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Abstract

This paper is devoted to globally convergent methods for solving large sparse sys-
tems of nonlinear equations with an inexact approximation of the Jacobian matrix.
These methods include difference versions of the Newton method and various quasi-
Newton methods. We propose a class of trust region methods together with a proof of
their global convergence and describe an implementable globally convergent algorithm
which can be used as a realization of these methods. Considerable attention is concen-
trated on the application of conjugate gradient-type iterative methods to the solution
of linear subproblems. We prove that both the GMRES and the smoothed CGS well-
preconditioned methods can be used for the construction of globally convergent trust
region methods. The efficiency of our algorithm is demonstrated computationally by
using a large collection of sparse test problems.
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1 Introduction

Let f be a continuously differentiable mapping from R" to R"™ in the form f(z) =
(fi(x), f2(x), ..., fo(x))T and consider the system of nonlinear equations

flz)=0 (1.1)

for some unknown point @ € R". Let J(x) denote the Jacobian matrix of the mapping

f with

Uy =20 cicni <<
al']‘

Let x; € R, F' > ||f(x1)]| and A > 0. Denote
LF)={z e R":||f(x)]| < F}
and
D(F,A)={z € R": ||z —y|| <A for somey € L(F)}.

Throughout the paper we will use the Fuclidean vector norm and the spectral matrix
norm and will suppose that the following assumptions hold:

Al: The Jacobian matriz J(z) is defined and bounded on D(F,A), i.e.
|J(2)|| <J, Ve DF,A).
A2: The Jacobian matriz J(x) is Lipschitz continuous on D(F,A), i.e.
1/(y) = J(x)|| < Llly — z||  Ve,y € D(F,A).
In this paper, we will concentrate on a class of trust region methods for the solution
of a system (1.1), which generate a sequence of points z; € R", i € N, so that
Tip1 = x; + s, €N, (1.2)

where s; € R", ||s;]| < A, is the direction vector determined as to be an inexact
minimizer of || A;s+ fi|| over the trust region with the radius A;, and where the stepsize
«; is selected so that either o = 1, if || f(@; 4 s5)|| < || fil|, or a; = 0, otherwise. Here
A; is an approximation of the matrix J; = J(x;) and f; = f(x;).

For the investigation of trust region methods we also use the objective function

F(e) = LI, (13)

which has the same local and global minima as the norm || f(x)||, and denote F; = F(x;),

gi = g(x;), 1 € N, where g(x) = JT(z)f(x) is the gradient of F(z).



While the influence of inexactness of the solution of the system A;s + f; = 0 on
global convergence was succesfully studied in Refs.1-5, the influence of inexactness of
the approximation A; of the Jacobian matrix J; has not been considered. Therefore,
we consider both of these inexactnesses in this paper.

The paper is organized as follows. In Section 2, we propose a class of truncated
trust region methods for nonlinear equations and formulate conditions for their global
convergence. These conditions (especially condition (2.9)) cannot be verified in general,
but our theory can be useful for particular algorithmic realizations. We introduce an
implementable algorithm, based on restarts, which does not use condition (2.9) while
it is still globally convergent (if standard assumptions hold). Section 3 is devoted to
the investigation of preconditioned iterative methods for the solution of nonsymmetric
systems of linear equations. We prove that both the GMRES and the smoothed CGS
methods can be used for the construction of globally convergent trust region methods
if certain conditions hold. Condition (3.4) is essential, but we propose additional
conditions and a rule based on one of them (condition (3.2) cannot be verified in
practice, but its significance is in that it is frequently satisfied when a good precondition
technique is used). Finally, section 4 contains computational experience with truncated
trust region methods that utilize incomplete LU decomposition as a preconditioning
technique.

Remark to the notation: Throughout the paper we denote L;(s) = ||Ais+ fi|| = || fi]]
for the predicted decrease of the residual norm and p;(s) = (|| f(zi+9)|| = || f(x:)|])/ Li(s)

for the ratio of both the actual and the predicted decreases of the residual norm.

