narodni
N U dlozisté
1 L Sedé
6 literatury

A Large Lower Bound for 1-branching Programs

Savicky, Petr
1996

Dostupny z http://www.nusl.cz/ntk/nusl-33649

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 28.09.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33649
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A large lower bound for 1-branching programs
P. Savicky, S. Zak

Technical report No. 669

April 15, 1996

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+422) 66414244 fax: (4+422) 8585789
e-mail: {stan,savicky}@uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A large lower bound for 1-branching programs
P. Savicky, S. Zak

Technical report No. 669
April 15, 1996

Abstract

Branching programs (b. p.’s) or decision diagrams are a general graph-based model
of sequential computation. B.p.’s of polynomial size are a nonuniform counterpart of
LOG. Lower bounds for different kinds of restricted b. p.’s are intensively investigated.
An important restriction are so called 1-b. p.’s, where each computation reads each
variable at most once. There is a series of lower bounds for 1-b. p.’s. The largest
known lower bound was 2*/1°, see [11]. In the present paper, a lower bound of 2"°(")

is given.

Keywords
branching programs, lower bounds

1 Introduction

A branching program (b. p.) is a computation model for representing the Boolean
functions. The input of a branching program is a vector consisting of the values of
n Boolean variables. The branching program itself is a directed acyclic graph with
one source. The out-degree of each node is at most 2. Every branching node, i.e. a
node of out-degree 2, is labeled by an input variable and one of its out-going edges is
labeled by 0, the other one by 1. The sinks (out-degree 0) are labeled by 0 and 1. A
branching program determines a Boolean function as follows. The computation starts
at the source. If a node of out-degree 1 is reached, the computation follows the unique
edge leaving the node. In each branching node the variable assigned to the node is
tested and the out-going edge labeled by the actual value of the variable is chosen.
Finaly, a sink is reached. Its label determines the value of the function for the given
input. By the size of a branching program we mean the number of its nodes.

The branching programs are a model of the configuration space of Turing machines
where each node corresponds to a configuration. Thus the polynomial size b. p.’s
represent a nonuniform variant of LOG. Hence, a superpolynomial lower bound on
b. p.’s for a Boolean function computable within polynomial time would imply P #
LOG.

In order to investigate the computing power of branching programs, restricted mod-
els were suggested. From the beginning of 80’s among these models the central role
is played by read-once branching programs (1-b. p.), where the restriction is such
that during each computation on any input each variable is tested at most once. The
1-b. p.’s are a point of departure for three directions of the research.

The first direction of the research appeared immediately after the first lower bounds
2¢V™ in [12], [14]. This is the natural question of lower bounds for read k times b. p.’s or,
shortly, for k=b. p.s for £ > 1. Here, a k—b. p. is such a branching program in which
every computation path tests each variable at most £ times. The Boolean function
of so-called half-cliques [14] requires exponential size in 1-b. p.’s on one hand and a
polynomial size in 2-b. p.’s on the other hand. This suggests the question whether
the hierarchy according to k& is a proper hierarchy for all k. For b. p., where some
kind of restriction of repeated tests of the same variable is applied only to the valid
computation paths, the only known results are the superpolynomial lower bounds for
(1,+k)-b. p.’s which are something between 1-b. p.’s and 2-b. p.’s — only a limited
number (k) of variables may be tested more than once [5], [8] and [15].

In the second half of 80’s a special type of 1-b. p.’s - ordered binary decision
diagrams (OBDD) - became important as a data structure for representing the Boolean
functions in some CAD applications, e.g. design or verification of Boolean circuits, as
a review paper see e.g. [13].

At the beginning of 90’s syntactic k—b. p.’s were introduced, where the restriction
of k allowed tests is taken not only over all computations but over all paths in the
b. p. in question. Note that each 1-b. p. is a syntactic 1-b. p., while for & > 2 this
is not true in general. For syntactic read & times b. p.’s, exponential lower bounds are
known, see [2], [4], [6]. Also a hierarchy according to k for syntactic (1, +k)-b. p.’s was
proved [10], [9].

