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Abstract

By (1,4k(n))-branching programs (b. p.) we mean those b. p. which during each of
their computations are allowed to test at most k(n) input variables repeatedly. For a
Boolean function computable within polynomial time a trade-off is presented between
the number of repeatedly tested variables and the size of any b. p. P computing
the function. Namely, if at most n® repeated tests are allowed, where « is a constant
satisfying 0 < o < 1, then the size of P is at least exp(Q(y/n'=/log, n)).

The presented result is a step towards a superpolynomial lower bound for 2-b. p.
which is an open problem since 1984 when the first superpolynomial lower bounds for
I-b. p. were proven [8], [10]. The present result is an improvement on [12].
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1 Introduction

A branching program (b. p.) is a computation model for representing the Boolean
functions. The input of a branching program is a vector consisting of the values of n
Boolean variables. The branching program itself is a directed acyclic graph with one
source. The out-degree of each node is at most 2. Every branching node, i.e. a node of
out-degree 2, is labeled by the index of an input variable and one of its out-going edges
is labeled by 0, the other one by 1. The sinks (out-degree 0) are labeled by 0 and 1. A
branching program determines a Boolean function as follows. The computation starts
at the source. If a node of out-degree 1 is reached, the computation follows the unique
edge leaving the node. In each branching node the variable assigned to the node is
tested and the out-going edge labeled by the actual value of the variable is chosen.
Finaly, a sink is reached. Its label determines the value of the function for the given
input. By the size of a branching program we mean the number of its nodes.

The branching programs were introduced because of their relation to P =7LOG
problem. Namely, the polynomial size b. p. represent a nonuniform variant of LOG.
Hence, a superpolynomial lower bound on b. p. for a Boolean function computable
within polynomial time would imply P # LOG.

In order to investigate the computing power of branching programs, restricted mod-
els were suggested. Besides the hope that these restricted models help to solve the
general problem, some kinds of the restricted branching programs are important also
as a data structure for representing the Boolean functions in some CAD applications,
e.g. design or verification of Boolean circuits, see e.g. [9].

One possible kind of restriction of the b. p. is to bound the number of repeated
tests of each variable. In a k-b. p., each computation can test each variable at most
k times. Even more restrictive assumption is the following. In a syntactic k-b. p., on
each path from the source to a sink, each variable is tested at most & times. This is
more restrictive, since in a b. p., there may be pathes that are not followed by any
computation.

In 1984 the first superpolynomial lower bounds for 1-b. p. were proven [8], [10]. The
first steps towards the case of 2-b. p. were made with real-time b. p., which perform
at most n steps during each computation on any input of length n. The results were a
quadratic lower bound [3], a subexponential lower bound [11] and an exponential lower
bound [5]. For (even nondeterministic) syntactic k-b. p., exponential lower bounds
have been proven [2], [4]. However the problem for 2-b. p. remains open.

There are also other models that are more powerfull than 1-b. p., but probably
not more powerfull than 2-b. p. Namely, (1,4k(n))-b. p. is a b. p., where for each
computation, the number of variables tested more than ones is at most k(n). There is
no restriction on the number of tests of these at most k(n) variables. Again, syntactic
(1, +k(n))-b. p. are b. p., where the above restriction is applied to any path from the
source to a sink, not only to the computations.

For syntactic (1,4k(n))-b. p., where k(n) is bounded by en'/?/ logg/Sn for an
appropriate ¢ > 0, exponential lower bound and tight hierarchies (in k(n)) are presented
in [6] and [7]. In the present paper, we prove an exponential lower bound for (1, +n%)-b.
p., where « is any fixed real number in (0, 1), computing a function f,. The function



fn 18 computable in polynomial time and, in fact, it is in ACC. A preliminary result
implying an exponential lower bound for another function and for (1, +n%)-b. p., where
a is any constant satisfying o < 1/2, is presented in [12].

2 The lower bound

First, we shall discuss some notation. As an input to a b. p. we shall consider also
partial inputs. This means that the input variables may have values 0, 1 and *. In the
last case, we say that the corresponding input variable is not specified by the (partial)
input. For an input u let comp(u) denotes the sequence of nodes of the b. p. visited
during the computation on u. For a partial input u, we say that the computation for
u leads to a node w, if w is the first branching node on the computation for u, which
tests a variable not specified by u.

If v is a vector, then its ¢-th coordinate is denoted by wu(i). By subscripts, we
distinguish different vectors. If u € {0,1}", then |u| denotes the number of ones in w.

Assume, P is a b. p. computing a function f and let f’ be a subfunction of f
obtained by setting some variables of f to constants. By changing every branching
node of P labeled by a variable involved in the setting to a node with out-degree one
and with an appropriate successor, we may obtain a b. p. P’ computing f’. The b. p.
P’ will be called a restriction of P.

