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Abstract

By ����k�n		
branching programs �b� p�	 we mean those b� p� which during each of
their computations are allowed to test at most k�n	 input variables repeatedly� For a
Boolean function computable within polynomial time a trade
o� is presented between
the number of repeatedly tested variables and the size of any b� p� P computing
the function� Namely� if at most n� repeated tests are allowed� where � is a constant

satisfying  � � � �� then the size of P is at least exp���
q
n���� log� n		�

The presented result is a step towards a superpolynomial lower bound for �
b� p�
which is an open problem since ���� when the �rst superpolynomial lower bounds for
�
b� p� were proven ���� ���� The present result is an improvement on �����
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� Introduction

A branching program �b� p�	 is a computation model for representing the Boolean
functions� The input of a branching program is a vector consisting of the values of n
Boolean variables� The branching program itself is a directed acyclic graph with one
source� The out
degree of each node is at most �� Every branching node� i�e� a node of
out
degree �� is labeled by the index of an input variable and one of its out
going edges
is labeled by � the other one by �� The sinks �out
degree 	 are labeled by  and �� A
branching program determines a Boolean function as follows� The computation starts
at the source� If a node of out
degree � is reached� the computation follows the unique
edge leaving the node� In each branching node the variable assigned to the node is
tested and the out
going edge labeled by the actual value of the variable is chosen�
Finaly� a sink is reached� Its label determines the value of the function for the given
input� By the size of a branching program we mean the number of its nodes�
The branching programs were introduced because of their relation to P ��LOG

problem� Namely� the polynomial size b� p� represent a nonuniform variant of LOG�
Hence� a superpolynomial lower bound on b� p� for a Boolean function computable
within polynomial time would imply P �� LOG�
In order to investigate the computing power of branching programs� restricted mod


els were suggested� Besides the hope that these restricted models help to solve the
general problem� some kinds of the restricted branching programs are important also
as a data structure for representing the Boolean functions in some CAD applications�
e�g� design or veri�cation of Boolean circuits� see e�g� ����
One possible kind of restriction of the b� p� is to bound the number of repeated

tests of each variable� In a k
b� p�� each computation can test each variable at most
k times� Even more restrictive assumption is the following� In a syntactic k
b� p�� on
each path from the source to a sink� each variable is tested at most k times� This is
more restrictive� since in a b� p�� there may be pathes that are not followed by any
computation�
In ���� the �rst superpolynomial lower bounds for �
b� p� were proven ���� ���� The

�rst steps towards the case of �
b� p� were made with real
time b� p�� which perform
at most n steps during each computation on any input of length n� The results were a
quadratic lower bound ���� a subexponential lower bound ���� and an exponential lower
bound ���� For �even nondeterministic	 syntactic k
b� p�� exponential lower bounds
have been proven ���� ���� However the problem for �
b� p� remains open�
There are also other models that are more powerfull than �
b� p�� but probably

not more powerfull than �
b� p� Namely� ����k�n		
b� p� is a b� p�� where for each
computation� the number of variables tested more than ones is at most k�n	� There is
no restriction on the number of tests of these at most k�n	 variables� Again� syntactic
����k�n		
b� p� are b� p�� where the above restriction is applied to any path from the
source to a sink� not only to the computations�
For syntactic ����k�n		
b� p�� where k�n	 is bounded by cn���� log���� n for an

appropriate c � � exponential lower bound and tight hierarchies �in k�n		 are presented
in ��� and ���� In the present paper� we prove an exponential lower bound for ����n�	
b�
p�� where � is any �xed real number in �� �	� computing a function fn� The function
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fn is computable in polynomial time and� in fact� it is in ACC� A preliminary result
implying an exponential lower bound for another function and for ����n�	
b� p�� where
� is any constant satisfying � � ���� is presented in �����

� The lower bound

First� we shall discuss some notation� As an input to a b� p� we shall consider also
partial inputs� This means that the input variables may have values � � and �� In the
last case� we say that the corresponding input variable is not speci�ed by the �partial	
input� For an input u let comp�u	 denotes the sequence of nodes of the b� p� visited
during the computation on u� For a partial input u� we say that the computation for
u leads to a node w� if w is the �rst branching node on the computation for u� which
tests a variable not speci�ed by u�
If u is a vector� then its i
th coordinate is denoted by u�i	� By subscripts� we

distinguish di�erent vectors� If u � f� �gn� then juj denotes the number of ones in u�
Assume� P is a b� p� computing a function f and let f � be a subfunction of f

obtained by setting some variables of f to constants� By changing every branching
node of P labeled by a variable involved in the setting to a node with out
degree one
and with an appropriate successor� we may obtain a b� p� P � computing f �� The b� p�
P � will be called a restriction of P �

