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Abstract

The critical exponent of a Banach space F is the smallest integer ¢ with the following
property: if T is a contractive on £ then the spectral radius of 7' is less than one if
and only if |T?] < 1. If ¢ is the critical exponent of a finite-dimensional Banach space
E then, it follows from compacturs that, for each r < 1, then maximum of |T?| under
the constraints |T'| < 1, r(T') < r is less.

In the case of Hilbert space of dimension n the critical exponent equals n and it is
possible to evaluate the above maxinimu for every r < 1. This is a particular case of a
general maximum problem in a Banach algebra A. To compute the supremum of |h(a)|
as a ranges over all @ € A with |a| < 1 such that the spectrum of @ is contained in a
given compact set F'; here h is an arbitrary function holomorphic in a neighbourhood

of F.
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1 Introduction

The motivation of the investigatons to be reported about was an attempt to give a
mathematical formulation to a general problem in the theory of iterative processes.
In many cases theoretical convergence criteria are available, mostly in the form of
inequalities to be satisfied by certain data concerning the process, such as norms of
certain operators or bounds for certain derivatives; however, such data are not always
readily available and, for a variety of other reasons, the verification of the criteria may
turn out to be far from easy. Thus the following question presents itself: is it possible to
disregard the theoretical criteria and test the convergence on the basis of the behaviour
of a finite number of initial steps?

In this case, the crucial point is the number of steps needed to distinguish between
convergence and divergence.

Formulated in a somewhat loose manner we are looking for a number ¢ with the
following property: the process either starts converging before the ¢-th step or it does
not converge at all.

We shall be concerned with the particular case of iterative processes of the form
2"t = Ax* + y where A is a given bounded linear operator on a Banach space .
It was in the case of these iteration processes that the first rigorous formulation was
given. It is well known that this process converges (for each y and each initial vector
2%) if and only if the spectral radius r(A) of A is less than one.

In 1959 J. Maiik and the present author proved the following theorem. Consider,
for n by n complex matrices B the norm |B| = max; >, |bi| so that |B| is the norm
of B taken as operator on C'" equipped with the [, norm |z| = max |z;|.

1.1 Let ¢ = n* —n+ 1. Given an n by n matriv A such that |A| = |A?| = 1 then
r(A) = 1. Furthermore q is the smallest integer of this property.

Thus, for a matrix A with |A| < 1 convergence of the process manifests itself within
the first n? —n + 1 steps.

Later, the author realized that a similar question may be raised in an arbitrary
Banach space and formulated [11] the following definition.

1.2 The critical exponent of a Banach space E is the smallest integer with the fol-
lowing property.

If A is a linear operator on E such that |A| = |A?] =1 then r(A) = 1.
An equivalent formulation

If |A] <1 then r(A) < 1 if and only if |A?] < 1.

In the same paper [11] the author proved that the critical exponent of n-dimensional
Hilbert space equals n. The previous result of Maiik and the author appears in the
form of the statement that the critical exponent of the n-dimensional /., space equals
n?—n-+1.

The following chapter represents a careful analysis of the spectral radius of an
element in Banach algebras and its connection with the convergence of the series

14+ Xa+ MNa?+ ...



We then proceed to prove that the critical exponent of a Hilbert space equals its
dimension. The following two chapters are of a technical character; we use this oppor-
tunity to present a nontraditional treatment of a classical subject, the representation
of operators by matrices together with the geometry of these representations, tools to
be used the in solution of the first maximum problem.

Section 6 reproduces the author’s original solution of the first maximum problem:
find the maximum of |f(A)| as A ranges over all contractions on H, annihilated by
a given polynomial. In spite of the fact that technically simpler solutions were found
later, the original one has the advantage of suggesting, in a natural manner, the con-
sideration of dilations and presents an opportunity to explain the connections with the
theory of complex functions. This presents a natural introduction to function theoretic
considerations to be treated in more detail in Section 9.

The author’s original solution of the first maximum problem was followed by a paper
of Sz-Nagy [21] in which dilation theory was used explicitly; his proof is reproduced in
Section 10. The following chapter describes the relations between the first maximum
problem and dilation theory in more detail — this presents are opportunity to explain
the connections with the interpolation theory of D. Sarason, Hankel operators and the
von Neumann inequality. In particular, the role of (operator valued) Mébius functions
in the theory as well as in concrete representations of extremal operators becomes
evident.

2 The Spectrum

In the whole lecture A will be a normed algebra over the complex field. We assume
that A has a unit ¢ and identify the scalar multiple Ae with the complex number .
The norm = — |z| is submultiplicative, |zy| < |z| |y| and we assume that |e| = 1.

The spectrum of an element a € A, denoted by o(a) is defined as the set of all
complex A for which A — a is not invertible.

The main result of this section is a deep one: the spectrum of an arbitrary element of
Ais nonvoid. If the algebra A is complete, it can be shown that the set o(a) is bounded
(in fact compact) and we shall show how to compute the radius of the smallest circle
around the origin that contains o(a).

We start by proving a particular case of what is known as the spectral mapping
theorem

2.1 Let A be a normed algebra, a € A. If p is an arbitrary polynomial then

Proof. Since we do not yet know that spectra are nonvoid, the assertion to be proved
reads as follows. If one of the sets o(p(a)) and p(o(a)) is nonvoid then so is the other
and they are equal.

1. Suppose first that A € o(a). The polynomial p(z) — p(A) being divisible by
(z — A), there exists a polynomial ¢(z) such that



If b stands for ¢(a) we have

p(a) — p(3) = (a— A)b = ba — ).
Suppose that p(a) — p(A) has an inverse, w say. Then

wbla —A) =1 and (a — AN)bw =1
so that A — a is invertible, a contradiction. It follows that p(\) € o(p(a)).

2. Suppose that A € o(p(a)) so that A — p(a) is not invertible. Consider the
polynomial p(z) — A; it can be expressed as the product of n linear factors

pz)=A=(z —a1)...(z —a,).
It follows that

pla) — A= (a—ai)...(a —a,).

If all @ — «; were invertible, so would be p(a) — A. Thus there exists an index k such
that @ — ay is not invertible, in other words ay € o(a). Since p(ag) — A = 0 we have

A =playg) € plo(a)). O
2.2 Let A be a Banach algebra, a € A. If A € a(a) then |\| < inf|a"|Y/".

Proof. We prove first that |A| < |a|. Indeed, suppose |A| > |a|. Then |{| < 1, the
series 1 + § + (%)2 + ... converges and its sum b satisfies

b b
X()\—a):()\—a)le

so that A — a is invertible, a contradiction.
Now consider a”. By the spectral mapping theorem A € o(a) implies A" € o(a™). It
follows that |A\"| < |a"| whence |A| < |a"|'/". Since this estimate holds for an arbitrary

n, the assertion follows. a

The main question still remains open: is the spectrum of an element always nonvoid?
In the preceding proposition we have used completeness to prove the convergence of
the series

14+ Xa+ MNa?+ ...

and this, in its turn, to show that the points of o(a) (if they exist) must lie in the
closed disk |[A| < inf |a”|"/".
The relation between the existence of (1 — Aa)™! and the convergence of the series

14+ Xa+ Ma? + ...



plays also the central role in the main theorem of this section which states that, in a
normed algebra, the spectrum of each element is nonvoid.

In spite of the fact that we are dealing with infinite series, completeness is not
needed to prove that the spectrum is nonvoid.

Let us try to explain, in the following heuristic discussion, how this fact may be
deduced from an examination of the connection between the existence of (1 — Aa)™*
and the convergence of the series 1 + Aa + A%a® 4+ ... . We begin by the following
observation.

2.3 Let A be a normed algebra, a € A. Suppose that (1 — a)™' ewists in some
neighbourhood of zero. Then there exists an ¢ > 0 such that for |A] < &, (1 — Xa)™*
exists and may be expressed in the form of a convergent power series

(1—)\@)_1:1+)\a—|—)\2a2—|—...

Proof. For a positive integer n and a complex number A, set s,(A) = 1+ Aa+...+A"a".
It is easy to verify that s,(A)(1 — Aa) =1 — A"ttt Tf (1 — Aa)™! exists then

s;(A) = (1=2Xa)™t = (1=A""ag" ™)1 - da)™' = (1 =)™t =
= A" = da)h

Now suppose that (1—Aa)™! exists for all A in the disk |A\| < . If |A] < a and |Aa| < 1,
the preceding identity shows that the series 1 + Aa + Ma? + ... converges and its sum
equals (1 — Aa)™'. O

The result just proved says:

if (1 — )\a)_l exists in a neighbourhood of zero then the series 1 + Aa + A\%a? + ...
has a positive radius of convergence. We intend to explain that the main theorem
we are aiming at, the existence of the spectrum, is an immediate consequence of an
improvement of the proposition just proved: the radius of convergence of the series
1+ Xa+ A%a? 4 ... is the largest number 3 such that (1 — Aa)™! exists for all [A] < §.
We shall prove this later; now we state it without proof and explain how it can be used
to obtain the existence of the spectrum.

2.4 Let A be a normed algebra, a € A, B > 0. Suppose that (1 — a)™! eaists for all
A in the disk |A| < 3. Then the series

1+ da+ (Ma)* 4+ ...
converges for all |\| < 3.
Once proved, this result makes it possible to show that, in a normed algebra, the

spectrum of every element is nonvoid, in fact, that there exists, for each a € A a
A € o(a) with



limsup o™V < ||
Write, for brevity, 7o = limsup |a”|'/". We shall distinquish two cases: 7o positive
and rg = 0. Suppose first that ro > 0. Take a positive € such that ro > ro — e > 0.
We intend to show that 1 — Aa cannot be invertible for all A in the disk |A| < TOI_E.

Indeed, this would imply, by the proposition just stated, the convergence of the series

1+ da +...1in the whole of the disk. Take a A such that

1
> Al > —.
o — & To

We have then limsup |[\"a"| = |A|rg > 1 so that |A"a™| > 1 for infinitely many n, a
1
rTo—¢

contradiction, since Y A\*a™ is convergent. It follows that there exists a |Ag| < for

which 1 — Age is not invertible.
Clearly Ao # 0 and Al—o € o(a) and |A1—0| > rg — &. Since £ was arbitrary, this proves

sup{[A[; A € o(a)} = 1o

The case rg = 0 has to be treated separately. If rg = 0 we intend to show that
0 € o(a), in other words, that a™' does not exist. Indeed, suppose a™! exists; we have
then

L=|[(a™")"a"] < [a™'|"]a"|

so that 1 < |a™"|[a"|'/" for every n. Since lim |a"|'/" = limsup |a"|'/"* = 0, this is a

contradiction.

