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Dostupný z http://www.nusl.cz/ntk/nusl-33643
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Abstract

The critical exponent of a Banach space E is the smallest integer q with the following
property	 if T is a contractive on E then the spectral radius of T is less than one if
and only if jT qj � �� If q is the critical exponent of a 
nite�dimensional Banach space
E then� it follows from compacturs that� for each r � �� then maximum of jT qj under
the constraints jT j � �� r�T 
 � r is less�

In the case of Hilbert space of dimension n the critical exponent equals n and it is
possible to evaluate the above maxinimu for every r � �� This is a particular case of a
general maximumproblem in a Banach algebra A� To compute the supremum of jh�a
j
as a ranges over all a � A with jaj � � such that the spectrum of a is contained in a
given compact set F � here h is an arbitrary function holomorphic in a neighbourhood
of F �
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� Introduction

The motivation of the investigatons to be reported about was an attempt to give a
mathematical formulation to a general problem in the theory of iterative processes�
In many cases theoretical convergence criteria are available� mostly in the form of
inequalities to be satis
ed by certain data concerning the process� such as norms of
certain operators or bounds for certain derivatives� however� such data are not always
readily available and� for a variety of other reasons� the veri
cation of the criteria may
turn out to be far from easy� Thus the following question presents itself	 is it possible to
disregard the theoretical criteria and test the convergence on the basis of the behaviour
of a 
nite number of initial steps�

In this case� the crucial point is the number of steps needed to distinguish between
convergence and divergence�

Formulated in a somewhat loose manner we are looking for a number q with the
following property	 the process either starts converging before the q�th step or it does
not converge at all�

We shall be concerned with the particular case of iterative processes of the form
xk�� � Axk � y where A is a given bounded linear operator on a Banach space E�
It was in the case of these iteration processes that the 
rst rigorous formulation was
given� It is well known that this process converges �for each y and each initial vector
x�
 if and only if the spectral radius r�A
 of A is less than one�

In ���� J� Ma�r��k and the present author proved the following theorem� Consider�
for n by n complex matrices B the norm jBj � maxi

P
k jbikj so that jBj is the norm

of B taken as operator on Cn equipped with the l� norm jxj � max jxjj�

��� Let q � n� � n � �� Given an n by n matrix A such that jAj � jAqj � � then

r�A
 � �� Furthermore q is the smallest integer of this property�

Thus� for a matrix A with jAj � � convergence of the process manifests itself within
the 
rst n� � n� � steps�

Later� the author realized that a similar question may be raised in an arbitrary
Banach space and formulated ���� the following de
nition�

��� The critical exponent of a Banach space E is the smallest integer with the fol�

lowing property�

If A is a linear operator on E such that jAj � jAqj � � then r�A
 � ��
An equivalent formulation

If jAj � � then r�A
 � � if and only if jAqj � ��

In the same paper ���� the author proved that the critical exponent of n�dimensional
Hilbert space equals n� The previous result of Ma�r��k and the author appears in the
form of the statement that the critical exponent of the n�dimensional l� space equals
n� � n� ��

The following chapter represents a careful analysis of the spectral radius of an
element in Banach algebras and its connection with the convergence of the series

� � �a� ��a� � � � �

�



We then proceed to prove that the critical exponent of a Hilbert space equals its
dimension� The following two chapters are of a technical character� we use this oppor�
tunity to present a nontraditional treatment of a classical subject� the representation
of operators by matrices together with the geometry of these representations� tools to
be used the in solution of the 
rst maximum problem�

Section � reproduces the author�s original solution of the 
rst maximum problem	

nd the maximum of jf�A
j as A ranges over all contractions on Hn annihilated by
a given polynomial� In spite of the fact that technically simpler solutions were found
later� the original one has the advantage of suggesting� in a natural manner� the con�
sideration of dilations and presents an opportunity to explain the connections with the
theory of complex functions� This presents a natural introduction to function theoretic
considerations to be treated in more detail in Section ��

The author�s original solution of the 
rst maximumproblem was followed by a paper
of Sz�Nagy ���� in which dilation theory was used explicitly� his proof is reproduced in
Section ��� The following chapter describes the relations between the 
rst maximum
problem and dilation theory in more detail � this presents are opportunity to explain
the connections with the interpolation theory of D� Sarason� Hankel operators and the
von Neumann inequality� In particular� the role of �operator valued
 M�obius functions
in the theory as well as in concrete representations of extremal operators becomes
evident�

� The Spectrum

In the whole lecture A will be a normed algebra over the complex 
eld� We assume
that A has a unit e and identify the scalar multiple �e with the complex number ��
The norm x� jxj is submultiplicative� jxyj � jxj jyj and we assume that jej � ��

The spectrum of an element a � A� denoted by ��a
 is de
ned as the set of all
complex � for which �� a is not invertible�

The main result of this section is a deep one	 the spectrum of an arbitrary element of
A is nonvoid� If the algebra A is complete� it can be shown that the set ��a
 is bounded
�in fact compact
 and we shall show how to compute the radius of the smallest circle
around the origin that contains ��a
�

We start by proving a particular case of what is known as the spectral mapping
theorem

��� Let A be a normed algebra� a � A� If p is an arbitrary polynomial then

��p�a

 � p���a



Proof� Since we do not yet know that spectra are nonvoid� the assertion to be proved
reads as follows� If one of the sets ��p�a

 and p���a

 is nonvoid then so is the other
and they are equal�

�� Suppose 
rst that � � ��a
� The polynomial p�z
 � p��
 being divisible by
�z � �
� there exists a polynomial q�z
 such that

�



p�z
� p��
 � �z � �
q�z
�

If b stands for q�a
 we have

p�a
 � p��
 � �a� �
b � b�a� �
�

Suppose that p�a
� p��
 has an inverse� w say� Then

wb�a� �
 � � and �a� �
bw � �

so that �� a is invertible� a contradiction� It follows that p��
 � ��p�a

�

�� Suppose that � � ��p�a

 so that � � p�a
 is not invertible� Consider the
polynomial p�z
� �� it can be expressed as the product of n linear factors

p�z
� � � �z � ��
 � � � �z � �n
�

It follows that

p�a
� � � �a� ��
 � � � �a� �n
�

If all a� �j were invertible� so would be p�a
 � �� Thus there exists an index k such
that a � �k is not invertible� in other words �k � ��a
� Since p��k
 � � � � we have
� � p��k
 � p���a

� �

��� Let A be a Banach algebra� a � A� If � � ��a
 then j�j � inf janj��n�

Proof� We prove 
rst that j�j � jaj� Indeed� suppose j�j � jaj� Then j a
�
j � �� the

series � � a
�
� � a

�

� � � � � converges and its sum b satis
es

b

�
��� a
 � �� � a


b

�
� �

so that �� a is invertible� a contradiction�
Now consider an� By the spectral mapping theorem � � ��a
 implies �n � ��an
� It

follows that j�nj � janj whence j�j � janj��n� Since this estimate holds for an arbitrary
n� the assertion follows� �

The main question still remains open	 is the spectrum of an elementalways nonvoid�
In the preceding proposition we have used completeness to prove the convergence of
the series

� � �a� ��a� � � � �

and this� in its turn� to show that the points of ��a
 �if they exist
 must lie in the
closed disk j�j � inf janj��n�

The relation between the existence of ��� �a
�� and the convergence of the series

� � �a� ��a� � � � �

�



plays also the central role in the main theorem of this section which states that� in a
normed algebra� the spectrum of each element is nonvoid�

In spite of the fact that we are dealing with in
nite series� completeness is not
needed to prove that the spectrum is nonvoid�

Let us try to explain� in the following heuristic discussion� how this fact may be
deduced from an examination of the connection between the existence of �� � �a
��

and the convergence of the series � � �a � ��a� � � � � � We begin by the following
observation�

��� Let A be a normed algebra� a � A� Suppose that �� � �a
�� exists in some

neighbourhood of zero� Then there exists an � � � such that for j�j � �� �� � �a
��

exists and may be expressed in the form of a convergent power series

��� �a
�� � � � �a� ��a� � � � �

Proof� For a positive integer n and a complex number �� set sn��
 � ���a�� � ���nan�
It is easy to verify that sn��
�� � �a
 � �� �n��an��� If �� � �a
�� exists then

sn��
 � ��� �a
�� � ��� �n��an��
�� � �a
�� � ��� �a
�� �

� ��n��an����� �a
���

Now suppose that ����a
�� exists for all � in the disk j�j � �� If j�j � � and j�aj � ��
the preceding identity shows that the series � � �a� ��a� � � � � converges and its sum
equals ��� �a
��� �

The result just proved says	
if �� � �a
�� exists in a neighbourhood of zero then the series � � �a � ��a� � � � �
has a positive radius of convergence� We intend to explain that the main theorem
we are aiming at� the existence of the spectrum� is an immediate consequence of an
improvement of the proposition just proved	 the radius of convergence of the series
� � �a� ��a� � � � � is the largest number 	 such that ��� �a
�� exists for all j�j � 	�
We shall prove this later� now we state it without proof and explain how it can be used
to obtain the existence of the spectrum�

��� Let A be a normed algebra� a � A� 	 � �� Suppose that �� � �a
�� exists for all

� in the disk j�j � 	� Then the series

� � �a� ��a
� � � � �

converges for all j�j � 	�

Once proved� this result makes it possible to show that� in a normed algebra� the
spectrum of every element is nonvoid� in fact� that there exists� for each a � A a
� � ��a
 with

�



limsup janj��n � j�j

Write� for brevity� r� � limsup janj��n� We shall distinquish two cases	 r� positive
and r� � �� Suppose 
rst that r� � �� Take a positive � such that r� � r� � � � ��
We intend to show that � � �a cannot be invertible for all � in the disk j�j � �

r���
�

Indeed� this would imply� by the proposition just stated� the convergence of the series
� � �a � � � � in the whole of the disk� Take a � such that

�

r� � �
� j�j �

�

r�
�

We have then limsup j�nanj � j�jr� � � so that j�nanj � � for in
nitely many n� a
contradiction� since

P
�nan is convergent� It follows that there exists a j��j �

�
r���

for
which �� ��a is not invertible�

Clearly �� �� � and �
��
� ��a
 and �

j��j
� r� � �� Since � was arbitrary� this proves

supfj�j�� � ��a
g � r�

The case r� � � has to be treated separately� If r� � � we intend to show that
� � ��a
� in other words� that a�� does not exist� Indeed� suppose a�� exists� we have
then

� � j�a��
nanj � ja��jnjanj

so that � � ja��jjanj��n for every n� Since lim janj��n � limsup janj��n � �� this is a
contradiction�

Summing up� we now know that ��a
 is always nonvoid and

supfj�j�� � ��a
g � r��

If A is complete� we have seen that

supfj�j�� � ��a
g � inf janj��n

Combining these two results �and keeping in mind htat the preceding heuristic discus�
sion is based on the proposition ��� still to be proved
� we obtain the following

