narodni
N U dlozisté
1 L Sedé
6 literatury

Krylov Sequences and Orthogonal Polynomials

Ptak, Vlastimil
1995

Dostupny z http://www.nusl.cz/ntk/nusl-33633

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 05.06.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .


http://www.nusl.cz/ntk/nusl-33633
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Krylov Sequences and Orthogonal Polynomials

Vlastimil Ptak

Technical report No. 659

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+422) 66414244 fax: (4+422) 8585789
e-mail: uivt@uivt.cas.cz



INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Krylov Sequences and Orthogonal Polynomials

Vlastimil Ptak

Technical report No. 659

Abstract
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1 Introduction

The connection between the Lanczos algorithm and orthogonal polynomials has been
investigated in a number of papers both from the theoretical as well as from the com-
putational point of view. It seems that the connection with Krylov sequences has been
given less attention than it deserves.

In the present note we intend to outline a study of the relationship between the
Lanczos algorithm and orthogonal polynomials based on a simple identity for Krylov
sequences. In this manner we obtain a simplification of the proofs as well as further
insight into some of the classical results.

2 Preliminaries and notation

The elements of C™ will be represented by column vectors of length n the indices
running from 0 to n—1. This has the advantage that the vectors may also be interpreted
as polynomials. if @ = (ag,...,a,_1)? is a vector, we assign to it the polynomial

a(z)=ao+ a1z + ...+ a2 = P(Z)Ta

will frequently be also interpreted as an n by m matrix

Aik — (ak)iv
(a*); being the i-th coordinate of the vector a”.
Given a sequence of n numbers Aq,..., A, we denote by D(Ay,..., ) the diagonal
matrix with Ay,..., A, on the diagonal.

3 Spectral decompositions

A matrix P is said to be a projector if P? = P. A projector P is an orthogonal projector
if P is hermitian. If u is a vector of length 1 then uu* is an orthogonal projector; uu*
is the orthogonal projector onto the line generated by u. In a similar manner, given

* 1s the orthogonal projection

an orthonormal set of vectors uy, ..., uy, the sum 3° u;u;
onto the linear span of the vectors wuy,...,u;. Given a hermitian matrix A we assign
to it an operator valued function E(A) on the real line with the following properties

19 for each A the operator E(A) is either zero or an orthogonal projector
20 E(A)E(X\) = 0if Ay # A

FPTEN =1

49 A=Y AE()N)



In this manner the matrix A is represented as a weighted sum of projectors; A ranges
over the whole real line but the cardinality of the set of those A for which E(\) # 0
does not exceed the size the matrix A Let us sketch briefly how this representation of
A may be obtained.

Let A be a hermitian matrix of size (n,n). There exist n complex numbers Ay, ..., A,
and an orthonormal system of vectors ul, ..., u" such that

Aul = M’
If U is the matrix (u',...,u") this set of equations may be rewritten in the form
AU =UD(A,y .. A).

Now consider the difference B = A— 37 A\;u?(u?)*. Tt is obvious that Bu' = 0 for every
¢ so that B = 0 whence o
A=)l (W)

The operators u/(u’)* are one-dimensional projectors. To define the function F(-), we
set F(a) =0 if o does not belong to the spectrum of A. If « is one of the eigenvalues
we define E(a) as the sum Y- u/(u/)* for those j that satisfy \; = a.

Clearly this sum is the operator of projection onto the eigenspace corresponding to
a. Using the representation A = 3° AE()), it is easy to see that, for any polynomial p,

p(A) = p(MEQ).

4 Scalar products on C”

The standard scalar product on €™ will be denoted by

n—1
(a,0) = > aib;.
0

Every positive definite scalar product on C" is given by the expression (Ba,b) where
B is a suitable positive definite matrix

Now we shall investigate scalar products on C'" corresponding to a measure m on
the real line. A measure on the real line will be — for the purpose of this note — a
nonnegative function m of the real line such that the set of those A where m(\) > 0 is
finite.

To define the scalar product (a,b),, we consider the polynomials a(\) and b(A)
corresponding to the vectors ¢ and b and set

(a.0), = 3 a( M) m(N).