Summing up, we now know that o(a) is always nonvoid and

sup{|A|; A € o(a)} > ro.

If Ais complete, we have seen that

sup{|A|; A € o(a)} < inf [a"]V/"

Combining these two results (and keeping in mind htat the preceding heuristic discus-
sion is based on the proposition 2.4 still to be proved), we obtain the following

2.5 Let A be a Banach algebra, a € A. Then lim |a"|'/" exists and equals inf |a”|'/".
Denoting this number by r(a), we have proved

1° the spectrum o(a) is nonvoid
29 the spectrum o(a) is contained in the disk |A| < r(a) and there exists a A € o(a)
with |A| = r(a).

The radius of the smallest disk of the form D(r) = {A;|A\| < r} such that o(a) C
D(r) is called the spectral radius of a. The heuristic reasoning sketched above shows
that, in a Banach algebra, the spectral radius of a equals



r(a) = lim|a"|Y" = inf [a" /"

The preceding discussion puts into evidence the importance of the behaviour of the
sequence of iterates of a for the convergence of 1+ Aa+ A2a?+. .. and for the existence
of (1 —Xa)™™

We have shown that, in order to prove the existence of at least one point in the
spectrum, it suffices to prove 2.4. (In fact, it is not difficult to see that the two assertions
are equivalent.)

Now we shall resume the rigorous treatment of the subject. The following proposi-
tion examines more closely the radius of convergence of the series.

2.6 Let B be a Banach algebra, x € B. Denote by M; the sets of complex numbers A
with the following properties.

M, SO A x™ is absolutely convergent
M, SoA"x™ is convergent

M (Ax)" — 0

M, |(Az)™ < 1| for some m

M; the sequence (Ax)™ is bounded

The supremum 3 of the moduli |A| is the same for all these sets and 3 > 0. The

limit |2\ exists and satisfies

L
ﬂ’

n|1/n n|1/n —

lim |z = inf |z

here % is taken to be 0 if f = co.

Proof. Clearly My C My, C Ms C My C Ms. It is easy to prove the following
implication: if A\g € M5 and |A| < |Ao| then A € M;. Indeed, |X"a"| < |A/Ao]™ |AG2"|
and |[A/Ao| < 1. This immediately implies that the supremum of |A| is the same for all
the sets M;. If @ = 0 we have § = oo. If # # 0 then every A with |A\| < |910—| belongs to
Ms;. Tt follows that 8 > 0.

Let us prove first that % < inf |z"|'/". This is obvious if 3 = co. Hence assume that
f < oo and suppose that

1
inf|z"|Y" < =.
B
There exists a positive A such that

A
Ainf 2"V <1 < Z.

p

It follows that |(Ax)™ < 1] for a suitable m so that A < 3 and % < 1, a contradiction.
This proves the inequality

< inf |2™|Y",

x| =



Now observe that A € M3 implies the inequality

A limsup [2"V/" < 1.

Let ' be an arbitrary number 0 < 3" < 3. There exists a A € M3 such that || > /3.
It follows that

Blimsup |2V < |Alimsup |2V < 1

whence

limsup |2" V" < =.
=%

Since was an arbitrary positive number less than 3, the inequality

limsup [z"[Y/" < =

p

follows. O

The reader will have observed that condition M, differs from the rest of M; in
that it suggests a question of a quantitative character: if |(Az)™| < 1 for some m it is
natural to ask what would be the smallest m of this property. Indeed, it is essentially
this question that will occupy us in these lectures.

We are now ready to prove the fact that, in a normed algebra, the spectrum of an
arbitrary element is nonvoid. The proof is based on an algebraic identity relating the
values of (1 —Aa)™! to the behaviour of the iterates \a™ and on the continuity of the
inverse.

2.7 Let A be a Banach algebra with unit, ag € A. If ag is invertible and w = |ag" (ag—
a)| < 1 then a is invertible as well and
w
@™ —ag'| <lag'| 7=

1 —

Proof. Write ¢ in the form

a=ag— (ap—a) = ag(l — az'(ag — a))
and observe that (1 — ag'(ap — a))~! exists and its norm does not exceed ——. Thus
0= < Jag | and

™

— a5 = Jag* (a0 — @)™ S wla”| < oy . 0

In particular, in a Banach algebra, the set G(A) of all invertible elements is open
and the mapping @ — a~! is continuous on G(A).

If completeness is not assumed, the set G(A) will not be open in general; neverthe-
less, continuity of the inverse remains valid.

In the case of a normed algebra we have the following



2.8 Let A be a normed algebra with unit. Suppose that ag € A and a € A are both
invertible. If w = |ag'(a — ag)| < 1 then
a7 — "] < Jag" |7
l —w

Proof. Write

-1 -1

a' —ay" = ay'(ap — a)a”!

= 6300 — a)(a5! — (5 — a™1))

Thus |a™" — ag'| < w(lag' |+ |a™" — ag" ). O
The main theorem of this section is based on an algebraic identity relating the
values of the resolvent (1 — Aa)™' to the behaviour of the sequence of iterates of a and,
in this manner, to the convergence of 1+ Aa + A?a* + .... It is possible to verify the
identity immendiately using known facts about the cyclotomic equation — we prefer to
present an intuitive approach using rational functions.
2.9 Let n be a positive integer, £ a primitive n-th root of 1. Then

(1—a™ ' = lZ:(l — Ej:zj)_l

o
Proof. Denote by () the polynomial
Q(Z)zl—l—z—l—...—l—zn_l.
For every 5 we have
1—2"=(1—-¢2)Q(e'2)
so that (1 —2")(1 —&’2)7! = Q(&’z) and

(1-=) (1 - e2) = Y Q).

Thus it suffices to prove the identity 3° Q(&’z) = n. Differentiating the identity

(I—y") =l —ey)(l—e%)...(1—"""y)

we obtain

1 —

ny”_l = Zejl

y]ny = Q(ey)

—¢
whence

> 0 = Y o)

n=>» ——— = —).

(eiyy=1 oY ey

It follows that 3° Q(e™/x) = n; since 3. Q(e’x) = 3. Q(c77z), the proof is complete. O



2.10 Let A be a normed algebra with unit. Let x be an element of A and set r(x) =
limsup |2"|"/". Then there exists a point A\ € o(x) such that

Al = ().

Proof. We shall distinguish two cases, r(x) = 0 and r(x) > 0. Suppose r(xz) = 0
and let us prove that 0 € o(x). Suppose on the contrary that z~! exists. Then
1 = |z"(z=Y)"] < |2"||]z='" so that 1 < |2"|'/"|2~!| for every positive n; this is a
contradiction.

Now consider the case r = r(z) > 0. Suppose that (A — z)~! exists for all A with
|A| > r. Consider the function

fA) =1~ X)_l

defined for all A with |A| > r. The algebraic identity (2.9) yields the following fact. If

|A| > r and if n is an arbitrary positive integer then

X

1— (=2 ny—1
(1= ()
exists and may be expressed as a mean of the values of f(z) on the circle |z| = |A|.

X

(1= (G = -3 S,

where w 1s a primitive n-th root of 1.
It follows from lemma (2.8) that f is continuous on the set |A| > r. In particular it
is uniformly continuous on the set

M={ \r<|MN<r+1}.
Accordingly, for every ¢ > 0 there exists a o(g) > 0 such that A, Ay € M, |\ — A <
o(e) implies
[f(A) — f(A2)] < e

Now let ¢ > 0 be given. Choose a number s such that r < s < r + o(e). Then, for
every positive integer n the inverses

X

(1= (5™ and (1- (5"

r S

both exist and their difference equals
1 ; ;
LS () - pws)).
Since |w/r — wis| < () it follows that

(=) == ()Y <

T
r



and this holds for all n. Now we shall use twice the previous lemma in the following
form: if b, — 1 and the b, are invertible then b-' — 1. First of all, s > r implies
limsup [(£)"'/" < 1 whence (£)" — 0; thus
T,
0y -1 <

for sufficiently large n. It follows that

lim(1 = (5)")™ =1

7

so that, by the lemma

lim(1 — (5)") = L.

7

This is a contradiction since

limsup|(£)”| > 1. 0
r

3 The critical exponent of a finite dimensional Ba-
nach space

The definition of the critical exponent may be stated in a number of equivalent forms
the connections of which we now proceed to expound. In particular the fact that the
set

{T'€e B(E);|T| < 1,r(T) < 1}

is not compact plays an important role in the theory; it shows that the existence a finite
critical exponent represents a fairly strong restriction on the geometry of the space.

The equivalence of the following five characterizations of the critical exponent is
immediate.

3.1 Let E be a Banach space. The critical exponent ¢ of E is the smallest positive
integer which satisfies one of the following conditions

1° if T € B(E) is a contraction and |T| =1 then |T"| =1 for all r

20 4f T € B(F) is a contraction and [T =1 then r(T) =1

(£)
(£)
3°if T € B(F) is a contraction and |T™| < 1 for some m then |T1| < 1
4% if T € B(FE) is a contraction and r(T) < 1 then |T?| < 1

(£)

5° if T € B(FE) is a contraction then v(T) < 1 if and only if |T?| < 1.

10



Given a finite-dimensional Banach space F, we denote by B(FE) the Banach algebra
of all linear operators on £ equipped with the operator norm. For each r, 0 <r < 1, let
C'(r) be the set of all contractions T € B(F) such that r(T') < r. For each nonnegative
integer ¢ and each nonengative r < 1, set

flg,r) = max{|A?; A € C(r)}
= max{|A!; A € B(E),|A| < 1,r(A) <r}

Clearly, for a fixed ¢, the function f(q, ) is nondecreasing; together with the obvious
estimate f(q,r) > r? this shows that f(¢,7) T 1 as r — 1. A moment’s reflection shows
that f(¢+ 1,7) < f(q,r) for every r < 1. Indeed, suppose that f(q + 1,7) > f(q,r)
for some r < 1. It follows that there exists a contraction 7' € C(r) such that |79 >
f(g,r). This implies f(q,r) > |T9] > |T| > f(q,7), a contradiction.

Thus far the finite-dimensionality of £ has not been used. Compactness plays an
essential role in the following nontrivial result.

3.2 Suppose F is a finite-dimensional Banach space. Then, for each r < 1,

flg,r) 10

as q — oo.
The existence of the critical exponent is thus equivalent to the existence of an integer
q such that f(q,r) <1 forall v < 1.

