorithms for Uncon-
strained Minimization, Mathematical Programming, Vol. 29, pp. 297-303, 1984.

Roberts, S.M., and Shipman, J.S., On the Closed Form Solution of Troesch’s
Problem, Journal of Computational Physics, Vol. 21, pp. 291-304, 1976.

Saad, Y., Schultz, M., GMRES a Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical

Computations, Vol. 7, pp. 856-869, 1986.

Schubert, L.K., Modification of a Quasi-Newton Method for Nonlinear Equations
with Sparse Jacobian, Mathematics of Computation, Vol. 24, pp. 27-30, 1970.

Sonneveld, P., CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Sys-
tems, SIAM Journal on Scientific and Statistical Computations, Vol. 10, pp. 36-52,
1989.

Steihaug, T., The Conjugate Gradient Method and Trust Regions in Large-Scale
Optimization, STAM Journal on Numerical Analysis, Vol. 20, pp. 626-637, 1983.

Toint, P.L., Numerical Solution of Large Sets of Algebraic Fquations, Mathematics
of Computation, Vol. 46, pp. 175-189, 1986.

Tong, C.H., A Comparative Study of Preconditioned Lanczos Methods for Non-
symmetric Linear Systems, Sandia National Laboratories, Sandia Report No.

SAND91-8240B, Livermore, 1992.

20