2 Trust region methods

We begin with the definition of a class of trust region methods for the solution of a
system of nonlinear equations. More detailed information can be found in Algorithm 1.

Definition 1 We say that the basic method x;41 = x;+ a;s;, t € N for the solution of
a system of nonlinear equations f(x) =0 is a trust region method (T) if the following
conditions hold.

T1: Direction vectors s; € R™, i € N, are determined so that

[sill < A, (2.1)
[sill < Ai = || Aisi + fill <[, :
—Li(si) = 20| Aisi, (2.3)

where 0 <D < 1,0 <0< 1/2.
T2: Steplengths a; > 0,1 € N, are chosen so that

pZ(SZ) <0= a; = 0, (24)
pZ(SZ) >0=aq,=1, (25)

T3: Trust region radii 0 < A; < A, i € N, are chosen so that A, is given and
plss) < o= Bllsill < Acyr < Fllsill, (2.6)

pi(si) > p=A; <Ay < A,
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where 0 < < B <1 and 0<p<1/2.

The constant ¢ depends on a particular procedure for direction determination. If
the matrix A; is nonsingular, then a vector s; satisfying T1 for an arbitrary value
0 < g < 1/2 exists. Indeed, if we choose s; = —,uZ'AZ»_l i, where 0 < p; < 1 is the
maximum number such that ||s;|| < A;, then (2.1) and (2.2) hold and, moreover

—Li(s)) = |fill = | Aisi + fill = [1fill = I|(1 — pa) fi]
= willfill = pil| AAT fill = || Aisi]] > 20| Aisi]|.

The constants @, 3, 3 and p are user supplied and T1 - T3 can always be satisfied for
an arbitrary 0 <o < 1,0 < <G <land 0 < p<1/2.

In subsequent considerations, we denote N7, Ny, N3 the sets of indices such that
I|s:]l < Az, pi(si) >0, pi(s;) > p holds, respectively. Furthermore, we alternatively use
the following assumptions:

A3: Matrices J7' = J~Yx;) are defined and uniformly bounded on the sequence of
points x; € L(I), 1 € N, generated by the trust region method (T), i.e.

I <1/, VieN.
A4: There exist values 0 < A < A, such that
Allsill < | Asil| < Allsi| (2.8)

Jor alli € N, and values J >0 and 0 < 9 < Jy/(1 +7), where v = (1 — 2p)c > 0,
such that ||.J;s;]] > J||si|| and

1A = Ji)sill < s (2.9)

Jor all i € N'\(N1 UN3).

Now we will prove that trust region method (T) is globally convergent if Al, A2
and A4 hold. Our proof is motivated by the proof proposed in Ref.6 for unconstrained
optimization.

Lemma 1 Let trust region method (T) be applied to the function f : R" — R" sat-
isfying assumptions Al - A2 and let A} hold. Then a constant ¢ > 0 exists, such
that

[sil| = <l fi
for allie N.
Proof (a) Let : € Mj. Then from (2.2) follows
[ Assll = [Ifilll < [[Aisi + fil| < @[ fill,
so that (1 —@)||fi|| < ||Aisi||, which together with (2.8) gives

1—o
’MHZ—jﬂWW
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(b) Let ¢ ¢ Ny and i &€ N3. From (2.3) it follows that L;(s;) <0, so that
LIl = (s + £l = IED AN = (1A + Fl12 = 1501
1

If || f(zs + 55)]| < || f(2i)]], then the inequality p;(s;) < p and (2.10) imply

Flaits) = Fle) = o (Gt )l ~ 17@IP)

(1f (i sl = W Cea)l) 1 ()]
pLi(s)llfill = 2pQ:(s:).