In the present paper the authors follow the way of enlarging of lower bounds for
1-b. p.’s. In [3] there is a bound 2°V" | in [1] a lower bound 2"/¢ for a large ¢ and in
[11] a lower bound 2*/1°, In [7], a bound 2°V" is proved for multiplication.

2n—3 n2/3 (lnn)1/3

Our lower bound is and it is proved by elementary means.

2 The result

We shall consider Boolean functions of n variables. A partial input is an element
of {0,1,%}". As usual, the positions containing 0 or 1 mean that the corresponding
variable is fixed to the specified value, while a * means that the variable remains free.

Let f be a function of n variables. Let u be a partial input. By f|, we mean the
subfunction of f obtained from f by setting x; to u; if u; € {0,1}. The function f],
is considered a function of n variables, although it may depend on z; only if u; = *.
Hence, for any partial inputs v and v, f|, and f|, have formally the same set of
variables.

Definition 2.1 Let f be a Boolean function. We say that [is k—separable, if for every
two different partial inputs u, v with at most k fized positions we have f|, # f|,.

Theorem 2.2 Any 1-b. p. computing a k-separable function is a tree up to level k.

Proof: Consider two different partial computations reading at most k variables. These
two computations specify two different partial inputs u, v. If @ is the node of the b. p.
reached by u, then the subprogram starting at a« computes f|,. Hence, if v and v lead
to the same node, we would have f|, = f|,. This would be a contradiction with the
assumed k-separability. O

Definition 2.3 A system of n integer weights wy, ws, ..., w, is (s, m)—complete, if w; #
0 mod m for alli =1,2,...,n and for every subset I C {1,2,...,n} of size at least s and
any index j, 1 < j < m, there are y; € {0,1} fori € I such that ¥ ;c;w;y; = j mod m.

Theorem 2.4 Let wy,wy,...,w, be (s,n)—complete. Let [be defined as f(x) = x;,
where 1 is determined by the identity 1 = 3_7_; wjx;(mod n). Then f is (n —s —3)~
separable.

Proof: 1In this proof, all congruences = are considered mod n. Let Kk =n —s — 3. Let
u, v be two partial computations with at most & fixed positions. We shall prove that
flu # flv by considering three cases.

Case 1. Let u and v have distinct sets of fixed positions. We shall prove that f|,
depends essentialy on all variables not fixed by u. By the same argument, f|, depends
on all variables not fixed by v. This implies f|, # f].,, since the two subfunctions
depend on different subsets of variables.

Let u; = . We are going to prove that f|, depends essentially on x; by finding
two extensions x and 2’ of u differring only at the i-th position such that f(xz) # f(a).

For any integer p, let the position p mean the position j, where ;7 = p mod n and
1<j<n

Let j be such that u; =« and j # ¢, j+w; # ¢. Let v’ be an extension of u obtained
by setting the position ¢ to 0 and by setting the position j and, if the position j + w;
is not fixed, also the position j + w;, in such a way that the positions 7 and j 4+ w;
are fixed to different values. This is always possible, since the position j is originally
not fixed. Since u’ contains at most n — s fixed positions and our weight system is
(s,n)-complete, it is possible to find an extension x of v’ such that Y} wray = j.
We have f(x) = u}. If 2’ differs from z only in the position ¢, i.e. 2} = 1, we have
f(z") =}, . Hence, we have f(x) # f(z').

Case 2. Let v and v have the same set I of fixed positions. Let

A = Z w;v; — ZwZuZ
el el
We are going to prove f|, # f|, by finding an extension z of u and an extension 2’ of
v such that they coincide on the positions not in I and f(x) # f(a').