��� Let A be a Banach algebra� a � A� Then lim janj��n exists and equals inf janj��n�
Denoting this number by r�a
� we have proved

�o the spectrum ��a
 is nonvoid

�o the spectrum ��a
 is contained in the disk j�j � r�a
 and there exists a � � ��a

with j�j � r�a
�

The radius of the smallest disk of the form D�r
 � f�� j�j � rg such that ��a
 �
D�r
 is called the spectral radius of a� The heuristic reasoning sketched above shows
that� in a Banach algebra� the spectral radius of a equals

�



r�a
 � lim janj��n � inf janj��n

The preceding discussion puts into evidence the importance of the behaviour of the
sequence of iterates of a for the convergence of ���a���a�� � � � and for the existence
of ��� �a
���

We have shown that� in order to prove the existence of at least one point in the
spectrum� it su�ces to prove ���� �In fact� it is not di�cult to see that the two assertions
are equivalent�


Now we shall resume the rigorous treatment of the subject� The following proposi�
tion examines more closely the radius of convergence of the series�

��� Let B be a Banach algebra� x � B� Denote by Mj the sets of complex numbers �
with the following properties�

M�
P
�nxn is absolutely convergent

M�
P
�nxn is convergent

M� ��x
n � �
M� j��x
m � �j for some m
M� the sequence ��x
n is bounded

The supremum 	 of the moduli j�j is the same for all these sets and 	 � �� The

limit jxnj��n exists and satis�es

lim jxnj��n � inf jxnj��n �
�

	
�

here �
�
is taken to be � if 	 �	�

Proof� Clearly M� � M� � M� � M� � M�� It is easy to prove the following
implication	 if �� � M� and j�j � j��j then � � M�� Indeed� j�nxnj � j�
��j

n j�n�x
nj

and j�
��j � �� This immediately implies that the supremum of j�j is the same for all
the sets Mj � If x � � we have 	 � 	� If x �� � then every � with j�j � �

jxj
belongs to

M�� It follows that 	 � ��
Let us prove 
rst that �

�
� inf jxnj��n� This is obvious if 	 � 	� Hence assume that

	 �	 and suppose that

inf jxnj��n �
�

	
�

There exists a positive � such that

� inf jxnj��n � � �
�

	
�

It follows that j��x
m � �j for a suitable m so that � � 	 and �
�
� �� a contradiction�

This proves the inequality

�

	
� inf jxnj��n�

�



Now observe that � �M� implies the inequality

j�j limsup jxnj��n � ��

Let 	� be an arbitrary number � � 	� � 	� There exists a � � M� such that j�j � 	��
It follows that

	� limsup jxnj��n � j�j limsup jxnj��n � �

whence

limsup jxnj��n �
�

	 �
�

Since was an arbitrary positive number less than 	� the inequality

limsup jxnj��n �
�

	

follows� �

The reader will have observed that condition M� di�ers from the rest of Mj in
that it suggests a question of a quantitative character	 if j��x
mj � � for some m it is
natural to ask what would be the smallest m of this property� Indeed� it is essentially
this question that will occupy us in these lectures�

We are now ready to prove the fact that� in a normed algebra� the spectrum of an
arbitrary element is nonvoid� The proof is based on an algebraic identity relating the
values of ��� �a
�� to the behaviour of the iterates �nan and on the continuity of the
inverse�

��� Let A be a Banach algebra with unit� a� � A� If a� is invertible and � � ja��� �a��
a
j � � then a is invertible as well and

ja�� � a��� j � ja��� j
�

�� �

Proof� Write a in the form

a � a� � �a� � a
 � a���� a��� �a� � a



and observe that �� � a��� �a� � a

�� exists and its norm does not exceed �
��� � Thus

ja��j � ja��� j
�

��� and

ja�� � a��� j � ja��� �a� � a
a��j � �ja��j � ja��� j
�

� � �
� �

In particular� in a Banach algebra� the set G�A
 of all invertible elements is open
and the mapping a� a�� is continuous on G�A
�

If completeness is not assumed� the set G�A
 will not be open in general� neverthe�
less� continuity of the inverse remains valid�

In the case of a normed algebra we have the following

 



��	 Let A be a normed algebra with unit� Suppose that a� � A and a � A are both

invertible� If � � ja��� �a� a�
j � � then

ja�� � a��� j � ja��� j
�

� � �

Proof� Write

a�� � a��� � a��� �a� � a
a�� � a��� �a� � a
�a��� � �a��� � a��



Thus ja�� � a��� j � ��ja��� j� ja
�� � a��� j
� �

The main theorem of this section is based on an algebraic identity relating the
values of the resolvent ����a
�� to the behaviour of the sequence of iterates of a and�
in this manner� to the convergence of � � �a � ��a� � � � �� It is possible to verify the
identity immendiately using known facts about the cyclotomic equation � we prefer to
present an intuitive approach using rational functions�

��� Let n be a positive integer� � a primitive n�th root of �� Then

��� xn
�� �
�

n

nX
�

��� �jx
��

Proof� Denote by Q the polynomial

Q�z
 � � � z � � � �� zn���

For every j we have

�� zn � �� � �jz
Q��jz


so that ��� zn
�� � �jz
�� � Q��jz
 and

��� zn

X

��� �jz
 �
X

Q��jz
�

Thus it su�ces to prove the identity
P
Q��jz
 � n� Di�erentiating the identity

��� yn
 � ��� �y
��� ��y
 � � � ��� �n��y


we obtain

nyn�� �
X

�j
� � yn

� � �jy
�
X

�jQ��jy


whence

n �
X �

��jy
n��
Q��jy
 �

X
Q�

�

�jy

�

It follows that
P
Q���jx
 � n� since

P
Q��jx
 �

P
Q���jx
� the proof is complete� �

�



���
 Let A be a normed algebra with unit� Let x be an element of A and set r�x
 �
limsup jxnj��n� Then there exists a point � � ��x
 such that

j�j � r�x
�

Proof� We shall distinguish two cases� r�x
 � � and r�x
 � �� Suppose r�x
 � �
and let us prove that � � ��x
� Suppose on the contrary that x�� exists� Then
� � jxn�x��
nj � jxnjjx��jn so that � � jxnj��njx��j for every positive n� this is a
contradiction�

Now consider the case r � r�x
 � �� Suppose that �� � x
�� exists for all � with
j�j � r� Consider the function

f��
 � ���
x

�

��

de
ned for all � with j�j � r� The algebraic identity ����
 yields the following fact� If
j�j � r and if n is an arbitrary positive integer then

�� � �
x

�

n
��

exists and may be expressed as a mean of the values of f�z
 on the circle jzj � j�j�

��� �
x

�

n
�� �

�

n

X
f��j�
�

where � is a primitive n�th root of ��
It follows from lemma ����
 that f is continuous on the set j�j � r� In particular it

is uniformly continuous on the set

M � f�� r � j�j � r � �g�

Accordingly� for every � � � there exists a ���
 � � such that ��� �� �M � j�� � ��j �
���
 implies

jf���
� f���
j � ��

Now let � � � be given� Choose a number s such that r � s � r � ���
� Then� for
every positive integer n the inverses

�� � �
x

r

n
�� and �� � �

x

s

n
��

both exist and their di�erence equals

�

n

X
�f��jr
� f��js

�

Since j�jr � �jsj � ���
 it follows that

j�� � �
x

r

n
�� � ��� �

x

s

n
��j � �

�



and this holds for all n� Now we shall use twice the previous lemma in the following
form	 if bn � � and the bn are invertible then b��n � �� First of all� s � r implies
limsup j�x

s

nj��n � � whence �x

s

n � �� thus

j��� �
x

r

n
�� � �j � �

for su�ciently large n� It follows that

lim�� � �
x

r

n
�� � �

so that� by the lemma

lim�� � �
x

r

n
 � ��

This is a contradiction since

limsup j�
x

r

nj � �� �

� The critical exponent of a �nite dimensional Ba�

nach space

The de
nition of the critical exponent may be stated in a number of equivalent forms
the connections of which we now proceed to expound� In particular the fact that the
set

fT � B�E
� jT j � �� r�T 
 � �g

is not compact plays an important role in the theory� it shows that the existence a 
nite
critical exponent represents a fairly strong restriction on the geometry of the space�

The equivalence of the following 
ve characterizations of the critical exponent is
immediate�

��� Let E be a Banach space� The critical exponent q of E is the smallest positive

integer which satis�es one of the following conditions

�� if T � B�E
 is a contraction and jT qj � � then jT rj � � for all r

�� if T � B�E
 is a contraction and jT qj � � then r�T 
 � �

�� if T � B�E
 is a contraction and jTmj � � for some m then jT qj � �

�� if T � B�E
 is a contraction and r�T 
 � � then jT qj � �

�� if T � B�E
 is a contraction then r�T 
 � � if and only if jT qj � ��

��



Given a 
nite�dimensional Banach space E� we denote by B�E
 the Banach algebra
of all linear operators on E equipped with the operator norm� For each r� � � r � �� let
C�r
 be the set of all contractions T � B�E
 such that r�T 
 � r� For each nonnegative
integer q and each nonengative r � �� set

f�q� r
 � maxfjAqj�A � C�r
g

� maxfjAqj�A � B�E
� jAj � �� r�A
 � rg

Clearly� for a 
xed q� the function f�q� 

 is nondecreasing� together with the obvious
estimate f�q� r
 � rq this shows that f�q� r
 � � as r � �� A moment�s re!ection shows
that f�q � �� r
 � f�q� r
 for every r � �� Indeed� suppose that f�q � �� r
 � f�q� r

for some r � �� It follows that there exists a contraction T � C�r
 such that jT q��j �
f�q� r
� This implies f�q� r
 � jT qj � jT q��j � f�q� r
� a contradiction�

Thus far the 
nite�dimensionality of E has not been used� Compactness plays an
essential role in the following nontrivial result�

��� Suppose E is a �nite�dimensional Banach space� Then� for each r � ��

f�q� r
 � �

as q �	�

The existence of the critical exponent is thus equivalent to the existence of an integer

q such that f�q� r
 � � for all r � ��

Proof� For each positive integer m let U�m
 be the set

U�m
 � fx � B�E
� jxmj � �g

The inclusion

C�r
 �
�
U�m


together with the fact that C�r
 is compact� yields the following observation
for each r � �� there exists an n�r
 such that

C�r
 � U�n�r



If we take� for n�r
� the smallest integer with this property� clearly � � r� � r�
will imply n�r�
 � n�r�
� The existence of the critical exponent is equivalent to the
statement that the function n�r
 remains bounded as r tends to �� in other words� the
existence of a q such that

�
r��

C�r
 � U�q
�

The set on the lefthand side is not compact � this shows that 
nite�dimensionality of E
alone could hardly be expected to yield the existence of the critical exponent� indeed�
it is possible to construct 
nite�dimensional Banach spaces whose critical exponent

