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http://www.nusl.cz/ntk/nusl-33645
http://www.nusl.cz
http://www.nusl.cz


INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Enclosing Solutions of Linear Equations

Ji�r�� Rohn and Georg Rex

Technical report No� ���

February ����

Institute of Computer Science� Academy of Sciences of the Czech Republic
Pod vod�renskou v��� �� �	� 
� Prague 	� Czech Republic

phone� 
����� �������� fax� 
����� 	�	��	�
e�mail� uivt�uivt�cas�cz



INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Enclosing Solutions of Linear Equations

Ji�r�� Rohn� and Georg Rex�

Technical report No� ���
February ����

Abstract

It is shown that Rump�s method for enclosing solutions of linear equations can be
reformulated in an interval�free form and that the underlying inclusion result can be
proved by elementary means without using Brouwer�s �xed�point theorem� A su	cient
condition on Rump�s 
in�ation parameter� � is given under which �nite termination
occurs� Also
 a more general modi�ed algorithm is studied for which the number of
iterations can be expressed by an explicit formula�

Keywords
Linear equations
 enclosure
 interval�free
 �nite termination

�Faculty of Mathematics and Physics� Charles University� Prague �rohn�ms�mff�cuni�cz� and In�
stitute of Computer Science� Academy of Sciences� Prague� Czech Republic �rohn�uivt�cas�cz�� This
author�s work was supported by the Czech Republic Grant Agency under grant GA	CR �
���
������

�Institute of Mathematics� University of Leipzig� Augustusplatz �
���� D�
��
� Leipzig� Germany
�rex�mathematik�uni�leipzig�d����de��



� Introduction

S� M� Rump in his basic paper ���� and in a series of subsequent papers ����
 ����
 ����

���� developed a method for enclosing solutions of systems of linear equations� The most
attractive feature of the method consists in the fact that it yields a validated enclosure
�i�e�
 a narrow hyperrectangle containing the solution� computed by a �nite precision
arithmetic� hence
 the e�ect of rounding errors arising in �nite precision computations
is controlled by means of �nite precision computations� The method is described in
su	cient detail in section � below� For the purposes of the Introduction
 we shall give
only a brief sketch of it here�

In order to solve a system of linear equations

A�x � b �����

with A � IRn�n and b � IRn
 after computing an approximate solution x� of ����� and
an approximate inverse of A
 the equation ����� is transformed into a residual form

x� � Gx� � g� �����

where x� � �x � x� is the di�erence between the exact and the approximate solution�
The basic idea due to Krawczyk ��� and Moore ���
 later elaborated by Krawczyk ��� and
Rump ����
 consists in applying the Brouwer�s �xed�point theorem to ����� to guarantee
existence of the solution x� of ����� in a given interval vector �hyperrectangle� X� The
respective inclusion is theoretically formulated in power set operations
 but in practical
computations interval arithmetic operations must be used� then the inclusion takes on
the form

G �X � g � X� �����

�Rump�s Theorem ��� below�
 where �� � denote the interval arithmetic multiplication
and addition �de�ned in section �� and X� is the interior of X� Rump proposed in ����
an algorithm for �nding an interval vector X satisfying ������ The algorithm is formu�
lated in terms of interval arithmetic operations and contains a parameter � � ��� ��
�called 
in�ation parameter� by Rump� as a tool for enforcing �nite termination of
the algorithm� Even so
 �nite termination is guaranteed only under some conditions
�Rump ����
 �����
 but in general the algorithm proved to perform very well� in most
practical cases it terminates in a few iterations �Hammer et al� ���� and the computed
enclosure often exhibits a least signi�cant bit accuracy �Rump ������

The present work was motivated by an attempt to understand what is going on
behind Rump�s method in terms of the classical numerical analysis� This has led to
formulation of three questions� First
 can the basic inclusion ����� be formulated in a
more usual way without using interval arithmetic operations� And
 as a related issue

is Brouwer�s �xed�point theorem really needed in considerations concerning a simple
linear problem ������ Second
 can the Rump�s algorithm be formulated in an interval�
free form� And third
 what is the role of the 
in�ation parameter� � and under what
conditions on it �nite termination of the algorithm can be guaranteed�

After a brief introduction of interval arithmetic in section � and a more detailed
description of Rump�s method in section �
 we address the above three questions in
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sections � to �� In Theorem ��� we show that the inclusion ����� can be equivalently
written in the form of a simple inequality

j�I �G�x� gj � �I � jGj�d �����

involving only the usual real arithmetic operations
 where x is the center and d is
the radius of the interval vector X� Next we prove by elementary means that if �����
holds
 then the solution x� of ����� satis�es x � d � x� � x � d �Theorem ����� this

in view of Theorem ���
 gives an elementary proof of Rump�s Theorem ���
 avoiding
an explicit use of Brouwer�s �xed�point theorem� Based on some simple properties
of interval arithmetic operations given in Lemma ��� and Lemma ��� of section �
 we
then give in section � an interval�free description of Rump�s algorithm
 using only
the usual real arithmetic operations and absolute values� This interval�free version of
the algorithm generates the same sequence of interval vectors as the original Rump�s
algorithm
 hence it can be used alternatively� These results yield answers to the �rst
two questions� Next
 in Theorem ��� of section � we give a su	cient condition

�� � ���jGj � jx�j � jx�j �����

for a �nite termination of Rump�s algorithm �both in the original or in the interval�free
version� using an in�ation parameter �� The proof of this result is rather complicated
and for clarity is preceded by two auxiliary lemmas� Finally
 in section � we investigate
another scheme of the original algorithm �also proposed by Rump ����� in which an
additive constant is employed instead of the multiplicative parameter �� In Theorem
��� we show that this modi�ed algorithm has a �nite termination property if and only
if

��jGj� � �

holds �independently of the choice of the additive constant�
 which
 compared with the
su	cient condition ����� for the original algorithm
 is a much better result� Also
 the
number of iterations taken by the modi�ed algorithm can be expressed by an explicit
formula �Theorem �����

The proofs of all these results are carried out by linear algebraic means� Our basic
tool
 frequently employed throughout
 is the equivalence of the four assertions

�i� ��jGj� � �


�ii� jGjx � x for some x � �


�iii� �I � jGj��� � �


�iv� jGjj � �

for a square matrix G �since jGj is nonnegative�
 which can be found e�g� in Varga ����
or Neumaier ����

We hope that these results may contribute to better understanding of principles
of validated computations from a classical �noninterval� point of view� Also
 the non�
interval inequality ����� of Theorem ��� may serve as a theoretical basis for deriving
another alternative methods for computing validated solutions of linear equations�
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� Interval arithmetic

In this section we brie�y survey the basic rules of interval arithmetic �described in detail
in Alefeld and Herzberger ��� or Neumaier ���� and we prove some simple properties
to be used later� Under an interval we always understand a nonempty compact real
interval �a� a� � fa� a 	 a 	 ag� Operations over intervals are de�ned by the general
rule

�a� a� 
 �b� b� � f� 
 �� � � �a� a�� � � �b� b�g� �����

where 
 denotes any of the four arithmetic operations� To make a clear distinction
from the usual real arithmetic operations
 we denote the interval arithmetic operations
by �� �� � and �� It is easy to show ����
 ���� that the general de�nition ����� yields
the following explicit formulae�

�a� a�� �b� b� � �a� b� a� b��

�a� a�� �b� b� � �a� b� a� b��

�a� a�� �b� b� � �minM�maxM ��

where
M � fab� ab� ab� abg�

and

�a� a�� �b� b� � �a� a��
�
�

b
�
�

b

�

provided � �� �b� b�� In particular
 interval arithmetic operations also apply to real
numbers if we identify a real number a with the interval �a� a�� in this sense interval
arithmetic is an extension of real arithmetic�

We shall prove here two very speci�c properties of interval arithmetic multiplication
that will be used later� Let us recall that when speaking of an interval �a� a�
 we always
understand implicitly that it is nonempty
 i�e�
 a 	 a�

Lemma ��� Let �� �� 	 and � � ��� �� be real numbers� Then we have

� � �� � 	� � � 	� � ��� � j�j	� �� � j�j	� �����

and
��� �� � � ��� ��� �� � ��� �j�j� � � �j�j�
 �����

Proof� �� According to the above explicit rules
 the lower bound of �� ���	� ��	�
is equal to minf�� � �	� �� � �	g � �� � j�	j � �� � j�j	
 and the upper bound is
maxf�� � �	� �� � �	g � �� � j�	j � �� � j�j	�

�� In view of � � ��� ��
 the lower bound of ��� �� �� ��� ��� �� is equal to minf���
���� ��� ���� �� � ���� �� � ���g � minf��� ���� �� � ���g � �� j��j � �� �j�j� the
proof for the upper bound is analogous� �

An n�dimensional interval vector is a set of the form

�x� x� � fx� x 	 x 	 xg �����
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�componentwise inequalities�
 where x� x � IRn
 x 	 x� For the purposes of applicabil�
ity of interval operations
 an interval vector ����� is identi�ed with an n�dimensional
vector with interval components �xi� xi� �i � �� 
 
 
 � n�
 i�e� we make the convention
that

��x� x��i � �xi� xi�

for each i� This enables us to de�ne a matrix�vector intervalmultiplication and addition

G� �x� x�� �g� g�� �����

where G � �gij� is a real n 
 n matrix
 as an interval vector with the components

�G� �x� x�� �g� g��i � gi� � �x�� x��� 
 
 
� gin � �xn� xn�� �g
i
� gi� �����

�i � �� 
 
 
 � n�� we can see that ����� is a usual matrix multiplication and addition where
the real operations are replaced by the interval ones� The following lemma �which turns
out to be the basic tool for an interval�free reformulation of Rump�s algorithm� shows
that the expression ����� can be evaluated without using interval arithmetic operations�
To this end
 the interval vector �x� x� must be written in the form �x� d� x� d� �hence

x � �

�
�x � x� and d � �

�
�x � x��
 and we employ the absolute value of G de�ned by

jGj � �jgijj�� notice that only real operations appear on the right�hand side�

Lemma ��� We have

G � �x� d� x� d�� �g� g� � �Gx� jGjd� g�Gx� jGjd� g�
 �����

Proof� From �����
 using ����� we have

�G� �x� d� x� d�� �g� g��i

� gi� � �x� � d�� x� � d��� 
 
 
� gin � �xn � dn� xn � dn�� �g
i
� gi�

� �gi�x� � jgi�jd�� gi�x� � jgi�jd��� 
 
 
� �ginxn � jginjdn� ginxn � jginjdn�� �g
i
� gi�

� �
X
j

gijxj �
X
j

jgij jdj � g
i
�
X
j

gijxj �
X
j

jgij jdj � gi�

� ��Gx� jGjd � g�i� �Gx� jGjd � g�i�

� �Gx� jGjd � g�Gx� jGjd � g�i�

which is ������ �

� Rump�s method

Consider a system of linear equations

A�x � b �����

with an n 
 n matrix A� For an arbitrary nonsingular n 
 n matrix R and arbitrary
x� � IRn
 ����� is equivalent to

�x� x� � �I �RA���x� x�� �R�b�Ax��
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Hence if we put

G � I �RA� �����

g � R�b�Ax��� �����

then we have
�x � x� � x�� �����

where x� solves
x� � Gx� � g
 �����

In practice it is recommended to choose R � A�� and x� � �x
 so that G and g are of
small norms and x� is close to ��

Rump�s basic idea on enclosing the solution of �����
 which goes back to Krawczyk
��� and Moore ���
 is contained in the following theorem
 where X� denotes the interior
of X �i�e�
 X� � fx� x � x � xg for X � �x� x�� and g is identi�ed with �g� g��

Theorem ��� �Rump ����� Let an interval vector X satisfy

G �X � g � X�
 �����

Then the equation ����� has a unique solution x� � X��

In fact
 in view of the basic property ����� of interval arithmetic operations
 from
����� it follows