De�nition ��� Let I � f�� ���� ng be the set of indices of the input variables� Let
u�� u�� � � � � us be �partial� inputs and let for all i � �� �� � � � � s� Ai � I be the set
of indices of the variables speci�ed in ui� Let Ai be pairwise disjoint� Then� let
�u�� u�� � � � � us� be the �partial� input specifying the variables with the indices fromSs
i��Ai such that if j � Ai� then �u�� u�� � � � � us��j	 � ui�j	�

De�nition ��� Let a� b be �partial� inputs with the same set of speci�ed variables and
D � fi � a�i	 �� b�i	g� The pair a� b is called a forgetting pair� if there is a node w
in the branching program such that w belongs to both comp�a	 and comp�b	 and both
computations read all the variables with indices in D at least ones before reaching w�

Lemma ��� Let c be the size of a branching program P and let every computation
of P reads at least d di�erent variables� Let s � � be a natural number such that
�� log� c � �	s � d� Then there exist pairwise disjoint sets Ai � f�� �� ���� ng for i �
�� ���� s and partial inputs ai � Ai 	 f� �g and bi � Ai 	 f� �g� ai �� bi such that for all
i � �� �� ���� s we have

�i� jAij � � log� c� ��
�ii� the inputs �a�� ���� as� and �a�� ���� ai��� bi� ai��� ���� as� form a forgetting pair�

Proof� Let r � blog� cc � � � log� c� By our assumption� every computation of P
reads at least r variables� since r � � log� c � � � d� We shall construct a sequence
U�� U�� � � � � Ur of sets of partial inputs in such a way that for every i � � �� � � � � r� the
set Ui consists of �i inputs with exactly i speci�ed bits� In particular� U� contains only
the totaly unde�ned input� Given Ui� the set Ui�� is constructed as follows� For each
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u � Ui� follow the computation for u until the �rst bit not speci�ed by u is required�
Let j be its index� Then� include into Ui�� the inputs u� and u� extending u by setting
the j
th bit to  and � respectively� Now� since �r � c� there are at least two distinct
inputs in Ur� say c� and c�� such that the computation for both these inputs lead to
the same node� Note that� by construction of Ur� there is a bit speci�ed by both c� and
c�� but with di�erent values in c� and c�� Moreover� for both i � �� �� the computation
for ci reads all the bits speci�ed by ci�
Let C� be the set of bits tested by comp�c�	 and C� be the set of bits tested by

comp�c�	� Let A� � C� 
 C�� Since C� � C� �� �� jA�j � �r  � � � log� c � �� Let a
partial input a� extends c� in such a way that the bits with indices in A� not determined
in c� are equal to the values of these bits in c�� Similarly� b� extends c� so that the bits
unde�ned in c� have the same value as in c�� Hence� a� and b� may di�er on the bits
with indices from C� � C� and the bits with indices from the symmetric di�erence of
C� and C� are speci�ed in both a� and b� and equal� One can easily see that comp�a�	
follows comp�c�	 and comp�b�	 follows comp�c�	 until comp�a�	 and comp�b�	 join in
some node w� All the bits� where a� and b� di�er� are read on both computations before
reaching w� Hence� a� and b� form a forgetting pair�
If Aj� aj and bj for all j � �� � � � � i� where i � s� are already constructed� we continue

in the following way� consider only those inputs which equal aj on Aj for all j � �� � � � � i�

These inputs de�ne a restriction Pi of P � Since j
iS

j��
Ajj � �� log� c � �	�s  �	 �

d  � log� c  � and r � � log� c � �� each computation of Pi tests at least r variables�
If not� then during a computation of P less than d bits are tested� This would be a
contradiction to the assumptions of the lemma� Now� the construction of U�� U�� � � � � Ur

applied in the �rst part of the proof to P is applied to Pi� Using this� ai��� bi�� and
Ai�� are de�ned in the same way as a�� b� and A� above� Note that� by construction�

Ai�� containes only variables not in
iS

j��
Aj�

It follows from the construction that �i	 is satis�ed� Moreover� the construction of ai
and bi implies that the computations for the partial inputs �a�� ���� ai� and �a�� ���� ai��� bi�
lead to the same node� Hence� the inputs �a�� � � � � as� and �a�� � � � � ai��� bi� ai��� � � � � as�
form a forgetting pair� �

De�nition ��� For every nonzero natural numbers m� t let gm�t be the Boolean func�
tion of �m � �	t variables de�ned as follows� The input of gm�t is treated as an m by
t 	�
 matrix A and a 	�
 vector u of length t� Then� let gm�t�A�u	 � � if and only if
Au � �

In order to prove that gm�t is hard for ����s	
b� p� for some s� we will �nd an
appropriate m by t matrix A and then we prove a lower bound on the size of any
����s	
b� p� computing gm�t�A�u	 as a function of u only� The properties of the
matrix A needed for this are stated in the following de�nition�
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De�nition ���
An m by t matrix A will be called bad� if the two following conditions are satis�ed
�a� For every nonzero u � f� �gt� if juj � m� log� t� then Au �� �
�b� For every partial input u with at most bt��c speci�ed coordinates� there

exists a total input u� extending u such that Au� � �

Since the multiplication of a vector u by a �xed matrix A is a linear operation�
the property �a	 implies also the following� If u� v are distinct vectors� Au �  and
the Hamming distance of u and v is less than m� log� t� then Av �� � In terms of the
linear codes� this means that the code fu � Au � g has the minimum distance at least
m� log� t�

Lemma ��� Let m and t be some nonzero natural numbers such that a bad m by
t matrix exists� Let s be such that �m�s � �	 � t log� t� Then� every ����s	�b� p�
computing gm�t has the size at least ��m� log� t������

Proof� Assume� A is a bad m by t matrix� Assume that a b� p� P computes gm�t and
each of its computations reads at most s input bits repeatedly� Let P � be the restriction
of P computing gA�u	 � gm�t�A�u	� By de�nition� the function gA is a function of t
variables� Clearly� P � is not larger than P and it is also ����s	
b� p� Let the size
of P � be c and let the minimum number of variables read on a computation path be
d� Then d � t��� because every partial input u of at most t�� �xed variables may be
extended to an input x with gA�x	 � � and also to x� with gA�x�	 � � The existence
of x follows from �b	� The input x� may be chosen as an extension of u di�ering from
x in one coordinate� By �a	� we then have gA�x�	 � �
The lower bound on the size of P � is proved by contradiction� Assume that

� log� c� � � m� log� t� ����	

Multiplying this with the inequality �m�s � �	 � t log� t from the assumptions of the
lemma� we obtain

�� log� c� �	�s� �	 � t��� ����	

This together with d � t�� implies that the assumptions of Lemma ��� are satis�ed
for P �� gA and s replaced by s � �� Consider the partial inputs guaranteed by the
lemma� By �b	 from de�nition of a bad matrix and ����	� it is possible to extend
�a�� ���� as��� to an input x � �a�� ���� as��� a� with gA�x	 � �� For i � �� ���� s � � let
yi � �a�� ���� bi� ���� as��� a�� The inputs x and yi form a forgetting pair� Moreover� the
Hamming distance of x and yi is at most � log� c � � � m� log� t� Hence� by �a	 we
have gA�yi	 � � Consider the node w from De�nition ��� used to x and yi� This node
is reached by the computation for x and also for yi� However� since gA�x	 �� gA�yi	�
the computations for x and yi reach di�erent sinks� Hence� there is a node w� reached
by both computations after w� where an input bit di�ering x and yi is read� Since this
bit was read also before reaching w� it is read twice in both computations� Since the
sets of input bits� where x and yi di�er are disjoint for di�erent i�s� the computation
for x reads at least s� � input bits twice� This is a contradiction� Hence� ����	 is not
satis�ed and we have log� c � �m� log� t �	��� �
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Lemma ��� For every natural number t large enough and any natural number m
satisfying � log� t � m � t��� there exists a bad m by t matrix A�

Proof� For the proof of the existence of A we will replace �b	 by the following stronger
property�
�b�	 The linear span of any tbt��c columns of A is the whole space f� �gm�
By the following argument� �b�	 � �b	� If u� is a total input extending a partial

input u� then Au� is a sum of two groups of columns in A� The �rst group are the
columns corresponding to nonzero coordinates in the partial input u and the second
group correspond to nonzero coordinates extending u to u�� Because of �b�	� for any u
of at most bt��c speci�ed coordinates it is possible to choose the extension u� in such
a way that the two groups of columns have the same sum� Then� the total sum is zero�
This implies �b	�
The existence of A with �a	 and �b�	 wil be established by proving that a matrix

chosen at random satis�es these properties with positive probability� Assume� the
entries of A are equal to � with probability ��� and that they are independent�
Let Bu be the event Au � � If u is a �xed nonzero vector� then Au is uniformly

distributed over f� �gm� Hence� the probability of Bu is �
�m� The probability of the

disjunction of Bu over some set of vectors u is at most the sum of the probabilities of
corresponding Bu� Hence� the probability that �a	 is not satis�ed is at most ��m times
the number of nonzero u� juj � m� log� t� It is easy to verify that for every k at most
�t� �	�� we have� using also Stirling�s formula�

kX
j��

�
t

j

�
� �

�
t

k

�
� �

�
te

k

�k
�

Using this and the fact that the last expression is nondecreasing in k� if k is considered
a real variable between  and t� we obtain that the probability that �a	 is not satis�ed
is at most