Subcase 2a. Let A # 0. We extend u and v to v’ and v’ by setting some positions
not fixed in v and v to the same values. The new inputs will be called v’ and v'. Let
J & I be an index of some position. If also (j + A) & I, we set the positions j and
(7 + A) of both u and v to different values, i.e. v} = v} # uj, o, = vj, 5. Otherwise,
we set the position j of both u’ and v’ so that u; = v’ is different from v’, . We have
at most £ 4+ 2 < n — s fixed positions. Hence, there is an extension x of u’ such that
Yy wir; = j. We have f(z) = u}. Let 2’ be obtained from x by replacing the values
of positions specified by u by the values specified by v. Then f(z') = v!, , and hence
f(2) # ().

Subcase 2b. Let A = 0. Let j € [be such that u; # v;. There is an extension
x of uw such that >°7 ; w;x; = j. Let 2’ be obtained by replacing the values specified
by u by the values specified by v. By our assumptions, we have > ; w;a! = j. Hence

f@') =vj #uj = [f(z). B

Lemma 2.5 Let p, ¢ and r be integers, p and q relatively prime. Moreover, let b/2 <
p<qg<band 0 <r <b Then there are nonnegative integers v,y < b+ 1 such that

ap—yq=—r.

Proof: By the well-known theorem, for every p and ¢ there are xq and g such that
Top — Yoq equals the largest common divisor of p and ¢. Since p and ¢ are relatively
prime, there are some xj and y(satisfying xyp — yj¢ = 1 and by choosing z¢ = —rz|
and yo = —ryg, we obtain x¢p — yog = —r. Then, every pair z¢ + 1q and yo + ip is
also a solution of the above equation. Let ig be the minimal ¢ such that xq + 1¢ > 0.
Let @ =4t w9 + 20¢ and y =gt yo + t2op. We have 0 < & < ¢—1 < b—1 and
y=ap/qg+r/¢<b—14+2. 0O

Theorem 2.6 Let b and wy,...,w, be integers. Let b/2 < wy < ...w, < b < m and
let the n numbers w; consist of k different primes, each with at least |n/k| and at most
[n/k] occurrences. Let s be larger then max{bk, b(k — 1) + [n/k], 2(b+ 1) 4+ 2m/b}.

Then the system ws, ..., w, is (s,m)—complete.

Proof: Let I C{1,2,...,n}, |I| = s be a set of indices of some numbers among w;.

If each of the primes has at most b occurrences in I, we would have s < bk. This
is a contradiction with the choice of s. Hence, some of the primes, say p, has at least
b+ 1 occurrences. Let A C I be a set of indices of b+ 1 occurrences of p.

The number p has at most [n/k]| occurrences among w;. If all the other occur at
most b times in [, we would have s < [n/k] + (k — 1)b. This is a contradiction with
the choice of s. Hence, some of the primes, say ¢ has at least b 4+ 1 occurrences. Let
B C I be aset of b+ 1 occurrences of ¢. W.l.o.g. we may assume that p < q.

Now, let ¢ be such that 1 < ¢ < m. Let ¢ be such that 0 < ¢t < m and t =
i — (b4 1)g (mod m). Let C C I — A — B be a minimal subset of indices such that
Yiecwj > t. Such a set (' exists, since 3", 4 pw; > b/2(s —2(b+1)) and this is at
least m by our assumption on s. Let r =37, o w; —¢. Since C' was minimal, we have
r < b. By Lemma 2.5, there are x,y < b+ 1 satistying xp — yqg = —r. Now, let y; be
1 for z indices j from the set A, for b6+ 1 — y indices from B and all indices from C'.
Let y; be zero otherwise. Then, we have Y- cjw;y; = ap+ (b+1 —y)g+t+r=1¢. O

Theorem 2.7 For every fired ¢ > 0 and every n large enough, there is a weight
system wq, ws, . .., w, constructible in time polynomial in n that is (s,n)—complete for

s=[(2+ 5)n2/3 In'/3 nj.