It Ais a hermitian n by n matrix and ¢ a nonzero vector in C'" it is easy to see that

m(A) =Y (E(Ng,q) = [E(\)q*



is a measure on the real line. If @ and b are two vectors in C”", we have

(a(A)g,b(A)g) = (3 a(NEN)g, > b\ E(N)q)
= Y a(Mb(A)(B(N)g.q)
= (a,b),

In this manner we have assigned, to each pair A, ¢ a measure m such that

(a(A)g, b(A)q) = (a,b)p. (4.1)

Now let us make the additional assumption that the spectrum of A has no multi-
plicities.

Denoting the eigenvalues by Ai,..., A, and by u!,...,u" an orthonormal system
of eigenvectors with Au/ = A\;u’, we have F();) = uv/(u’)*. For the measure m corre-
sponding to the pair A, ¢ we have

m(\;) = [E(A)gl® = |(q,u/)%.
Observe that 3~ m(A) = |¢|*. The corresponding scalar product is

(a,b)m = D a(A)b(Ai) m(\).
=1
To compute the matrix B for which

(a,b), = (Ba,b)

we argue as follows.
Consider the Vandermonde matrix

V=V(OX...\) = (p(A),... 7p()‘n))T'

Given a vector a € C™ then

is the set of values of the polynomial corresponding to a at the points Ay,... A,. If
B is of the form V*MV where M is the diagonal matrix D(m(A1),...,m()\,)) then
(Ba,b) =Y a(A)b(A) m(X;) = (a,b)m,.

In the case of a measure carried by n distinct points Aq,..., A, it is possible to
describe the kernel of the mapping

(A, q) — m.

Proposition 1 Suppose m is a measure carried by n distinct points Ay,..., \,. Then
the following assertions are equivalent

1° the pair A,q generates m by (4.1)



P there exists a unitary matriz U such that
A=UDM, ..., \)U”
g = U2, om() )T
P there exists an orthonormal system u',..., u"™ such that
A=) Ajud (u? )
g =2 m())" !

Proof. Condition 3° is nothing more than a restatement of 2°. The implication 2°
— 1% being contained in the previous discussion, it remains to prove the implication
19 — 29,
If A, g generates m, there exists a unitary V = (v', ..., v")such that A = VD(Ay, ..., A, )V*
and m(};) = |(¢,v?)]? so that (q,v’) = g;m();)"/% Setting W = D(ey...s,) and
U = VW we obtain

Uq=WV*qg = W (q,v"),....(¢,0")"
= (mQA)Y2 . om(A)Y),

A=VDV* =VWDW*V* =UDU” O

5 Krylov sequences

Given an n by n matrix A and a vector ¢ € C™ we define the Krylov sequence K (A, ¢)
as the sequence of n vectors

(q7 Aq7 AR An_lq)'

Occasionally, we shall use the symbol K (A, ¢) for the corresponding matrix

Proposition 2 Suppose A is selfadjoint of the form A = ULU* with U unitary and
L=D(A,..., ). If ¢ is an arbitrary vector then

K(A,q)=UDV.

Here V is the Vandermonde matriz V. = (p(\1),...,p(A))T and D is the diagonal
matriz with the coordinates of ¢ in the basis u; on the diagonal,

D =D((q,u1),...,(q,un)).
Proof. Since A =3 A\juju} we have Arq=73; )\é?uj(q, u;) = > u;(q, u;)v;r whence

[((A7Q) = ((Q7u1)u17“‘7(Q7un)un)V O



Remark The coordinate vector [q] of ¢ in the basis u; is ((q,u1), ..., (q,u,))T; thus
q = Ulq]. Tt follows that

[q] = U~q.

6 The Lanczos process and orthogonal polynomi-
als

The application of the orthonormalization process to the Krylov sequence
K =(q,Aq,...,A" ')

is equivalent to the construction of an upper triangular matrix P such that the resulting
sequence () = K P satisfies Q*Q) = 1. Denote by ¢’ and p; respectively the j-th column
of () and P.

Denote by m the measure generated by the pair A, ¢ and consider the corresponding
scalar product (-, -),,. We shall make the assumption that this scalar product is positive
definite — this implies, in particular, that the spectrum of A is simple.