��



is in
nite� the existence is thus seen to be a fairly delicate matter depending on the
geometry of E�

Since C�r
 is compact� the inclusion C�r
 � U�q
 implies the inequality f�q� r
 � ��
It follows that f�m� r
 � � as m�	 for this particular r� �

It is not easy to obtain an explicit expression for the functions f�q� r
� As an
example� let us consider the case where E is the twodimensional Hilbert space� The
theorems to be discussed in the following chapters show that the critical exponent of
E equals � so that f��� r
 � � for each r � � and permits us to write down an explicit
expression f��� r
	

f��� r
 � r�� � r� � �� � r� � r�

�

� 


� The critical exponent of Hilbert space

Let H be a Hilbert space� The Banach algebra of all bounded linear operators on H
will be denoted by B�H
� An operator T � B�H
 is said to be a contraction if jT j � ��
Clearly T is a contraction if and only if I � T �T � �� If T is a contraction we denote
by D�T 
 the positive square root of I � T �T and by D�T 
 the closure of the range of
D�T 
� The operator D�T 
 is characterized by the fact that D�T 
 � � and

jD�T 
xj� � jxj� � jTxj�

for all x � H�
Another useful characterization of contractivity is the following�
The operator T is a contraction if and only if

�
I T
T � I

�
� ��

Indeed� it is easy to see that

��
I T
T � I

��
x
y

�
�

�
x
y

��
� jx� Tyj� � jyj� � jTyj��

If T is a contraction� this shows that the matrix is positive� On the other hand setting
x � �Ty� we see that positivity of the matrix implies jyj� � jTyj� � � for all y�

��� Let T be a contraction on a Hilbert space H� For k � �� �� � � � denote by Ek the

kernel of �I � T �kT k
� Then

��
 E� 
 E� 
 E� 
 � � �

��
 if Ek�� � Ek then TEk � Ek

In particular� Ek�� � Ek implies Ej � Ek for all j � k�

��



Proof� Since

I � T �k��T k�� � I � T �kT k � T �k�I � T �T 
T k � I � T �kT k

the inclusion x � Ek�� implies x � Ek�
To prove the second part� assume that Ek�� � Ek and consider an x � Ek� Since

Ek � Ek�� we have
jxj � jTxj � jT k�Tx
j � jT k��xj � jxj

so that jT k�Tx
j � jTxj and Tx � Ek�
In particular� the second assertion makes it possible to show that the inclusion

Ek � Ek�� impliesEk�� � Ek��� Indeed� suppose Ek � Ek�� and consider an x � Ek���
Thus x � Ek by ��
 and y � Tx � Ek by ��
� It follows that y � Ek�� so that
jT k��yj � jyj� Hence

jT k��xj � jT k��yj � jyj � jTxj�

Since Ek�� � E� we have jTxj � jxj� this proves the inclusion x � Ek��� �

��� Lemma� Suppose T � B�E
 is a contraction� let E� be a closed subspace of E
such that E� is invariant with respect to T and T jE� is an isometry� If TE� � E� then

E� is reducing for T �

Proof� For x � E� we have jTxj� � jxj� whence �T �Tx� x
 � �x� x
� Since I�T �T � �
it follows that x � ker �I � T �T 
� Thus E� � ker �I � T �T 
� Suppose x � E�� Then
x � Ty for a suitable y � E� and T �x � T �Ty � y� Thus T �E� � E�� �

��� Theorem� Let E be a Hilbert space of dimension n� If T is a contraction on E
then the following assertions are equivalent

��
 r�T 
 � �

��
 jT nj � �

��
 the space E contains a nonzero subspace E� such that E� is reducing for T and

T jE� is unitary�

Proof� Since r�T 
 � jT nj��nthe implication from ��
 to ��
 is immediate� Thus it
remains to prove that jT nj � � implies ��
� So assume jT nj � �� Consider the sequence
E� 
 E� 
 � � � 
 En� Since En has dimension at least one by our assumption there
exists a k such that

� � k � n and Ek � Ek���

By our lemma Ek is invariant with respect to T � T jEk is isometric on Ek by de
nition
and Ek 
 En �� �� Since Ek is 
nite�dimensional and T jEk isometric� we have TEk �
Ek� It follows from the preceding lemma that Ek is reducing for T � �

Recall that a contraction T � B�H
 is called completely nonunitary if there exists
no nontrivial subspace H� � H reducing for T and such that T jH� is unitary�

The theorem may be restated in the following equivalent form

��



��� Theorem� Let T be a contraction on an n�dimensional Hilbert space E� Then

the following assertions are equivalent

��
 r�T 
 � �

��
 jT nj � �

��
 T is completely nonunitary�

Expressed in this manner the theorem assumes a form which immediately suggests
that a quantitative re
nement of the results would be desirable� The rest of our con�
siderations will be devoted to the problem of 
nding estimates for jT nj if the spectral
radius of T is bounded by a number r � ��

The pigeonhole principle together with the preceding considerations may by used
���� to prove the following analogy of the equivalence of ��
 and ��
 in the theorem�

��� Theorem� Let A� � � �An be pairwise commuting contractions on an n�dimensional

Hilbert space� If r�Aj
 � � for all j then

jA� � � � Anj � ��

Proof� Set E� � E and� for k � �� �� � � � � n let

Ek � fx � E� jA� � � � Akxj � jxjg�

The Aj being contractions� the Ek are subspaces of E�

�� We prove 
rst the inclusion Ek�� � Ek� Indeed� given x � Ek��� we have

jxj � jA� � � � AkAk��xj � jAk��A� � � � Akxj � jA� � � � Akxj � jxj

It follows that jA� � � � Akxj � jxj whence x � Ek�

�� We prove the inclusion Ak��Ek�� � Ek� Indeed� given x � Ek��� we have

jxj � jA� � � � AkAk��xj � jAk��xj � jxj�

Consider the sequence
E� 
 E� 
 � � � 
 En�

To prove the theorem� we have to show that En � �� Suppose� on the contrary� that
En �� �� It follows that there exists a k � n such that Ek � Ek��� Then Ak��Ek�� �
Ek � Ek�� and Ak��jEk�� is an isometry� It follows that r�Ak��
 � r�Ak��jEk��
� a
contradiction� �

��



� The two maximum problems

The critical exponent of n�dimensional Hilbert space being n� the corresponding quan�
titative problem is thus the following	

��� for each positive r � �� compute the maximum of jT nj as T ranges over all

operators on n�dimensional Hilbert space such that jT j � � and r�T 
 � r�

It is� in particular� the second constraint that is awkward to handle� Seeking ways to
overcome this di�culty� the author observed that the problem becomes more tractable
if the second constraint is replaced by a more stringent one� this idea turns out to be
the decisive step in the solution� The method adopted in ���� consists in dividing the
maximum problem into two stages�

��� The �rst maximum problem

The second constraint r�T 
 � r is replaced by the equirement that the operator T be
annihilated by a polynomial of degree n with all zeros at most r in modulus� in other
words� that the spectrum of T be contained in a given subset of fjzj � rg consisting
of no more than n points�

Consider a polynomial p of degree n whose zeros lie in the interior of the unit disk�
and consider the class A�p
 of all contractions T on the n�dimensional Hilbert space
such that p�T 
 � �� The spectra of these operators are contained in the spectrum of
the polynomial p�

It is possible to construct� for each p� a contraction S�p
 annihilated by p and such
that the maximum of jT nj for T � A�p
 is attained for T � S�p
� We shall describe
S�p
 later� It turns out that S�p
 realizes� in fact� the maximum for a more general
extremum problem	

��� Consider the set A�p
 of all contractions T on the n�dimensional Hilbert space

such that p�T 
 � �� Given an arbitrary polynomial f � the maximum of jf�T 
j as T
ranges over A�p
 is assumed at S�p
�

For the moment� let us assume that the 
rst maximum problem is solved�

��� The second maximum problem

�Or the problem of the worst polynomial
�
Consider a 
xed positive r � � and denote by Zr the set of all contractions

T � B�Hn
 with r�T 
 � r� It follows from the Cayley�Hamilton theorem that ev�
ery operator with spectral radius at most r is annihilated by a polynomial of degree n
with zeros at most r in modulus� Thus

Zr � �A�p


where p ranges over the class P �r
 of all polynomials of degree n whose zeros lie in the
disk

D�r
 � fz� jzj � rg�

��



Together with the solution of the 
rst maximum problem the identity Zr � �A�p

yields the following fact�

Given a polynomial f �

supfjf�T 
j�T � Zrg � supfjf�S�p

j� p � P �r
g

so that our task reduces to 
nding the polynomial �or polynomials
 in P �r
 for which
the function p � jf�S�p

j assumes its maximum� In this generality� for arbitrary f �
the problem is still open� For the case f�z
 � zn the solution was given in the author�s
paper �����

Fairly delicate algebraic considerations enabled the author to show that the maxi�
mum of this function is attained for the polynomial pmax de
ned by

pmax�z
 � �z � r
n�

This polynomial is the worst polynomial that we are looking for� It maximizes the
function

p� jS�p
nj

for p � P �r
� The method of proof does not extend to the case of an arbitrary f as it
did in the 
rst maximum problem� The problem of 
nding the worst polynomial for
a general f remains open� In some particular cases it can be shown that �z � r
n will
do� Also there is numerical evidence that �z � r
n is the worst polynomial for some
polynomials f di�erent from zn�

� Matrices and operators

The following two chapters are of a technical character� We shall have to represent
operators by means of matrices with respect to di�erent bases� We develop a technique
of dealing with such matters which considerably simpli
es the calculations� We venture
to say that " using this approach " the work is much less tedious than the standard
treatment�

In the whole chapter n will be a 
xed number�Hn will be an abstract n�dimensional
Hilbert space� B�Hn
 the algebra of all linear operators on Hn� We shall also occasion�
ally consider the concrete n�dimensional Hilbert space Cn whose elements are column
vectors indexed by �� �� � � � � n� �� Thus x � Cn means

x � �x�� x�� � � � � xn��

T �

We shall denote by e�� e�� � � � � en�� the standard unit vectors

e� � ��� �� �� � � � � �
T �

e� � ��� �� �� � � � � �
T �

� � �

An operator A on Cn will be identi
ed with its matrix

��



aik � �Aek� ei
�

An n�tuple of vectors b�� � � � � bn�� in Hn will be interpreted in two ways� We shall
view it either as a row vector B � �b�� � � � � bn��
 or as a linear operator B from Cn into
Hn de
ned by the relations

Bek � bk k � �� �� � � � n � ��

Taken as an operator� B assigns to an x � Cn the matrix product Bx of the row B
and the column x�

In the particular case where Hn � Cn� in other words� if the bj are column vectors�
the row vector �b�� � � � � bn��
 will become a matrix which happens to be the matrix of
the operator B just de
ned�

Similarly� if T � B�Hn
 we shall interpret the product TB either as the row vector
�Tb�� � � � � T bn��
 or as the operator obtained as the superposition of B and T �

If A � B�Cn
 we de
ne BA as the row obtained by the matrix product�

BA � �
X

bjaj��� � � � �
X

bjaj�n��


or as an operator� Interpreted as an operator BA is the operator from Cn into Hn

obtained as the superposition of A and B�
If B is a basis �in other words if the bj are linearly independent
 and T is a linear

operator on the linear span H� of B� then there exists a unique matrix M�T�B
 such
that

TB � BM�T�B
�

Thus premultiplication by T equals postmultiplication by the matrix M�T�B
� This
is why M�T�B
 will be called the matrix of the operator T in the basis B�

It is easy to see that the equation

TB � BM�T�B


is valid in both interpretations of B� either as the equality of two row vectors or of two
operators from Cn into Hn� In the particular case where Hn � Cn the operator T as
well as B become matrices for which TB � BM�T�B
�

Summing up	 if B is a basis� T an operator and M �M�T�B
� then

TB � BM �

this equality characterizes the matrix of T with respect to the basis B� Indeed� if
M � � L�Cn
 satis
es TB � BM � then M � �M�T�B
�

To illustrate the advantages of the formal multiplication introduced above we intend
to describe the relation between the matrices of an operator in two di�erent bases�

If B is a basis and if B� is the basis obtained as B� � BW � W being an invertible
matrix� then� for each operator T

M�T�B �
 � W��M�T�B
W�

� 



It does not require more e�ort to prove a more general fact�
In a similar manner we de
ne the matrix of T with respect to the pair of the bases	

B� in the domain space� B� in the image space�
The matrix of T with respect to B� and B�� denoted by M�T �B�� B�
� is de
ned

by the relation

TB� � B�M�T �B�� B�
�

If the bases B� in E� and B� in E� are interpreted as linear operators from Cn into
E� and E� respectively� the relation de
ning the matrixM�T �B�� B�
 is equivalent to
the commutativity of the following diagram

�

�

�

� Cn

E�E�

Cn

B� B�

T

M

The technique of formal multiplication introduced above yields considerable sim�
pli
cations	 the proof of the following lemma demonstrates its advantages�

��� Lemma� If the bases B� and B� are replaced by B�
� � B�W� and B �

� � B�W�

then

M�T �B�
�� B

�
�
 �W��

� M�T �B�� B�
W�

Proof�

TB �
� � TB�W� � B�M�T �B�� B�
W� �

� B�
�W

��
� M�T �B�� B�
W��

Let A be a linear operator on Hn with a cyclic vector z� in the other words the
vectors

z�Az� � � � � An��z

form a basis of Hn and the minimal polynomial of A coincides with its characteristic
polynomial p� Write p in the form

p�z
 � ��a� � a�z � � � �� an��z
n��
 � zn

and consider the matrix

��



C�p
 �

�
BBBBBB�

� � � a�
� � � a�
� � � a�
� � �
� � � an��

�
CCCCCCA
�

If B stands for �z�Az� � � � � An��z
 then AB � BC�p
� in the other words� the
matrix of A in the basis B is just C�p
� Recall the dual interpretation of the relation
AB � BC�p
�

It represents either the equality of two row vectors if B is considered as a row of
vectors or as an identity for operators if B is taken to mean a linear operator from Cn

into Hn�
The matrix C�p
 will be called the companion matrix of p�

	 The geometry of Hn
 generalized Gram matrices

In order to deal with the geometric properties of nonorthogonal bases it will be nec�
essary to develop a technique using a generalization of the classical notion of a Gram
matrix�

If a and b are two elements of some Hilbert space H we denote by b�a the scalar
product �a� b
 and by ab� the operator

x� �x� b
a�

The mapping which assigns to each a � H the operator of premultiplication by a� is
thus a conjugate linear bijection of H onto its dual� In the particular case H � Cn this
� operator assumes its standard meaning� b� becomes a row vector and our de
nition
coincides with the multiplication of a row vector and a column vector� This notation
has the advantage that the operator ab� coincides with the matrix ab� in the case of
the space Cn� Also� it behaves nicely with respect to multiplication� indeed

A�ab�
B� � Aa�Bb
�

for any A�B � B�H
�
If we denote ab� by T we have the following formulae

T � � ba�

T �T � jaj�bb�

TT � � jbj�aa�

so that the norm of T equals jaj jbj�
Observe that these formulae may be obtained directly by formal multiplication�

Thus� e�g�

T �T � ba�ab� � jaj�bb��

��



Since Ta � ab�a � �b�a
a the vector a is either zero or an eigenvector of T with
eigenvalue b�a � �a� b
� The spectrum of T consists thus of at most two numbers� 
rst
�a� b
 and then zero with multiplicity n� � since the �n� �
 dimensional subspace b�

is annihilated by T �
We shall denote byRn�H
 the set of all rows of the form �b�� � � � � bn��
 where bj � H�
If U� V are two rows of length n�

U� V � Rn�H


we intend to de
ne the Gram matrix G�U� V 
� First of all� for B � Rn�H
� B �
�b�� � � � � bn��
 we take B� to be the column vector of functionals

B� �

�
BB�

b��
���

b�n��

�
CCA �

If B is interpreted as a linear operator from Cn into H then B� has also a meaning
as a linear operator from H into Cn� its action can also be described as the formal
multiplication of the n by � matrix �b��� � � � � b

�
n��


T on � by � matrices � elements of H�
Given x� y � Cn� consider the two vectors u � Ux� v � V y so that u� v � H� For

the scalar product �u� v
 we obtain

�u� v
 � v�u � y�V �U x �X
j�k

y�jv
�
jukxk �

X
j�k

y�jGjkxk

where we have denoted by Gjk the scalar products

Gjk � v�juk � �uk� vj
�

The matrix G�U� V 
 � V �U will be called the Gram matrix of the rows U and V � Its
elements are

G�U� V 
jk � �uk� vj


G�U� V 
 � V �U�

Thus G�U� V 
 is an n by n matrix or an operator in Cn�
The scalar product of u and v may thus be written in the form

�u� v
 � y�Gx � �Gx� y
�

Again� if R and S are interpreted as linear operators from Cn into H then S�R
is a linear operator in Cn and its matrix is just G�R�S
� Thus� in the particular
case of vectors in Cn the row vector R may be identi
ed with the n by n matrix
�f�� � � � � fn��
 and it is not di�cult to verify that the above formula remains true even
in this interpretation of S�R�

If the rows U and V are transformed by matrices A and B

��



U � � UA V � � V B

then G�U �� V �
 � V
��U � � B�V �UA so that

G�U �� V �
 � B�G�U� V 
A�

If the rows U and V are transformed by operators� we obtain another formula for
G�U �� V �
� Let T�W be two operators in H� then

G�TU�WV 
 �M�W�V 
�G�U� V 
M�T�U
�

Indeed� since

TU � U M�T�U


WV � V M�W�V 
�

G�TU�WV 
 � �WV 
��TU
 � �V �M�W�V 

��UM�T�U

 �

� M�W�V 
V �UM�T�U
�

If an operator T is represented by a matrix with respect to a not necessarily or�
thonormal basis then� to obtain the matrix of T � in the same basis� the adjoint of the
matrix of T has to be modi
ed using the Gram matrix of the basis�

��� Let T � B�H
� let X be a basis for H� X � �x�� � � � � xn��
� Then

M�T ��X
 � G��M�T�X
�G

where G � X�X is the Gram matrix of the basis X�

Proof� The proof is based on the equality

X��T �X
 � �TX
�X�

It follows that

X� 
XM�T ��X
 � X� 
 �T �X
 � �TX
�X � �XM�T�X

�X �

� M�T�X
�X� 
X

so that

GM�T ��X
 �M�T�X
�G� �

��



��� If S intertwines T� and T�

ST� � T�S

then T� has the same matrix in the basis SX as T� has in the basis X

M�T��X
 �M�T�� SX
�

Proof� We have

T��SX
 � ST�X � S�XM�T��X

 � �SX
M�T��X
� �

Two operators T�� T� are said to be unitarily equivalent if there exists a unitary
operator U such that UT� � T�U �

��� Proposition� The operators T�� T� � B�H
 are unitarily equivalent if and only

if there exist two bases B�� B� such that

M�T�� B�
 �M�T�� B�


G�B�
 � G�B�
�

Proof� If UT� � T�U for some unitary U � choose a basis B and set B� � UB� Then

M�T�� B
 �M�T�� B
�


by the observation above� Furthermore

G�B �
 � �UB
�UB � B�B � G�B
�

On the other hand� suppose we have two bases B�� B� with the same Gram matrix
such that M�T�� B�
 �M�T�� B�
� Denoting this matrix by M we have the equations

T�B� � B�M

T�B� � B�M

The equality G�B�
 � G�B�
 implies jB�xj � jB�xj for every x � H so that there exists
a unitary operator U for which B� � UB�� Now

T�UB� � T�B� � B�M � UB�M � UT�B�

whence T�U � UT�� �

Given a basis B� the norm of a vector x is expressed in the form jxj� � �Gu� u

where u is the vector of coordinates of x in the basis B� The corresponding expression
for jTxj� reads as follows

��



��� Let T be a linear operator on Hn and let B be a basis of the space� Then� for an

arbitrary vector x � Hn

jTxj� � �M�GMu� u


where u is the vector of the coordinates of x in the basis B� M � M�T�B
 and G is

the Gram matrix of B�

Proof� The vector u is determined by the equality x � Bu� Thus

jTxj� � jTBuj� � jBMuj� � �BMu�BMu
 �

� �M�B�BMu� u
 � �M�GMu� u


�

Let us describe a simple method of constructing the inverse of a Gram matrix�
Suppose we have n�tuples

R � �f�� � � � � fn��
 S � �g�� � � � � gn��


such that G�R�S
 is invertible� �The invertibility of S�R implies the invertibility of
both S and R so that the vectors f as well as the vectors g will be linearly independent�

Suppose we 
nd two operators A and B such that �Afi� Bgk
 � 
ik� let us show that

G�� �M�A�R
M�B�S
��

Indeed� it follows from the above formula that

� �M�B�S
�GM�A�R


whence

M�B�S
��GM�A�R
M�B�S
� � �
 �

� �M�B�S
�GM�A�R

M�B�S
� �M�B�S
� � ��

The following lemma shows how the square root of G�A
 may be used to orthonor�
malize the basis A�

��� Suppose the vectors a�� � � � � an are linearly independent� Suppose W is a matrix

such that

W �W � G�a�� � � � � an

��

Then the system �a�� � � � � an
W � is orthonormal�

Proof� Since G�a�� � � � � an
 � A�A� we have

W �W � �A�A
�� � A���A�
��

whence AW � 
WA� � � so that WA�AW � � �� It follows that

��



G�AW �
 � WA� 
AW � � � �

As an illustration of the techniques using Gram matrices let us mention the Nevan�
linna � Pick problem�

We shall work in the Hardy space H� on the open unit disk D � fz� jzj � �g� For
each w � D we denote by e�w
 the corresponding evaluation functional

e�w
�z
 �
�

� �w�z
�

in this manner �f� e�w

 � f�w
 for every f � H��

��� Given n distinct points z�� � � � � zn � D and n complex numbers w�� � � � � wn� the

following conditions are equivalent�

�� there exists a function h holomorphic in D such that jh�z
j � � for z � D and

h�zj
 � wj �

�� the matrix
� �w�

iwj

�� z�i zj

is nonnegative de�nite�

Assume �� and consider the multiplication operator M�h
 on H�� Since h�zj
 � wj

it follows that �f�M�h
�e�zj

 � �M�h
f� e�zj

 � wjf�zj
 � �f�w�
j e�zj

 for every

f � H� whence
M�h
�e�zj
 � w�

j e�zj
�

Consequently� the matrix of M�h
� taken in the basis e�z�
� � � � � e�zn
 is the diagonal
matrix W � with w�

�� � � � � w
�
n on the diagonal� Since jh�z
j � � for z � D� the norm of

M�h
 and� consequently of M�h
�� cannot exceed ��
Thus the existence of an h with the required properties implies

the operator transforming e�zj
 into w�
j e�zj
 is a contraction�

In terms of Gram matrices

G�w�
�e�z�
� � � � � w

�
ne�zn

 � G�e�z�
� � � � � e�zn



or
W �GW � G�

The nontrivial implication� the su�ciency of ��� will be proved in the lecture devoted
to the work of D� Sarason�

��



� The geometry of B�Hn�

The original solution of the maximum problem ���� was based on a simple result which
permits to study the operator norm in B�Hn
 using the geometry of B�Hn
 in the
Frobenius norm� in other words� treating B�Hn
 as a Hilbert space� This approach
leads in a natural manner to in
nite�dimensional considerations and to what is known
today as dilation theory�

If H is a 
nite�dimensional Hilbert space then B�H
 is a Hilbert space under the
scalar product

�A�B
 � tr B�A � tr AB��

Let us list here� for further reference� some of the properties of this scalar product� the
following relations hold

�XA�B
 � �A�X�B


�AX�B
 � �A�BX�
�

It follows that the adjoint of the operator M � B�B�Hn



M 	 X � RXS

is the operator M�

M��X
 � R�XS��

Consider now the tensors ab�� Since clearly tr ab� � b�a � �a� b
 we have the following
formulae

�ab��M
 � �a�Mb


�M�ab�
 � �Mb� a
�

Indeed�

�ab��M
 � tr ab�M� � tr a�Mb
� � �Mb
�a � �a�Mb
�

In the particular case that M � R�R we have the useful formula

�xy�� R�R
 � �Rx�Ry
�

The scalar product �x� y
 may be represented as

�x� y
 � �xy�� �
 � ��� yx�
�

The following lemma gives an expression for the operator norm in terms of the
scalar product in B�H
� Using this lemma we intend to show� in the next section� how
the relation established in this manner between the two matrices on B�Hn
 leads in a
natural manner to the consideration of dilations�

��



	�� If R is a linear operator on Hn then

jRj� � supf�B�R�R
�B � �� �B� �
 � �g�

The supremum is attained on the subset of all one�dimensional operators�

jRj� � supf�vv�� R�R
� �vv�� �
 � �g�

Proof� Every B � � may be written as the sum of n operators of the form bjb
�
j �

The condition �B� �
 � � reduces then to
P
jbjj

� � �� Our maximum problem is thus
transformed into

supf
nX
�

jRbj j
��

nX
�

jbjj
� � �g�

Since
P
jRbjj

� � jRj�
P
jbjj

� � jRj� this supremum cannot exceed jRj�� on the other
hand� the value jRj� is attainable by operators B of the form bb� with jbj � �� �

� The �rst maximum problem

In the present section we intend to solve the 
rst maximum problem� To restate
the problem� it will be convenient to introduce some notation� We are given a 
xed
polynomial p of degree n with all zeros in the open unit disk and denote by A�p
 the
set of all contractions A � B�Hn
 such that p�A
 � �� The set A�p
 is thus given by
the two constraints	

jAj � � and p�A
 � ��

For any polynomial f the problem is to maximize jf�A
j as A ranges over the set A�p
�
It turns out that there is an element Ap � A�p
� independent of f � which maximizes
jf�A
j over the set given by the two constraints above�
In this section we shall give a description of this extremal operator�

Let H be the n�dimensional Hilbert space� Let p be a polynomial of degree n with
all zeros in the open unit disk D�

We denote by A�p
 the set of all contractions A � B�H
 such that p�A
 � ��
We shall also associate with p a set of matrices Z�p
 de
ned as follows� We denote

by C the congruence operator on Mn

X � C�p
�XC�p


and by E� the matrix e�e��� Then

Z�p
 � fZ �Mn� ��� C
Z � �� �Z�E�
 � �g�

We shall establish a relation between A�p
 and Z�p
 which makes it possible to
linearize the maximumproblem� Given a vector z � H of norm �� consider the mapping
g 	 B�H
�Mn de
ned by

��



g�Y 
 � G�z� Y z� � � � � Y n��z
�

Our further investigations are based on the following result	

g�A�p

 � Z�p
�

Consider anA � A�p
� Denote byB the row vector consisting of the vectors �z�Az� � � � � An��z

and consider the matrix G�B
� Since jzj � � we have �G�B
� E�
 � jzj� � �� The
equality p�A
 � � implies AB � BC�p
� Thus

�G�B
x� x
 � �C�G�B
Cx� x
 �

� jBxj� � jBCxj� � jBxj� � jABxj� � �

the operator A being a contraction� It follows that

��� C
G�B
 � �

so that G�B
 � Z�
On the other hand� let Z � Mn and Z � C�ZC � �� Since all zeros of p are less

than one in modulus we have C�p
m � �� Since

Z � C�mZCm �
m��X
�

C�k�Z � C�ZC
Ck � �

this implies that Z � �� It follows that there exist vectors z�� � � � � zn�� such that
Z � G�z�� � � � � zn��
 and z� � z� Denote by B the row

B � �z�� � � � � zn��


and set W � BC� Then

G�B
�G�W 
 � G�B
� C�G�B
C � ��

It follows that� for every x � Cn�

jWxj� � �G�W 
x� x
 � �G�B
x� x
 � jBxj��

Now consider the linear span H� of the vectors z�� � � � � zn��� The inequality jWxj �
jBxj just proved shows that it is possible to de
ne� on H�� a linear contraction A� by
setting A�zj � wj for j � �� �� � � � � n � �� It follows that A�B � W � BC whence
p�A�
B � Bp�C
 � � so that p�A�
 � �� Let � be an arbitrary zero of the polynomial
p and set

A � A�P �H�
 � ���� P �H�

�

Since Akx � Ak
�P �H�
x� �k�� � P �H�

x for k � � is follows that p�A
 � �� It is

not di�cult to see that A is a contraction� Furthermore� Ajz� � zj for � � j � n � �
and this implies g�A
 � G�z�� � � � � zn��
 � Z�

This lemma makes it possible to transform the maximum problem

� 



maxfjf�A
j�� jAj � �� p�A
 � �g

formulated in the geometry of B�H
 with the operator norm into a problem in the
geometry of B�H
 as Hilbert space�

Let A � B�Hn
� z � Hn� Denote by B the row

B � �z�Az� � � � � An��z
�

If A is annihilated by p then

AB � BC�

Let f be an arbitrary polynomial� set F � f�C
� We start by expressing the operator
norm in terms of the geometry of B�H
 as Hilbert space� We show 
rst that

jf�A
zj� � �F �G�B
F�E�
�

Indeed�

jf�A
zj� � G�f�A
B
�� � �G�f�A
B
� E�
 �

� �G�Bf�C

� E�
 � �F �G�B
F�E�
�

We intend to compute

maxfjf�A
j�� jAj � �� p�A
 � �g �

� maxfjf�A
zj�� jAj � �� p�A
 � �� jzj � �g �

� maxf�F �G�B
F�E�
�G�B
 � G�z�Az� � � �


jAj � �� p�A
 � �� jzj � �g�

The value we are looking for equals

max�F �G�B
F�E�


where G�B
 ranges over all matrices of the form

G�z�Az� � � � � An��z


with jAj � �� p�A
 � � and jzj � �� This is exactly the set which we have denoted by
g�A�p

 in the preceding lemma� Using the result of the lemma� we obtain

maxfjf�A
j�� jAj � �� p�A
 � �g �

� maxf�F �ZF�E�
� �� � C
Z � �� �Z�E�
 � �g�

Denote by F the congruence

F 	 X � F �XF

��



and observe that F commutes with C� Writing M for ���C
Z� the last maximummay
be rewritten in the form

maxf�F��� C
��M�E�
� M � �� ���� C
��M�E�
 � �g �

� maxf�M� �� � C�
��F�E�
� M � �� �M� �� � C�
��E�
 � �g �

� maxf�M�F���� C�
��E�
� M � �� �M� �� � C�
��E�
 � �g�

Transformed into this form� the maximumproblem immediately suggests� in a natu�
ral manner� an interpretation as a problem for operators acting on in
nite�dimensional
spaces of sequences� This led the author to the consideration of what is known today
as dilation theory�

Since we intend to explain the connections with dilation theory in more detail later�
we postpone the discussion to the next lecture� and present at this moment another
somewhat less elegant proof which has the advantage of giving the solution directly in
the form of a concrete matrix�

Write K for �� � C�
��E� and observe that K is positive de
nite� Indeed�

K � �� � C� � � � �� C�n��
E� �

� E� � CE�C
� � � � �� Cn��E�C

�n�� � ��

Denote by K the congruence

KX � K���XK���

and observe that K� � K and K � K�� The supremum to be computed is thus

maxf�M�F�K
� M � �� �M�K
 � �g �

� maxf�KM�K��F�K
� M � �� �KM� �
 � �g�

Since K is a linear automorphism of the set P of all positive semide
nite matrices the
maximum to be computed is thus

maxf�B�K��F�K
�B � �� �B� �
 � �g�

Observe that K��F�K � K����FKF �K���� � RR� where R � K����FK��� �
K����f�C
K��� � f�K����CK���
� Our maximum is thus

maxf�B�RR�
�B � �� �B� �
 � �g � jR�j��

Since K � ��� C�
��E�� we have

K � CKC� � E��

Denote by Ap the matrix K����CK���� We have

��ApA
�
p � � �K����CK C�K���� �

� K�����K � CK C�
K���� � K����E�K
���� � �

��



so that jApj � jA�
pj � ��

Furthermore

p�Ap
 � K����p�C
K��� � ��

The operator Ap is thus similar to C and� consequently� nonderogatory�
The result may thus be formulated as follows�

��� Let f be any polynomial� Then the maximum

fjf�A
j�� jAj � �� p�A
 � �g

is attained at Ap�

Proof� The maximum equals

jR�j� � jRj� � jf�Ap
j
�� �

Having satis
ed the matrix theorist by writing down the solution in the form of a
concrete matrix we now proceed to explain the connection with the theory of complex
functions� It seems that the best way of doing this is to follow the original reasoning
as presented by the author in ����� this leads� in a natural manner� to the consideration
of sequence spaces and will also help establish connections with dilation theory�

Consider a vector v � Hn� the operator vv� and the scalar product

���� C�
��vv�� E�


we intend to prove that this expression equals

j��v
j�

where ��v
 is the in
nite column vector C��p
�v�
Indeed�

���� C
��vv�� E�
 �
X

�C�kv �C�kv
�� E�
 �

�
X
j�C�kv
�j

�

where �C�kv
� is the ��th coordinate of the vector C�kv but this is nothing more than
the k�th coordinate of �C��p

�v� �

Now let us return to the point where we expressed the maximum in the form

maxf��� � C
��FM�E�
�M � �� ���� C
��M�E�
 � �g�

If we allow M to range only over matrices of the form vv�� we obtain the following
proposition�

maxfjf�A
j� jAj � �� p�A
 � �g �

� jf�S
�j Ker p�S
�j �

� jf�S�
j Ker p�S�
j

��



Proof� Write F for f�C�p

� For each vector v � Cn let ��v
 be the in
nite column
vector

��v
 � C��p
�v�

If M is of the form vv�� we have

���� C
��FM�E�
 � ���� C
��F �vv�F�E�
 � j��F �v
j��

For ��F �v
 we obtain

��F �v
 � C��p
�f�C�p

�v �

� �f�C�p

C��p

�v � �C��p
f�S

�v �

� f�S
�C��p
�v � f�S
��v�

Thus
supf��� � C
��Fvv�� E�
� ���� C
��vv�� E�
 � �g � supfjf�S
��vj�� j�vj� � �g�
The vectors of the form �v� v � Cn 
ll the whole space Ker p�S
�� �

The considerations described above have led us� in a natural manner� to the ex�
tremal operator S�j Ker p�S�
� It turns out that this operator is unitarily equivalent
to another operator which plays the central role in a parallel theory developed at the
same time by D� Sarason� this operator became known later as the model operator�

Since the connection is not immediately obvious� let us discuss it in detail�
Let us denote by J the mapping which assigns to each f � L� the element g de
ned

by

g�z
 � #z f�#z
�

Clearly J is an isometry�
The relation J� � � is immediate� thus J is onto� hence unitary so that

J � J� � J���

Thus J is a selfadjoint involution which maps H� onto H��
We denote by V the shift operator on L�

V f � g means g�z
 � zf�z
�

The unitary operators V and J are related by the relation

JV � � V J�

Let � be an inner function so that ��V 
 is a unitary operator on L�� Denote by W
the product

W � ��V 
J � J��V �


and let us prove that W maps Ker ��S�
 � H� $�
 onto H��
�
Suppose u � H�� We then have the following series of equivalent statements

��



u � Ker ��S�


��V �
u � H�

Wu � J��V �
u � H��

At the same time Wu � ��V 
Ju � ��V 
H� since Ju � H�� This proves that
W Ker ��S�
 � H� � �H�� Since H� � �H� � Ker ��S
� � Ker $��S�
 we have
$W Ker $��S�
 � H� � $�H� � Ker ��S�
 if $W stands for $��V 
J � Since W $W � � we
have W Ker ��S�
 � H� � �H��

�
 Bounded analytic functions

The main theorem of the last section may be extended to a larger class of operators by
replacing polynomials by bounded analytic functions� This was done by Sz� Nagy in
����� In order to state the result in this generality� it will be necessary to use some facts
about the extension of the analytic functional calculus to bounded analytic functions�

Let H be a Hilbert space� A linear operator T � B�H
 is said to be completely
nonunitary if there is no subspaceH� � H reducing for T such that T jH� is unitary� For
completely nonunitary operators T it is possible to extend the algebraic homomorphism

p� p�T 


from the algebra of polynomials to the algebra H� of all bounded functions holomor�
phism in the open unit disk D�

This may be done as follows� Given u � H�� de
ne� for � � r � �� the function ur
by setting ur�z
 � u�rz
� Thus ur is holomorphic on a neighbourhood of the closed unit
disk� If T is a completely nonunitary contraction it is possible to show that limur�T 

exists in the strong operator topology as r � �� This limit de
nes u�T 
�

We shall use the following important fact�

�
�� Let T be a completely nonunitary contraction and let u � H�� u �� � be given�

If h is an element of H which satis�es u�T 
h � � then T nh� ��

This is all we shall need in order to extend the maximumproblem of the last section
to bounded analytic functions�

For the reader who is familiar with the elements of dilation theory we intend to
include� at the end of this chapter some comments on the functional calculus on H�

and the result just quoted�
Now consider two functions ��� � H�� We intend to show that the result of the

preceding section remains valid in this more general situation�

�
�� The operator T ��
 � S�jKer ��S�
 realizes the maximum of j��T 
j as T ranges

over the family of all completely nonunitary contractions T satisfying ��T 
 � ��

We now proceed to give the precise formulation of the results� It consists of two
statements�

��



��
 the operator T ��
 is completely nonunitary and ��T ��

 � ��

��
 given a Hilbert space H and a completely nonunitary contraction T � B�H
 such
that ��T 
 � � then

j��T 
j � j��T ��

j�

First of all� S� is a contraction� Ker ��S�
 is a closed subspace invariant with respect
to S� and ��S�jKer ��S�

 � �� Since S�n � � both S� and T ��
 are completely
nonunitary� This proves ��
�

To prove the nontrivial part� consider a Hilbert space H and denote by A��
 the
family of all completely nonunitary contractions T � B�H
 such that ��T 
 � ��
For every x � H

x � �� � T �T 
x � T ���� T �T 
Tx� T ���� � T �T 
T �x�

� � � � T �n���� � T �T 
T n��x� T �nT nx�

thus
jxj� � jDxj� � jDTxj� � � � �� jDT n��xj� � jT nxj��

It follows from the proposition quoted above that T nx � � for every x so that the
mapping v 	 H � l��D
 de
ned by

vx � �Dx�DTx�DT �x� � � �


is an isometry� Furthermore

vT � Bv

where B is the backward shift on l��D


B�y�� y�� � � �
 � �y�� y�� � � �
�

Since Bn � � strongly� B is a completely nonunitary contraction so we may form
��B
 and Ker ��B
� For brevity� we write B��
 for BjKer ��B
� We prove 
rst that
j��T 
j � j��B��

j�

To see that� we observe 
rst that ��B
vh � v ��T 
h � � for every h � H so that
v maps H into Ker ��B
� It follows that� for each h � H�

j��T 
hj � jv��T 
hj � j��B
vhj �

� j���B
jKer ��B

vhj �

� j��BjKer ��B

vhj � j��B��

j jvhj �

� j��B��

 jhj�

Now consider a complete orthonormal set ei in D� For each i let Ri be the mapping
Ri 	 l

��D
� l� de
ned by

Ri�x�� x�� � � �
 � ��x�� ei
� �x�� ei
� � � �
�

It is easy to verify that

��



RiB � S�Ri

jyj� �
X
i

jRiyj
� for all y � l��D
�

It follows from the intertwining relation that

Ri Ker ��B
 � Ker ��S�
�

Suppose x � Ker ��B
� then

j��B
xj� �
X
i

jRi��B
xj� �
X
i

j��S�
Rixj
� �

�
X
i

j���S�
jKer ��S�

Rixj
� �

� j��S�
jKer ��S�
j
X
i

jRixj
�

it follows that j��B
jKerj ��B
 � j��S�
jKer ��S�
j�
To complete the proof� it su�ces to observe that S�jKer ��S�
 � A��
�

�� M�obius functions of the shift and extremal op�

erators

The extremal operator T �p
 corresponding to a polynomial p of degree n with all zeros
in the open unit disk is de
ned as follows�

If S is the shift operator

�x�� x�� ���
� ���x�� x�� ���


on the Hilbert space of all square summable sequences� the kernel of p�S�
 is an
n�dimensional S��invariant subspace and T �p
 is de
ned as the restriction of S� to
Kerp�S�
� We have shown ���� that T �p
 enjoys the following extremum property	

Given any linear contraction T on an n�dimensional Hilbert space such that p�T 
 �
� then

j Tm j�j T �p
m j

for all nonnegative m�

The motivation of this result is in the theory of iteration processes	 the critical
exponent of the n�dimensional Hilbert space being n ���� the norm of the n�th power
of an n�dimensional contraction yields important information about the convergence of
the corresponding iteration process� In a manner of speaking� the result says that� in
the class A�p
 of all n�dimensonal contractions T annihilated by p� the convergence of
the process ys�� � Ays� b cannot be slower than that for the process corresponding to
T �p
	 within the class A�p
 the norm of each Tm assumes its maximum at T �p
� This
extremal property of T �p
 can be extended even further	 the m�th powers are not the
only functions of T maximized at T �p
� It is possible to show ���� that the inequality

��



remains valid for any holomorphic function	 if h is holomorphic in the unit disk then
j h�T 
 j�j h�T �p

 j for any T�A�p
� It is interesting to note that a simple technical
modi
cation of the proof given originally by the author in ���� also yields this extended
result �����

Since T �p
 turns out to be nonderogatory� its algebraic structure is easily described�
In order to examine its geometric structure� the author has computed� in ����� the
matrix of T �p
 with respect to a natural orthonormal basis� See also ����� This matrix
asssumes an especially simple form in the important particular case of the polynomial
p�z
 � �z � �
n� it turns out to be the Toeplitz matrix corresponding to a symbol� a
M�obius function�

The method used in ���� ��� was based on identifying the Hilbert space of sequences
with the Hardy space H� of functions holomorphic in the unit disk and using suitable
Blaschke products to construct the basis required� This method involves some compu�
tation with H� functions but has the advantage of providing insight into the geometric
structure of the backward shift when restricted to Ker p�S�
�

In the present note we intend to point out that the results may be obtained in
a considerably simpler manner as consequwences of some natural identities involving
M�obius functions of the shift operator� The advantage of this approach lies in the fact
that it reduces the amount of computations and illuminates di�erent features of the
matter� the operator identities are not without interest in their own right� In what
follows we intend to prove these identities and to indicate how they can be used to
obtain matrix representations of T �p
�

The operator identities to be discussed describe relations between M�obius functions
of the shift operator on H�� Although the Hardy space H� is our main concern the
reader will observe that the identities are valid for an isometry in an arbitrary Hilbert
space� The open unit disk will be denoted by D�

For each � � D we de
ne the evaluation functional e��
 � H� by the requirement
that f��
 � �f� e��

 for each f � H�� Thus

e��
�z
 �
�

� � ��z
�

The shift operator on H� will be denoted by S� thus �Sf
�z
 � zf�z
 for every z in
the open unit disk and every f � H��

The following two basic identities will be used throughout the present note� They
are valid for any isometry S in an arbitrary Hilbert space

�S� � 	
�S � ��
 � ��� ��S�
��� 	S


��� �S
�� � ��S�
� �S � ��
�S� � �
 � ��� j�j�
��� SS�
�

We now proceed to list several elementary formulae which will be used in the sequel�
The veri
cation of these formulae is immediate� it will be convenient� however� to
explicitly state them since they will be repeatedly used in our considerations�

Notation� For every � � D we set

E��
 � ��� �S
��

M��
 � �S � ��
�� � �S
��

��



���� For every � � D
S�E��
 � S� � �E��


S�e��
 � ��e��


Proof� The 
rst formula follows from

S���� � �S
�� � �
 � S��S�� � �S
��

the second relation is a consequence of the identity e��
 � E���
e��
� �

���� For every � � D the operator M��
 is an isometry� the kernel of M��
� is the

one�dimensional subspace spanned by e���
�

Proof� For every 	 � � the basic identity yields

�S� � �
�S � ��
 � ��� ��S�
��� �S


whence M��
�M��
 � �� The second assertion is a consequence of the second basic
identity� Indeed� the kernel of M��
� equals the range of � �M��
M���
 and

��M��
M���
 � ��� �S
������ �S
��� ��S�
�

� �S � ��
�S� � �

�� � ��S�
�� �

� ��� �S
����� j�j�
��� SS�
�� � ��S�
���

Since �� � ��S�
 is invertible the range of � �M��
�M��
 is identical with the range
of ����S
�����SS�
 and this� in its turn� is the set of all elements of the form 	

��
z
�

�

����
�S� � �
M��
 � �� ��S�

Proof� A consequence of

�S� � �
�S � ��
 � ��� ��S�
��� �S
 �

In this section we intend to establish some simple identities involving operator
Blaschke products	 Applied to suitable elements of H� these operator identities make
it possible to construct natural orthonormal bases of ker p�S�
 with respect to which
the matrix of the restriction of S� assumes a fairly simple triangular form�

We shall need the explicit form of the inverse of a band matrix�

��



���� Proposition� Given a matrix of the form

B �

�
BBBBBB�

� � � � �
�	� � � � �
� �	� � � �

� � � �	n�� �

�
CCCCCCA

the inverse B�� is

B�� �

�
BBBBBB�

� � � � � � �
	� � � � � � �
	�� 	� � � � � �
	�� 	�� 	� � � � �
� � �

�
CCCCCCA

More precisely �B��
i�k � 	k�i�i for k � i where 	qq � �� 	pq � � for p � q � � and

	pq � 	p	p�� � � � 	q for p � q�

Let p be the polynomial

p�z
 � �z � ��
 � � � �z � �n


with all zeros �j � D�
For k � �� �� � � � de
ne Uk as follows

U� � E���


if k � �� Uk � M���
 � � �M��k��
E��k


The action of S� on the sequence Uk may be described as follows�
For k � �� we have

�S� � ��
U� � �S� � ��
E���
 � S��

Writing� for brevity� Wk � �S� � �k
Uk� we obtain� for k � ��

Wk � �S� � �k
EkM� � � �Mk�� � S�M� � � �Mk�� �

� S��S � ��k��
E��k��
M� � � �Mk�� �

� ��� ��k��S
�
E��k��
M� � � �Mk�� �

� Uk�� � ��k���Wk�� � �k��Uk��
 � �k��Uk�� � ��k��Wk��

where we have set �m � � � j�mj
�� Summing up� we have the following sequence of

equations
W� � S�

W� � ���W� � ��U�

W� � ���W� � ��U��

���

� 



This sequence of equations may be restated in the form of a matrix equation

�
BBBBBBB�

� � � � � � � �
��� � � � � � � �
� ��� � � � � � �

���
� � � � � � ��n�� �

�
CCCCCCCA

�
BBB�

W�

W�

Wn

�
CCCA �

�
BBB�

S�

��U�

�n��Un��

�
CCCA �

Replacing� for simplicity� ��i by �	i� we obtain

�
B�

W�

Wn

�
CA �

�
BBBBBBB�

� � �
�	� � �
� �	� �

� � �

�	n�� �

�
CCCCCCCA

���
BBB�

S�

��U�

�n��Un��

�
CCCA � �����


ThusWi equals the scalar product of the row of index i�� with the column �S�� ��U�� � � � �n��Un��
T �
Thus W� � S� and� for i � ��

Wi � 	� � � � 	i��S
� � 	� � � � 	i����U� � 	� � � � 	i����U� � ���

� 	i���i��Ui�� � �i��Ui��

Proposition� The action of S� is described by the relations

S�U� � S� � ��U�

for i � �

S�Ui � 	� � � � 	i��S
� � 	� � � � 	i����U� � 	� � � � 	i����U� �

� � � �� 	i���i��Ui�� � �i��Ui�� � �iUi

Proposition� The vectors ei � �
���
i Uie�� i � �� �� � � � � n form an orthonormal system�

The matrix of S� with respect to this basis is given by

�S� � �i
ei � �
���
� 	� � � � 	i���

���
i e� � �

���
� 	� � � � 	i���

���
i e� �

� �
���
i��	i���

���
i ei�� � �

���
i���

���
i ei��

Proof� Set uj � Uje��
 � M� � � �Mj��e���j 
 and let us show that the set u�� � � � � un is
orthogonal� Indeed� if j � k we have

�uj� uk
 � �e���j
�Mj � � �Mk��e��
�
k

 �

� �M��j

�e���j 
�Mj�� � � �Mk��e��

�
k

 � ��

��



To prove that uj � ker p�S�
 it su�ces to show that �S����
 � � � �S���j
Uj may be
represented in the form g�S�
S� for a suitable polynomial g� Indeed� �S����
U� � S��
For j � � we obtain� using the identity �S� � �
 � ��� ��S�
M��
��

�S� � ��
 � � � �S
� � �j
Uj � �� � ���S

�
 � � � ��� ��j��S
�
�S� � �j


M�
� � � �M

�
j��M� � � �Mj��E��j
 �

� �� � ���S
�
 � � � ��� ��j��S

�
S��

�

The results admit a reformulation in terms of �operatorvalued
 M�obius functions
Proposition� Denote by A the diagonal matrix with ��� � � � � �n on the diagonal and
by M the M�obius operator function

M�X
 � �X �A
�� �A�X
���

Then
�S�U�� � � � � S

�Un
 � �	��� 	��� � � � � 	��n��
S
� � �U�� � � � � Un
M�ST

n 
�

Proof� Equation ���
 may be rewritten in the form

�
BB�

S�U�
���

S�Un

�
CCA�A

�
BB�

U�
���
Un

�
CCA � �� � SnA

�
��
�
�
BBBB�
S�

�
���
�

�
CCCCA� Sn���AA�


�
BB�

U�
���
Un

�
CCA
	
�

Taking transposes

�S�U�� � � � S
�Un
 � �S�� �� � � � �
�� �A�ST

n 

�� � �U�� � � � � Un


�A� �� �AA�
ST
n �� �A�ST

n 

��
 �

� �	��� � � � � 	��n��
S
� � �U�� � � � � Un
�S

T
n �A
�� �A�ST

n 

��

In the case of the polynomial p�z
 � �z � �
n the matrix of S� assumes the partic�
ularly simple form of a Toeplitz matrix� We shall see that� in this case� it su�ces to
work with scalar M�obius functions� We intend to prove the following

���� Proposition� Let � � D� p�z
 � �z � �
n� g��
 � ��

��
��

� M � M��
�
f��
 � �� � �M
��� Then

S�f��
 � �S� � �
�� � ���
�� � g��
f��
�

The vectors u�� � � � � un��� where uj �M je���
� form an orthogonal system with respect

to which the matrix of S� equals g�S�n
�

��



Proof� Let � � D and set M � M��
� Consider the operatorvalued analytic function
f de
ned for � � D as

f��
 � ��� �M
���

Using M�M � �� it is easy to prove the relation

M�f��
 � M� � �f��
�

It follows that

�S� � �
f��
 � �� � ��S�
M�f��
 �

� �� � ��S�
�M� � �f��

 �

� S� � �� �f��
 � ���S�f��


whence
�� � ���
S�f��
 � S� � �� �� � �
f��
�

For S�f��
 we obtain thus

S�f��
 �
S� � �

� � ���
�

�� �

� � ���
f��
�

In particular

S�f��
e���
 �
�� �

� � ���
f��
e���
� �

The vectors uj �M je���
� j � �� �� � � � � n�� form an orthogonal basis of Ker p�S�

for p�z
 � �z ��
n� If g is the M�obius function g��
 � ��


��
��
we intend to show that the

matrix of S� with respect to the basis u�� � � � � un�� equals g�S�n
� This is a consequence
of the following identities

�S�u�� � � � � S
�un��
��� �� � � � � �

n��
T �
n��X
j��

S�uj�
j �

� S�f��
e���
 mod �n � g��
f��
e���
 mod �n �

� g��

n��X
�

uj�
j mod �n � �u� � � � un��
g�S

�
n
��� � � � � �

n��
T

�� Complex functions

For the 
rst maximum problem� we have reproduced the original solution given by the
author� The later development of dilation theory made it possible to relate the result
to powerful theorems that are avaiable today� In this section we intend to explain the
connections in order to present the 
rst maximum problem in the context of general
dilation theory� We shall use a beautiful inequality due to J� von Neumann and an
important theorem of D� Sarason�

��



���� Theorem� Suppose A is a completely nonunitary contraction on a Hilbert space

H and let f � H�� Then f�A
 in meaningful and

jf�A
j � jf j��

We begin by proving the inequality in the particular case of a M�obius function�

���� Let T be a contraction� � a complex number� j�j � �� Then

j�T � �
�� � ��T 
��j � ��

Proof� Given x � H� set �����T 
��x � y� Thus j�T��
�����T 
��xj��jxj� � j�T�
�
yj��j�����T 
yj� � jTyj��j�j�jyj���Re�Ty� �y
�jyj��j�j�jTyj���Re�y� ��Ty
 �
��� j�j�
�jTyj�� jyj�
 � ��

As an immediate consequence� the inequality jf�A
j � jf j� may be extended to
Blaschke products� The general case is then obtained by a limit process�

To explain the ideas of D� Sarason� we begin by stating a result which says� in
a somewhat loose formulation� that the algebra of all bounded linear operators on
H� commuting with the shift operator may be identi
ed with H�� the algebra of all
bounded holomorphic functions on the unit disk� More precisely� given a bounded
linear operator T on H� such that T commutes with S� then

