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Abstract

An existence and uniqueness check for systems of nonlinear equations is given.
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1 Introduction

We consider here a system of n nonlinear equations in n unknowns

fi(zy, ... 2,) =0 (t=1,...,n)

which we write simply as

flz)=0. (1.1)
The main goal is to establish a verifiable sufficient condition for existence and unique-
ness of solution of (1.1) in a given region X C IR" (later chosen as an interval vector,
X =[xz —d,z +d]). Let R(z) : X — IR™" be any mapping such that R(z) is a

nonsingular matrix for each © € X. Then (1.1) is equivalent to

v = o R(2)f(x)

in X, and for
Pla) =z — R(x)f(x)

we obtain an equivalent fixed-point equation
r= F(x) (1.2)

which we shall consider in the sequel. In the main result of this report (Theorem 1) we
give an existence and uniqueness test for (1.2) together with a method for constructing
a nested sequence of interval vectors containing the solution * of (1.2) and tending to
2™ (hence, we have a verified enclosure of ©* at each iteration). The result is preceded
by an auxiliary lemma which may be of independent interest. A simple nonexistence
test is given in Theorem 2; a result of such type is necessary when using a branch—
and-bound method (see e.g. Ratschek and Rokne [1]) for finding all solutions of (1.2)
in some region X for which the conditions under which Theorem 1 works are not yet
satisfied. In the last section we briefly consider the connection of these results to the
material of our earlier report [2] on validated solutions of linear equations.

2 Lemma
Lemma 1 Let {x;}52, and {d;}52, be vector (or scalar) sequences satisfying
|7 —wj| < dj —dja (2.1)
for each j, and let d; — d*. Then we have:
1) x; — a*,
2) a* € |x; —d; +d*,x; + d; — d*] for each j,

3) the sequence of intervals {[x; — d; + d*,x; + d; — d*]}22, is nested.
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Proof. 0) For each j > 0 and m > 1, from (2.1) we have |x; — 21| < Zi":";”_l Ere
Tpy1] < Z?:—?l_l(dk —djt1) = dj — djy,, hence

) = Tjgm| < dj — djm. (2.2)

1) Let ¢ > 0. Since {d;} is convergent, there exists a j such that |d; — d;.| =
dj — djyn < e for each m > 1. Then from (2.2) we have

|7 = Tjm| <e

for each m > 1, hence {x;} is a cauchian sequence, thus z; — a*.
2) For each j > 0, taking m — oo in (2.2), we obtain

|2j — a7 < dj = 7,

which implies

e [l‘j —d]‘ —I-d*,l']‘ —I-d] —d*]

3) It follows from (2.1) that ; — d; < aj41 — dj41 and @41 + dj31 < xj + d; for
each j, hence the sequence of intervals [z; — d; + d*, x; + d; — d*] is nested. B

3 Main result

Theorem 1 Let ' map an interval vector [x —d,x+d] C IR" into IR", and let there
exist a nonnegative matric H with the following properties:

(i) |F(2') — F(2")| < H|a' — 2"| for each &', 2" € [x — d,x + d],
(ii) |v — F(a)] < (I — H)d.

Then the equation
= F(2) (3.1)

has a unique solution x* in [x—d, x+d], and the sequence of interval vectors {[x; — d;, x;+

d;]}32, defined by

g = I,
dy = d
and
riy = I(z)), (3.2)
dix = Hd;

(j =0,1,...) is nested, satisfies
v € [w; —dj,x; + dj

for each j, and x; — z*, d; — 0.



Proof. Since H is nonnegative, from (ii) we have Hd < d and d > 0, hence o(H) < 1
and H? — 0, (I — H)™' > 0. We shall prove by induction that the sequences {z;} and
{d;} satisfy

|7j — xj| < dj —djpy (3.3)

for each j. For j = 0 we have |zg — 1| =[x — F(2)| < (I — H)d = dy — d; due to (ii).
Let (3.3) hold for some j > 0, then

i1 = wjpa| = [F(2)) = Flajn| < Hl|zj — wja| < H(dj — djn) = djpa — djyo,

which concludes the inductive proof of (3.3). Since d; = H’dy — 0, Lemma 1 implies
that x; — «*, «* € [x; — d;, x; + d;] for each j (in particular, 2* € [x — d,x + d]), and

the sequence {[x; — d;, x; + d;]}°2, is nested. Since F' is continuous in [z — d,x + d]

7=0
due to (i), taking j — oo in (3.2) we obtain that «* solves (3.1). Let & be any solution
to (3.1). Then

|7 — 27| = |[F(2) = F(z7)| < H|z — 27,
hence
(I—H)|z —2"| <0
and premultiplying this inequality by the nonnegative matrix (I — H)™! yields | — a*|
<0, hence & = x*. Thus z* is the unique solution of (3.1) in [ — d,z + d]. m
The assumption (i) is satisfied if F' is differentiable and

aF;
7 )

< Hij

holds for each «’ € [x — d, x + d]. Thus the values H;; can be computed using interval
extensions of the partial derivatives, see [1].

4 Nonexistence test

Theorem 2 Let F' map an interval vector [x — d,x + d] C IR" into IR", and let it
satisfy the assumption (i) of Theorem 1 for some nonnegative matriz H. If there exists
an ' € [x — d,z + d] satisfying
|2} — Fi(2")| > 2((1 + H)d); (4.1)

K3

for some 1, then the equation

i = F(%)

does not have a solution in [x — d,z + d].

Proof. Assume to the contrary that z* = F(2*) holds for some a* € [x — d, 2 + d.
Then we have

o = F(@)] = |¢' = 2" + F(a™) = F(«!)] < (I + H)|o’ = a™| < 2(I + H)d.

which contradicts (4.1). m



5 The linear case

For a system of linear equations

Arx =10

(A square), using a nonsingular matrix R, we can write equivalently
= (I—RA)x+ Rb
and for F(z):= (I — RA)x + Rb we have
F(af) — F(a") < |1 — RA| - o' — 2",
hence the assumption (i) of Theorem 1 is satisfied for
H :=|I — RA|.

Thus Theorem 1 generalizes both the "enclosure theorem” and the "refinement theo-
rem” given for the linear case in our earlier paper [2]. Like in [2], Brouwer’s fixed-point
theorem has not been used in the proof of the main result.
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