Proof. For each positive integer m let U(m) be the set

U(m) ={z € B(E); |2"| <1}

The inclusion

Cr)cJuim)
together with the fact that C'(r) is compact, yields the following observation
for each r < 1, there exists an n(r) such that

C(r) C Uln(r))

If we take, for n(r), the smallest integer with this property, clearly 0 < r1 < 7y
will imply n(r1) < n(ry). The existence of the critical exponent is equivalent to the
statement that the function n(r) remains bounded as r tends to 1, in other words, the
existence of a ¢ such that

U C(r)C U(q).

r<l

The set on the lefthand side is not compact — this shows that finite-dimensionality of £
alone could hardly be expected to yield the existence of the critical exponent; indeed,
it is possible to construct finite-dimensional Banach spaces whose critical exponent

11



is infinite; the existence is thus seen to be a fairly delicate matter depending on the
geometry of F.

Since C'(r) is compact, the inclusion C'(r) C U(gq) implies the inequality f(¢,r) < 1.
It follows that f(m,r) | 0 as m — oo for this particular r. O

It is not easy to obtain an explicit expression for the functions f(¢,r). As an
example, let us consider the case where F is the twodimensional Hilbert space. The
theorems to be discussed in the following chapters show that the critical exponent of
F equals 2 so that f(2,r) < 1 for each r < 1 and permits us to write down an explicit
expression f(2,r):

Fr) =r(l=r2 4+ (1 =1 +rY)7)

4 The critical exponent of Hilbert space

Let H be a Hilbert space. The Banach algebra of all bounded linear operators on ‘H
will be denoted by B(H). An operator T' € B(H) is said to be a contraction if |7 < 1.
Clearly T is a contraction if and only if I —T*T > 0. If T is a contraction we denote
by D(T') the positive square root of I — T*T and by D(T') the closure of the range of
D(T); The operator D(T') is characterized by the fact that D(7') > 0 and

[D(T)z|* = |2* = |Tx|”

for all x € H.
Another useful characterization of contractivity is the following.
The operator T'is a contraction if and only if

T
( T T ) = 0.
Indeed, it is easy to see that

(5 1) ()05 ) =remwb e

It T" is a contraction, this shows that the matrix is positive. On the other hand setting
x = —Tvy, we see that positivity of the matrix implies |y|? — |T'y|* > 0 for all y.

4.1 Let T be a contraction on a Hilbert space H. For k = 0,1,... denote by E; the
kernel of (I — T**T*). Then

(1) B D E1 D FEx D ...
(2) Zf Ek-l—l = Ek then TEk C Ek

In particular, Eyyy = Ey tmplies E; = By for all 7 > k.

12



Proof. Since

the inclusion = € Eyyq implies x € FEy.
To prove the second part, assume that Eyy; = Ep and consider an x € Ej. Since
Ey C FEryq we have
2| > |Tz| > [T%(Tz)| = |T" 2| = |2

so that |T*(Tx)| = |Tx| and Tx € Ej.

In particular, the second assertion makes it possible to show that the inclusion
Ey C Fiyqimplies Fyyq C Epis. Indeed, suppose Ey C Ejyq and consider an x € Ejq.
Thus @ € E, by (1) and y = Ta € Fy by (2). It follows that y € Ejyq so that
|T*+1y| = |y|. Hence

[T 2] = |[T"y| = |y| = [Tz

Since Eyy1 C Eq we have |T'z| = |z|; this proves the inclusion @ € Fj . O

4.2 Lemma. Suppose T € B(FE) is a contraction, let E, be a closed subspace of F
such that E, is invariant with respect toI' and T|E, is an isometry. I[f TE, = F, then
E, is reducing for T'.

Proof. For x € E, we have |Tz|* = |z|* whence (T*Tz,z) = (z,z). Since [ —=T*T >0
it follows that « € ker (I — T*T'). Thus E. C ker (I —T*T). Suppose x € E,.. Then
x =Ty for a suitable y € K, and T"z =T*Ty = y. Thus T*E, C E.. a

4.3 Theorem. Let E be a Hilbert space of dimension n. If T is a contraction on F
then the following assertions are equivalent

(1) r(T) =1
(2) [T =1

(3) the space E contains a nonzero subspace F. such that F,. is reducing for T and
T|E, is unitary.

Proof. Since r(T) < |T™|"/"the implication from (1) to (2) is immediate. Thus it
remains to prove that |T"| = 1 implies (3). So assume |T"| = 1. Consider the sequence
Ky D Ey D ... D FE,. Since F, has dimension at least one by our assumption there
exists a k£ such that

0<k <n and FE = Fi.

By our lemma Fj is invariant with respect to T, T'|E} is isometric on Fy by definition
and F, D F, # 0. Since Ej is finite-dimensional and T'|E}, isometric, we have T'E) =
Ey. 1t follows from the preceding lemma that Ej is reducing for T O
Recall that a contraction T' € B(H) is called completely nonunitary if there exists
no nontrivial subspace Hy C H reducing for T and such that T'|Hy is unitary.
The theorem may be restated in the following equivalent form
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4.4 Theorem. Let T' be a contraction on an n-dimensional Hilbert space E. Then
the following assertions are equivalent

(1) r(T) <1
(2) T <1
(3) T is completely nonunitary.

Expressed in this manner the theorem assumes a form which immediately suggests
that a quantitative refinement of the results would be desirable. The rest of our con-
siderations will be devoted to the problem of finding estimates for |T™| if the spectral
radius of T is bounded by a number r < 1.

The pigeonhole principle together with the preceding considerations may by used
[21] to prove the following analogy of the equivalence of (1) and (2) in the theorem.

4.5 Theorem. Let A;... A, be pairwise commuting contractions on an n-dimensional

Hilbert space. If r(Aj) <1 for all j then

|Ar. . Al < 1.

Proof. Set £y = E and, for k =1,2,...,n let
Er={x € E;|Ay... Arz| = |z]|}.
The A; being contractions, the Ej, are subspaces of F.

1. We prove first the inclusion Fyyq C Ej. Indeed, given x € Ejyq, we have

It follows that |A; ... Agz| = |2| whence x € F.

2. We prove the inclusion A1 Eri1 C Fi. Indeed, given € Epyq, we have

|| = |Ar .. ApAppz| < | Appaz] <zl

Consider the sequence
EosDE D...DE,.

To prove the theorem, we have to show that £, = 0. Suppose, on the contrary, that
E, # 0. It follows that there exists a k& < n such that £, = Eryq. Then Ajpq1 Fryq C
Er = FErp1 and Apypq|Ergq is an isometry. It follows that r(Agy1) > r(Agsa|Frsr), a
contradiction. O
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5 The two maximum problems

The critical exponent of n-dimensional Hilbert space being n, the corresponding quan-
titative problem is thus the following:

5.1 for each positive r < 1, compute the mazximum of |T"| as T ranges over all
operators on n-dimensional Hilbert space such that |T'| <1 and r(T) < r.

It is, in particular, the second constraint that is awkward to handle. Seeking ways to
overcome this difficulty, the author observed that the problem becomes more tractable
if the second constraint is replaced by a more stringent one; this idea turns out to be
the decisive step in the solution. The method adopted in [12] consists in dividing the
maximum problem into two stages.

5.1 The first maximum problem

The second constraint r(7') < r is replaced by the equirement that the operator T" be
annihilated by a polynomial of degree n with all zeros at most r in modulus, in other
words, that the spectrum of T be contained in a given subset of {|z] < r} consisting
of no more than n points.

Consider a polynomial p of degree n whose zeros lie in the interior of the unit disk,
and consider the class A(p) of all contractions 7" on the n-dimensional Hilbert space
such that p(T) = 0. The spectra of these operators are contained in the spectrum of
the polynomial p.

It is possible to construct, for each p, a contraction S(p) annihilated by p and such
that the maximum of |T"| for T' € A(p) is attained for T' = S(p). We shall describe
S(p) later. It turns out that S(p) realizes, in fact, the maximum for a more general
extremum problem:

5.2 Consider the set A(p) of all contractions T on the n-dimensional Hilbert space
such that p(T) = 0. Given an arbitrary polynomial f, the mazimum of |f(T)| as T
ranges over A(p) is assumed at S(p).

For the moment, let us assume that the first maximum problem is solved.

5.2 The second maximum problem

(Or the problem of the worst polynomial).

Consider a fixed positive r < 1 and denote by Z,. the set of all contractions
T € B(H") with (T) < r. It follows from the Cayley—Hamilton theorem that ev-
ery operator with spectral radius at most r is annihilated by a polynomial of degree n
with zeros at most r in modulus. Thus

Z, =UA(p)

where p ranges over the class P(r) of all polynomials of degree n whose zeros lie in the
disk
D(r) = {zlz] < r}.
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Together with the solution of the first maximum problem the identity Z, = UA(p)
yields the following fact.
Given a polynomial f,

sup{|f(T);T € Z,} = sup{|f(S(p))l;ip € P(r)}

so that our task reduces to finding the polynomial (or polynomials) in P(r) for which
the function p — |f(S(p))| assumes its maximum. In this generality, for arbitrary f,
the problem is still open. For the case f(z) = z" the solution was given in the author’s
paper [12].

Fairly delicate algebraic considerations enabled the author to show that the maxi-
mum of this function is attained for the polynomial py,.. defined by

Pmax(2) = (2 —1)".

This polynomial is the worst polynomial that we are looking for. It maximizes the
function

p—[5(p)"]

for p € P(r). The method of proof does not extend to the case of an arbitrary f as it
did in the first maximum problem. The problem of finding the worst polynomial for
a general f remains open. In some particular cases it can be shown that (z — r)" will
do. Also there is numerical evidence that (z — r)" is the worst polynomial for some
polynomials f different from z".

6 Matrices and operators

The following two chapters are of a technical character. We shall have to represent
operators by means of matrices with respect to different bases. We develop a technique
of dealing with such matters which considerably simplifies the calculations. We venture
to say that — using this approach — the work is much less tedious than the standard
treatment.

In the whole chapter n will be a fixed number, H,, will be an abstract n-dimensional
Hilbert space, B(H,,) the algebra of all linear operators on H,,. We shall also occasion-
ally consider the concrete n-dimensional Hilbert space C" whose elements are column
vectors indexed by 0,1,...,n — 1. Thus € C"™ means

x = (xg, 1, . . .,l’n_l)T.

We shall denote by eq, €1, ...,€e,_1 the standard unit vectors

eo = (1,0,0,...,0)T.
er = (0,1,0,...,0)7,

An operator A on €™ will be identified with its matrix
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a;p. = (Aek, 62').

An n-tuple of vectors by, ...,b,_1 in H, will be interpreted in two ways. We shall
view it either as a row vector B = (b, ..., b,_1) or as a linear operator B from C" into
H, defined by the relations

Bek:bk k:(),l,...n—l.

Taken as an operator, B assigns to an @ € (' the matrix product Ba of the row B
and the column z.

