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Abstract

For f a function from R? to R, we prove that variation with respect to half—s?aces for
where

f on a box J is at most A(J) - SUP{‘fJnHeb (Vfly)-e)dy|;ec S LbeR
Hep, is the hyperplane orthogonal to e with offset b and A(J) denotes the Lebesgue

Y

measure of J. As a result we obtain conditions on when functions can be approximated
within O(\/Lﬁ) by one-hidden-layer feedforward neural networks with n hidden units.
Our bound on variation is derived from an integral representation theorem based on
the fact that the first distributional derivative of the Heaviside function is the delta
distribution.
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1 Introduction

Approximating functions from R? to R™ by feedforward neural networks has been
widely studied in recent years, and the existence of an arbitrarily close approximation,
for any continuous or £, function defined on a d-dimensional box, has been proven
for one-hidden-layer networks with perceptron or radial-basis-function units with quite
general activation functions (see, e.g. Mhaskar and Micchelli [8], Park and Sandberg
9)).

However, estimates of the number of hidden units that guarantee a given accuracy of
an approximation are less understood. Most upper estimates grow exponentially with
the number of input units, i.e. with the number d of input variables of the function f
to be approximated (e.g., Mhaskar and Micchelli [8], Kurkova [6]). A general result by
deVore et al. [4] confirms that there is no hope for a better estimate when the class of
multivariable functions being approximated is defined in terms of the bounds of partial
derivatives. But in applications, functions of hundreds of variables are approximated
sufficiently well by neural networks with only moderately many hidden units (e.g.,
Sejnowski and Yuhas [12]).

Jones [5] introduced a recursive construction of approximants with “dimension-
independent” rates of convergence to elements in convex closures of bounded subsets
of a Hilbert space and together with Barron proposed to apply it to the space of
functions achievable by a one-hidden-layer neural network. Applying Jones’ estimate
Barron [1] showed that it is possible to approximate any function satisfying a certain
condition on its Fourier transform within £, error of (’)(Ln) by a network whose hidden
layer contains n perceptrons with a sigmoidal activation function.

Using a probabilistic argument Barron [2] extended Jones’ estimate also to supre-
mum norm. His estimate holds for functions in the convex uniform closure of the set
of characteristic functions of half-spaces multiplied by a real number less than or equal
to B. He called the infimum of such B the variation with respect to half-spaces and
noted that it could be defined for any class of characteristic functions.

In this paper, we show that variation with respect to half-spaces is bounded above
by the sup of integrals of absolute values of directional derivatives multiplied by the
d-dimensional volume of the box where the function is defined (Theorem 2.2.). Conse-
quently, we obtain conditions which guarantee approximations for both £, and supre-
mum norm with error rate at most O(ﬁ) by one-hidden-layer neural networks. We
utilize an integral representation theorem (Theorem 2.1) proved using properties of the
Heaviside and delta distributions. Precise definitions and statements of results follow,
with proofs deferred to the last section.

2 Variation with respect to half-spaces

Let J be any box in R?. For a function ¢ : R — R let us denote &;(x, B,J) = {g :
J— R; g(x) = wip(v-x+b),veR wbe R, |w < B}. So &, B, J) denotes the
set of functions computable by a network with d inputs, one hidden perceptron with
an activation function ¥ and one linear output unit.



Let ¥ denote the Heaviside function (¢¥(x) =0 for < 0 and J(x) = 1 for x > 0).
It is easy to see that £;(0,B,J) ={g:J — R; g(x) = wd(e-x +b),e € S w,bc
R, |w| < B}, where S9! denotes the unit sphere in R?. Let ||.|| denote the L5-norm
and ||.||sup the supremum norm with £y and C, respectively, the induced topologies.
For a subset X of a set of functions § from J to R and topology 7 on § we write
el (X) for the closure of X with respect to the topology 7.

Let S be a set of functions from J to R containing &;(¢, B, .J) and 7 be a topology

onS. If f €S8, put
V(f,7,J)=inf{B € R; f € cl:(conv(&E(V, B, J)))}

and call V(f,7,J) the variation of f on J with respect to half-spaces and topology 7.

Since for every X C Ly(.J) we have cle(X) C el (X)) surely V(f, Lo, ) < V(f,C, J).
Also, it is easy to verify that for every f,g € L2(J), V(f 4+ ¢,C,JJ) < V(f,C,J) +
V(g,C, J) and foreverya € R, V(af,C,J) = |a|V(f,C,J); and similarly for V(f, L2, .J).