Since (pi, pi)m = (pi(A)q,pi(A)q) = (Kpi, Kp;) = (¢',¢’) the polynomials p; con-
stitute an orthonormal system with respect to the measure m.
Summing up, we have the following:

Proposition 3 Let py,...,p,—1 be a sequence of polynomials, each p; being of degree
J-
1° Suppose A is a hermitian matriz of type (n,n) and q a given vector in C™.

If the vectors ¢/ = p;(A)q form an orthonormal set, in other words, if the sequence
Q) is the result of the Lanczos process applied to the pair A, q, then po...p,_1 is
an orthonormal set of polynomials with respect to the measure m such that

DA .. M) =U AU and m();) = |(¢,u"))? (6.1)
Jor a suitable unitary U = (u',... u").

P If m is a measure and if the p; are orthonormal with respect to the measure m then
the vectors ¢’ = p;(A)q form an orthonormal set for every pair A, q of the form

A=UDM .. AU q=3 m(\) . (6.2)

Proof. Let P be the upper triangular matrix obtained by writing, in the j-th column,
the coefficients of the polynomial p;. If @ = (¢°,...,¢""!) we have Q = K(A,q)P.
Hence Q*() = 1 if and only if P*K*KP = 1. The assertions now follow from the
identity K = UDV; indeed, K*K = V*D*DV = V*D(|(¢,u")|*, ..., |(¢,u™)[)V O

The preceding proposition may be restated as follows:

o The Lanczos algorithm applied to the pair (A,q) produces a sequence of vectors
¢ =pi(A)g

and the polynomials p; are orthonormal with respect to the measure m(A,q).

5



o Conversely if po,...,pa_1 18 the system of orthonormal polynomials for the mea-
sure m then the vectors ¢ = pj(A)q coincide with the sequence produced by the
Lanczos algorithm applied to A,q provided A and g are given by the formulae

(6.1).

Given a fixed n tuple of distinct points Aq,..., A,, consider different measures con-
centrated in these points and the corresponding orthonormal systems P. The equality
P*V*MV P = 1 establishes a one-to—one correspondence between the measures and
the orthonormal systems. The following proposition shows how to recover m if P is
given.

Proposition 4 Let m be a measure concentrated in n distinct points Ay ...\, with
m(A;) > 0. Let po...pa_1 be the system of orthogonal polynomials corresponding to
m. Then

i) = (2 mwv)_l |

Proof. Set V = (p(\1),...,p(A))T and M = D(m(A1)...m(\,)). Then the scalar
product corresponding to m is generated by the matrix V*MV. Let P be the upper
triangular matrix obtained upon writing, in the j-th column, the coefficients of p;. The
p; being orthonormal with respect to m we have

PVIMVP =1
so that W = M'Y/?V P is unitary. For each pair j,r the corresponding entry of W is
Wi, = (MY P)j = m(A) 2 (VP) 5 = m(3) Pp(A;).

Since W is unitary, 3, [W;,|* = 1 and this completes the proof. O
Summing up: to each pair A, ¢ where A is a hermitian n by n matrix and ¢ a vector
in C'", we assign the following objects: a unitary matrix U such that

AU = UD(M, ... A\)

and a measure m(\;) = |(¢,v’)|?. We make the assumption that the A; are distinct and
the m(\;) positive. Setting M = D(m(X\y),...,m(A,)) and K = K(A, ¢), the identity
V*MV = K*K establishes the following equivalence:

If p; is a polynomial if degree j and if P is the corresponding upper triangular
matrix the following four assertions are equivalent

the p; form an orthonormal system with respect to m
PV"MVP =1
P*K*KP =1

the vectors ¢/ = p;(A)q form an orthonormal system.



7 The three term recurrence relation
Denote by T'= T(A, q) the matrix T' = Q*AQ); thus

AQ = QT

so that T' is the matrix of A taken in the basis Q).
It is possible to show that T'is tridiagonal.

Proposition 5 The matriz T of the operator A in the basis () is tridiagonal with
positive subdiagonal.