If || f(a; + s0)|| = ||f(2:)]], this inequality holds trivially. Therefore we can write

>
>

On the other hand, assumptions A1, A2 and the mean value theorem imply

lg(zi + psi) — glei)ll = NI (@i + psi) f (2 + psi) — T (@) f (i)
< NI (g A+ psi) (f (i + psi) — f(2)]
(T (@i 4 psi) = T (@) f )]

< TN s+ poss) — Flaa) |+ TellselllL
= T [ it rssidr] + Tulsi L
< (T4 IF)|si)
for 0 < pu <1, so that
Flai+si) = Flai) < glsi+ lg(xi + psi) — glai)|l|]sil]
< glsi4 (T +1F)||si]?

f Aisi+ [ (1= Asi + (T + TF)|si]|”

J— _2 —_—
< Qils)) +O|lsillllfill + (7 + LE)||sill”, (2.12)
Coupling (2.11) and (2.12), we can write

20Qi(5:) < Qul) + Dsillllfil + (7 + ) sl
or
— (1= 2p)Quls)) < Vsilllfill + (T + TF)]|sil|” (2.13)
Since ¥ < Jv/(1 + ) < J we can write
(L= Dl < ssill 4 = )il < A, 2.1
which together with (2.10), and (2.3) imply

1 _
—Qi(si) = =5 Lils)ll fill =z el Aisllllfill = e(L = D)l[s:llll il



If we substitute the last inequality into (2.13), we obtain

(1 =2p)a(L = Dsilllfill < =(1 = 20)Qi(s:) < Vsilllfill + (T + TF) s

or

U=2p)ald =9 =9

T+ TF

[l =
since ||s;]| # 0 by T1. The numerator is positive since J < J(1 — 2p)a/(1+(1—=2p)a).

(c) Let ¢ = 1. If || f1]] = 0, then clearly ||s{|| > ¢ fi]| for an arbitrary constant ¢ > 0.
If || 1|l # 0, we obtain

51

I1f1]]

(d) Let ¢« ¢ Ny, i € N3 and i # 1. Let k < i be the maximum index for which & ¢ N,
k € N3 and k # 1 do not hold simulteneously. Then using (2.6), (2.7) and (2.1) we

can write

1]l =

[l

Isill = A: = Apyr > min(Ay, Bllsill) = min (J|sill, Bllsll) = Bllsell,

so that we obtain from parts (a)-(c) of this proof (the sequence ||fi||, 7 € NV, is nonin-
creasing by T2)

[sill = Bllskll = cll fell = ell £l

where

c=p

win (1520 ~2p)o(J —7) -7 lal) -

A T +TF A
O

Theorem 1 Let x; € R™, i € N be a sequence generated by trust region method (T).
Let the function f: R™ — R" satisfy the assumptions Al - A2 and let AJ hold. Then

x; — «* and f(x*) = 0.

Proof (a) First we prove that f; — 0. Suppose that this assertion does not hold. Since
the sequence ||f;||, ¢ € N, is nonincreasing by T2, a number ¢ > 0 exists, such that
| fill > ¢, Vi € A and by Lemma 1 it holds that

il > ce, VieN
Suppose first, that the set A5 is not finite. Since N5 C N3, we can write

1fill = [ fizall [f ()l = [[f (i + si)ll = —pLi(si)
2p0||Aisi|| > 2poAce, Yie N (2.16)

Y



by (2.8) and (2.3). Consequently, it follows

1Al = T (LA = el = 22 ALED = il

=1
> D (I = 1fial) = D2 2podce = oo
iENg iENg

which is a contradiction. Suppose now, that the set N3 is finite. Then (2.6) implies
A; — 0, which together with (2.1) gives ||s;]| — 0. But this is in contradiction to
||si]] > ce Vi e N.