G �X � g �� fGx� g� x � Xg � G �X � g � X� � X�

hence due to the Brouwer�s �xed�point theorem the mapping x �� Gx� g has a �xed
point x� inX
 hence ����� holds
 which implies that x� � Gx��g � X�� As explained in
����
 the use of X� instead of X on the right�hand side of ����� �which is not necessary
for application of Brouwer�s theorem� implies nonsingularity of I�G and consequently
the uniqueness of the solution of ������ The relationship of this result to the original
problem of solving ����� is provided by the following theorem based on the equation
������

Theorem ��� �Rump ����� Let G and g be given by ����� and ����� and let ����� hold
for some interval vector X� Then A is nonsingular and the solution �x of ���	� satis
es

�x � x� �X�


In view of this result
 we may restrict our attention to enclosing the solution of the

residual equation� ����� in the sequel�

In his paper ���
 p� ���
 Rump proposed the following algorithm for �nding an
interval vector containing the solution x� of ������

select � � ��� ���
Y �� �g� g��
repeat
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X �� ��� �� � � ��� Y �
Y �� G �X � g

until Y � X��
fthen x� � Y g�

If the stopping rule Y � X� is satis�ed
 then ����� holds
 hence by Theorem ���

x� � Gx� � g � G � X � g � Y � When using the interval arithmetic operations

downwardly and upwardly oriented rounding must be used to guarantee that Y � X�

holds� then Y is a veri�ed enclosure of the solution x��
The algorithm proved to perform very well� Practical experience shows that if it

terminates in a �nite number of steps
 then the number of loops is relatively small �
it
is an empirical fact that the inner inclusion is satis�ed nearly always after a few steps
or never�
 Hammer et al� ��
 p� � ��� and the solution is often computed with least
signi�cant bit accuracy �Rump ������ However
 �nite termination is not guaranteed�
if ��jGj� � �
 then the stopping rule is never satis�ed �Theorem ��� below� and the
algorithm constructs an in�nite sequence of interval vectors� Although it has been
reported that the number of loops is relatively independent of the choice of the 
in�a�
tion parameter� � even for values far exceeding the prescribed range ��� �� �Hammer
et al� ����
 it seems that the problem of choosing an appropriate value of � that would
guarantee �nite termination of the algorithm still remains open�

Summing up
 there are three basic questions concerning Rump�s method� �rst

whether Rump�s condition ����� can be given a more transparent form� second
 whether
the algorithm can be formulated without using interval arithmetic� and third
 what
values of the in�ation parameter � �if they exist at all� guarantee �nite termination of
the algorithm� We shall address these questions in the subsequent three sections�

� Reformulation of Rump�s condition

We start with an equivalent reformulation of the condition ����� of Theorem ��� in
the form of a simple inequality �cf� Rex ��
 p� ������ Notation� I is the unit matrix

the absolute value of x � �xi� is given by jxj � �jxij�
 and vector inequality x � y is
understood componentwise�

Theorem ��� Let X � �x� d� x� d�� Then Rump�s condition

G �X � g � X�

is equivalent to
j�I �G�x� gj � �I � jGj�d
 �����

Proof� Since G �X � g � �Gx� jGjd � g�Gx � jGjd � g� by Lemma ���
 ����� is
equivalent to

x� d � Gx � jGjd� g�

Gx� jGjd � g � x� d�

�



which in turn is equivalent to

��I � jGj�d � �I �G�x� g � �I � jGj�d

and thus also to ������ �

In this way
 we have avoided the use of interval arithmetic in the formulation of
Rump�s condition� We shall now prove by elementarymeans that ����� implies x� � X��
This
 in the light of Theorem ���
 gives an elementary proof of Rump�s Theorem ���

avoiding an explicit use of Brouwer�s �xed�point theorem �cf� Rump ���
 Lemma �����

Theorem ��� If x and d � � satisfy ���	�
 then the equation ����� has a unique
solution x� and

x� d � x� � x� d �����

holds�

Proof� From ����� we have � 	 jGjd � d
 hence d � �
 so that the inequality
jGjd � d implies ��G� 	 ��jGj� � � �Varga �����
 hence I �G is nonsingular and �����
has a unique solution x�� Next
 from

x� � Gx� � g

we have
x� � x � G�x� � x� � g � �I �G�x

and taking absolute values we obtain

jx� � xj 	 jGj � jx� � xj� j�I �G�x� gj�

hence in view of �����


�I � jGj�jx� � xj 	 j�I �G�x� gj � �I � jGj�d
 �����

Since ��jGj� � � implies �I � jGj��� � � �Varga �����
 premultiplying ����� by this
nonnegative matrix yields

jx� � xj � d�

which is ������ �

Next we prove a necessary and su	cient condition for solvability of ������ A similar
result for ����� was proved by Rump in �����

Theorem ��� The inequality ���	� has a solution x and d � � if and only if

��jGj� � � �����

holds�

�



Proof� The 
only if� part was proved in the proof of Theorem ���� If ����� holds

then I � G is nonsingular
 hence ����� has a solution x�
 and there exists a d � �
satisfying jGjd � d �Varga ������ Then ����� is satis�ed by x� and d� �

Hence
 no interval vector X satis�es the inclusion ����� if ��jGj� � �� this means
that Rump�s algorithm will never terminate in this case�

Next we give a description of all solutions of ����� which employs a positive param�
eter vector 	� This result is a generalization of Theorem � in Rex � ��

Theorem ��� Let ����� hold� Then X � �x�d� x�d� satis
es ���	� �or
 equivalently

������ if and only if d is of the form

d � �I � jGj����j�I �G�x� gj� 	� �����

for some 	 � ��

Proof� If x and d satisfy �����
 then for

	 �� �I � jGj�d� j�I �G�x� gj

we have 	 � � and ������ Conversely
 if ����� holds for some 	 � �
 then

�I � jGj�d � j�I �G�x� gj� 	 � j�I �G�x� gj�

so that x and d satisfy ������ �

Hence
 if ����� holds
 then for any x � IRn we can construct an interval vector
X � �x� d� x� d� satisfying Rump�s condition when computing d from ����� for some
�but arbitrary� 	 � �� In view of nonnegativity of �I � jGj���
 ����� gives the lower
bound

d � �I � jGj���j�I �G�x� gj

which is independent of the choice of 	�

� Interval�free version of the algorithm

The results of Lemma ��� and Lemma ��� enable us to formulate an interval�free
version of Rump�s algorithm� Let us denote the interval vectors X and Y appearing
in the algorithm �section �� by X � �x� d� x � d� and Y � �y � h� y � h�� Since from
the updating formulae

X �� ��� �� � � ��� Y�

Y �� G�X � g

we have

�x� d� x� d� �� ��� �� � � ��� �y � h� y � h� � �y � h� �jy � hj� y � h� �jy � hj�

�Lemma ���
 ������ and

�y � h� y � h� �� G � �x� d� x� d�� g � �Gx� jGjd � g�Gx� jGjd� g��

 



�Lemma ����
 which gives

x �� y �
�

�
�jy � hj � jy � hj��

d �� h�
�

�
�jy � hj� jy � hj��

y �� Gx� g�

h �� jGjd�

and since Y � X� is equivalent to

x� d � y � h�

y � h � x� d�

and thereby also to
jx� yj � d � h�

the original Rump�s algorithm can be equivalently rewritten in the following interval�
free form�

select � � ��� ���
y �� g� h �� ��
repeat

x �� y � �

�
�jy � hj � jy � hj��

d �� h� �
�
�jy � hj� jy � hj��

y �� Gx� g�
h �� jGjd

until jx� yj � d � h�
fthen y � h 	 x� 	 y � hg�

It is worth emphasizing that this algorithm generates the same sequence of interval
vectors X � �x � d� x � d�� Y � �y � h� y � h� as the original Rump�s algorithm
 but
the interval arithmetic is not used here� As before
 downwardly and upwardly oriented
rounding must be used to guarantee that the stopping rule holds� then we have a
veri�ed enclosure y � h 	 x� 	 y � h�

Consider any system
x� � Gx� � g

with an n
 n matrix G for which Rump�s algorithm terminates in a �nite number of
steps� Let us construct an �n � �� 
 �n � �� matrix G� and an �n � ���dimensional
vector g� by

G� �

�
G �
�T �

�
�

g� �

�
g
�

�



�



Then a simple computation shows that

��jG�j� � ��jGj� � � �����

�due to Theorem ����
 hence the equation

x� � G�x� � g� �����

has a unique solution

x� �

�
x�

�

�



However
 due to the special structure of G and g
 Rump�s algorithm when applied to
����� generates for each � � � a sequence of interval vectors X � �x � d� x � d�� Y �
�y � h� y � h� satisfying

xn�� � dn�� � yn�� � hn�� � � �����

at each iteration
 as it can be easily seen from the above interval�free description�
Hence
 the stopping rule jx � yj � d � h is never satis�ed for any � � � and �nite
termination is lost�

Rump formulated in ���
 Lemma ��� a very general 
in�ation� condition under
which the algorithm is �nite� In our case the condition requires an existence of a
vector s � � such that �jy � hj � s� �jy � hj � s hold at each iteration� The equation
����� shows that in our example the condition is violated
 hence Rump�s result does
not apply� In section � we shall describe a modi�cation of Rump�s algorithm that will
be able to handle even this heavily degenerated example�

� Finite termination conditions

The explicit form of iterations given in section � makes it possible to formulate another
su	cient condition for �nite termination of the algorithm� In order to make the proof
of the main result more clear
 we shall precede it by two auxiliary lemmas� The �rst
lemma gives a su	cient condition for the four sequences

xj�� � yj �
�

�
�jyj � hjj � jyj � hjj�� �����

dj�� � hj �
�

�
�jyj � hj j� jyj � hj j�� �����

yj�� � Gxj�� � g� �����

hj�� � jGjdj�� �����

with y� � g� h� � � �see the description of the algorithm
 section �� to converge�

Lemma ��� Let � � ��� �� satisfy

�� � �����jGj� � �
 �����

Then the sequences fxjg� fdjg� fyjg� fhjg given by ���	������� are convergent�

��



Proof� From ����������� we obtain

jxj�� � xjj 	 jyj � yj��j�
�

�
jjyj � hjj � jyj�� � hj��jj�

�

�
jjyj � hjj � jyj�� � hj��jj

	 �� � ��jyj � yj��j� �jhj � hj��j

	 �� � ��jGj � jxj � xj��j� �jGj � jdj � dj��j�

and in a similar way we get

jdj�� � dj j 	 �jGj � jxj � xj��j� �� � ��jGj � jdj � dj��j�

which together gives

�
jxj�� � xjj
jdj�� � dj j

�
	

�
�� � ��jGj �jGj

�jGj �� � ��jGj

��
jxj � xj��j
jdj � dj��j

�

 �����

Now
 the condition ����� implies existence of a vector x � � satisfying

�� � ���jGjx � x

�Varga ������ Then we have

�
�� � ��jGj �jGj

�jGj �� � ��jGj

��
x
x

�
�

�
�� � ���jGjx
�� � ���jGjx

�
�

�
x
x

�
�

hence the spectral radius of the matrix

�
�� � ��jGj �jGj

�jGj �� � ��jGj

�

is less than one
 and the inequality ����� implies that the sequence

��
xj
dj

��

is cauchian
 hence it is convergent� This proves that fxjg and fdjg converge� conver�
gence of fyjg� fhjg then follows immediately from �����
 ������ �

The second lemma gives a su	cient condition for a special nonlinear equation to
have a solution whose all entries are nonzero�

Lemma ��� Let Q � IRm�m� q � IRm and let

�jQj � jqj � jqj �����

hold� Then the equation
y � Qjyj� q ��� �

has a unique solution !y and all entries of !y are nonzero and are of the same signs as
the respective entries of q�

��



Proof� As before
 from ����� we deduce that ��jQj� � �

�

 hence jQjj � � and

�I � jQj��� � �� If we construct the iterations

yk�� � Qjykj� q �����

�k � �� �� 
 
 
�� y� � q
 then we have

jyk�� � ykj 	 jQj � jyk � yk��j�

which in view of jQjj � � implies that the sequence fykg is cauchian
 hence yk � !y

so that ����� gives

!y � Qj!yj� q� ������

and the solution is unique since from y � Qjyj � q we obtain j!y � yj 	 jQj � j!y � yj

hence �I � jQj�j!y � yj 	 � and premultiplying by �I � jQj��� � � gives j!y � yj 	 �

hence !y � y� Now
 from ������ we obtain

j!yj 	 jQj � j!yj� jqj�

hence
j!yj 	 �I � jQj���jqj�

and again from ������


j!y � qj 	 jQj � j!yj 	 jQj�I � jQj���jqj � �I � jQj���jQj � jqj
 ������

But ����� implies jQj � jqj � �I � jQj�jqj
 hence

�I � jQj���jQj � jqj � jqj�

which combined with ������ gives

j!y � qj � jqj


This means that each !yi is nonzero and is of the same sign as qi� �

Now we give a �nite termination condition for Rump�s algorithm �both in the
original version of section � or in the interval�free version of section ��� Unfortunately

the condition involves the solution x� and cannot be a priori veri�ed�

Theorem ��� Rump�s algorithm is 
nite for each in�ation parameter � � ��� �� sat�
isfying

�� � ���jGj � jx�j � jx�j
 ������

Proof� First
 the inequality ������ implies

�� � �����jGj� 	 �� � �����jGj� � �� ������

��



hence xj � x� dj � d� yj � y� hj � h by Lemma ���� Taking the limits in �����������

we obtain

x � y �
�

�
�jy � hj � jy � hj�� ������

d � h�
�

�
�jy � hj� jy � hj�� ������

y � Gx� g� ������

h � jGjd
 ������

This implies

y � Gy �
�

�
G�jy � hj � jy � hj� � g

and
h � jGjh �

�

�
jGj�jy � hj� jy � hj��

hence
y �

�

�
�I �G���G�jy � hj � jy � hj� � x� ���� �

and
h �

�

�
�I � jGj���jGj�jy � hj� jy � hj�
 ������

Then by subtracting and adding ���� � and ������ we get

!y � Qj!yj� q�

where

!y �

�
y � h
y � h

�
�

q �

�
x�

x�

�

and

Q �
�

�

�
��I �G���G� �I � jGj���jGj� �I �G���G� �I � jGj���jGj
��I �G���G � �I � jGj���jGj� �I �G���G � �I � jGj���jGj

�



Since ������ implies in the usual way that

���I � jGj���jGj � jx�j � jx�j

holds
 we have

�jQj � jqj 	

�
���I � jGj���jGj � jx�j
���I � jGj���jGj � jx�j

�
� jqj�

and Lemma ��� implies that j!yj � �
 hence jy � hj � � and jy � hj � �� Then from
������ and ������ we have

jx� yj �
�

�
�jy � hj � jy � hj� �

�

�
�jy � hj� jy � hj� � d � h�

��



which means that
jxj � yjj � dj � hj

holds from some j on
 hence the stopping rule is satis�ed at some iteration and the
algorithm is �nite� �

Corollary ��� Let
jGj � jx�j � jx�j ������

hold� Then there exists an �� � � such that Rump�s algorithm is 
nite for each � �
��� ����

Proof� In fact
 according to Theorem ��� it is su	cient to take �� as the supremum
of all ��s satisfying ������� This �� is positive due to ������� �

Notice that ������ implies ��jGj� � �
 which is ������ The condition ������ is not as
restrictive as it may seem since in practice the matrix G
 computed by G � I � RA

where R is an approximation of A�� �section ��
 is close to ��

	 Modi
ed Rump�s algorithm

Rump proposed in ���� also another algorithm scheme which employs an additive con�
stant instead of a multiplicative one� This is done by replacing the statement