Recall that for a function f : R — R and an interval [z,y] C R total variation
of f on [z,y] denoted by T'(f,[x,y]) is defined by T'(f,[z,y]) = sup{>F |f(wis1) —
flz));z =21 <...<ap=y,k € N} (see e.g. [7]). For functions of one variable, the
concept of variation with respect to half-spaces and the topology of uniform convergence
coincides with the concept of total variation since T'(f,J) = V(f,C,.J) (see [2], also
Darken et al. ([3, Theorem 6]).

When generalizing to functions of several variables, there is no unique way to extend
the notion of total variation since we lose the linear ordering property. One well-known
method divides d-dimensional cubes into boxes with faces parallel to the coordinate
hyperplanes. One defines T(f,J) = sup{>%, |f(J;)|, where {J;;i = 1,....k} is a
subdivision of .J into boxes }, f(J;) = Z?il(—l)” Df(xii), {xiji5 = 1,...,2%) are the
corner points of J; and v(j) = +1 is a parity (see [7]). For d > 2 this concept is different
from Barron’s variation with respect to half-spaces. For example, the characteristic
function y of the set {(z1,z,) € [0,1]%; ;1 > )} has the variation w.r.t. half-spaces
and any topology equal to 1, while it is easy to verify that its total variation T'(x, [0, 1]?)
is infinite.

We will need the following integral representation theorem. Its proof is based
on properies of delta and Heaviside distributions. Recall ([11, p.33]) that a function
f:RY— Ris called a test function if f € C*°(R?) and is compactly supported.

Theorem 2.1 Let d be a positive integer and f : R? — R be a test function. Then

for every x € R4
/Sd / ( /Heb f(y)-e) dy') U(e - x + b)dedb,

where Hepy = {y € R;y - e = —b}.

For a differentiable function, total variation can be characterized as an integral of
the absolute value of its derivative. Formally, if J C R is an interval and f’ € £4(.J)
then T'(f,J) = [,|f(x)|dx (see e.g. [7, p.242]). Our characterization of variation with
respect to half-spaces is of a similar type.



Since each continuous compactly supported function can be uniformly approxi-
mated by a sequence of test functions ([13], p.3) we can derive an estimate of variation
with respect to half-spaces for differentiable functions. Let A(.J) denote the Lebesgue
measure of J and 7 f denote the gradient of f.

Theorem 2.2 Let J C R? be a box and f : J — R be a differentiable function. Then

Ve xDsw{|[ (i) e)dy|ie e s Lbe R).

Jones [5] estimated rates of approximation of functions from convex closures of
bounded subsets of a Hilbert space. It follows from his results that for any activation
function ¢ with a norm less than or equal to 1, every function f with V(f, L2, J) < B
can be approximated by a function f, computable by a network with n hidden -
perceptrons within an error ||f — full2 < \/%, where ¢ is any real number satisfying

> B2 —||f|l,"
Theorem 2.2 together with Jones [5] implies the following estimate:

Corollary 2.3 Let J C R? be a box and f : J — R be a differentiable function such
that A(J) SUP{)fJnHeb (Vf(y)-e)dy|;e € S1.be R} < B. Then for everyn € N

there exists a function f, computable by a neural network with a linear output unit and
n Heaviside perceptrons in the hidden layer such that ||f — fu|l2 < \/g where ¢ is any

real number satisfying ¢ > B* — Hszz

Barron [2, Theorem 2] extended Jones’ result to supremum norm so we have the
following.

Corollary 2.4 Let J C R? be a box and f : J — R be a differentiable function
such that A(J)sup{ |y, (VF(y)-€)dy|;e € S¥1b € R} < B. Then for every
sigmoidal function i there exists a real number ¢ such that for every n € N there

exists a function f, computable by a neural network with a linear output unit and n

Y-perceptrons in the hidden layer such that ||f — fullsup < \C/—%,

3 Discussion

Suppose that J has no side of length less than 1. Then for any hyperplane H, A(J N
H) < X(J) - C(J), where C(J) is the geometric constant that describes the ratio of
the largest possible A\(J N H) divided by the smallest A(J'), where J' is a face of J.
Using the Cauchy-Schwartz inequality, the right-hand side of Theorem 2.2 is at most
sup{|| v f(¥)|l;y € JIMJT)sup{A(J N Hep);e € ST b € R} which is less than or
equal to supyc || 7 f(¥)IC(I)AJ)?.