(b) Using (2.3) we obtain L;(s;) = ||Aisi + fil] — ||.fil| <0, so that

1Fill = [[Assi + fill = ([ Assal| = [ £l
This inequality implies ||A;s;|| < 2| fi]], so that
Allsi|l < JAis|| < 2]1fi (2.17)

Now we will show that 3202, ||s;|| < oco. If the set N3 is finite, then an index [ & N3
exists, such that i € N3 Vi > [. Therefore

0 -1 0
—il _ _
S sill < sl 4 sl S5 < (1= 18 + (1= ) < o0
=1 =1 1=l
by (2.6). If the set A is infinite, then (2.16) implies

AL = SSUA = ) = S = el

=1 i€EN;
> 2p0 Y |[Awsil| = 2paA Y lsill.
iENg ie/\/'g

Denote N3 = {ly,ls,13,...}. Using Lemma 1 and (2.17), we obtain

2
st 41l = Sl il = Hfz = HSz I (2.18)

and (2.6) implies |[s;, x| < BHSIJ-Hc—lH V2 <k <l[j4; —1; — 1. Therefore

l1—-1

Z 541 +Z

0
> Ilsill
=1

ly1-1;—
s, 1] + Z HSz]+kH

2 lj+1—lj—1_k 1
< (11—1A—|-ZHSIH 1+—A ﬂ_]

7=1 k=1
< L-DE+ |1+ 2 S s
) 2 1]
' ﬂl_ﬂ 1EN>
— 2 1114l
< (; — DA 14+ —— .
< (1 ) ‘|‘[ +ﬂ1—ﬂ]2pa_<oo



From 302, ||vipr — ]| < 352, |Isi]] < oo it follows that the sequence z;, i € A, satisfies
the Cauchy condition, so that x; — x*, which together with f; — 0 gives f(2*) = 0. O

As the application of the general theory of trust region methods, we will investigate
a difference version of the Newton method first.

Lemma 2 Let assumption A2 be satisfied and let A(x) be a matriz obtained by nu-
merical differentiation, such that

flx +de;) = f(x)

A(x)e; = 5 :

1<j<n, (2.19)

where ¢;, 1 < j < n, are columns of the unit matriz of order n and 6 is a positive
constant. Then

1—
A(a) — J(@)]| < STV,
Proof See Ret.3, Lemma 4.2.1. O

Corollary 1 Let assumptions Al - A3 be satisfied. Let A; = J(x;), i € N, be matrices

determined by (2.19) where
2J~
b0< =——————. 2.20

with v = (1 —2p)a. Then A4 holds with A = J—0, A=J+9 and 9 < Jy/(1 4+ 7).

Proof From Lemma 2 and (2.20) we obtain

|A;i — || €9 2 SLv/né < Jy/(1+7).

[N

The rest of assertion follows from the equality A;s; = Jis; + (A; — Ji)s,. O

Corollary 1 shows that it is possible to choose number 6 > 0, so that the trust
region method with difference approximation of the Jacobian matrix, determined by
(2.19), is globally convergent. This is true only if all computations are perfect. In
the opposite case, round-off errors can destroy this property. We should investigate,
when the actual difference, derived from machine precision, satisfies condition (2.20).
Nevertheless, we omit this investigation since inequality (2.20) is usually unnecessarily
strong and difference versions of the Newton method are very robust in practice, as it
is demonstrated in Section 4.

Now we will concentrate our attention to quasi-Newton methods. We will not
study these methods in detail (we refer to Refs.3 and 5 for theoretical investigations).
Instead, we propose an implementable globally convergent algorithm, which can be
used as a realization of an arbitrary quasi-Newton method. Since condition (2.9)
cannot be verified when the true Jacobian matrix is not known, we have to use a
different approach based on restarts. As we can see, condition (2.9) is used only in
step (b) of the proof of Lemma 1 and it can be replaced by the condition ||s;|| > ]| fi|,
where ¢ is a suitable constant, in this case. Therefore, if we apply the decision



T4: If i € N\(N1UN3) and ||s|| < || fi|| and A; # J;, then set A; = J; and repeat the

iteration,

we obtain a trust region method which is globally convergent if A1 - A3 hold. Un-
fortunately, the above simple rule is not efficient in practice. We have known, from
the computational experience, that quasi-Newton methods have to be restarted more
frequently (especially in the sparse case when the numerical differentiation described
in Ref.7 is inexpensive). Therefore, we recommend the following algorithm, in which
A; is replaced by J; whenever p;(s;) < p-

Algorithm 1

Data: 0<f<,0<p<p<l<7y0<w<l,e>0,2>0,A>07>0.