X �� ��� �� � � ��� Y

in the original algorithm �section �� by

X �� Y � ��f� f ��

where f is some �su	ciently small� prescribed positive vector� We shall call the result�
ing algorithm a modi
ed Rump�s algorithm� In this section we show that this algorithm
is much more easy to analyze and that the number of steps can be given by an explicit
formula�

Let us denote the interval vectors appearing in the modi�ed algorithm by X �
�x� d� x� d�� Y � �y � h� y � h�� Then from the updating formulae

X �� Y � ��f� f ��

Y �� G �X � g

we have

�x� d� x� d� �� �y � h� f� y � h� f ��

�y � h� y � h� �� �Gx� jGjd � g�Gx� jGjd � g��

�Lemma ����
 which amounts to

x �� y�

d �� h� f�

y �� Gx� g�

h �� jGjd�

��



and Y � X� is equivalent to jx � yj � d � h� Hence the modi�ed Rump�s algorithm
can be written in the following interval�free form�

select f � ��
y �� g� h �� ��
repeat

x �� y�
d �� h� f �
y �� Gx� g�
h �� jGjd

until jx� yj � d � h�
fthen y � h 	 x� 	 y � hg�

It turns out that
 in contrast to the original algorithm
 �nite termination of the modi�ed
algorithm can be characterized easily�

Theorem ��� The modi
ed Rump�s algorithm terminates in a 
nite number of steps
for each f � � if and only if

��jGj� � � �����

holds�

Proof� Let fxjg
 fdjg
 fyjg and fhjg be the sequences generated by the modi�ed
algorithm
 with y� � g
 h� � �� Then from the recurrences

xj�� � yj�

dj�� � hj � f�

yj�� � Gxj�� � g�

hj�� � jGjdj��

it follows easily by induction that

xj �
j��X
���

G�g�

dj �
j��X
���

jGj�f�

yj �
jX

���

G�g�

hj �
jX

���

jGj�f

�j � �� �� 
 
 
�� Hence
 the stopping rule

jxk � ykj � dk � hk

��



is satis�ed for some k if and only if

jGkgj� jGjkf � f �����

holds� Now
 if the algorithm terminates in a �nite number of steps for some f � �

then ����� holds
 hence jGjkf � f 
 implying ��jGjk� � � and

���jGj��k 	 ��jGjk� � ��

which gives ������ Conversely
 if ����� holds
 then Gj � � and jGjj � �
 hence for each
f � � there exists a k such that ����� is satis�ed
 which means that jxk�ykj � dk�hk

and the modi�ed algorithm terminates� �

Since the condition ����� is identical with �����
 this result shows a remarkable
property� if Rump�s inclusion ����� �equivalently
 ������ has a solution
 then a solution
to it can be found by the modi�ed algorithm� Hence
 it is more general than the
original algorithm of section � for which the �nite termination condition of Theorem
��� is more restrictive� In particular
 the example given in section � on which Rump�s
algorithm fails can be solved by the modi�ed algorithm since ��jG�j� � � �eq� �������

Theorem ��� If ���	� holds
 then the modi
ed Rump�s algorithm terminates at the
k�th iteration
 where

k � minfj� jGjgj� jGjjf � fg
 �����

Proof� Obviously
 k is the minimum value of j for which jxj � yjj � dj � hj holds�
this
 according to the �rst part of the previous proof
 is equivalent to jGjgj�jGjjf � f �
Hence ����� follows� �

As explained in section �
 in practice G �� I � RA is small
 hence Gj � jGjj will
converge rapidly to � and the stopping rule ����� can be expected to be satis�ed after
a few steps� In particular
 if jGgj � jGjf � f 
 then k � ��

� Final remark

In Theorem ��� we showed that if x and d � � satisfy �����
 then x � d � x� � x � d�
Hence
 another alternative methods for computing validated solutions of linear equa�
tions
 based on solving directly the inequality �����
 may be designed� Such methods
were proposed by Rex ��� and Rohn �����
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