In the particular case where H,, = C'", in other words, if the b; are column vectors,
the row vector (bg,...,b,—1) will become a matrix which happens to be the matrix of
the operator B just defined.

Similarly, if " € B(H,,) we shall interpret the product T'B either as the row vector
(Thg,...,Th,—1) or as the operator obtained as the superposition of B and T

If A€ B(C") we define BA as the row obtained by the matrix product.

BA = (Z bjajo,. .. 72 bjajn-1)

or as an operator. Interpreted as an operator BA is the operator from C" into H,
obtained as the superposition of A and B.

If B is a basis (in other words if the b; are linearly independent) and T' is a linear
operator on the linear span Hy of B, then there exists a unique matrix M(T, B) such
that

TB=BM(T,B).

Thus premultiplication by T  equals postmultiplication by the matrix M(T, B). This
is why M(T, B) will be called the matrix of the operator T"in the basis B.
It is easy to see that the equation

TB = BM(T,B)

is valid in both interpretations of B, either as the equality of two row vectors or of two
operators from C” into H,. In the particular case where H,, = C™ the operator T as
well as B become matrices for which TB = BM(T, B).

Summing up: if B is a basis, T" an operator and M = M(T, B), then

TB=BM;
this equality characterizes the matrix of 1" with respect to the basis B. Indeed, if
M’ € L(C™) satisfies TB = BM' then M’ = M(T, B).
To illustrate the advantages of the formal multiplication introduced above we intend
to describe the relation between the matrices of an operator in two different bases.

If B is a basis and if B’ is the basis obtained as B’ = BW, W being an invertible

matrix, then, for each operator T’

M(T,B') = W= M(T, B)W.
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It does not require more effort to prove a more general fact.
In a similar manner we define the matrix of 7" with respect to the pair of the bases:
By in the domain space, B; in the image space.

The matrix of T' with respect to By and Bs, denoted by M(T'; By, Bz), is defined
by the relation

TB1 = BQM(T, Bl, BQ)

If the bases By in F; and B, in F; are interpreted as linear operators from '™ into
Fy and FEs respectively, the relation defining the matrix M(T'; By, Bz) is equivalent to
the commutativity of the following diagram

E1 > E2

By By

CTL - CTL

The technique of formal multiplication introduced above yields considerable sim-
plifications: the proof of the following lemma demonstrates its advantages.

6.1 Lemma. If the bases By and By are replaced by B] = BiW, and B} = ByW;
then

M(T; By, By) = Wy ' M(T; By, By) W4

Proof.

TB{ = TBiW, = B2M(T;B17B2)W1 =
ByW; ' M(T; By, By)W.

Let A be a linear operator on H, with a cyclic vector z; in the other words the
vectors

2, Az, ..., A"z

form a basis of H, and the minimal polynomial of A coincides with its characteristic
polynomial p. Write p in the form

p(z) = —(ao+ a1z + ...+ an_lz”_l) + 2"

and consider the matrix
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0 0 0 ao

1 0 aq
C(p) = 0 1 0 a9

0 0 1 ap_1

If B stands for (z,Az,..., A" 'z) then AB = BC(p), in the other words, the
matrix of A in the basis B is just C'(p). Recall the dual interpretation of the relation
AB = BC(p).

It represents either the equality of two row vectors if B is considered as a row of
vectors or as an identity for operators it B is taken to mean a linear operator from C”
into H,.

The matrix C'(p) will be called the companion matriz of p.

7 The geometry of H,, generalized Gram matrices

In order to deal with the geometric properties of nonorthogonal bases it will be nec-
essary to develop a technique using a generalization of the classical notion of a Gram
matrix.

If « and b are two elements of some Hilbert space H we denote by b*a the scalar
product (a,b) and by ab* the operator

r — (z,b)a.

The mapping which assigns to each a € H the operator of premultiplication by a* is
thus a conjugate linear bijection of H onto its dual. In the particular case H = C™ this
* operator assumes its standard meaning, b* becomes a row vector and our definition
coincides with the multiplication of a row vector and a column vector. This notation
has the advantage that the operator ab* coincides with the matrix ab* in the case of
the space C". Also, it behaves nicely with respect to multiplication; indeed

A(ab")B* = Aa(Bb)”
for any A, B € B(H).

It we denote ab* by T" we have the following formulae

T = ba*
T*T = |a|*bb*
TT* = |b]*aa”

so that the norm of T' equals |a| |b|.
Observe that these formulae may be obtained directly by formal multiplication.
Thus, e.g.
T*T = ba*ab* = |a|*bb*.
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Since T'a = ab*a = (b*a)a the vector a is either zero or an eigenvector of T' with
eigenvalue b*a = (a, b). The spectrum of T' consists thus of at most two numbers; first
(a,b) and then zero with multiplicity n — 1 since the (n — 1) dimensional subspace b*
is annihilated by T'.

We shall denote by R, (H) the set of all rows of the form (bo, ..., b,—1) where b; € H.

It U,V are two rows of length n,

UV € R,(H)
we intend to define the Gram matrix G(U,V). First of all, for B € R,(H), B =
(bo,...,b,—1) we take B* to be the column vector of functionals
b
p=|
br_,

It B is interpreted as a linear operator from C™ into H then B* has also a meaning
as a linear operator from H into C™; its action can also be described as the formal

multiplication of the n by 1 matrix (b5,...,6> ;)T on 1 by 1 matrices - elements of H.

Given z,y € C", consider the two vectors u = Uz, v = Vy so that u,v € H. For
the scalar product (u,v) we obtain

(u,v) =v"u =y VU x =
ko ok b

Z Y0, uply = Zyj Giry,

5k 5k

where we have denoted by Gj; the scalar products

Gir = v;uk = (ug, vj).

The matrix G(U, V) = V*U will be called the Gram matrix of the rows U and V. Its

elements are

G(Uv V)]k = (ukv U]‘)
G(U,V) = VU

Thus G(U,V) is an n by n matrix or an operator in C™".
The scalar product of v and v may thus be written in the form

(u,v) = y*"Ga = (Gz,y).

Again, if R and S are interpreted as linear operators from C" into H then S*R
is a linear operator in C" and its matrix is just G(R,S). Thus, in the particular
case of vectors in C" the row vector R may be identified with the n by n matrix
(fos- -y fuo1) and it is not difficult to verify that the above formula remains true even
in this interpretation of S*R.

If the rows U and V' are transformed by matrices A and B
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U'=UA V' =VB
then G(U',V') = V*U' = B*V*UA so that

GU', V') = B*G(U,V)A.

If the rows U and V are transformed by operators, we obtain another formula for

GU',V"). Let T, W be two operators in H; then

G(TU,WV) = M(W, VY GU,V)M(T,U).

Indeed, since

TU =U M(T,U)
WV =V M(W,V),

GITU,WV) = (WV)(TU) = (V(M(W,V))"(UM(T,U)) =
= M(W,V)VUM(T,U).

If an operator T' is represented by a matrix with respect to a not necessarily or-
thonormal basis then, to obtain the matrix of 7™ in the same basis, the adjoint of the
matrix of T" has to be modified using the Gram matrix of the basis.

7.1 Let T € B(H), let X be a basis for H, X = (x¢,...,2n-1). Then
M(T*, X)) =G *M(T, X )G

where G = X*X is the Gram matriz of the basis X.

Proof. The proof is based on the equality

X (T"X)=(TX)X.
It follows that
X XM(THX) = X (I"'X)=(TX)yX =(XMT, X)X =

= M(T,X)yX"- X

so that

GM(T*, X) = M(T, X)"G. =
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7.2 If S intertwines Ty and T,

STl — TQS
then 15 has the same matriz in the basis SX as 11 has in the basis X

M(Ty, X) = M(T,, SX).
Proof. We have

Ty(SX) = STLX = S(XM(Th, X)) = (SX)M(T}, X). =

Two operators 14,715 are said to be unitarily equivalent if there exists a unitary

operator U such that UTy = TLU.

7.3 Proposition. The operators T1,Ty € B(H) are unitarily equivalent if and only
if there exist two bases By, By such that
M(ThBl) - M(TQ,BQ)

Proof. If UTy = TyU for some unitary U, choose a basis B and set B’ = UB. Then

M(Ty, B) = M(Ty, B)

by the observation above. Furthermore

G(B')=(UB)'UB = B*B = GG(B).

On the other hand, suppose we have two bases By, By with the same Gram matrix
such that M(Ty, By) = M(Tz, By). Denoting this matrix by M we have the equations
T1B1 - BlM
T2B2 - BQM
The equality G(By) = G(Bz) implies | Byx| = | Bax| for every @ € H so that there exists

a unitary operator U for which By = UB;. Now
TQUBl == T2B2 == BQM = UBlM = UT1B1
whence ToU = U'T). O

Given a basis B, the norm of a vector z is expressed in the form |z|* = (Gu,u)
where u is the vector of coordinates of x in the basis B. The corresponding expression
for |T'z|* reads as follows
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7.4 Let T be a linear operator on H, and let B be a basis of the space. Then, for an
arbitrary vector x € H,
Tz)* = (M*GMu,u)

where v is the vector of the coordinates of x in the basis B, M = M(T,B) and G is
the Gram matriz of B.

Proof. The vector u is determined by the equality + = Bu. Thus
|Tz|> = |TBul*=|BMu|* = (BMu, BMu) =
= (M"B"BMu,u) = (M"GMu,u)

a

Let us describe a simple method of constructing the inverse of a Gram matrix.
Suppose we have n-tuples

R:(fov"'vfn—l) S:(gov"'vgn—l)

such that G(R,S) is invertible. (The invertibility of S*R implies the invertibility of
both S and R so that the vectors f as well as the vectors ¢ will be linearly independent.)
Suppose we find two operators A and B such that (Af;, Bgr) = 6;; let us show that

Gl = M(A, R)M(B, S)*.
Indeed, it follows from the above formula that

1 = M(B,S)"GM(A,R)

whence

M(B, SV (GM(A, RYM(B,S)* —1) =

= (M(B,S)"GM(A,R)M(B,S) — M(B,S) =0.

~—

The following lemma shows how the square root of G(A) may be used to orthonor-

malize the basis A.

7.5 Suppose the vectors ay,...,a, are linearly independent. Suppose W is a matriz
such that

W*W = G(a,...,a,)""

Then the system (a1, ..., a,)W™* is orthonormal.

Proof. Since G(ay,...,a,) = A*A, we have

W*W = (A*A)_l = A_I(A*)_l
whence AW* - W A* = 1 so that WA*AW™* = 1. It follows that
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GAW™) = WA™ - AW™ = 1 0

As an illustration of the techniques using Gram matrices let us mention the Nevan-
linna — Pick problem.