Step 1:  Initiation: Choose an initial point 1 € R"™ and compute the vector f; :=

f(x1). Choose a number 0 < A; < A and set i := 1 and k := 1.

Step 2:  Test on convergence: If ||fi]| < g, then terminate the computations (the

solution is obtained). Otherwise set j := 0.
Step 3:  Restart: If £ = 1, then compute the matrix J; ;== J(x;) and set A; :=J;
Step 4:  Direction determination: Set @; := min(||f;||'/?,1/¢,@) and compute the
vector s; € R" satisfying the conditions (2.1) - (2.3) (with @; instead of

@). This vector can be computed by Rule 1 in the basic case or Rule 2 in

the preconditioned case (both of these rules are described in Section 3).

Step 5: Stepsize selection: Set x;11 := x; + s;, compute fiy1 := f(@;41) and deter-
mine p;(s;). If p;(s;) < p, then go to Step 7. If p < p;(s;) < P, then set
Ay = A TP < pi(s;) and ||si]| < Ay, then set Ay = Ay 7 < pi(si)

and ||s;|| = A;, then set Ay = min(FA;, A).
Step 6:  Update: Compute the matrix A;;1 using the quasi-Newton update, set

t: =1+ 1, k:=0 and go to Step 2.
Step 7:  Decision: (a) If ||s;]| = A; < g||fi|| and k& = 0, then set &k := 1 and go to

Step 3. Otherwise set Ay = 3]s

(b) If pi(s;) >0, then set i :=7 41, k:=1 and go to Step 2.

(c) If j > j, then terminate the computations (the algorithm fails). Oth-
erwise set j ;== 5+ 1, k:= k4 1 and go to Step 3.

We assume that matrices J;, 1 € N, in Step 3, are computed using differences as
in (2.19). This computation is very efficient for sparse systems when the technique
described in Ref.7 is applied. The value ©; := min(]| f;||'/2,1/7,%) is used instead of @



in Step 4, since this choice guarantees the ultimate superlinear rate of convergence of
the Newton method (Ref.4). Step Ta realizes decision T4 which guarantees the global
convergence of Algorithm 1 in case Al - A3 hold (Al - A3 are standard assumptions
which are not verified during the computation but their violation can cause a failure
of Algorithm 1 in Step 7c).

3 Iterative solution of linear subproblems

The direction vector s; € R"™, i € N, satisfying the inequality ||A;s; + fi|| < @||fi]| is
most frequently obtained as an approximate solution of the linear subproblem A;s+ f; =
0 using some iterative method. In order to simplify the notation we omit the outer
iteration index ¢ in this section, so that we write A, f. = instead of A;, f;, ;. On the
other hand, we use the inner iteration index j for the description of iterative methods
for linear subproblems. We return to the outer iteration index ¢ only in Theorem 3.

To satisfy conditions (2.1) - (2.3), we need iterative methods which will terminate
after a finite number of steps and generate a sequence of iterates s;, j € N, and
corresponding residual vectors r; 2 Asj+ f,j € N, so that the norms ||r;||, ; € N, do
not increase. This requirement can be fulfilled by a choice of some smoothed (residual
minimizing) conjugate gradient-type method. Moreover, since the system matrix A is
not always explicitly known and is usually given by the difference formula as in Lemma
2, we consider only the iterative methods which do not involve multiplication by the
transpose of the matrix A (transpose-free methods). In this section, we always suppose
that s; = 0, so that ry = f.

One of the best known and widely used schemes of this type is the GMRES method
presented by Saad and Schultz in Ref.8 and given by the following algorithm.