Proof. The construction of the system @ shows that, for each j, A¢’ is a linear

combination of ¢°, ..., ¢"T'. Thus (A¢’,¢™) = 0if m > j+1. To prove that (A¢’, ¢™) =

0 for m < j — 1 we argue as follows:

(A¢’,q™) = (¢/, Ag™) and Ag™ is a linear combination of ¢°, ..., ¢"*! but m + 1 < j.
Let us show that (Ag;,¢;41) > 0 for 5 = 0,1,...,n —2. The vector ¢’*! is obtained

upon normalizing the vector w = Ag¢’ + £;¢/ + £;_1¢°!, the coefficients being chosen

so as to have (w,¢’) = (w,¢'~1) = 0. Tt follows that

w = A¢ — (A¢,¢')¢’ — (A¢’, ¢ )¢’
= A¢ —ajnd = Bipd’™
whence

jw]? = (w,w) = (w, Ag’) =
= |A¢'|* — aj11(¢, A¢’) — Bia (™", Ag)
= |A¢]? = |ajs1? = [Bj41]*

Since ¢’*1 is a multiple of w, the entry (Aq¢’, ¢/*!) is a positive multiple of (A¢’, w) =
lw|?. Suppose (Ag’, ¢'t1) = 0; it follows that w = 0 so that Aq’ is a linear combination
of ¢’ and ¢’~' by the Bessel inequality. a

Consider a hermitian A with simple spectrum and a vector ¢ such that the corre-
sponding Krylov matrix K(A,¢) is nonsingular. The Lanczos process applied to the
pair A, ¢ produces an orthonormal sequence ) = (¢°,...,¢" ') such that the matrix
of A taken in the basis () is tridiagonal with positive subdiagonal

AQ = QT.
Hence T'= Q*AQ = Q*ULU*Q where L = D(\q,...,A,) with distinct A;. Consider

an orthonormal system S which diagonalizes T'
TS=S5L

We have then
SLS* =T =Q"ULU"(Q



It follows that U*Q) = W.S* where W is a diagonal unitary matrix. In particular,
U*¢® = Ww where w is the first column of S*. If m is the measure corresponding to
the pair (A, q), we have

Utq = (m(A)'2, . om(A) )T

whence

(m(A)'72. )" = Urq = |q|U"¢" = Wlg|w.
Using this relation, is possible to describe the kernel of the mapping
(A,q)—T.

Proposition 6 Suppose T is a symmetric tridiagonal matriz with positive subdiagonal
elements. Then the spectrum of T' consists of n distinct numbers Ay,..., \,. Suppose
S is a unitary matriz for which S*T'S = D(A,...,Ay). Then T =T(A, q) if and only
if A =UDM ... 0)U" and ¢ = U - w for a suitable unitary U, w being the first

column of S*.

Proof. Suppose that T'= Q*AQ). Then
QTAQ = SDS™.

Denoting )5 by U, we have a unitary U for which A = UDU*. Since @) = US™ we
have ¢ = Uw. On the other hand, if A = UDU* and ¢° = Uw, set Q = US*. Then

AQ = UDUUS” = UDS” = US*SDS* = QT. 0

Remark The columns of S are the eigenvectors of T'. It follows that w consists of
the complex conjugates of the first coordinates of the s;:

q° = (US*)o whence ¢! = 3 uy(S*)ro = 3 Soruir and ¢° = 3 Sopug.

Remark Given an orthonormal system () and n distinct points Ay, ..., A, on the real
axis, there exists a pair A, q such that () is the result of the Lanczos process applied to
the pair (A, q).

Proof. Write L for D(Ay,...,A,). Let S be a unitary matrix such that SLS™ is a
tridiagonal matrix with positive subdiagonal. Set U = Q.5 and A = ULU*. It follows
that

AQ =ULU"Q =QSLS* =QT. O

It is also possible to consider an orthogonal system of monic polynomials corre-
sponding to a measure m, in other words an upper triangular matrix F' with 1 on the
diagonal such that

F*V MV F
is a diagonal matrix. Clearly each of these polynomials is just a multiple of the corre-
sponding orthonormal polynomials.

