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Abstract

This paper is devoted to globally convergent methods for solving large sparse sys�
tems of nonlinear equations with an inexact approximation of the Jacobian matrix�
These methods include di�erence versions of the Newton method and various quasi�
Newton methods� We propose a class of trust region methods together with a proof of
their global convergence and describe an implementable globally convergent algorithm
which can be used as a realization of these methods� Considerable attention is concen�
trated on the application of conjugate gradient�type iterative methods to the solution
of linear subproblems� We prove that both the GMRES and the smoothed CGS well�
preconditioned methods can be used for the construction of globally convergent trust
region methods� The e	ciency of our algorithm is demonstrated computationally by
using a large collection of sparse test problems�
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� Introduction

Let f be a continuously di�erentiable mapping from Rn to Rn in the form fx� �
f�x�� f�x�� � � � � fnx��T and consider the system of nonlinear equations

fx� � � ����

for some unknown point x � Rn� Let Jx� denote the Jacobian matrix of the mapping
f with

Jx��ij �
�fix�
�xj

� � � i � n� � � j � n�

Let x� � Rn
 F � kfx��k and � � �� Denote

LF � � fx � Rn � kfx�k � Fg

and

DF ��� � fx � Rn � kx� yk � � for some y � LF �g�

Throughout the paper we will use the Euclidean vector norm and the spectral matrix
norm and will suppose that the following assumptions hold�

A�� The Jacobian matrix Jx� is de�ned and bounded on DF ���� i�e�

kJx�k � J� �x � DF ����

A�� The Jacobian matrix Jx� is Lipschitz continuous on DF ���� i�e�

kJy�� Jx�k � Lky � xk �x� y � DF ����

In this paper
 we will concentrate on a class of trust region methods for the solution
of a system ����
 which generate a sequence of points xi � Rn
 i � N 
 so that

xi�� � xi � �isi� i � N � ����

where si � Rn
 ksik � �i is the direction vector determined as to be an inexact
minimizer of kAis�fik over the trust region with the radius �i
 and where the stepsize
�i is selected so that either �i � �
 if kfxi � si�k � kfik
 or �i � �
 otherwise� Here
Ai is an approximation of the matrix Ji � Jxi� and fi � fxi��

For the investigation of trust region methods we also use the objective function

F x� �
�
�
kfx�k�� ����

which has the same local and global minima as the norm kfx�k
 and denote Fi � F xi�

gi � gxi�
 i � N 
 where gx� � JT x�fx� is the gradient of F x��

�



While the in�uence of inexactness of the solution of the system Ais � fi � � on
global convergence was succesfully studied in Refs����
 the in�uence of inexactness of
the approximation Ai of the Jacobian matrix Ji has not been considered� Therefore

we consider both of these inexactnesses in this paper�

The paper is organized as follows� In Section �
 we propose a class of truncated
trust region methods for nonlinear equations and formulate conditions for their global
convergence� These conditions especially condition ����� cannot be veri�ed in general

but our theory can be useful for particular algorithmic realizations� We introduce an
implementable algorithm
 based on restarts
 which does not use condition ���� while
it is still globally convergent if standard assumptions hold�� Section � is devoted to
the investigation of preconditioned iterative methods for the solution of nonsymmetric
systems of linear equations� We prove that both the GMRES and the smoothed CGS
methods can be used for the construction of globally convergent trust region methods
if certain conditions hold� Condition ���� is essential
 but we propose additional
conditions and a rule based on one of them condition ���� cannot be veri�ed in
practice
 but its signi�cance is in that it is frequently satis�ed when a good precondition
technique is used�� Finally
 section � contains computational experience with truncated
trust region methods that utilize incomplete LU decomposition as a preconditioning
technique�

Remark to the notation� Throughout the paper we denote Lis� � kAis�fik�kfik
for the predicted decrease of the residual norm and �is� � kfxi�s�k�kfxi�k�	Lis�
for the ratio of both the actual and the predicted decreases of the residual norm�

� Trust region methods

We begin with the de�nition of a class of trust region methods for the solution of a
system of nonlinear equations� More detailed information can be found in Algorithm ��

De�nition � We say that the basic method xi�� � xi��isi� i � N for the solution of
a system of nonlinear equations fx� � � is a trust region method �T	 if the following
conditions hold�
T�� Direction vectors si � Rn� i � N � are determined so that

ksik � �i� ����

ksik � �i � kAisi � fik � 
kfik� ����

�Lisi� � ��kAisik� ����

where � � 
 � �� � � � � �	��
T�� Steplengths �i � �� i � N � are chosen so that

�isi� � �� �i � �� ����

�isi� � �� �i � �� ����

T
� Trust region radii � � �i � �� i � N � are chosen so that �� is given and

�isi� � �� �ksik � �i�� � �ksik� ����

�isi� � �� �i � �i�� � �� ����

�



where � � � � � � � and � � � � �	��

The constant � depends on a particular procedure for direction determination� If
the matrix Ai is nonsingular
 then a vector si satisfying T� for an arbitrary value
� � � � �	� exists� Indeed
 if we choose si � �iA

��
i fi
 where � � i � � is the

maximum number such that ksik � �i
 then ���� and ���� hold and
 moreover

�Lisi� � kfik � kAisi � fik � kfik � k�� i�fik
� ikfik � ikAiA

��
i fik � kAisik � ��kAisik�

The constants 

 �
 � and � are user supplied and T� � T� can always be satis�ed for
an arbitrary � � 
 � �
 � � � � � � � and � � � � �	��

In subsequent considerations
 we denote N�
 N�
 N� the sets of indices such that
ksik � �i
 �isi� � �
 �isi� � � holds
 respectively� Furthermore
 we alternatively use
the following assumptions�

A
� Matrices J��i � J��xi� are de�ned and uniformly bounded on the sequence of
points xi � LF �� i � N � generated by the trust region method �T	� i�e�

kJ��i k � �	J � �i � N �

A�� There exist values � � A � A� such that

Aksik � kAisik � Aksik ����

for all i � N � and values J � � and � � � � J�	� � ��� where � � � � ���� � ��
such that kJisik � Jksik and

kAi � Ji�sik � �ksik ����

for all i � NnN� �N���
Now we will prove that trust region method T� is globally convergent if A�
 A�

and A� hold� Our proof is motivated by the proof proposed in Ref�� for unconstrained
optimization�

Lemma � Let trust region method �T	 be applied to the function f � Rn 	 Rn sat�
isfying assumptions A� � A� and let A� hold� Then a constant c � � exists� such
that

ksik � ckfik
for all i � N �

Proof a� Let i � N�� Then from ���� follows

jkAisik � kfikj � kAisi � fik � 
kfik�
so that �� 
�kfik � kAisik
 which together with ���� gives

ksik � �� 


A
kfik�

�



b� Let i 
� N� and i 
� N�� From ���� it follows that Lisi� � �
 so that

Lisi�kfik � kAisi � fik � kfik� kfik �
�
kAisi � fik� � kfik�

�

� �
�
fT
i Aisi �

�
�
sTi A

T
i Aisi

�
�� �Qisi� �����

If kfxi � si�k � kfxi�k
 then the inequality �isi� � � and ����� imply

F xi � si�� F xi� �
�
�

�
kfxi � si�k� � kfxi�k�

�
� kfxi � si�k � kfxi�k� kfxi�k
� �Lisi�kfik � ��Qisi��

If kfxi � si�k � kfxi�k
 this inequality holds trivially� Therefore we can write
F xi � si�� F xi� � ��Qisi�� �����

On the other hand
 assumptions A�
 A� and the mean value theorem imply

kgxi � si�� gxi�k � kJT xi � si�fxi � si�� JT xi�fxi�k
� kJT xi � si�fxi � si�� fxi��k