Proof: Let b= [n'/? In2/? n] and k = [n'/? In~1/3 n]. By the prime number theorem,
for every n large enough, there are at least 0.95n/Inn and at most 1.05n/In n primes
less than n. Hence, there are at least 0.956/Inb — 1.05(6/2)/In(b/2) > 0.42b/1Inb
primes between b and b/2. It is easy to verify that, for every n large enough, we have
k < 0.42b/Inb. Hence, there are at least k different primes between b/2 and b. Testing
of primality of numbers less than n is trivialy computable in time polynomial in n.
Hence, in time polynomial in n, we can find the first £ primes between b/2 and b. By
taking [n/k] or [n/k]| of each of them appropriately, we obtain a system wy, wa, ..., w,.
It is easy to verify that max{bk,b(k — 1)+ n/k,2(b+ 1)+ 2n/b} < (2 + 5)n2/3 In/3n.
Hence, Theorem 2.6 implies that the system wq, w,, ..., w, constructed above is (s,n)-
complete for s = [(2 4 ¢)n?3In'/?n] and every n large enough. O

Now, the main result follows immediately from Theorems 2.2, 2.4 and 2.7.

Theorem 2.8 There is a sequence of Boolean functions {f,}°2, that is in P and
such that f, is a function of n variables and for every n large enough, every 1-b. p.
computing f, has size at least 2°~°, where s = 3n**In'?n,

Bibliography

1]

[10]

[11]

L. Babai, P. Hajnal, E. Szemeredi and G. Turan, A lower bound for
read-once-only branching programs, Journal of Computer and Systems

Sciences, vol. 35 (1987), 153-162.

A. Borodin, A.Razborov and R. Smolensky, On Lower Bounds for Read-
k-times Branching Programs, Computational Complexity 3 (1993) 1 — 18.

P. E. Dunne, Lower bounds on the complexity of one-time—only branching
programs, In Proceedings of the FCT, Lecture Notes in Computer Science,
199 (1985), 90-99.

S. Jukna, A Note on Read-k-times Branching Programs, RAIRO Theo-
retical Informatics and Applications, vol. 29, Nr. 1 (1995), pp. 75-83.

S. Jukna, A. A. Razborov, Neither Reading Few Bits Twice nor Reading
llegally Helps Much, preprint

E. A. Okolnishkova, Lower bounds for branching programs computing
characteristic functions of binary codes (in Russian), Metody diskretnogo

Analiza, 51 (1991), 61-83.

S. J. Ponzio, A lower bound for integer multiplication with read-once
branching programs, Proceedings of 27’s Annual ACM Symposium on the
Theory of Computing, Las Vegas, 1995, pp. 130-139.

P. Savicky, S. Zak, A Lower Bound on Branching Programs Reading Some
Bits Twice, to appear in TCS.

D. Sieling, New Lower Bounds and Hierarchy Results for Restricted
Branching Programs, TR 494, 1993, Univ. Dortmund, to appear in .J.
of Computer and System Sciences.

D. Sieling and I. Wegener, New Lower bounds and hierarchy results for
Restricted Branching Programs, in Proc. of Workshop on Graph-Theoretic
Concepts in Computer Science W(G94, Lecture Notes in Computer Sci-
ence Vol. 903 (Springer,Berlin, 1994) 359 — 370.

J. Simon, M. Szegedy, A New Lower Bound Theorem for Read Only Once

Branching Programs and its Applications, Advances in Computational

Complexity Theory (J. Cai, editor), DIMACS Series, Vol. 13, AMS (1993)
pp- 183-193.

[12] 1. Wegener, On the Complexity of Branching Programs and Decision Trees
for Clique Functions, JACM 35 (1988) 461 — 471.

[13] I. Wegener, Efficient data structures for the Boolean functions, Discrete

Mathematics 136 (1994) 347 — 372.

[14] S. Zéak, An Exponential Lower Bound for One-time-only Branching Pro-
grams, in Proc. MFCS’84, Lecture Notes in Computer Science Vol. 176
(Springer, Berlin, 1984) 562 — 566.

[15] S. Zak, A superpolynomial lower bound for (1,+k(n))- branching pro-
grams, in Proc. MFCS 95, Lecture Notes in Computer Science Vol. 969
(Springer, Berlin, 1995) 319 — 325.

