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Abstract

A method for enclosing solutions of overdetermined systems of linear interval equa-
tions is described. Various aspects of the problem (algorithm, improvement, optimal
enclosure, complexity) are studied.
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1 Introduction

The problem (section 2) was proposed to the author by Prof. Dr. G. Heindl in April
1995 and independently by Dr. G. Lichtenberg in June 1995. We describe here the
main result (sections 3-5), an algorithm (sections 9-11) and we discuss briefly some
related issues (performability condition, enclosure improvement, optimal enclosure,
special cases, complexity).

2 The problem

Given an overdetermined system of linear interval equations
Alz = (2.1)
with an m x n interval matrix
Al ={A; AL - A< A< A+ A}

where m > n (in practice: m is essentially greater than n, see [1]), and an interval
m-vector

bl = {b; b, — 6 <b<b.+6)}
(componentwise inequalities), find an interval vector [z, 7] satisfying
X C [z,7], (2.2)
where
X = {z; Az = b for some A € Al b€ b’}

is the so—called solution set of (2.1). An interval vector [z, 7] satisfying (2.2) is called
an enclosure of X.

3 Enclosure theorem

Theorem 1 Let R be an arbitrary n x m matriz® and let o and d > 0 be arbitrary
n-vectors such that

Gd+g<d (3.1)

holds, where
G =1l - RA.|+ |R|A

and

9 = [R(Aczo = bo)| + [R|(Afo| 4 6).

Then
X g [$0-d,$0—|—d].

3notice the transposed size



4 Comment I

We recommend to take
R~ (AT A)TTAT
(an approximation of the Moore—Penrose inverse of A.) and

To ~ Rbc

Then G and ¢ can be computed from the initial data and from R, x ([ is the unit
matrix), hence the problem reduces to solving the inequality (3.1). Since A., A are
m X n and R is n x m, the matrix (¢ is a square matrix of size n X n, where n is the
lower of the two dimensions m, n.

5 Proof

Let € X, so that Az = b for some A € A’, b € b'. Then
r=x+ R(—Ax +b) = (I — RA)x + Rb,
which implies

r—x9 = ([ —RA)(x—x9)+ R(b— Axy)
= (I — RA)(x —ax0) + R(A. — A)(x — 20) + R(b. — A.g)
+R(A:. — A)xo+ R(b—b,.)

and taking absolute values, we have

|t — x| < |I— RA.| |z —xo| + |R|A|x — 20|
+[R(be — Acxo)| + |R[A]zo| + |R|0
= Glo— x| +g.

Thus for a d satisfying (3.1) we obtain
(I =G|z —ao| < g < (-G (5.1)

Since ¢ > 0, (3.1) implies Gd < d, which in view of d > 0 gives o(G) < 1 (since G is
nonnegative), hence (I — G)~' > 0. Premultiplying (5.1) by (I — G)~!, we obtain

| — xo| < d,

which proves x € [z¢g — d, 29+ d|. Hence X C [xg — d, 20 + d].

6 Comment II

The inequality m > n has not been used in the proof. Therefore the proof may create
an impression that the result is valid for arbitrary m, n. This is not the case, as the
next corollary shows: if (3.1) holds, then it must be m > n; hence the inequality is
implicitly contained in (3.1).



7 Corollary

Corollary 1 If (5.1) holds for some R, xo and d > 0, then each A € Al has linearly

independent columns.

& Proof

Assume to the contrary that Az = 0 for some A € Al 2 # 0. Then RAz = 0, hence
r=x— RAz= (I — RA.)x + R(A. — A)x,
which implies
|z] < [T — RA.| - |z| + |R|A|z| = Glz|

and consequently

1 < o(G),

but from the proof of Theorem 1 we know that the existence of a solution to (3.1)
implies

o(G) < 1,

which is a contradiction.

9 Algorithm

The inequality (3.1) can be solved as an equation

d=Gd+g+ f
where f is some positive vector. This observation suggests the following algorithm,
which in fact is only a variant of the algorithm in [5]:

f:= a (small) positive vector;
d = 0;
repeat
d:=d;
d:=Gd+g+ f
until |d' —d| < f.
{then d is a positive solution to (3.1)}

10 Finite termination

Theorem 2 The following conditions are equivalent:
(i) o(G) <1,
(ii) the algorithm terminates in a finite number of steps for some f >0,

(iii) the algorithm terminates in a finite number of steps for each f > 0.