�kJT xi � si�� JT xi��fxi�k
� Jkfxi � si�� fxi�k� Lksikkfik
� Jk

Z �

�
Jxi � �si�sid�k� Lksikkfik

� J
�
� LF �ksik

for � �  � �
 so that
F xi � si�� F xi� � gTi si � kgxi � si�� gxi�kksik

� gTi si � J
�
� LF �ksik�

� fT
i Aisi � fT

i Ji �Ai�si � J
�
� LF �ksik�

� Qisi� � �ksikkfik� J�
� LF �ksik�� �����

Coupling ����� and �����
 we can write

��Qisi� � Qisi� � �ksikkfik� J�
� LF �ksik�

or
� �� ���Qisi� � �ksikkfik� J�

� LF �ksik� �����

Since � � J�	� � �� � J we can write

J � ��ksik � kJisik � kAi � Ji�sik � kAisik� �����

which together with �����
 and ���� imply

�Qisi� � ���Lisi�kfik � �kAisikkfik � �J � ��ksikkfik�

�



If we substitute the last inequality into �����
 we obtain

� � ����J � ��ksikkfik � ��� ���Qisi� � �ksikkfik� J�
� LF �ksik�

or

ksik � �� ����J � ��� �

J
�
� LF

kfik

since ksik 
� � by T�� The numerator is positive since � � J�� ����	� � �� ������
c� Let i � �� If kf�k � �
 then clearly ks�k � ckf�k for an arbitrary constant c � ��
If kf�k 
� �
 we obtain

ks�k � ks�k
kf�kkf�k�

d� Let i 
� N�
 i � N� and i 
� �� Let k � i be the maximum index for which k 
� N�

k � N� and k 
� � do not hold simulteneously� Then using ����
 ���� and ���� we
can write

ksik � �i � �k�� � min�k� �kskk� � min
�
kskk� �kskk

�
� �kskk�

so that we obtain from parts a��c� of this proof the sequence kfik
 i � N 
 is nonin�
creasing by T��

ksik � �kskk � ckfkk � ckfik�

where

c � �min

�
�� 


A
�
� � ����J � ��� �

J
�
� LF

�
ks�k
kf�k

�
� �����

�

Theorem � Let xi � Rn� i � N be a sequence generated by trust region method �T	�
Let the function f � Rn 	 Rn satisfy the assumptions A� � A� and let A� hold� Then
xi 	 x� and fx�� � ��

Proof a� First we prove that fi 	 �� Suppose that this assertion does not hold� Since
the sequence kfik
 i � N 
 is nonincreasing by T�
 a number � � � exists
 such that
kfik � �
 �i � N and by Lemma � it holds that

ksik � c�� �i � N �

Suppose �rst
 that the set N� is not �nite� Since N� � N�
 we can write

kfik � kfi��k � kfxi�k � kfxi � si�k � ��Lisi�

� ���kAisik � ���Ac�� �i � N� �����

�



by ���� and ����� Consequently
 it follows

kf�k � lim
i��

kf�k � kfi��k� �
�X
i��

kfik � kfi��k�

� X
i�N�

kfik � kfi��k� �
X
i�N�

���Ac� ��

which is a contradiction� Suppose now
 that the set N� is �nite� Then ���� implies
�i 	 �
 which together with ���� gives ksik 	 �� But this is in contradiction to
ksik � c� �i � N �
b� Using ���� we obtain Lisi� � kAisi � fik � kfik � �
 so that

kfik � kAisi � fik � kAisik � kfik
This inequality implies kAisik � �kfik
 so that