Algorithm 2. Preconditioned GMRES method.

s1=0,r=f, b =11, |u]| = 1
i=1,2,...,n

wy = AC™q;

Wy = 4 }k:l,...,j
Wiyl = Wi — Qg Gk

5;+1%‘+1 = Wj41, H%‘HH =1

Q; = a1, 2, - - -5 ;]

a1 Q12 ... aqj

52 Qoo ... Oy 4 4

H] = 0 63 e asj € R(]+1)X]
0 0 ... By

zj = arg min || Mz + freq |

-1
sip1 =077 Qjz;



Setting C' = I, we obtain the basic (non-preconditioned) GMRES method. Very often
we consider ' = LU, where the triangular matrices L and U are obtained from the
incomplete LU (ILU) decomposition. We use the notation B = AC~™" which simplifies
the investigation of both the preconditioned and the non-preconditioned versions of
the considered methods. We note that the vectors ¢ € R", k =1,..., 5 constitute the
orthonormal basis of the Krylov subspace

IC] :Spa'n{f7Bf7"'7Bj_1f}7

and we can write BQ); = ();41H;. Moreover, GMRES is a minimimal residual method,
the residual norm ||r;|| is minimized over the Krylov subspace K;, i.e.

sip1 = 71350 = C™ argmin || B3 + f]].
5€K;

The sequence of residual norms is non-increasing and the solution of a linear system is
obtained after at most n iterations (if the rounding errors do not deteriorate the finite
termination of the method). Unfortunately, the method uses long recurrences (O(j?)
operations and storage requirement per iteration step). Since O(n?) can be too large,
the GMRES method is often restarted after m < n iterations. We call this modification
the GMRES(m) method.

In this paper we will concentrate on another conjugate gradient-type iterative
method, smoothed CGS method, presented in Ref.9 and known as one of the most
efficient transpose-free methods based on short recurrences.

Algorithm 3. Preconditioned smoothed CGS method.

$1=0,5=0,m=f,m=f;m=f, uu=Ff
7j=12,...,n

vj = AC™'pj, aj = [175/f v,

q; = uj — a;v;

S =55+ a;C7 u; + ¢5)

Tin =T + o ACT (u; + q5), B = [T /775
Ujp1 = Ti1 + B¢

pir1 = i1 + Bi(q; + Bipj)

T . _ —
[Ajopi]” =arg min [T 4+ A(rj — Tjpn) + pog|
[Au]” €R?

sjt1 = Sjr1 + Aj(s5 = Fj) + 1,07 p;
it = Tip + A (1 — i) + pv;

Since this method is obtained from the two parameter-minimal residual smoothing
of the CGS method (Ref.10), the sequence of residual norms is non-increasing. The
smoothed CGS method uses short recurrences (O(n) operations and storage require-
ments per iteration step), but it can break down if either fI7;, = 0 or ffv; = 0.
The solution of a linear system is obtained after at most n iterations (if a breakdown
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does not occur and if rounding errors do not deteriorate the finite termination of the
method).

Both the above algorithms (and also other algorithms having a finite termination
property and based on a two parameter-minimal residual smoothing) can be used for
a generation of direction vectors satisfying conditions (2.1) - (2.3). We determine the
direction vectors by the following rule, which is a generalization of the rule proposed
in Ref.11 for unconstrained optimization.

Rule 1 Let s € R", k € N, be vectors generaled using Algorithm 2 or Algorithm
3 Let j € N be the mazimum index, such that ||sp]| < A and ||rg]| > @||f|| for all
k=1,...,5, where 0 <@ < 1 and A > 0. If ||rip1]] S©O|f|| and |[s;41]] < A, then we
set s = Sjp1. If |[sj41|| = A, then we set s = s; + 7j(8;41 — 8;), where 7; is chosen so

that ||s|| = A.

Direction vectors selected by Rule 1 clearly satisfy conditions (2.1) and (2.2) of
Definition 1. In the subsequent text, we prove the validity of condition (2.3), i.e.

11l = 1As + f]| = 2¢]|As]], (3.1)
where ¢ is a constant. We use the following definition.
Definition 2 We say that the matriv B = AC™! is well-preconditioned if
Il - B| <7 (3.2)
for an arbitrary 0 <7 < 1.