In the following proposition we give three characterizations of the orthogonal poly-
nomials f;



1° by determining the leading coefficient of p;
2° identifying f; with the characteristic polynomial of 7

3° by showing that f; minimizes the m norm among all monic polynomials of degree
J-

The preceding considerations have established a one—to—one correspondence be-

tween normalized measures and tridiagonal hermitian matrics with positive subdiago-

nals.
Let T be a tridiagonal hermitian matrix

aq 52
52 (8%
Op—1 671

B oy

Denote by A1, ..., A, the spectrum of T', by mg the corresponding normalized mea-
sure. Let A, ¢ be a pair such that the Lanczos process applied to (A, ¢) leads to 7"
consider the measure m = m(A, q) and denote by po,...,p,—1 the orthonormal poly-
nomials given by m.

Let
f07f17"'7fn—1

be monic polynomials, each f; being of degree j. Set 31 = |q|.
Then the following assertions are equivalent

1° the f; constitute an orthogonal system with respect to m
P each f; minimizes the m-norm among all monic polynomials of degree j

P f;(A) = det(A—1T;) for each j, T; being the leading principal minor of T of order

J
4 fi=081...8j41p; forj=0,1,...n—1

Proof. Suppose 1° is satisfied and consider an arbitrary monic polynomial f of degree
J. The difference f; — f is either zero or a polynomial of degree < j so that f; — fLf;.
It follows that | f|2, = |f;|2, + |f — f;|2, whence 2°. The implication 2° — 1° is obvious.
If 19 is satisfied, each p; is just a multiple of the corresponding f;.

For j = 0, we have f, = 1 and po(A)q = ¢° it follows that py = |;—| Thus fo = Bipo
if we set 81 = |q.

Since Aq® = a1¢° + B2q' we have

52}?1(14)9 = ﬂqu = (A - Oél)qo = (A - 041)%

whence

BiBapi(A) = (A —ar) = fi(A).



Now we can proceed by induction. To simplify the formulae, we shall use the nota-
tion {ay,as,...,a;} for elementy of the linear span of the vectors ay, ..., a;. Keeping
in mind that f2¢1 = (A — a1)qo we have, for j = 2, the following facts:

5392 = Aql - Oéqu - 5290
whence
BaBsq® = APt +{¢°.¢'} =
= AA-a)’ +{¢"q'} =
= A%’ +{¢"q'}.
It follows that 318233¢> = A?B1¢° + {¢° ¢'} = A%*q¢ + {¢° ¢'}. This shows that
B1B2B3p2 = [y ete.

The Lanczos algorithm is characterized by the relation
ap = (A¢"H ¢ k=1,...,n
Berrg® = A" — arg™™ — Bt
Since ¢/ = p;(A)q this implies
Brp1pe(A) = (A — ar)pr—1(A) — Brpr—2(A)
for k=0,....,n—1.
Multiplying by 3y ... ; we obtain
Br.. -5k+1pk()‘) = ()‘ - 0%)51 . e 5kpk—1()\) - 513 B 5k—1pk—1()\)-
Set, for a moment, hi(A) = det(A — Ty). Expanding det(A — T}) along the last
column, we obtain
hi(A) = (A = a)hi-1(A) = Brhi—z (M),

the same recurrence relation as that for the polynomials 3 ... Gri1pk.

Proposition 7 The p; satisfy the recurrence relation

Brp1pe(A) = (A — ag)pe—1(A) — Brpe—2(N)
for k <n. The polynomial p, defined by

pn()‘) = ()‘ - an)pn—l()‘) - ﬂnpn—Z()‘)

vanishes exactly at the points Aq,..., \,.

Proof. The first statement has been just proved. Let us prove now that the zeros of
the polynomial

pn()‘) = ()‘ - an)pn—l()‘) - ﬂnpn—Z()‘)

are exactly the numbers Aq,..., A,.
Expanding the characteristic polynomial of T" along the last column, we obtain

detA = T) = (A — @) fu1 — B2 fuz =
= ()‘ - Oén)ﬂl . 5npn—1()\) - 5251 o BroiPae =
= ﬂl e ﬂn(()‘ - Oén)pn—l()‘) - ﬂnpn—Z()‘)) = ﬂl cee 6npn()‘)

10
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