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Abstract

We prove that the problem of checking whether all linear programming problems whose
data range in prescribed intervals have optimal solutions is NP-hard.
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1 Introduction
Consider a family of linear programming (LP) problems
min{c’ z; Az = b, z > 0} (1.1)
for all data satistying
Ac Al beb! ced, (1.2)

where

Al ={A; A< A< A}

is an m X n interval matrix, m < n, and
b = {b; b < b< b},

cI:{c;ggcgE}

are interval vectors of dimensions m and n, respectively (the inequalities are understood
componentwise). The family (1.1), (1.2) may be interpreted as a linear programming
problem with inexact data, or as a fully parametrized parametric linear programming
problem.

The problem of existence of optimal solutions of all linear programming problems in
the family (1.1), (1.2) was addressed in [6]. There it was proved that each LP problem
(1.1) with data satisfying (1.2) has an optimal solution if and only if the LP problem

min{gT:Jc; Ax < b, Az > b, z > 0}

has an optimal solution and each of the 2™ systems Ax = b whose each row is either
of the form

(Az)i = b;
or of the form
(Az); = b,
(¢ =1,...,m) has a nonnegative solution. Hence, we have a finitely verifiable necessary

and sufficient condition, but the number of systems to be checked for nonnegative
solvability is exponential in m.

In the main result of this paper we show that the problem in question is NP-hard
(cf. Garey and Johnson [1]). Hence, unless the famous conjecture "P#NP” [1] is
false, there does not exist a necessary and sufficient condition for checking existence of
optimal solutions of all LP problems (1.1), (1.2) which could be verified in polynomial
time. The proof given in section 2 shows that even checking feasibility of all LP
problems in the family (1.1), (1.2) is NP-hard. Some concluding remarks are given in
section 3.



2 Main result

Theorem 1 The following problem is NP-hard:
Instance. A, b1, ¢! (with rational bounds).
Question. Does each LP problem (1.1) with data (1.2) have an optimal solution?

Proof. 0) For the purpose of the proof, let us introduce A. = (A + A), A = %(Z —
A), b. = %(@—I—Z) and § = %(Z— b), so that

Al = [A. — A A+ A

and

bl = [b. — &, b. + 8.

The proof goes through several steps.
1) First we prove that each system

Ar=b,2>0 (2.1)
with data satisfying
Ac Al bed! (2.2)
has a solution if and only if
(Vy)(ALy + AT|y| = 0= bly — 67|y > 0) (2.3)

holds. 7Only if”: Let each system (2.1) with data (2.2) have a solution, and let
ATy + AT|y| > 0 for some y € IR™. Define a diagonal matrix T by Tj; = 1 if y; > 0,
Ti=—-1ify;, <0,and T;; =0if ¢ # 5 (¢,5 = 1,...,m), then |y| = T'y. Consider now
the system

(Ac+TA)z =b. —Té, x > 0. (2.4)

Since A, +TA € Al and b, — Té € b, the system (2.4) has a solution according to
the assumption, and (A.+TA)Ty = ATy + AT]y| > 0, hence Farkas lemma [3] applied
to (2.4) gives that bTy — 6T|y| = (b. — T'6)Ty > 0, which proves (2.3). "If”: Assuming
that (2.3) holds, consider a system (2.1) with data satisfying (2.2). Let ATy > 0 for
some y; then ATy + ATly| > (A. + A — ATy = ATy > 0, hence (2.3) gives that
by = (be+b—b)Ty > by — 6T |y| > 0. Thus we have proved that for each y, ATy >0
implies b7y > 0, and Farkas lemma proves the existence of a solution to (2.1).

2) For a given square m x m interval matrix AL = [A% — A A% + A°], construct an
m X 2m interval matrix

Al =[A. = A A+ A (2.5)
with
Ac = (A8T7 _AST)v (26)
A = (AT, AOT) 2.7)
and an interval m-vector
bI = [_67 6]7 (28)
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where ¢ = (1,...,1)T € IR™. We shall prove that Al is regular (i.e., each A € Al is
nonsingular) if and only if each system

Ar=b,2>0 (2.9)

with data satisfying
Ac Al bed! (2.10)

(AL B! given by (2.5)-(2.8)) has a solution. In fact, according to part 1), Eq. (2.3),
some system (2.9) with data (2.10) does not have a solution if and only if there exists

a vector y satistying
A? AP
(_EO)Q‘F(AO)MZO

and
e'ly| > 0,
which is equivalent to
|A%y| < A°y] (2.11)
and
y # 0. (2.12)

Then the Oettli-Prager theorem [4] (see the reformulation in [7], Lemma 2.1) gives that
(2.11), (2.12) is equivalent to existence of a singular matrix in A} = [A2— A° A%+ A°).
This proves the assertion.
3) Given a square m X m interval matrix A, construct an m x 2m interval matrix
Al and an interval vector b' by (2.5)-(2.8). This can be done in polynomial time.
According to part 2), checking regularity of Al can be reduced in polynomial time
to checking solvability of all systems (2.9), (2.10). But since the problem of checking
regularity of interval matrices is NP-hard (Poljak and Rohn [5], Theorem 2.8), the
problem of checking whether each system (2.9) with data satisfying (2.10) has a solution
is NP-hard as well.
4) For an m x n interval matrix A’ and an interval m-vector !, consider the family
of LP problems
min{c’ z; Az = b, z > 0} (2.13)
for
Aec Al beb celee] (2.14)

Since the objective e’z is bounded from below, a problem (2.13) has an optimal solution

if and only if it is feasible. Hence each system
Az =b,2 >0

with data satisfying
Ae Al bed!

has a solution if and only if each LP problem (2.13) with data (2.14) has an optimal
solution. Since the former problem was proved to be NP-hard in 3), the latter one is
NP-hard as well. This concludes the proof. n
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3 Concluding remarks

Khachiyan [2] proved that an LP problem (1.1) can be solved in polynomial time. The
above result shows that this nice property is lost when inexact data are present. Even
more, since existence of an optimal solution to an LP problem (1.1) is not affected by
premultiplying the equation Az = b by a nonzero number, and in view of part 4) of the
proof, Eq. (2.14), we can see that the problem remains NP-hard if we consider only
instances A!, b, ¢! satisfying

max |A;; — Al <e,
1

max |Zz _éz| S g,
K3
c=r,

where ¢ is any prescribed positive rational number. Thus the NP-hardness of our
problem has nothing to do with the amount of uncertainty in the data (1.2); it is
caused by the exponential number of vertices of an interval matrix A! (Poljak and
Rohn [5]).

Nevertheless, the worst—case-type result of Theorem 1 does not preclude efficient
solvability of many practical examples. The criterion from [6] quoted in the Intro-
duction requires solving one LP problem and checking nonnegative solvability of all
systems of linear equations whose ith row is either of the form (Ax);, = b; or of the
form (Ax); = b; (1 = 1,...,m). The number of mutually different such systems is
27 where p is the number of rows ¢ having at least one inexact coefficient (i.e., either
b, < b, or A < A;; for some j). Thus the criterion can be efficiently applied to
practical examples with small values of p.
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