We shall work in the Hardy space H? on the open unit disk D = {z,|z| < 1}. For
each w € D we denote by e(w) the corresponding evaluation functional

e(w)(z) = —

1 - w*z;
in this manner (f,e(w)) = f(w) for every f € H?.

7.6 Given n distinct points z1,...,2z, € D and n complex numbers wy, ..., w,, the
following conditions are equivalent:

19 there exists a function h holomorphic in D such that |h(z)| < 1 for = € D and
h(zj) = w;.

20 the matriz §

1 —wiw;

* .
1 — 27z

is nonnegative definite.

Assume 1° and consider the multiplication operator M(h) on H?. Since h(z;) = w;,
it follows that (f, M(h)*e(z;)) = (M(h)f,e(2;)) = w;f(z;) = (f,wie(z;)) for every
f € H? whence

M(h)e(z;) = wie(z;).
Consequently, the matrix of M(h)* taken in the basis e(z1),...,e(z,) is the diagonal
matrix W* with wy,...,w} on the diagonal. Since |h(z)| < 1 for z € D, the norm of
M (h) and, consequently of M(h)*, cannot exceed 1.

Thus the existence of an h with the required properties implies
the operator transforming e(z;) into wie(z;) is a contraction.

In terms of Gram matrices

G(wie(z1), ..., wie(zn)) < Gle(z1),...,e(z,))

or

W*GW < G.

The nontrivial implication, the sufficiency of 2°, will be proved in the lecture devoted
to the work of D. Sarason.
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8 The geometry of B(H,)

The original solution of the maximum problem [12] was based on a simple result which
permits to study the operator norm in B(H,) using the geometry of B(H,) in the
Frobenius norm, in other words, treating B(H,) as a Hilbert space. This approach
leads in a natural manner to infinite-dimensional considerations and to what is known
today as dilation theory.
If H is a finite-dimensional Hilbert space then B(H) is a Hilbert space under the
scalar product
(A,B)=1tr B"A=1tr AB™.
Let us list here, for further reference, some of the properties of this scalar product; the
following relations hold
(XA,B)=(A,X"B)
(AX,B)=(A,BX").
It follows that the adjoint of the operator M € B(B(H,,))

M: X —- RXS

is the operator M*

M*(X) = R*X 5",

Consider now the tensors ab*. Since clearly tr ab* = b*a = (a, b) we have the following
formulae

(ab*, M) = (a, Mb)
(M,ab™) = (Mb,a).
Indeed,
(ab*, M) =tr ab"M™ = tr a(Mb)* = (Mb)"a = (a, Mb).
In the particular case that M = R*R we have the useful formula
(zy*, R"R) = (Rx, Ry).
The scalar product (x,y) may be represented as

(z,y) = (zy™, 1) = (1,ya").

The following lemma gives an expression for the operator norm in terms of the
scalar product in B(H). Using this lemma we intend to show, in the next section, how
the relation established in this manner between the two matrices on B(H,) leads in a
natural manner to the consideration of dilations.
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8.1 If R is a linear operator on H, then

IR = sup{(B, R"R); B > 0,(B,1) = 1}.

The supremum is attained on the subset of all one-dimensional operators:
|R|? = sup{(vv*, R*R); (vv*, 1) = 1}.

Proof. Every B > 0 may be written as the sum of n operators of the form b;b%.
The condition (B,1) =

transformed into

1 reduces then to 3 [b;]* = 1. Our maximum problem is thus

sup{>_|Rb;|*; > [b;* = 1}.
1 1

Since 3= |Rb;|* < |RI* Y 1b;* < |R|? this supremum cannot exceed |R|?*; on the other
hand, the value |R|? is attainable by operators B of the form bb* with |b] = 1. 0

9 The first maximum problem

In the present section we intend to solve the first maximum problem. To restate
the problem, it will be convenient to introduce some notation. We are given a fixed
polynomial p of degree n with all zeros in the open unit disk and denote by A(p) the
set of all contractions A € B(H,) such that p(A) = 0. The set A(p) is thus given by

the two constraints:

|A] <1 and p(A) = 0.

For any polynomial f the problem is to maximize |f(A)| as A ranges over the set A(p).
It turns out that there is an element A, € A(p), independent of f, which maximizes
|f(A)] over the set given by the two constraints above.
In this section we shall give a description of this extremal operator.

Let ‘H be the n-dimensional Hilbert space. Let p be a polynomial of degree n with
all zeros in the open unit disk D.

We denote by A(p) the set of all contractions A € B(H) such that p(A) = 0.

We shall also associate with p a set of matrices Z(p) defined as follows. We denote
by C the congruence operator on M,

X — C(p)XC(p)
and by Ey the matrix ege;. Then

Z(p) = {Z € Mn; (1 _C)Z > Ov(Zv EO) = 1}

We shall establish a relation between A(p) and Z(p) which makes it possible to
linearize the maximum problem. Given a vector z € H of norm 1, consider the mapping

g: B(H) — M, defined by
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g(Y)=G(2, Yz, ..., Y 2).

Our further investigations are based on the following result:

9(A(p)) = Z(p).

Consider an A € A(p). Denote by B the row vector consisting of the vectors (z, Az,..., A" 'z)
and consider the matrix G(B). Since |z| = 1 we have (G(B), Ey) = |2|*> = 1. The
equality p(A) = 0 implies AB = BC(p). Thus

= |Bz|* - |BCz|* = |Bz|* — |[ABz|* > 0

the operator A being a contraction. It follows that
(1-C)G(B)>0

so that G(B) € Z.
On the other hand, let Z € M,, and Z — C*ZC > 0. Since all zeros of p are less

than one in modulus we have C'(p)”™ — 0. Since

m—1
Z—CmzCm =30z —CrzC)CF >0
0

this implies that Z > 0. It follows that there exist vectors zg,...,z,_1 such that
7 = G(z0y...,2n-1) and zg = z. Denote by B the row

B = (207---7271—1)
and set W = BC'. Then

G(B)-GW)=G(B)—-C"G(B)C > 0.
It follows that, for every x € C",

(Wz|? = (G(W)z,z) < (G(B)z,z) = |Bz|.

Now consider the linear span Hy of the vectors zg, ..., z,_1. The inequality |Wx| <
| Bz| just proved shows that it is possible to define, on Hy, a linear contraction Aq by
setting Agz; = w; for j = 0,1,...,n — 1. It follows that AgB = W = B(C whence
p(Ao)B = Bp(C) = 0 so that p(Ag) = 0. Let a be an arbitrary zero of the polynomial
p and set

Since A*z = AEP(Ho)x + o (1 — P(Hy))x for k > 1 is follows that p(A) = 0. Tt is
not difficult to see that A is a contraction. Furthermore, A7z, = zifor 0 <j<n-—1
and this implies g(A) = G(z0,...,2,-1) = Z.

This lemma makes it possible to transform the maximum problem
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max{[ (A A< 1 p(4) =0}

formulated in the geometry of B('H) with the operator norm into a problem in the
geometry of B(H) as Hilbert space.
Let A€ B(H,),z € H,. Denote by B the row

B=(z,Az,...,A" %),
If A is annihilated by p then

AB = BC.

Let f be an arbitrary polynomial, set F' = f(C'). We start by expressing the operator
norm in terms of the geometry of B('H) as Hilbert space. We show first that

[F(A)z]? = (F"G(B)F, Ey).
Indeed,

|F(A)z]* = G(f(A)B)oo = (G(f(A)B), Eo) =
= (G(BJ(C)), Eo) = (F7G(B)F, Eo).

We intend to compute

mas{|f(A)% 4] < 1p(A) = 0) =
— mancl [f(A)=[ [A] < Lp(A) = 0,]z| = 1) =
= max{(F"G(B)F, Ey);G(B) = G(z,Az,...)
A < 1,p(A) =0,|z| =1}.

The value we are looking for equals

max(F*G(B)F, Ey)

where GG(B) ranges over all matrices of the form

Gz, Az, ..., A" 2)

with |A] < 1, p(A) = 0 and |z| = 1. This is exactly the set which we have denoted by
g(A(p)) in the preceding lemma. Using the result of the lemma, we obtain

max{|f(A)[% |A] < 1,p(A) =0} =
= max{(F*ZF, FEy);(1 -C)7Z >0,(Z, Fy) = 1}.

Denote by F the congruence

F: X —= F'XF
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and observe that F commutes with C. Writing M for (1 —C)Z, the last maximum may
be rewritten in the form

max{(F(1 —C)""M, Ey); M >0, (1-C)"'M,Ey) =1} =

= max{(M, (1 —C*)'F*Ey); M >0, (M, (1 —C*) 'By) =1} =

= max{(M,F*(1-C*)""Ey); M >0, (M,(1-C")""Ey) =1}.

Transformed into this form, the maximum problem immediately suggests, in a natu-
ral manner, an interpretation as a problem for operators acting on infinite-dimensional
spaces of sequences. This led the author to the consideration of what is known today
as dilation theory.

Since we intend to explain the connections with dilation theory in more detail later,
we postpone the discussion to the next lecture, and present at this moment another
somewhat less elegant proof which has the advantage of giving the solution directly in
the form of a concrete matrix.

Write K for (1 —C*)"'Ey and observe that K is positive definite. Indeed,

K >(0+C+...+C"HYE, =
- EO —|— CE()C* —|— . e —|— Cn_lEoc*n_l - 1

Denote by K the congruence
KX = K'?XK'/?
and observe that £* = K and K = K'1. The supremum to be computed is thus

max{(M,F*K); M>0, (M,K)=1}=
= max{(KM,K'F*K); M >0, (KM,1)=1}.

Since K is a linear automorphism of the set P of all positive semidefinite matrices the
maximum to be computed is thus

max{(B,K'F*K); B>0,(B,1) =1}.

Observe that K'F*K = K '?FKF*K~'/? = RR* where R = K~'Y?FK'? =
KV f(CYK'Y? = f(K _1/20[&'1/2). Our maximum is thus

max{(B, RR*); B> 0,(B,1) =1} = |R**,
Since K = (1 — C*)~'Ey, we have
K-CKC"=E
Denote by A, the matrix K~'/2C K'/2. We have

1—A,A=1—K'?CK C*K™'/? =
= K Y¥K —CK C)KY? = K Y2E,K~1? >0

29



so that [A,| = [Ar] < 1.
FPurthermore
p(A,) = K~'?p(C)K'? = 0.

The operator A, is thus similar to (' and, consequently, nonderogatory.
The result may thus be formulated as follows.