Lemma 3 Let the matriz B be well-preconditioned and let s;11 € R", 3 = 1,....,n,
be the vectors generated by either the GMRES or the smoothed CGS method. Then

LA = llrsaall® = 1A%, (3.3)
where n = (1-7)/(1+7).
Proof (a) First we prove that
1—-7
1 Bf| > IFIHEBAIL = allAHB LI (3.4)

“1+7v
Using Definition 2 we get

B = N =S = B = = 1 = B
= == Bz =)

and
IBA < AT+ 1L = BIIAN < L+ 7)) f]-

Together these inequalities give (3.4).

11



(b) Since the residual norms of both the GMRES and the smoothed CGS method does

not increase, it suffices to prove, that

AP = Nlrall* = w11
Consider first the GMRES method. Since s; = 0 and Ky = span{ f}, we obtain

lrall = min || B(f) + f]]-
From the optimality condition
pn £ argmin||B(uf) + fII* = argmin(u® | B + 20" BS + | £]]°)
HER HER
it follows p; = —fIBf/||Bf||* and for the norm of the residual r, we have

(f'Bf)? B (f*Bf)
IBf* I1BfI]* IBFIEILA

This equality together with (3.4) implies assertion of the lemma for the GMRES
method. Consider now the smoothed CGS method. Then it holds

Iral* = IBSI* -2 AP =117 - LF1*.

lrafl = min 72+ ACS = 72) & pol| < min [ 4 o] = min L/ + p B 1]

(after substituting A = 1) and we obtain the same result as for the GMRES method.
O

Lemma 4 Let the assumption of Lemma 3 be satisfied and let s € R"™ be a vector
determined by Rule 1. Then

71— 1As + 1 > 26 A (35)
where 20 = n*/8.
Proof (a) Let ||s;41]| < A and ||rj41]| < @||f||. Then by Lemma 3

20 A1 AL = NrgealD) = WA = Mgl = 2?01 17

holds, which together with (2.17) implies

n?|| As]],

N

lIfll =

[N

[£]] = llrjall =
and we obtain an assertion of the lemma.
(b) Let ||s;+1]] > A and j > 1. Then s = 7j5,41 + (1 — 75)s; with 0 < 7; <1 holds, so
that

[As + fll = [I7(Asjpa + ) + (1= 75)(As; + I < illrjall + (0= 7)1l
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so that Lemma 3, together with (2.17), gives

1
P71 = 214

[N

1= 1As + FIF = 75 (LA = WD) + (0= 7) AL =il =

and we obtain an assertion of the lemma.
(c) Let ||s;+1]| > A and j = 1. Then s = 715, holds, where 0 < 71 < 1. Therefore, we
can write

LA = As + £l = (AP = rfll Asall* — 270 /7 Aszy — | £]?

= _7'12"‘452"2 - 27'1JCTA<92 > T (—HA52H2 - QfTAsz)
= 7 (117 = I14s2 + f1?)
(since 7§ <1y for 0 < 7 < 1), or

2 ACLAN = 11As + F1D

AP = N[ As + £ = 7 (£ = (1))
nll AL = )

which gives

[ f1]-

|

1
LA = l[As + fll = 5r (AT = ir2ll) =
as in (a). Therefore,

2LA00 = Mlre = Sl = [[As:|

which after a substitution into the previous inequality gives

1 1
70— lAs 4 71 2 Srr?llAsel = SatlAs)
and we obtain an assertion of the lemma. O

Theorem 3 Let matrices B; = A;C', i € N, be well-preconditioned and direction
vectors s; € R™, i € N be determined by Rule 1. Then conditions (2.1) - (2.3) are
satisfied and we can use direction vectors s; € R", i € N for the construction of trust
region method (T). If this trust region method is applied to the function f:R" — R"
satisfying assumptions Al - A2 and if A3 - A hold, then x; — «* and f(x*) = 0.