11 Proof
(i) = (iii): if o(G) < 1, then for each f > 0 the sequence
dipr = Gdj+ g9+ f

generated by the algorithm is Cauchian, hence convergent. Thus d;41 — d; — 0, hence
|d;j+1—d;| < f for some j. (iii) = (ii) is obvious. (ii) = (i): if the algorithm terminates
for some f > 0, then from |d' — d| < f we obtain d = Gd+ g+ [ < d+ [, hence
Gd < Gd+ g < d and since d > 0, we have p(G) < 1.

12 Comment 111

Hence, finite termination is independent of the choice of f (which, however, may influ-
ence the number of steps). For practical purposes it is recommendable to change the
stopping rule of the algorithm to

k=K 41 until (|d —d| < f or k > kpax)

where kpax 18 a prescribed maximum number of steps. If & > knax, then existence of a
positive solution to (3.1) has not been proved.

13 Sufficient performability condition

If the matrix Al of the problem (2.1) satisfies
o(|(Ac A)TTATIA) < 1, (13.1)
then for R := (ATA.)"" AT we have
o(G) < 1,

hence the algorithm is finite (Theorem 2) and an enclosure can be computed by The-
orem 1.

14 Enclosure improvement

Since R and z¢ in Theorem 1 may be chosen arbitrarily, we can try to sharpen the
enclosure obtained by a repeated use of Theorem 1:

for j := 1 to jmax do begin

generate randomly A € Al b € b';

R:= (AT A)~1AT;

xg := Rb;

compute a d > 0 satisfying (3.1) by the algorithm;

if j =1 then 2! := [2g — d,zo + d] else 2! := 2! N [zg — d, 2o + d]
end.
{then X C 2!}



15 Optimal enclosure

Once an enclosure #! = [z, 7] has been found, we may use the information contained

therein to compute the optimal (narrowest) enclosure of X. Define
Z={zeR" z;=1if 2; >0, z; = -1 if T; <0, |z;| = 1 otherwise}

and for each z € Z let T, denote the diagonal matrix with diagonal vector z. As
a consequence of the Oettli-Prager theorem [2], if we solve the linear programming
problems

2l = min{a; b — 6 < (A + ATz, (A. — AT)x <b.+ 6, Tox > 0},
7. = max{x; b — 6 < (A + ATz, (Ac — AT)xe < b.+ 6, Toa >0}

for each z € Z and each 7 € {1,...,n}, then the optimal enclosure [z, 7] is given by

zr, = min{z; z € 7},

T, = max{azl; z € 7}

(¢=1,...,n). This procedure may prove disadvantageous if too many linear program-
ming problems are involved. Therefore it can be recommended only if the cardinality
of Z is moderate.

16 Special cases I

Theorem 1 works in particular in the square case (m = n). Here the existence of a
positive solution to (3.1) is equivalent to

o(|AMA) <1

(cf. [3]), i.e. to strong regularity of A

17 Special cases 11

In case of a real (noninterval) system Ax = b we have A =0, 6 =0, i.e. G = |[ — RA]
and g = |R(Axzo — b)|, so that the inequality (3.1) takes on the form

T — RA|d + |R(Azo — b)| < d. (17.1)

Hence the "enclosure theorem” in [5] is a special case of Theorem 1 here. The inequality
(17.1) has been shown in [5] to be equivalent to Rump’s inclusion based on Brouwer’s
fixed—point theorem [6].



18 Complexity of the problem

For linear interval systems with square matrices it was proved in [4] that the problem
of computing an enclosure of X or verifying that no such enclosure exists (since X
is unbounded) is NP-hard. Since systems with square matrices are a special case of
overdetermined systems, the same is true for the problem treated in this paper. Hence
an enclosure can be computed in polynomial time only for special classes of problems.
The condition (13.1) under which our method works seems to be sufficiently general
to cover most practical cases.
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