9.1 Let f be any polynomial. Then the maximum

{IF(A)F 1A <1 p(A) =0}

is altained at A,.
Proof. The maximum equals

|7 = |R* = | f(Ap)]. O

Having satisfied the matrix theorist by writing down the solution in the form of a
concrete matrix we now proceed to explain the connection with the theory of complex
functions. It seems that the best way of doing this is to follow the original reasoning
as presented by the author in [12]; this leads, in a natural manner, to the consideration
of sequence spaces and will also help establish connections with dilation theory.

Consider a vector v € H,,, the operator vv* and the scalar product

(1 —C*)ov*, Ep)

we intend to prove that this expression equals

[ (v)*
where (v) is the infinite column vector C'*(p)*v.
Indeed,
(1 =C)tov* Ey) = Z(C*kv (C**v)*, By) =
= Z (C*Fv)o|?
where (C**v)g is the 0-th coordinate of the vector C**v but this is nothing more than

the k-th coordinate of (C'*°(p))*v. O
Now let us return to the point where we expressed the maximum in the form

max{((1 —C)"'"FM,Eq); M > 0,((1 —C)"'M, Ey) = 1}.
It we allow M to range only over matrices of the form vv*, we obtain the following
proposition.
max{[f(A)];|A] < 1,p(A) = 0} =
£ (5)7] Ker p(5)"| =
= |F(S7)] Ker p(57)]
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Proof. Write F' for f(C(p)). For each vector v € C™ let )(v) be the infinite column
vector
Pp(v) = C™(p)*o.
If M is of the form vv*, we have
(1 =C) ' FM, Ey) = (1 = C) ' Frov*F, Ey) = [p(F*v)|*.
For ¢ (F*v) we obtain
() = C=(p)" f(C(p))v =

= (J(C(P)C=(p)) v = (C=(P)(S) v =
= J(5)C%(p)v = f(5) o

Thus
sup{((1 —C)™'Fov*, Eo); (1 = C)~ov™, Eo) = 1} = sup{[ () pvl% [o]? = 1}.
The vectors of the form v, v € C™ fill the whole space Ker p(.5)*. O

The considerations described above have led us, in a natural manner, to the ex-
tremal operator S*| Ker p(S*). It turns out that this operator is unitarily equivalent
to another operator which plays the central role in a parallel theory developed at the
same time by D. Sarason; this operator became known later as the model operator.

Since the connection is not immediately obvious, let us discuss it in detail.

Let us denote by J the mapping which assigns to each f € L? the element ¢ defined
by

9(z) =z f(z).
Clearly J is an isometry.
The relation J? = 1 is immediate; thus J is onto, hence unitary so that

J=J=J"

Thus J is a selfadjoint involution which maps H? onto H>.
We denote by V' the shift operator on L2

Vf=g¢g means ¢g(z)=zf(z).
The unitary operators V and J are related by the relation
JV*=V.J.

Let ¢ be an inner function so that ¢(V') is a unitary operator on L. Denote by W
the product

W =p(V)J = Jeo(V7)

and let us prove that W maps Ker ¢(5*) = H() onto H(p).
Suppose u € H?. We then have the following series of equivalent statements
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u € Ker p(S57)
o(Vu € H?
Wu=Jo(V)u € H>.

At the same time Wu = o(V)Ju L @(V)H?* since Ju L H?. This proves that
W Ker ¢(S*) C H* & pH?. Since H* & oH? = Ker ¢(S)* = Ker ¢(5%) we have
W Ker ¢(S*) € H? © pH? = Ker ¢(S*) if W stands for ¢(V).J. Since WIW = 1 we
have W Ker ¢(5*) = H? & o H.

10 Bounded analytic functions

The main theorem of the last section may be extended to a larger class of operators by
replacing polynomials by bounded analytic functions. This was done by Sz. Nagy in
[21]. In order to state the result in this generality, it will be necessary to use some facts
about the extension of the analytic functional calculus to bounded analytic functions.

Let H be a Hilbert space. A linear operator T' € B(H) is said to be completely
nonunitary if there is no subspace Ho C H reducing for T such that T'|Hy is unitary. For
completely nonunitary operators T it is possible to extend the algebraic homomorphism

p—p(T)
from the algebra of polynomials to the algebra H* of all bounded functions holomor-
phism in the open unit disk D.

This may be done as follows. Given u € H*, define, for 0 < r < 1, the function u,
by setting u,(z) = u(rz). Thus u, is holomorphic on a neighbourhood of the closed unit
disk. If T'is a completely nonunitary contraction it is possible to show that limw,(7")
exists in the strong operator topology as r — 1. This limit defines u(T").

We shall use the following important fact.

10.1 Let T be a completely nonunitary contraction and let u € H®, u # 0 be given.
If b is an element of H which satisfies u(T)h =0 then T"h — 0.

This is all we shall need in order to extend the maximum problem of the last section
to bounded analytic functions.

For the reader who is familiar with the elements of dilation theory we intend to
include, at the end of this chapter some comments on the functional calculus on H*
and the result just quoted.

Now consider two functions @, > € H*. We intend to show that the result of the
preceding section remains valid in this more general situation.

10.2 The operator T(p) = S*|Ker ¢(S*) realizes the mazimum of |¢0(T)| as T ranges
over the family of all completely nonunitary contractions T satisfying o(T) = 0.

We now proceed to give the precise formulation of the results. It consists of two
statements.
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(1) the operator T'(¢) is completely nonunitary and ¢(7(¢)) = 0.

(2) given a Hilbert space H and a completely nonunitary contraction T' € B('H) such
that o(7') =0 then

[T < [(T(0))]-

First of all, S* is a contraction, Ker ¢(.5*) is a closed subspace invariant with respect
to S* and p(S*|Ker ¢(5*)) = 0. Since S* — 0 both S* and T'(¢) are completely
nonunitary. This proves (1).

To prove the nontrivial part, consider a Hilbert space H and denote by A(p) the
family of all completely nonunitary contractions T' € B('H) such that o(T") = 0.
For every x € H

r=01-=T"T)x + T*(1-=T"TTx+ T*2(1 — T*T)TQ:L' +
_I_ T*n—l(l _ T*T)Tn—lx _I_ T*nTnl',
thus
|z|* = |Dz|* + |DTz|> + ... + |DT" 'z|* + |T"x|*.
It follows from the proposition quoted above that T"z — 0 for every z so that the
mapping v : H — [*(D) defined by
v = (Dz, DTz, DT?z,...)

is an isometry. Furthermore

vl = Bv
where B is the backward shift on {*(D)

B(yo,y1,...) = (¥1,Y2, .- .)-

Since B" — 0 strongly, B is a completely nonunitary contraction so we may form
©(B) and Ker ¢(B). For brevity, we write B(y) for B|Ker ¢(B). We prove first that
V()] < RE(B))]

To see that, we observe first that ¢(B)vh = v o(T)h = 0 for every h € H so that
v maps H into Ker ¢(B). It follows that, for each h € H,

[T = [oyp(T)h] = [Y(B)vh| <
< |((B)|Ker ¢(B))oh| =
= [&(B[Ker o(B))oh| < [2(B(¢))] [vh] <
< [(B(p)) [Al.

Now consider a complete orthonormal set e; in D. For each 2 let R; be the mapping

R; : I*(D) — [? defined by

Ri(xov L1y ) = ((l’o, ei)v (1’1, ei)v . )
It is easy to verify that
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R;:B=5S"R,;
> =>_ |Riy|* forall ye *(D).

It follows from the intertwining relation that

R; Ker p(B) C Ker ¢(57).
Suppose @ € Ker ¢(B); then

EB) = SIRp(B)el = S I(S ) R =
- Z| (5%)|Ker (S Rial? <

< (S| Ker ¢ |Z|R$|2

it follows that |(B)|Ker| p(B) < [0(5*)|Ker ¢(5*)].
To complete the proof, it suffices to observe that S*|Ker ¢(5*) € A(y).

11 Mobius functions of the shift and extremal op-
erators

The extremal operator T'(p) corresponding to a polynomial p of degree n with all zeros
in the open unit disk is defined as follows.
It S is the shift operator

(xo,x1,...) = (0.20, 21, ...)

on the Hilbert space of all square summable sequences, the kernel of p(S5*) is an
n-dimensional S*-invariant subspace and T'(p) is defined as the restriction of S* to
Kerp(S*). We have shown [12] that T'(p) enjoys the following extremum property:
Given any linear contraction T on an n-dimensional Hilbert space such that p(T) =
0 then
|77 1< Ty |

for all nonnegative m.

The motivation of this result is in the theory of iteration processes: the critical
exponent of the n-dimensional Hilbert space being n [11] the norm of the n-th power
of an n-dimensional contraction yields important information about the convergence of
the corresponding iteration process. In a manner of speaking, the result says that, in
the class A(p) of all n-dimensonal contractions 7" annihilated by p, the convergence of
the process ys11 = Ay, + b cannot be slower than that for the process corresponding to
T(p): within the class A(p) the norm of each T™ assumes its maximum at T'(p). This
extremal property of T'(p) can be extended even further: the m-th powers are not the
only functions of 7" maximized at T'(p). It is possible to show [21] that the inequality
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remains valid for any holomorphic function: if A is holomorphic in the unit disk then
| R(T) || R(T(p)) | for any TeA(p). It is interesting to note that a simple technical
modification of the proof given originally by the author in [12] also yields this extended
result [14].

Since T'(p) turns out to be nonderogatory, its algebraic structure is easily described.
In order to examine its geometric structure, the author has computed, in [12], the
matrix of T'(p) with respect to a natural orthonormal basis. See also [16]. This matrix
asssumes an especially simple form in the important particular case of the polynomial
p(z) = (z — a)"; it turns out to be the Toeplitz matrix corresponding to a symbol, a
Moébius function.

The method used in [14, 16] was based on identifying the Hilbert space of sequences
with the Hardy space H? of functions holomorphic in the unit disk and using suitable
Blaschke products to construct the basis required. This method involves some compu-
tation with H? functions but has the advantage of providing insight into the geometric
structure of the backward shift when restricted to Ker p(5*).

In the present note we intend to point out that the results may be obtained in
a considerably simpler manner as consequwences of some natural identities involving
Moébius functions of the shift operator. The advantage of this approach lies in the fact
that it reduces the amount of computations and illuminates different features of the
matter; the operator identities are not without interest in their own right. In what
follows we intend to prove these identities and to indicate how they can be used to
obtain matrix representations of T'(p).

The operator identities to be discussed describe relations between Mobius functions
of the shift operator on H?. Although the Hardy space H? is our main concern the
reader will observe that the identities are valid for an isometry in an arbitrary Hilbert
space. The open unit disk will be denoted by D.

For each A\ € D we define the evaluation functional e(\) € H* by the requirement
that f(A) = (f,e())) for each f € H?. Thus

e(V)(2) = 1_1»2.