T � f�S


for a suitable f � H�� In other words� T is the operator of multiplication by f � The
norm of the multiplication operator M�f
 equals the norm of f �

jM�f
j � jf j� � supfjf�z
j� z � Dg�

We begin by considering the 
nite�dimensional prototype of this fact�

���� Suppose T � B�Cn
 commutes with Sn� Then T � a�Sn
 for a suitable polyno�

mial a�

Proof� Denote by �a�� � � � � an��
T the vector Te�� and by a the polynomial a� � a�z �
� � �� an��z

n��� We intend to prove that T � a�Sn
�
It su�ces to show that Tek � a�Sn
ek for k � �� �� � � � n � �� Given a k with

� � k � n� � we have

Tek � TSk
ne� � Sk

nTe� � Sk
na�Sn
e� �

� a�Sn
S
k
ne� � a�Sn
ek�

���� Suppose T � B�H�
 commutes with S� Then there exists an a � H� such that

T � a�S
�
More precisely� T � M�a
� the operator of multiplication by a and jT j � jaj��

��



Proof� The same argument may be used except that� in this case� we have to show
that the function a � Te� is bounded�

We shall use the fact that S�e�w
 � w�e�w
 for every w � D� thus p�S
�e�w
 �
p�w
�e�w
 for every polynomial p�

Consider an arbitrary polynomial p� Then �Tp� e�w

 � �Tp�S
e�� e�w

 � �p�S
Te�� e�w

 �
�Te�� p�S
�e�w

 � �a� p�w
�e�w

 � �p�w
a� e�w

 � p�w
a�w

� a�w
p�w
� Thus T acts� on polynomials� as multiplication by the function a�

To prove that a is bounded� we rewrite the identity just proved in the form

�p� T �e�w

 � �p� a�w
�e�w

�

Since polynomials are dense in H�� this implies

T �e�w
 � a�w
�e�w


for every w � D whence ja�w
�j � jT �j� It follows that a � H� and jaj� � jT j� Given
f � H�� we have

�Tf� e�w

 � �f� T �e�w

 � �f� a�w
�e�w

 �

a�w
�f� e�w

 � a�w
f�w
�

Thus T � M�a
 whence jT j � jaj��
To each �nonconstant
 inner function � we assign a closed subspace H��
 as follows	

H��
 is de�ned as the orthogonal complement of the set �H��

Observe that the multiplication operator M��
 is an isometry so that �H� is a
closed subspace of H�� the space H� is thus decomposed into the orthogonal sum of
two closed subspaces

H� � H��
 � �H��

The orthogonal operator P �H��

 will be denoted by P ��
�
It is not di�cult to give an explicit expression for the projection operator P ��
�

Indeed
P ��
f � M��
P M� #�


for f � H��
To see that� consider an f � H� and set g � P ��
f � It follows that f � g � �h for

a suitable h � H� and �g� �H�
 � �� Thus � #�g�H�
 � � whence

#�g � P #�g � P � #�g � h
 � P #�f

so that
g � �P #�f�

We denote by S��
 the compression to H��
 of the operator S

S��
 � P ��
SjH��
�

��



since �H� is invariant with respect to S the space H��
 is S� invariant whence

P ��
S � P ��
SP ��


and
P ��
S � S��
P ��
�

This relation implies
f�S��

 � P ��
f�S
jH��


for every polynomial f �
Denote by k the mapping which assigns to each f � H� the compression to H��


of the multiplication operator M�f
 on H�

k�f
 � P ��
f�S
jH��
 � f�S��

�

Now we may state result of D� Sarason� It represents a complete analogon for S��

of the result on operators commuting with S� We have seen that every bounded linear
operator on H� which commutes with S is a function of S �an operator of multiplication
by a function h � H�
� The theorem of Sarason says that every bounded linear
operator on H��
 which commutes with S��
 is a function of S��
� The complete
statement is as follows�

���� Denote by H���
 the algebra of all operators on H��
 which commute with

S��
� The mapping k is a homomorphism of H� onto H���
 the kernel of which is

�H�� The corresponding isomorphism of H�
�H� onto H���
 is isometric�

This is all we shall need� The theorem of Sarason actually says more about this
isomorphism	 the quotient H�
�H�� taken as a Banach space� turns out to be the
dual of another Banach space� If we equip H�
�H� with the corresponding weak
star topology and if H���
 is taken in the weak operator topology then the natural
isomorphism is homeomorphic�

We now proceed to show how the theorem may be used to obtain a solution of the

rst maximum problem� the rest of the chapter will be devoted to the proof�

���� Theorem Consider a nonconstant inner function �� Then

�� the operator S��
 is a completely nonunitary contraction and ��S��

 � �

�� if f is an arbitrary H� function then

jf�A
j � jf�S��

j

for any completely nonunitary contraction A on a Hilbert space such that ��A
 �
��

��



Proof� Given any g in the residue class of f �

f � g � �H��

we have f�A
 � g�A
 and� by the von Neumann inequality�

jf�A
j � jg�A
j � jgj�

whence jf�A
j � jf � �H�j�� By the theorem of Sarason the quantity on the right
hand side equals jf�S��

j� this proves the theorem�

Now let us return to Sarason�s theorem�
Consider a T � B�H��

 such that

TS��
 � S��
T

and let us show that� to obtain the result� it su�ces to 
nd a lifting of T to an operator
Y � B�H�
 which commutes with S� Indeed� suppose there exists a Y � B�H�
 such
that

Y S � SY and P ��
Y � TP ��
�

Since Y commutes with S� there exists an f � H� such that Y �M�f
 � f�S
�
In this manner the proof reduces to the construction of a lifting Y with the two

properties above�
The existence of such a Y is guaranteed by a powerful theorem due to Sz�Nagy and

Foias� the so called commutant lifting theorem� We shall not pursue this method of
proof further� instead� we present another less abstract proof� closer to the original idea
of D� Sarason� It has the further advantage of establishing a connection with Hankel
operators and the Nehari theorem�

We denote by L� the L�space on the unit circle� taken with the normalized Lebesue
meaque� For every integer k we de
ne ek by the formula ek�z
 � zk� Thus H� is the
set of those h � L� for which �h� ek
 � � for k � �� the orthogonal complement of H�

in L� will be denoted by H� and the corresponding orthogonal projection by P �
We denote by U the shift operator on L�

�Uf
�z
 � zf�z


and by S its restriction to H�� If L� stands for the corresponding space of bounded
measurable functions� every f � L� generates the corresponding multiplication oper�
ator M�f
 and the corresponding Hankel operator H�f
 from H� into H� de
ned by
the formula

H�f
 � P M�f
jH��

Now we state the Nehari theorem

���� Suppose A is a bounded linear operator from H� into H�� Then the following

conditions are equivalent

��



�� the matrix of A taken in the natural bases has the Hankel property� there exists a

sequence a�� a�� � � � such that

�Aei� ek
 � ai�k

for all i � �� k � ��

�� the operator A intertwines the forward shift on H� with the backward shift on H�

P UA � AS

�� there exists an f � L� such that

A � H�f
�

Proof� We prove 
rst the implication �� � ��� If A � H�f
 then�

AS � P M�f
S � P UM�f
jH� �

� P U�P � P�
M�f
jH� � P UP M�f
jH�

� P UA�

The conditions �� and �� are trivially equivalent� This follows from the identity valid
for k � � and j � �

�Aek� e�j
 � �ASke�� e�j
 �

� �ASke�� U
�j��e��
 � �P U j��ASke�� e��


if P UA � AS� the last expression equals �ASj�ke�� e��

if condition �� is satis
ed� we have� for each k � � and j � �

�P UAek� e�j
 � �UAek� e�j
 � �Aek� U
�e�j
 �

� ak�	j��
 � a	k��
�j � �ASek� e�j


Since k � � and j � � were arbitrary� the identity P UA � AS follows�
Obviously� the di�cult part is the implication from �� or �� to ��� This would lead

us far from our main topic� so we now proceed to explain the connection with Sarason�
Denote by M the operator of multiplication by � on L�� M � M��
� Observe

that M is a unitary operator on L�� M� � M� #�
 and recall that P ��
 � MP M�jH��
Furthermore� M�H��
 � H� since H��
�MH��

���	 Lemma Let A � B�H��

 and consider the operator B 	 H� � H��
 de�ned

by

B � AP ��
�

Then the following assertions are equivalent

��



�� A commutes with S��


�� BS � S��
B

�� M�B is a Hankel operator

Proof� If A commutes with S��
 then

S��
B � S��
AP ��
 � AS��
P ��
 � AP ��
S � BS�

If BS � S��
B then

AS��
P ��
 � AP ��
S � BS � S��
B � S��
AP ��


whence AS��
 � S��
A� Conditions �� and �� are thus equivalent�
If BS � S��
B then M�BS �M�S��
B � M�MP M�SB � P UM�B and M�B

is Hankel� If M�B is Hankel then BS � MM�BS � MP UM�B � MP M�SB �
S��
B�

Now we are able to complete the proof of ����
�

Proof� Suppose T � B�H��

 commutes with S��
� It follows thatM�TP ��
 � H�f

for some f � L�� Furtermore H�f
MH� �M�TP ��
MH� � � so that fMH� � H��
in particular f� � H�� Thus g � f� � H�� If h � H��
 we have Th � MH�f
h �
MP fh � MP M�gh � P ��
gh� The norm jT j � jMH�f
j � jH�f
j � inf jf�H�j �
inf jg � �H�j� �

�� Nevalinna � Pick revisited

���� Suppose z�� � � � � zn and w�� � � � � wn are complex numbers such that zj � D and

the matrix

� �w�
iwj

�� z�i zj

is positive semide�nite� Then there exists a function holomorphic in D� jf j� � � with

f�zj
 � wj�

Denote by � the Blaschke product

��z
 � B�z�
 � � � B�zn


where B�zj
 is the M�obius function

B�zj
�z
 �
z � zj
� � z�j z

and consider the Hilbert space H��
� We prove 
rst that H��
 coincides with the
linear span of e�z�
� � � � � e�zn
�

Indeed� for each f � H��

��



��f� e�zj

 � ��zj
f�zj
 � �

so that e�zj
��H�� On the other hand� if h � H� is perpendicular to e�z�
 � � � �
e�zn
� we see that k vanishes at the points z�� � � � � zn and is� consequently� divisible by
��

Now let A � B�H��

 be de
ned by the requirement that A�e�zj
 � w�
j e�zj
 for

j � �� �� � � � � n� Since S��
�e�zj
 � S�e�zj
 � z�j e�zj
� the operator A� commutes with
S��
� whence AS��
 � S��
A�

By our assumption jA�j � �� hence jAj � � and� by the theorem of Sarason� there
exists an f � H�� jf j� � � such that A � P ��
M�f
jH��
� Let us show that
f�zj
 � wj� Consider an arbitrary h � H��

wjh�zj
 � �h�w�
je�zj

 � �h�A�e�zj

 �

� �Ah� e�zj

 � �P ��
M�f
h� e�zj

 �

� �M�f
h� e�zj

 � f�zj
h�zj
�

Since h was an arbitrary element of H�� the assertion follows�

� 
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