�

�
t

bm� log� tc
�
��m � �

�
et log� t

m

�m� log� t

��m� ����	

By the assumptions of the lemma� m � �e log� t� This implies that the fraction
inside the bracket in ����	 is at most t��� Hence� ����	 is bounded by

�
�
t

�

�m� log
�
t

� ��m � � � ��m� log
�
t � �m � ��m � �

��
� ����	

Now� let us consider the property �b�	� A group of columns generates the whole
space f� �gm i� it is not contained in any subspace of dimension m  �� i�e� in a set
of the form fz � hv� zi � g� where v is a nonzero vector from f� �gm and h�� �i denotes
the scalar product mod �� Consider the following property�
�b�	 Every nonzero vector v � f� �gm has nonzero scalar product with at

least bt��c � � columns of A�
We shall prove that �b�	 and �b�	 are equivalent� To prove �b�	 � �b�	� consider a

nonzero v � f� �gm� If �b�	 is not satis�ed� then there is a group of tbt��c columns
of A with zero scalar product with some nonzero v� This contradicts �b�	� since these
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columns do not generate the whole f� �gm� To prove �b�	� �b�	� consider some group
of t bt��c columns of A� By �b�	 and the characterization of subspaces from above�
for any subspace of f� �g of dimension m  �� there is a column in this group not
contained in the subspace� This implies �b�	�
The probability of �b�	 may be estimated as follows� Fix some nonzero v � f� �gm

and letXi be the scalar product of v and the i
th column of A� TheX �

is are independent
and Pr�Xi � �	 � ���� Let h � t��  bt��c � t��� The probability that �b�	 is not
satis�ed for the given particular v is� by Cherno� inequality �see e�g� ���	

Pr

�
tX

i��

Xi � bt��c � t�� h	

�
� e��h

��t � e�t�	

Since there are �m� nonzero vectors v� the probability that �b�	 is not satis�ed for
at least one of them is the probability of the disjunction of �m� events of probability
at most e�t�	� Hence� the probability that �b�	 is not satis�ed is at most ��m�	e�t�	�
This is at most ���e	t�	� sincem � t��� Hence� the probability that �b�	 is not satis�ed
tends to zero with increasing t� Together with ����	� this implies that the probability
that a random matrix does not satisfy some of the conditions �a	 and �b�	 is less than
� for t large enough� This proves the existence the required bad matrix A� �

De�nition ��	 For every natural number n � �� let the Boolean function fn be de�ned
as follows� The �rst �dlog� ne bits are considered the binary representation of natural
numbers m and t� If m � � t �  or �m� �	t � n  �dlog� ne� the function fn is 	�
Otherwise� fn is equal to gm�t applied to the next �m��	t bits after the representations
of m and t�

Theorem ��� For every � � �� �	 and n large enough� any ����n�	�b� p� computing

fn has size at least exp���
q
n���� log� n		�

Proof� In order to prove the theorem� we choose appropriate numbersm and t depend

ing on n and �� Then� we use the fact that every ����n�	
b� p� computing fn may be
transformed by appropriate setting of the �rst �dlog� ne variables to a ����n�	
b� p�
computing gm�t� Then� we apply Lemma ��� to this new b� p� Since a setting of some
variables does not increase the size of the b� p�� the lower bound obtained for gm�t in
this way is valid also for fn�
Let

m� � ��� � n�������
q
log� n

t� � �
n�������p
log� n

�

Moreover� let m � bm�c and t � bt�c� It is easy to verify that m � �� � o��		m��
t � �� � o��		t� and log� t � log� t� � o��	 � �� � o��		 log� t��
Since �m � �	t � ��� � n � o�n	 � n  �dlog� ne� the value of fn for this choice

of m and t is determined by gm�t applied to appropriate input bits� Since m � o�t	
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and log� t � O�log� n	 � o�m	� the assumption of Lemma ��� is satis�ed� Hence� there
exists an m by t bad matrix� In order to use Lemma ��� for s � n�� it remains to
verify its assumption on s� namely �m�s� �	 � t log� t� We have

t log� t

�m
� �� � o��		

t� log� t�
�m�

� �� � o��		 � �n� � log� t�
log� n

� ����	

Since
log� t�
log� n

�
� � �

�
 o��	 � �

�
�

we have that ����	 is at least �� � o��		 � ��� � n� � n� � ��
Lemma ��� implies that the size of any ����n�	
b� p� computing gm�t and hence fn

is exp���m� log� t		� This implies the theorem� since

m

log� t
� ��  o��		

m�

log� n
� �� o��		 � �

�
� n

�������

p
log� n

�

�
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