The shift operator on H? will be denoted by S; thus (Sf)(z) = zf(z) for every z in
the open unit disk and every f € H?2.

The following two basic identities will be used throughout the present note. They
are valid for any isometry S in an arbitrary Hilbert space

(57 =B)(S5 —a") = (1 = a"57)(1 = 35)
(1—aS)(1—a*S%)— (S —a)(S" —a)=(1—|a2)(1 - S5).

We now proceed to list several elementary formulae which will be used in the sequel.

The verification of these formulae is immediate; it will be convenient, however, to
explicitly state them since they will be repeatedly used in our considerations.

Notation. For every a € D we set
E(a)=(1—aS)™!
M(a) = (S —a™)(1 —aS)™!
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11.1 For every o € D
S*E(a) = 5"+ ak(a)

S%e(a) = a’e(a)
Proof. The first formula follows from
S*((1—aS)™ =1) = S*aS(1 — aS)™!
the second relation is a consequence of the identity e(a) = E(a®)e(0). O

11.2 For every a € D the operator M(«) is an isometry, the kernel of M(«)* is the
one-dimensional subspace spanned by e(a™).

Proof. For every § = a the basic identity yields
(" —a)(S —a")=(1—-a"5)(1 —aS5)

whence M(a)*M(a) = 1. The second assertion is a consequence of the second basic

identity. Indeed, the kernel of M(a)* equals the range of 1 — M(a)M(a*) and

1 — M(a)M(a®) = (1-a8)"H((1 - a8)(1 —a*s") -
— (S—a") (5" —a))(l —a*57)7t =
= (1-a9) 7' (L—laf)(1 = S5)(1 —a™57)7h

Since (1 — «*5™) is invertible the range of 1 — M(a)*M () is identical with the range

of (1 —aS)™'(1 —55*) and this, in its turn, is the set of all elements of the form l_q’j.
O

11.3
(S"—a)M(a) =1—a"5"

Proof. A consequence of

(" —a)(S—a")=(1 —a"5")(1 —af) a

In this section we intend to establish some simple identities involving operator
Blaschke products: Applied to suitable elements of H? these operator identities make
it possible to construct natural orthonormal bases of ker p(S*) with respect to which
the matrix of the restriction of S* assumes a fairly simple triangular form.

We shall need the explicit form of the inverse of a band matrix.
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11.4 Proposition. Given a matriz of the form

1 0 0 0 0
-5, 1 0 0 0
B = 0 —p 1 0 0
0 0 0 —0B,q 1
the inverse B™! is
1 0 0 0
G 1 0 0
Bl'=| B2 B 1 0
1

ﬂl?) 623 63

More precisely (B™');x = Bryii for k < @ where By = 1, 3oy =0 for p > g+ 1 and
Bpg = BpBp+1--- By Jorp < q.

Let p be the polynomial

piz)=(z —a1)...(2 —ay)

with all zeros o; € D.

For k£ =1,2,... define U}, as follows
U1 = E(Oél)

if k> 1, U, = M(Oél)...M(Oék_l)E(Oék)

The action of 5* on the sequence Uy, may be described as follows.
For k =1, we have

(" —ay)Uy = (5" —aq)E(ay) = 5™
Writing, for brevity, Wy = (9% — ay )Uy, we obtain, for k£ > 1,
Wk == (S* — Oék)Ele ce Mk—l == S*Ml .. -Mk—l =
S*S —ap_ ) E(ap_1)My ... My_s =
= (1 —a;_S")E(ap-1)My...My_s =
= Upor — o (Wit + a1 Ugq) = 051Uy — gy Wiy

where we have set o,, = 1 — |a,,|*. Summing up, we have the following sequence of
equations

W1 — S*
W2 + OéTWl = 0'1U1
W3 + Of;WQ = O'QUQ.
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This sequence of equations may be restated in the form of a matrix equation

1 0 . 0 §

@ 10 ... 0 o (M 5

0 o 1 o o || W:|_| olh

: Wn Op—1 Un—l
0 0 0 ... a4 1
Replacing, for simplicity, a by —f3;, we obtain
10 0 - o
W1 _61 1 0 U
_ |0 =8, 1 o1 (11.1)

Wn On—1 Un—l

_671—1 1

Thus W; equals the scalar product of the row of index i —1 with the column (5%, 01U4, ... 0,1 Un_l)T.
Thus Wy = 5* and, for ¢ > 1,

M/i = 61...62'_15*—|—62...6Z’_10'1U1—|—ﬂ3...6i_10'2U2—|—...
+ Bic10i—oUi_g + 031 Uiy

Proposition. The action of S* is described by the relations

S*Ul = S* + OélUl

fore > 1
STU; = B BiaS + By Biaon Uy + B3 BisaoUs +
+ .+ BiioiUig+ o Uiy + U
Proposition. The vectors ¢; = 02»1/2(]2'60, t=1,2,...,n form an orthonormal system.

The matrix of S* with respect to this basis is given by

(" —a;)e; = 0'%/2 9. .. ﬂi_lailmel + 0';/263 .. .ﬂi_lailﬂez +

1/2 1/2 1/2 _1/2
+ 0, 50i10; e o+ 0,0, e

Proof. Set u; = Uj;e(0) = My ... M;_je(a?

%) and let us show that the set wy,..., u, is
orthogonal. Indeed, if 7 < k we have

(uj,up) = (e(oz;),Mj o My_je(a)) =
= (M(aj)"e(al),Mj41... My_1e(af)) = 0.

J
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To prove that u; € ker p(S*) it suffices to show that (S*—aq)... (5" —a;)U; may be
represented in the form ¢(.5*)S* for a suitable polynomial ¢g. Indeed, (5% —aq)U; = 5™
For j > 1 we obtain, using the identity (5* — a) = (1 — a*S*)M ()",

(S" =) (8" = )U; = (1 —=aiS")...(1 —ai | S)(S" —ay)
Ml* .. -M;_lMl .. M]_lE(Oé]) =
= (1—=a7S7") ... (1 —aj_57)5™

O
The results admit a reformulation in terms of (operatorvalued) Moébius functions
Proposition. Denote by A the diagonal matrix with aq,...,a, on the diagonal and
by M the Mobius operator function

M(X) = (X + A)(1+AX)"
Then
(S*Ul, ceey S*Un) — (6107 ﬂlla ey ﬂlm_l)S* —|— (Ul, ceey Un)M(Sg)
Proof. Equation (??) may be rewritten in the form
S*Ul U1 SO Ul
o l—al :(1—|—SnA*)‘1< R VN )
S*U,, U, : Us

Taking transposes

(S7Uy,...S"U,) = (5%,0,...0)(1 + A*SH™ +(Uy,...,U,)
(A4 (1 = AAHST1 + ASH™ =
= (Brosees Bra1)S* + Uy, .. U)(ST 4+ A)(1 4 A*STH!

In the case of the polynomial p(z) = (z — «)" the matrix of S* assumes the partic-
ularly simple form of a Toeplitz matrix. We shall see that, in this case, it suffices to
work with scalar Mobius functions. We intend to prove the following

11.5 Proposition. Let o € D, p(z) = (z — )", g(A) = lfc'yffw M = M(a),
fO) =1 = AM)™t. Then

STFA) = (8" = a) (L + ") + g(M)f ().

The vectors ug, . . ., un_1, where u; = M7e(a*), form an orthogonal system with respect
to which the matriz of S* equals g(S¥).
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Proof. Let o € D and set M = M(«). Consider the operatorvalued analytic function
f defined for A € D as
FO) = (1= M),

Using M*M = 1, it is easy to prove the relation
M*F(A) = M* + Af(N).
It follows that
(S"=a)f(A) = (1 —a™S)M"f(A) =

(- SV () =
= ST —a+ Af(A) —a"ASTf(A)

whence

(L+a™N)S"f(A) =5"—a+ (A4 a)f(A).
For S f(A) we obtain thus

S* —« A+ o

L)) =
S 1—|—oz*)\+1—|—oz*)\

fN).

In particular
A+«
b b — b . D
§10e(e) = 2 et
The vectors u; = M’¢e(a*), 7 = 0,1,...,n—1 form an orthogonal basis of Ker p(S*)

for p(z) = (z —a)". If g is the M&bius function g(\) = l_Al_ZfA we intend to show that the

matrix of S* with respect to the basis ug, ..., u,—1 equals g(S7). This is a consequence
of the following identities

n—1
(S gy« ooy S Ut ) (L, A, AT =3 S7 0N =
7=0

= S"f(AN)e(a™) mod A" = g()\)f()\)e(oz*_) mod A" =

=g(N)>] w; X mod A" = (ug ... u,_1)g(SH)(1, ..., A"
0

3
|

12 Complex functions

For the first maximum problem, we have reproduced the original solution given by the
author. The later development of dilation theory made it possible to relate the result
to powerful theorems that are avaiable today. In this section we intend to explain the
connections in order to present the first maximum problem in the context of general
dilation theory. We shall use a beautiful inequality due to J. von Neumann and an
important theorem of D. Sarason.
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12.1 Theorem. Suppose A is a completely nonunitary contraction on a Hilbert space

H and let f € H*. Then f(A) in meaningful and

F(A] <[ flee-
We begin by proving the inequality in the particular case of a Mobius function.

12.2 Let T be a contraction, a a complex number, |o| < 1. Then

(T — a)(l — 7)Y < 1.

Proof. Givenz € H, set (1—a*T)™'x = y. Thus (T —a)(1—a*T) ta?—|z]* = |(T—
@)yl —[(1=a"T)y|? = [Ty *+|aly P —2Re(Ty, ay)— |y —aP|Ty P+ 2Re(y, a*Ty) =
(1= laP )Tyl — yP?) <.

As an immediate consequence, the inequality |f(A)| < |f|w may be extended to
Blaschke products. The general case is then obtained by a limit process.

To explain the ideas of D. Sarason, we begin by stating a result which says, in
a somewhat loose formulation, that the algebra of all bounded linear operators on
H? commuting with the shift operator may be identified with H*°, the algebra of all
bounded holomorphic functions on the unit disk. More precisely, given a bounded
linear operator 1" on H? such that 7' commutes with S, then

T = f(5)

for a suitable f € H*. In other words, T is the operator of multiplication by f. The
norm of the multiplication operator M(f) equals the norm of f,

[M(f)| = |flee = sup{|f(z)[; = € D}.

We begin by considering the finite-dimensional prototype of this fact.

12.3 Suppose T € B(C"™) commutes with S,. Then T = a(S,,) for a suitable polyno-
mial a.

Proof. Denote by (ao,...,a,_1) the vector T'ep; and by a the polynomial ag + a;2 +
.+t a,_12""t. We intend to prove that 7' = a(S,).

