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Abstract

It is proved that a classical bound on solutions of perturbed systems of linear equations
may yield arbitrarily large polynomial overestimations for arbitrarily narrow perturba-
tions provided the conjecture P#£NP is true.
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1 Introduction

For a system of linear equations

Ar =b (1.1)
with an n X n nonsingular matrix A, consider a family of perturbed systems
Al = (1.2)
with data satisfying
|A"— Al < A (1.3)
and
|6 — b <6, (1.4)

where A > 0 and 6 > 0 are an n x n perturbation matrix and a perturbation n-
vector, respectively, and the inequalities are understood componentwise. The classical
numerical argument using Neumann series shows that if the spectral condition

o(]ATA) < 1 (1.5)

holds, then each A’ satisfying (1.3) is nonsingular and the solution of each system (1.2)
with data (1.3), (1.4) satisfies
|o" — x| < d, (1.6)
where
d=(I—]ATA) AT (Al + ) (1.7)
and [ is the unit matrix (see Skeel [8] or Rump [6]). To keep the paper self-contained,

we give here another simple proof of this result: for the solutions x, @’ of (1.1), (1.2)

under (1.3), (1.4) we have
o — el = ATAG = )] < A7 (A= A — )+ (A= A4 B — b
< [AT(A] = 2| + Alz] +6),

hence
(I = [ATHA) 2" — 2| < [ATH(A[z] +6)
and premultiplying this inequality by (I —|A™'|A)™!, which is nonnegative in view of
(1.5), we obtain (1.6), where d is given by (1.7).
The quality of the estimation (1.6) has been paid little attention in the literature.
Obviously, the bound d is exact if A = 0. In fact, in this case, for each ¢ € {1,...,n},
if we take 0% = b; + ¢; if (A™1);; > 0 and b = b; — 0; otherwise, then b’ satisfies (1.4)

and for the solution 2’ of Az’ = & we have
[y — @il = 3 [(A™1)i518; = di,
j

hence the bound is achieved. However, this argument fails in the case A # 0. In
this paper we show that the famous conjecture "P#NP” (see Garey and Johnson [1]
for details) shreds a surprising light on this problem: in the main result to follow we
show that if the conjecture is true, then the formula (1.6) may yield an arbitrarily
large polynomial overestimation for arbitrarily narrow perturbations A, 6. Hence, the
conjecture deeply penetrates the area of numerical linear algebra as well.
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2 Main result
We shall use the subordinate matrix norm

1Al = max[Ag]
and the vector norm

[61]c = max s,
Our main result is formulated as follows:

Theorem 1 If P£NP, then for each rationale > 0, n >0, a > 0 and for each integer
k >0 there exist n x n matrices A, A > 0 and n-vectors b, 6 > 0 for some n > 2 such
that

o(|A7HA) =0 (2.1)
[Alln = e (2.2)
16]]cc =1 (2.3)

hold and the solution x' of each system (1.2) with data (1.3), (1.4) satisfies
|z} — 21| 4+ an® < dy, (2.4)
where x is the solution of (1.1) and d is given by (1.7).

Proof. Assume to the contrary that it is not so, so that there exist rational numbers
e>0,n>0, «>0and an integer £ > 0 such that for each n > 2 and all n xn matrices
A, A >0 and all n-vectors b, 6 > 0 satisfying (2.1)—(2.3) we have

|} — @] + an® > d, (2.5)
for the solution 2’ of some system (1.2) with data (1.3), (1.4).

Take an arbitrary m x m MC-matrix A, m > 1, i.e. a matrix A satisfying Ai=m
and A;; € {0,—1}if i # 5 (4,5 =1,...,m); A is nonsingular (cf. [4]). Let us define

o oT
= v -
-(5 ), 2

A:(ggi), (2.7)

where v = a(m + 1)’“ and e = (1,..., 1)T € IR™ (hence A and A are of size (m 4 1) x

(m + 1)), and let
:(8) (2.8)

_ ( noe ) (2.9)

and



be (m + 1)-dimensional vectors. Then

0 et
-1 _ 7
aia= (g ).

hence (2.1), (2.2) and (2.3) hold, the solution of (1.1) is # = 0 and for
71 := max{z]; ' solves (1.2) under (1.3), (1.4)}

we have (if we denote # = (73, 23,...,2,,)7) that

T, = lmax{eeT|:f;|; —ne < A7VE < ped
£

= ymax{||Az|; z; € {—1,1} for each j}
= Al
(see Golub and van Loan [2] for definition of ||Al|~ 1), and in a similar way for
x, := min{z}; ' solves (1.2) under (1.3), (1.4)}
we obtain )
2y = =7 Al 1-
Let us now compute d by (1.7). Then in view of (2.5) we have (since = 0) that

WAl = 24| > di — alm + 1) =d; — 7,

hence .
di < (| A]Jeo +1). (2.10)
But in view of (1.6) and of # = 0 we also have
WAl oor =71 < dy, (2.11)
hence (2.10) and (2.11) give
N d N
[Alloo1 < 71 < [[A]foon + 1. (2.12)

Since the MC-matrix A is integer by definition, the number
| Al|cos = max{||Az||s; 2; € {—1,1} for each 5}
is also integer, hence from (2.12) we finally obtain

Al = | 2] (213

where [...] denotes the integer part.

Summing up, we have proved the following: given an M(C'-matrix A, if we con-
struct A, A, b and 6 by (2.6)—(2.9) and then compute d by (1.7), then (2.13) holds.
Since all these computations can be done in polynomial time (Schrijver [7]), we have a
polynomial-time algorithm for computing || Al|sc.; for an MC-matrix A. However, com-
puting ||Al|se1 was proved to be NP-hard for MC-matrices A ([3], Corollary 7, which
is a simple consequence of Theorem 2.6 in [3]). Hence, an existence of a polynomial-
time algorithm for solving an NP-hard problem implies P=NP, which contradicts our
assumption. n



3 Concluding remarks

We have proved that if P#ZNP, then for arbitrarily narrow perturbations (2.2), (2.3)
the formula (1.7) may yield a catastrophic overestimation (2.4). This, of course, is a
worst-case-type result. The conjecture "P#NP” has not been proved to date, but it is
widely believed to be true (Garey and Johnson [1]). In any case, we can see that the
conjecture is closely related to one of the basic problems in numerical linear algebra; if
the assertion concerning the overestimation (2.4) is not true, then a simple algorithm
based on formulae (2.6), (2.7), (2.8), (2.9), (1.7) and (2.13) gives a polynomial-time
algorithm for solving an NP-hard problem, thereby also solving in polynomial time all
the problems in the class NP.
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