Aksik � kAisik � �kfik �����

Now we will show that
P�

i�� ksik � �� If the set N� is �nite
 then an index l 
� N�

exists
 such that i 
� N� �i � l� Therefore

�X
i��

ksik �
l��X
i��

ksik� kslk
�X
i�l

�
i�l � l� ��� � kslk	� � �� ��

by ����� If the set N� is in�nite
 then ����� implies

kf�k �
�X
i��

kfik � kfi��k� �
X
i�N�

kfik � kfi��k�

� ���
X
i�N�

kAisik � ���A
X
i�N�

ksik�

Denote N� � fl�� l�� l�� � � �g� Using Lemma � and �����
 we obtain

kslj��k �
�
A
kflj��k �

�
A
kfljk �

�
cA
ksljk �����

and ���� implies kslj�kk � �kslj�k��k �� � k � lj�� � lj � �� Therefore
�X
i��

ksik �
l���X
i��

ksik�
�X
j��

�
�ksljk�

lj���lj��X
k��

kslj�kk
	



� l� � ��� �
�X
j��

ksljk
�
�� � �

cA

lj���lj��X
k��

�
k��

	



� l� � ��� �
�
� �

�
cA

�

�� �

� X
i�N�

ksik

� l� � ��� �
�
� �

�
cA

�

�� �

� kf�k
���A

���

�



From
P�

i�� kxi���xik � P�
i�� ksik �� it follows that the sequence xi
 i � N 
 satis�es

the Cauchy condition
 so that xi 	 x�
 which together with fi 	 � gives fx�� � �� �
As the application of the general theory of trust region methods
 we will investigate

a di�erence version of the Newton method �rst�

Lemma � Let assumption A� be satis�ed and let Ax� be a matrix obtained by nu�
merical dierentiation� such that

Ax�ej �
fx� �ej�� fx�

�
� � � j � n� �����

where ej� � � j � n� are columns of the unit matrix of order n and � is a positive
constant� Then

kAx�� Jx�k � �
�
L
p
n��

Proof See Ref��
 Lemma ������ �

Corollary � Let assumptions A� � A
 be satis�ed� Let Ai  Jxi�� i � N � be matrices
determined by �����	 where

� �
�J�

L
p
n� � ��

� �����

with � � � � ����� Then A� holds with A � J � �� A � J � � and � � J�	� � ���

Proof From Lemma � and ����� we obtain

kAi � Jik � �
��
�
�
L
p
n� � J�	� � ���

The rest of assertion follows from the equality Aisi � Jisi � Ai � Ji�si� �

Corollary � shows that it is possible to choose number � � �
 so that the trust
region method with di�erence approximation of the Jacobian matrix
 determined by
�����
 is globally convergent� This is true only if all computations are perfect� In
the opposite case
 round�o� errors can destroy this property� We should investigate

when the actual di�erence
 derived from machine precision
 satis�es condition ������
Nevertheless
 we omit this investigation since inequality ����� is usually unnecessarily
strong and di�erence versions of the Newton method are very robust in practice
 as it
is demonstrated in Section ��

Now we will concentrate our attention to quasi�Newton methods� We will not
study these methods in detail we refer to Refs�� and � for theoretical investigations��
Instead
 we propose an implementable globally convergent algorithm
 which can be
used as a realization of an arbitrary quasi�Newton method� Since condition ����
cannot be veri�ed when the true Jacobian matrix is not known
 we have to use a
di�erent approach based on restarts� As we can see
 condition ���� is used only in
step b� of the proof of Lemma � and it can be replaced by the condition ksik � �kfik

where � is a suitable constant
 in this case� Therefore
 if we apply the decision

�



T�� If i � NnN� �N�� and ksik � �kfik and Ai 
� Ji� then set Ai � Ji and repeat the
iteration�

we obtain a trust region method which is globally convergent if A� � A� hold� Un�
fortunately
 the above simple rule is not e	cient in practice� We have known
 from
the computational experience
 that quasi�Newton methods have to be restarted more
frequently especially in the sparse case when the numerical di�erentiation described
in Ref�� is inexpensive�� Therefore
 we recommend the following algorithm
 in which
Ai is replaced by Ji whenever �isi� � ��

Algorithm �

Data� � � � � �
 � � � � � � � � �
 � � 
 � �
 � � �
 � � �
 � � �
 j � ��

Step �� Initiation� Choose an initial point x� � Rn and compute the vector f� ��

fx��� Choose a number � � �� � � and set i �� � and k �� ��

Step �� Test on convergence� If kfik � �
 then terminate the computations the

solution is obtained�� Otherwise set j �� ��

Step �� Restart� If k � �
 then compute the matrix Ji �� Jxi� and set Ai �� Ji

Step �� Direction determination� Set 
i �� minkfik���� �	i� 
� and compute the
vector si � Rn satisfying the conditions ���� � ���� with 
i instead of


�� This vector can be computed by Rule � in the basic case or Rule � in

the preconditioned case both of these rules are described in Section ���

Step �� Stepsize selection� Set xi�� �� xi� si
 compute fi�� �� fxi��� and deter�

mine �isi�� If �isi� � �
 then go to Step �� If � � �isi� � �
 then set

�i�� � �i� If � � �isi� and ksik � �i
 then set �i�� � �i� If � � �isi�

and ksik � �i
 then set �i�� � min��i����

Step �� Update� Compute the matrix Ai�� using the quasi�Newton update
 set

i �� i� �
 k �� � and go to Step ��

Step �� Decision� a� If ksik � �i � �kfik and k � �
 then set k �� � and go to

Step �� Otherwise set �i�� � �ksik�
b� If �isi� � �
 then set i �� i� �
 k �� � and go to Step ��

c� If j � j
 then terminate the computations the algorithm fails�� Oth�

erwise set j �� j � �
 k �� k � � and go to Step ��

We assume that matrices Ji
 i � N 
 in Step �
 are computed using di�erences as
in ������ This computation is very e	cient for sparse systems when the technique
described in Ref�� is applied� The value 
i �� minkfik���� �	i� 
� is used instead of 


�



in Step �
 since this choice guarantees the ultimate superlinear rate of convergence of
the Newton method Ref���� Step �a realizes decision T� which guarantees the global
convergence of Algorithm � in case A� � A� hold A� � A� are standard assumptions
which are not veri�ed during the computation but their violation can cause a failure
of Algorithm � in Step �c��

� Iterative solution of linear subproblems

The direction vector si � Rn
 i � N 
 satisfying the inequality kAisi � fik � 
kfik is
most frequently obtained as an approximate solution of the linear subproblemAis�fi �
� using some iterative method� In order to simplify the notation we omit the outer
iteration index i in this section
 so that we write A
 f 
 x instead of Ai
 fi
 xi� On the
other hand
 we use the inner iteration index j for the description of iterative methods
for linear subproblems� We return to the outer iteration index i only in Theorem ��

To satisfy conditions ���� � ����
 we need iterative methods which will terminate
after a �nite number of steps and generate a sequence of iterates sj
 j � N 
 and
corresponding residual vectors rj

�� Asj � f 
 j � N 
 so that the norms krjk
 j � N 
 do
not increase� This requirement can be ful�lled by a choice of some smoothed residual
minimizing� conjugate gradient�type method� Moreover
 since the system matrix A is
not always explicitly known and is usually given by the di�erence formula as in Lemma
�
 we consider only the iterative methods which do not involve multiplication by the
transpose of the matrixA transpose�free methods�� In this section
 we always suppose
that s� � �
 so that r� � f �

One of the best known and widely used schemes of this type is the GMRES method
presented by Saad and Schultz in Ref�� and given by the following algorithm�

Algorithm �� Preconditioned GMRES method�

s� � �� r� � f� ��q� � r�� kq�k � �
j � �� �� � � � � n

w� � AC��qj

�kj � qTk wk

wk�� � wk � �kjqk


k � �� � � � � j

�j��qj�� � wj��� kqj��k � �
Qj � �q�� q�� � � � � qj�

Hj �

�
�������

��� ��� � � � ��j

�� ��� � � � ��j

� �� � � � ��j

� � � � � � � � � � � �
� � � � � �j��

	
������

� R�j��	�j

zj � arg min
z�Rj

kHjz � ��e�k
sj�� � C��Qjzj

�



Setting C � I
 we obtain the basic non�preconditioned� GMRES method� Very often
we consider C � LU 
 where the triangular matrices L and U are obtained from the
incomplete LU ILU� decomposition� We use the notation B � AC�� which simpli�es
the investigation of both the preconditioned and the non�preconditioned versions of
the considered methods� We note that the vectors qk � Rn
 k � �� � � � � j constitute the
orthonormal basis of the Krylov subspace