It suffices to show that Tex = a(S,)ex for k = 0,1,...n — 1. Given a k with
0 <k <n-—1 wehave

Te, = TSfLeo = SfLTeo = Sfba(Sn)eo =
= a(Sn)Sfbeo = a(S,,)ek.
12.4 Suppose T' € B(H?) commutes with S. Then there exists an a € H™ such that

T =a(S5).
More precisely, T = M(a), the operator of multiplication by a and |T| = |a|w.
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Proof. The same argument may be used except that, in this case, we have to show
that the function @ = T'ey is bounded.

We shall use the fact that S*e(w) = w*e(w) for every w € D; thus p(S)*e(w) =
p(w)*e(w) for every polynomial p.

Consider an arbitrary polynomial p. Then (T'p,e(w)) = (Tp(5)eo, e(w)) = (p(S)Tep, e(w)) =
(Teo, p(8)7e(a0)) = (@ p(w)e(w)) = (pla)a, e(10)) = pluw)a(rw)

= a(w)p(w). Thus T acts, on polynomials, as multiplication by the function a.
To prove that a is bounded, we rewrite the identity just proved in the form

(p, T"e(w)) = (p, a(w) e(w)).

Since polynomials are dense in H?, this implies

for every w € D whence |a(w)*| < |T*]. It follows that « € H* and |a|. < |T]. Given
f € H?, we have

(Tfre(w)) = (f,T e(w)) = (f,a(w)"e(w)) =
a(w)(f, e(w)) = a(w) f(w).

Thus T'= M(a) whence |T| = |a|.

To each (nonconstant) inner function o we assign a closed subspace H(p) as follows:

H(p) is defined as the orthogonal complement of the set wH?.

Observe that the multiplication operator M () is an isometry so that ¢H? is a
closed subspace of H?; the space H? is thus decomposed into the orthogonal sum of
two closed subspaces

H? = H(p) +@H?,
The orthogonal operator P(H(y)) will be denoted by P().

It is not difficult to give an explicit expression for the projection operator P(y).

Indeed
Plo)f = M(p)P_M(p)

for f € H?.
To see that, consider an f € H? and set g = P(p)f. It follows that f = g + ¢h for
a suitable h € H? and (g, pH?) = 0. Thus (¢g, H*) = 0 whence

0g =P og=P(pg+h)=Peof

so that
g=¢Peof.
We denote by S(¢) the compression to H(p) of the operator

S(e) = P(e)SIH(p);
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since @ H? is invariant with respect to S the space H(yp) is S* invariant whence

P(p)S = P(p)SP(p)

and
Pp)S = S(p)P(e).
This relation implies

F(S(@)) = Ple)f(S)H (¢)

for every polynomial f.
Denote by k the mapping which assigns to each f € H* the compression to H(y)
of the multiplication operator M(f) on H?

k(f) = P(e)f(S)|H () = f(S(p)).

Now we may state result of D. Sarason. It represents a complete analogon for S(y)
of the result on operators commuting with S. We have seen that every bounded linear
operator on H? which commutes with S is a function of S (an operator of multiplication
by a function h € H®). The theorem of Sarason says that every bounded linear
operator on H(y) which commutes with S(¢) is a function of S(¢). The complete
statement is as follows.

12.5 Denote by H™(p) the algebra of all operators on H(p) which commute with
S(p). The mapping k is a homomorphism of H* onto H* () the kernel of which is
©oH>. The corresponding isomorphism of H™ [ H> onto H™(p) is isometric.

This is all we shall need. The theorem of Sarason actually says more about this
isomorphism: the quotient H* /@ H®, taken as a Banach space, turns out to be the
dual of another Banach space. If we equip H*/@H® with the corresponding weak
star topology and if H* () is taken in the weak operator topology then the natural
isomorphism is homeomorphic.

We now proceed to show how the theorem may be used to obtain a solution of the
first maximum problem; the rest of the chapter will be devoted to the proof.

12.6 Theorem Consider a nonconstant inner function ¢. Then
19 the operator S(¢) is a completely nonunitary contraction and o(S(¢)) =0

2° if f is an arbitrary H* function then

[F(A)] < 1F(S(0))]

for any completely nonunitary contraction A on a Hilbert space such that p(A) =
0.
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Proof. Given any ¢ in the residue class of f,
f—gevpH™,
we have f(A) = ¢g(A) and, by the von Neumann inequality,

[F(A)] = 1g(A)] < gl

whence |f(A)| < |f + pH>|s. By the theorem of Sarason the quantity on the right
hand side equals |f(S(¢))|; this proves the theorem.
Now let us return to Sarason’s theorem.

Consider a T' € B(H(p)) such that

and let us show that, to obtain the result, it suffices to find a lifting of T' to an operator
Y € B(H?) which commutes with S. Indeed, suppose there exists a Y € B(H?) such
that

YS=5Y and P(o)Y =TP(p).

Since Y commutes with S, there exists an f € H* such that Y = M(f) = f(9).

In this manner the proof reduces to the construction of a lifting ¥ with the two
properties above.

The existence of such a Y is guaranteed by a powerful theorem due to 5z-Nagy and
Foias, the so called commutant lifting theorem. We shall not pursue this method of
proof further; instead, we present another less abstract proof, closer to the original idea
of D. Sarason. It has the further advantage of establishing a connection with Hankel
operators and the Nehari theorem.

We denote by L? the L%*space on the unit circle, taken with the normalized Lebesue
meaque. For every integer k we define ¢;, by the formula ej(z) = zF. Thus H? is the
set of those h € L* for which (h,e) = 0 for k£ < 0, the orthogonal complement of H?
in L? will be denoted by H? and the corresponding orthogonal projection by P..

We denote by U the shift operator on L?

(UN)(z) = 2f(2)

and by S its restriction to H?. If L* stands for the corresponding space of bounded
measurable functions, every f € L™ generates the corresponding multiplication oper-
ator M(f) and the corresponding Hankel operator H(f) from H? into H* defined by

the formula

H(f) = P.M(f)H".

Now we state the Nehari theorem

12.7 Suppose A is a bounded linear operator from H? into H*. Then the following
conditions are equivalent
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1° the matriz of A taken in the natural bases has the Hankel property: there exists a
sequence ay,ds, ... such that

(Aei, ek) = Uitk
forall1>0, k>0,
2° the operator A intertwines the forward shift on H? with the backward shift on H*

PUA=AS

3° there exists an f € L™ such that

A= H().
Proof. We prove first the implication 3° — 2°. If A = H(f) then,

AS = P.M(f)S = P.UM(f)|H? =
= PUP_+ POM(DIH? = PUP M|
= PUA.

The conditions 1° and 2° are trivially equivalent. This follows from the identity valid
for k>0and 5 >0

(Aeg, e_j) = (ASkeo,e_j) =
== (ASkeo, U*]_le_l) == (P_U]_IASkeo, 6_1)

if PUA = AS, the last expression equals (AS" *eq, ;)
if condition 1° is satisfied, we have, for each £ > 0 and j > 0

(P_UAek,e_j) == (UAek,e_j) == (Aek,U*e_j) ==
a

= Gkt(j41) = G(kt1)+; = (ASer, e_;j)

Since k > 0 and j > 0 were arbitrary, the identity P.UA = AS follows.
Obviously, the difficult part is the implication from 1° or 2° to 3°. This would lead
us far from our main topic, so we now proceed to explain the connection with Sarason.
Denote by M the operator of multiplication by ¢ on L* M = M(y). Observe
that M is a unitary operator on L?, M* = M(p) and recall that P(p) = M P_M*|H?.
Furthermore, M*H () C H? since H(p)LMH?.

12.8 Lemma Let A € B(H(p)) and consider the operator B : H* — H(p) defined

by
B =AP(y).

Then the following assertions are equivalent
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1° A commutes with S(p)
2° BS = S(¢)B

3° M*B is a Hankel operator

Proof. If A commutes with S(i) then

S(e)B = S5(p)AP(p) = AS(p)P(p) = AP(p)S = BS.
If BS = S(¢)B then

AS(p)P(p) = AP(p)S = BS = 5(p)B = S(p)AP(p)

whence AS(¢) = S(¢)A. Conditions 1° and 2° are thus equivalent.

If BS = S(¢)B then M*BS = M*S(¢)B = M*MP_M*SB = P.UM*B and M*B
1s Hankel. If M*B is Hankel then BS = MM*BS = MPUM*B = MP M*SB =
S(e)B.

Now we are able to complete the proof of (9.5).

Proof. Suppose T' € B(H(p)) commutes with S(¢). It follows that M*T P(yp) = H(f)
for some f € L>. Furtermore H(f)MH?* = M*TP(¢)MH?* = 0 so that fMH?* C H?,
in particular fo € H*. Thus ¢ = fo € H*. If h € H(p) we have Th = MH(f)h =
MP_fh=MP_M*gh = P(p)gh. The norm |T| = |[MH(f)| = |H(f)| =inf|f—H>| =
inf |g — o H>|. 0

13 Nevalinna — Pick revisited

13.1 Suppose z1,...,%, and wy, ..., w, are complex numbers such that z; € D and
the matriz

I —wiw;

1 — 27z

is positive semidefinite. Then there exists a function holomorphic in D, |f|.. <1 with

f(z) = w;.

Denote by ¢ the Blaschke product

where B(z;) is the Mobius function

Z—Z]‘

B(z)(2)

= *
1 z7z

and consider the Hilbert space H(p). We prove first that H(y) coincides with the
linear span of e(z1),...,e(z,).

Indeed, for each f € H?,
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(pf,e(z) = ¢(2)f(z) =0
so that e(z;)LeH? On the other hand, if A € H? is perpendicular to e(z) ...,
€(z,), we see that k vanishes at the points z,..., 2, and is, consequently, divisible by
©.

Now let A € B(H(p)) be defined by the requirement that A*e(z;) = wie(z;) for
J=1,2,...,n. Since S(¢)*e(2;) = S¥¢e(z;) = zie(z;), the operator A* commutes with
S(p )* Whence AS(p) = S(¢)A.

By our assumption |A*| < 1, hence |A| < 1 and, by the theorem of Sarason, there
exists an [ € H® [fleo < 1 such that A = P(p)M(f)|H(p). Let us show that
f(z;) = w;. Consider an arbitrary h € H?.

wih(z;) = (h,wie(z;)) = (h, A%e(z;)) =
= (Ah,e(z;)) = (P(@)M(f)h, e(2;)) =
= (M(f)h,e(z;)) = f(z))h(z;).

Since h was an arbitrary element of H?, the assertion follows.
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