A result of DeVore et al. [4] shows that an upper bound on gradient is not sufficient
to guarantee dimension-independent rates of approximation by one-hidden-layer neural
networks. Our results show that it is sufficient to bound the gradient multiplied by
the square of d-dimensional volume of the box where the function is defined. Since



volume of a d-dimensional cube grows exponentially with increasing dimension, to keep
| 7 F(D)IIC(J)N(J)? bounded by the same bound B, the gradient must be decreasing
with increasing d.

So the dimension-independent rates of approximation must be interpreted and used
carefully. The size of spaces of functions that can be approximated with rates of ap-
proximation O(ﬁ) is decreasing with increasing input dimension d. Also the constant
factor (depending on a bound B and the Ly-norm of the function to be approximated
which is a d-dimensional integral) can, at realistic scales, dominate the ﬁ factor.

4 Sketches of proofs

To prove Theorem 2.1 we need two technical lemmas. The first one can be verified
using approximation of the delta distribution by a sequence of sharp pulse functions
(e.g., functions defined in [13, p.12]) converging uniformly in distributional sense to
delta.

Lemma 4.1 For every positive integer d  6(x) = [qa1 6(e - X)de.

Recall [10] that the directional derivative De f(y) of f in the direction e is defined
by Def(y) =limiot™(f(y +te) = f(¥))

Lemma 4.2 For every positive integer d, for every differentiable function f : R* — R
and for every unit vectore € R and for everyb € R % Sty fV)dy = [, (Vf(¥) - €)
dy.

Proof.
B o o
i g POy =l ([, iy [, i) <t [ iyie-siv)

dy = [go, im_ot™" (f(y +te) — f(y)) = [u,, Def(y)dy. By the definition of gradient
[10, p-222], Jiz, Def(¥)dy = Jue, (Vf(y)-€)dy. D

Proof of Theorem 2.1. Since f is a test function f(x) = (f *6)(x) = [ra f(2)0(x —
z)dz (see [13]). By Lemma 4.1 6(x —2) = [gu16(e-x — e - z)de. Thus, f(x) =
Jga-1 [ra f(2)0(x- € —z-e)dzde. So rearranging the inner integration, we have f(x) =
Jsa-1 Jr Jiroy, f(¥)0(x - € + b)dydbde, where Hey, = {y € R;y - e = —b}. Let u(e,b) =
T F(Y)5, 50 F(%) = fsi i u(e, )60 & + )dbde.

Since the first distributional derivative of the Heaviside function is the delta distri-
bution [13, p.47], it follows that for every e € S%! and x € R? [ u(e, b)é(e-x+b)db=

— [z 24D (e . x 4 b)db. By Lemma 4.2 2480 — 2 f(y)dy = [y, (Vf(¥) - e)dy.
Hence, f(x) = [ga-1 5 (_fHeb (Vfly)-e) dy) J(e-x+ b)dbde. O

Proof of Theorem 2.2. For every 6 > 0 consider an extension of f to a function
fs : RY — R differentiable on R such that fs is zero outside of a é-neighbourhood Js
of J. Let {fsn;n € N'} be a sequence of test functions converging uniformly on R? to




fs such that all fs, are zero outside the %—neighbourhood Jsn of Js (such a sequence
can be constructed using convolutions with a sequence of test functions converging
uniformly to zero and having integrals equal to 1, see [13]). Note that as n goes to oo,
A(Js,) approaches A(Js) and as 6 goes to 0, A(Js) goes to A(J).

By Theorem 2.1 fs,(x) = [qa—1 [ (_fHeb (Vfsnly) - e) dy) J(e - x + b)dbde. Put
Bs, = )\(Jgn)sup{‘fgeb (Vfsn(y)-e)dy|;e € S1 b € R}. Approximating inte-
grals by sums we get fs, € cle(conv(Ey(V, Bsn, Jsn))). Since fs = lim,_o fsn uni-
formly on RY, we have Vfs = lim,_.oo Vfsn. So, Bs = lim,_o Bs,. Put B =
A(T) SUP{‘fHean (Vfly)-e) dy‘;e € St b € R}. Since for every § > 0 the re-
striction fs|; = f, we have B = lims_o Bs. O
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