Kj � spanff�Bf� � � � � Bj��fg�

and we can write BQj � Qj��Hj � Moreover
 GMRES is a minimimal residual method

the residual norm krjk is minimized over the Krylov subspace Kj
 i�e�

sj�� � C���sj�� � C�� arg min

s�Kj

kB�s� fk�

The sequence of residual norms is non�increasing and the solution of a linear system is
obtained after at most n iterations if the rounding errors do not deteriorate the �nite
termination of the method�� Unfortunately
 the method uses long recurrences Oj��
operations and storage requirement per iteration step�� Since On�� can be too large

the GMRES method is often restarted afterm � n iterations� We call this modi�cation
the GMRESm� method�

In this paper we will concentrate on another conjugate gradient�type iterative
method
 smoothed CGS method
 presented in Ref�� and known as one of the most
e	cient transpose�free methods based on short recurrences�

Algorithm �� Preconditioned smoothed CGS method�

s� � �� s� � �� r� � f� r� � f� p� � f� u� � f

j � �� �� � � � � n

vj � AC��pj � �j � fT rj	f
T vj

qj � uj � �jvj

sj�� � sj � �jC
��uj � qj�

rj�� � rj � �jAC
��uj � qj�� �j � fT rj��	f

T rj

uj�� � rj�� � �jqj

pj�� � uj�� � �jqj � �jpj�

��j � j�
T � arg min

�����T�R�

krj�� � �rj � rj��� � vjk

sj�� � sj�� � �jsj � sj��� � jC
��pj

rj�� � rj�� � �jrj � rj��� � jvj

Since this method is obtained from the two parameter�minimal residual smoothing
of the CGS method Ref����
 the sequence of residual norms is non�increasing� The
smoothed CGS method uses short recurrences On� operations and storage require�
ments per iteration step�
 but it can break down if either fT rj � � or fTvj � ��
The solution of a linear system is obtained after at most n iterations if a breakdown

��



does not occur and if rounding errors do not deteriorate the �nite termination of the
method��

Both the above algorithms and also other algorithms having a �nite termination
property and based on a two parameter�minimal residual smoothing� can be used for
a generation of direction vectors satisfying conditions ���� � ����� We determine the
direction vectors by the following rule
 which is a generalization of the rule proposed
in Ref��� for unconstrained optimization�

Rule � Let sk � Rn� k � N � be vectors generated using Algorithm � or Algorithm

 Let j � N be the maximum index� such that kskk � � and krkk � 
kfk for all
k � �� � � � � j� where � � 
 � � and � � �� If krj��k � 
kfk and ksj��k � �� then we
set s � sj��� If ksj��k � �� then we set s � sj � �jsj�� � sj�� where �j is chosen so
that ksk � ��

Direction vectors selected by Rule � clearly satisfy conditions ���� and ���� of
De�nition �� In the subsequent text
 we prove the validity of condition ����
 i�e�

kfk � kAs� fk � ��kAsk� ����

where � is a constant� We use the following de�nition�

De�nition � We say that the matrix B � AC�� is well�preconditioned if

kI �Bk � � ����

for an arbitrary � � � � ��

Lemma � Let the matrix B be well�preconditioned and let sj�� � Rn� j � �� � � � � n�
be the vectors generated by either the GMRES or the smoothed CGS method� Then

kfk� � krj��k� � ��kfk�� ����

where � � �� ��	� � ���

Proof a� First we prove that

jfTBf j � �� �

� � �
kfkkBfk � �kfkkBfk� ����

Using De�nition � we get

jfTBf j � jfTf � fT I �B�f j � jfTf j � jfT I �B�f j
� kfk� � kI �Bkkfk� � �� ��kfk�

and

kBfk � kfk� kI �Bkkfk � � � ��kfk�
Together these inequalities give �����
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b� Since the residual norms of both the GMRES and the smoothed CGS method does
not increase
 it su	ces to prove
 that

kfk� � kr�k� � ��kfk��

Consider �rst the GMRES method� Since s� � � and K� � spanffg
 we obtain

kr�k � min
��R

kBf� � fk�

From the optimality condition

�
�� argmin

��R
kBf� � fk� � argmin

��R
�kBfk� � �fTBf � kfk��

it follows � � �fTBf	kBfk� and for the norm of the residual r� we have

kr�k� � fTBf��

kBfk kBfk
� � �f

TBf��

kBfk� � kfk� � kfk� � fTBf��

kBfk�kfk�kfk
��

This equality together with ���� implies assertion of the lemma for the GMRES
method� Consider now the smoothed CGS method� Then it holds

kr�k � min
�����T�R�

kr� � �f � r�� � v�k � min
��R

kf � v�k � min
��R

kf � Bfk

after substituting � � �� and we obtain the same result as for the GMRES method�
�

Lemma � Let the assumption of Lemma 
 be satis�ed and let s � Rn be a vector
determined by Rule �� Then

kfk � kAs� fk � ��kAsk� ����

where �� � ��	��

Proof a� Let ksj��k � � and krj��k � 
kfk� Then by Lemma �

�kfk kfk � krj��k� � kfk� � krj��k� � ��kfk�

holds
 which together with ����� implies

kfk � krj��k � �
�
��kfk � �

�
��kAsk�

and we obtain an assertion of the lemma�
b� Let ksj��k � � and j � �� Then s � �jsj�� � � � �j�sj with � � �j � � holds
 so
that

kAs� fk � k�jAsj�� � f� � � � �j�Asj � f�k � �jkrj��k� � � �j�krjk�
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so that Lemma �
 together with �����
 gives

kfk � kAs� fk � �j kfk � krj��k� � �� �j� kfk � krjk� � �
�
��kfk � �

�
��kAsk

and we obtain an assertion of the lemma�
c� Let ksj��k � � and j � �� Then s � ��s� holds
 where � � �� � �� Therefore
 we
can write

kfk� � kAs� fk� � kfk� � � �� kAs�k� � ���fTAs� � kfk�
� �� ��kAs�k� � ���fTAs� � ��

�
�kAs�k� � �fTAs�

�
� ��

�
kfk� � kAs� � fk�

�
since � �� � �� for � � �� � ��
 or

�kfk kfk � kAs� fk� � kfk� � kAs� fk� � ��
�
kfk� � kr�k�

�
� ��kfk kfk � kr�k� �

which gives

kfk � kAs� fk � �
�
�� kfk � kr�k� � �

�
���

�kfk�

as in a�� Therefore


�kfk � kr� � fk � kAs�k
which after a substitution into the previous inequality gives

kfk � kAs� fk � �
�
���

�kAs�k � �
�
��kAsk

and we obtain an assertion of the lemma� �

Theorem � Let matrices Bi � AiC
��
i � i � N � be well�preconditioned and direction

vectors si � Rn� i � N be determined by Rule �� Then conditions ����	 � ���
	 are
satis�ed and we can use direction vectors si � Rn� i � N for the construction of trust
region method �T	� If this trust region method is applied to the function f � Rn 	 Rn

satisfying assumptions A� � A� and if A
 � A� hold� then xi 	 x� and fx�� � ��

Proof Assertion of the theorem is an immediate consequence of Lemma � and Theo�
rem ��

�

Condition ���� is advantageous in the sense that it depends only on the precondi�
tioning technique� On the other hand
 it is rather strong and is veri�ed with di	culty�
We can only suppose that ���� is satis�ed if a good preconditioning technique is ap�
plied� This is often the case at least if problems have band structure� when we utilize
the incomplete LU decomposition as a preconditioning technique� Fortunately
 we can
use the weaker condition

kf �Bfk � 
kfk� ����

which implies ���� and forms a basis for the following rule�
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Rule � Let �s � �C��f and �r � A�s � f � If k�rk � 
kfk and k�sk � �� then we set
s � �s� If k�rk � 
kfk and k�sk � �� then we set s � ���s� where �� is chosen so that
ksk � �� If k�rk � 
kfk� then we use Rule ��

It is clear
 that ���� holds
 with ��� � � � 
��	� � 
��
 if s � �s su	ce to follow
part c� of proof of Lemma ��� If s 
� �s
 then we have to suppose the validity of �����
We investigated
 in our computational experiments
 how frequently ���� was violated
when Rule � was applied in connection with the incomplete LU decomposition� We
found that the direction vector s � �s was used in �� � of iterations� In the other
iterations
 condition ���� was always satis�ed with � � ����

� Computational experiments

In this section
 we present the results of a comparative study of both the Newton and
the Schubert Ref���� method
 realized as trust region TR� methods with inexact
iterative solution of linear subproblems by either the smoothed CGS SCGS� or the
restarted GMRES GMRESm�� methods m��� for the basic case and m��� for the
preconditioned case�� These methods were implemented using the modular interactive
system for universal functional optimization UFO Ref����� We used the values � � ���

� � ���
 � � ���
 � � ���
 
 � ���
 � � ����
 � � �����
 j � � and �� � ���� These
values were obtained experimentally� All test results were obtained using the �� sparse
problems from Ref���
 having ��� equations and ��� unknowns� A summary of the
results for all these problems is given in tables ���� These tables contain the total
number of iterations NIT
 the total number of function evaluations NFV
 the number
of fails
 the total computational time and the storage requirement in k�Bytes
 for
both the basic and the ILU�preconditioned implementations� For comparison we give
results obtained by methods with an exact direct solution of linear subproblems by the
unsymmetric�pattern multifrontal scheme realized in the UMFPACK package Ref�����

Table �� Computational variants of the Newton method�

Basic m���� Preconditioned m����
realization NIT NFV Fail Time kB NIT NFV Fail Time kB
TR�SCGS ��� ���� � ���� �� ��� ��� � ���� ��
TR�GMRESm� ��� ���� � ����� �� ��� ��� � ���� ��
TR�UMFPACK ��� ��� � ���� ��

Table �� Computational variants of the Schubert method�

Basic m���� Preconditioned m����
realization NIT NFV Fail Time kB NIT NFV Fail Time kB
TR�SCGS ��� ���� � ����� �� ��� ��� � ���� ��
TR�GMRESm� ��� ��� � ����� �� ��� ��� � ���� ��
TR�UMFPACK ��� ��� � ���� ��

��



According to the results presented in tables ���
 we give several conclusions which
are
 of course
 in�uenced by our collection of test problems�� First
 the smoothed CGS
method is more e	cient than the restarted GMRES method
 especially in the basic
unpreconditioned� case� Even if we have not treated possible breakdowns in our im�
plementation of the smoothed CGS method
 these breakdowns never occured� Second

the ILU preconditioning substantially improves the e	ciency of both the smoothed
CGS and the restarted GMRES methods� The improvement obtained by the ILU pre�
conditioning of nonsymmetric iterative methods seems to be more signi�cant then that
obtained by the incomplete Choleski preconditioning of the symmetric conjugate gra�
dient method� Third
 the preconditioned iterative methods are more e	cient than the
direct ones measured by both the storage requirements and the total computational
time� Finally
 we have to note
 that we also tested non�preconditioned GMRES method
with m � ��
 but this choice was not e	cient more inner iterations and larger time��
Our choicesm � �� for the non�preconditioned case and m � �� for the preconditioned
case were obtained experimentally�
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