Proof Assertion of the theorem is an immediate consequence of Lemma 4 and Theo-
rem 1.
O
Condition (3.2) is advantageous in the sense that it depends only on the precondi-
tioning technique. On the other hand, it is rather strong and is verified with difficulty.
We can only suppose that (3.2) is satisfied if a good preconditioning technique is ap-
plied. This is often the case (at least if problems have band structure) when we utilize
the incomplete LU decomposition as a preconditioning technique. Fortunately, we can
use the weaker condition

If = BS < @lfll; (3.6)

which implies (3.4) and forms a basis for the following rule.

13



Rule 2 Let s = —C7'f and 7 = As+ f. If ||F|| < @||f|| and ||3|| < A, then we set
s =& If||F|| < @|f]| and ||3]] > A, then we set s = 73, where T is chosen so that

Is|| = A. If ||| > @] f]|, then we use Rule 1.

It is clear, that (3.5) holds, with 160 = (1 — @)?/(1 +©)?, if s = 5 (suffice to follow
part (c) of proof of Lemma 4). If s # 3, then we have to suppose the validity of (3.4).
We investigated, in our computational experiments, how frequently (3.4) was violated
when Rule 2 was applied in connection with the incomplete LU decomposition. We
found that the direction vector s = § was used in 90 % of iterations. In the other
iterations, condition (3.4) was always satisfied with n = 0.1.

4 Computational experiments

In this section, we present the results of a comparative study of both the Newton and
the Schubert (Ref.12) method, realized as trust region (TR) methods with inexact
iterative solution of linear subproblems by either the smoothed CGS (SCGS) or the
restarted GMRES (GMRES(m)) methods (m=30 for the basic case and m=10 for the
preconditioned case). These methods were implemented using the modular interactive
system for universal functional optimization UFO (Ref.13). We used the values 8 = 0.5,
p=01,9=09,7=20,w=04,e=10"% =107 7 =5 and Ay = 1.0. These
values were obtained experimentally. All test results were obtained using the 17 sparse
problems from Ref.14, having 100 equations and 100 unknowns. A summary of the
results for all these problems is given in tables 1-2. These tables contain the total
number of iterations NIT, the total number of function evaluations NFV, the number
of fails, the total computational time and the storage requirement in k-Bytes, for
both the basic and the ILU-preconditioned implementations. For comparison we give
results obtained by methods with an exact direct solution of linear subproblems by the
unsymmetric-pattern multifrontal scheme realized in the UMFPACK package (Ref.15).

Table 1: Computational variants of the Newton method.

Basic (m=30) Preconditioned (m=10)
realization NIT NFV Fall Time kB | NIT NFV Faill Time kB
TR-SCGS 382 1641 - 790 22 212 968 - 352 29
TR-GMRES(m) | 285 1349 1 11.97 76| 214 980 - 372 44
TR-UMFPACK 203 906 - 47271

Table 2: Computational variants of the Schubert method.

Basic (m=30) Preconditioned (m=10)
realization NIT NFV Fall Time kB | NIT NFV Faill Time kB
TR-SCGS 635 1123 - 10.27 22| 550 804 - 544 29
TR-GMRES(m) | 504 937 1 1741 76 | 547 801 - bbb 44
TR-UMFPACK 579 927 - 851 71
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According to the results presented in tables 1-2, we give several conclusions (which
are, of course, influenced by our collection of test problems). First, the smoothed CGS
method is more efficient than the restarted GMRES method, especially in the basic
(unpreconditioned) case. Even if we have not treated possible breakdowns in our im-
plementation of the smoothed CGS method, these breakdowns never occured. Second,
the ILU preconditioning substantially improves the efficiency of both the smoothed
CGS and the restarted GMRES methods. The improvement obtained by the ILU pre-
conditioning of nonsymmetric iterative methods seems to be more significant then that
obtained by the incomplete Choleski preconditioning of the symmetric conjugate gra-
dient method. Third, the preconditioned iterative methods are more efficient than the
direct ones measured by both the storage requirements and the total computational
time. Finally, we have to note, that we also tested non-preconditioned GMRES method
with m = 10, but this choice was not efficient (more inner iterations and larger time).
Our choices m = 30 for the non-preconditioned case and m = 10 for the preconditioned
case were obtained experimentally.
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