Definition 2.1 Let [ = {1,...,n} be the set of indices of the input variables. Let
U, Uz, ..., us be (partial) inputs and let for all © = 1,2,...,s, A; C I be the set
of indices of the wvariables specified in u;. Let A; be pairwise disjoint. Then, let
[u1, g, ..., us] be the (partial) input specifying the variables with the indices from
Ui, Ai such that if j € A;, then [ug, uz, ... us)(3) = ui(7).

Definition 2.2 Let a, b be (partial) inputs with the same set of specified variables and
D = {i:a(i) #b(1)}. The pair a, b is called a forgetting pair, if there is a node w
in the branching program such that w belongs to both comp(a) and comp(b) and both
computations read all the variables with indices in D at least ones before reaching w.

Lemma 2.3 Let ¢ be the size of a branching program P and let every computation
of P reads at least d different variables. Let s > 1 be a natural number such that
(2logyc + 1)s < d. Then there exist pairwise disjoint sets A; C {1,2,....,n} fori =
1,...,s and partial inputs a; : A; — {0,1} and b; : A; — {0,1}, a; # b; such that for all
1 =1,2,...,8 we have

(1) |Ai] < 2logye+1,

(ii) the inputs [ay, ..., as] and [aq, ..., a;—1, b, @iy, ..., as] form a forgetting pair.

Proof: Let r = |logyc| +1 > log,c. By our assumption, every computation of P
reads at least r variables, since r < 2log, ¢+ 1 < d. We shall construct a sequence
Uo, Ui, ..., U, of sets of partial inputs in such a way that for every : = 0,1,...,r, the
set U; consists of 2¢ inputs with exactly ¢ specified bits. In particular, Uy contains only
the totaly undefined input. Given U;, the set U;y1 is constructed as follows. For each



u € U;, follow the computation for u until the first bit not specified by u is required.
Let j be its index. Then, include into U,y the inputs ug and u; extending u by setting
the j-th bit to 0 and 1 respectively. Now, since 2" > ¢, there are at least two distinct
inputs in U,, say ¢; and ¢y, such that the computation for both these inputs lead to
the same node. Note that, by construction of U,, there is a bit specified by both ¢; and
¢y, but with different values in ¢; and ¢;. Moreover, for both ¢ = 1,2, the computation
for ¢; reads all the bits specified by ¢;.

Let C; be the set of bits tested by comp(ci) and Cy be the set of bits tested by
comp(cy). Let Ay = C1 U Cy. Since C1NCy # 0, A < 2r —1 < 2logyc+ 1. Let a
partial input a; extends ¢; in such a way that the bits with indices in A; not determined
in ¢; are equal to the values of these bits in ¢;. Similarly, b; extends ¢; so that the bits
undefined in ¢; have the same value as in ¢;. Hence, a; and b; may differ on the bits
with indices from (7 N 5 and the bits with indices from the symmetric difference of
(1 and Oy are specified in both @y and b; and equal. One can easily see that comp(ay)
follows comp(er) and comp(by) follows comp(cy) until comp(ar) and comp(by) join in
some node w. All the bits, where a; and b, differ, are read on both computations before
reaching w. Hence, a; and b; form a forgetting pair.

If Aj,a;and b; for all y = 1,...,2, where ¢ < s, are already constructed, we continue
in the following way: consider only those inputs which equal a; on A; forall y =1,... 2.
These inputs define a restriction P; of P. Since | LZJ Ajl < (2logge+ 1)(s —1) <

=1

]:
d—2log,c—1 and r < 2log, ¢ + 1, each computation of P; tests at least r variables.

If not, then during a computation of P less than d bits are tested. This would be a
contradiction to the assumptions of the lemma. Now, the construction of Uy, Uy, ..., U,
applied in the first part of the proof to P is applied to P;. Using this, a;41, b;41 and
Aiyq are defined in the same way as aq, by and A; above. Note that, by construction,

Aiy1 containes only variables not in U Aj.

=1
It follows from the construction that (i) is satisfied. Moreover, the construction of a;
and b; implies that the computations for the partial inputs [aq, ..., «;] and [aq, ..., a;_1, b;]
lead to the same node. Hence, the inputs [a1,...,a,] and [ay, ..., a;_1,b;, a1, ..., a]

form a forgetting pair. O

Definition 2.4 For every nonzero natural numbers m, t let g, be the Boolean func-
tion of (m + 1)t variables defined as follows. The input of ¢y is treated as an m by
t 0-1 matriz A and a 0-1 vector u of length t. Then, let g, +(A,u) =1 if and only if
Au=0.

In order to prove that ¢, : is hard for (1,+s)-b. p. for some s, we will find an
appropriate m by ¢ matrix A and then we prove a lower bound on the size of any
(1,+s)-b. p. computing ¢, +(A,u) as a function of u only. The properties of the
matrix A needed for this are stated in the following definition.



Definition 2.5
An m by t matriz A will be called bad, if the two following conditions are satisfied
(a) For every nonzero u € {0,1}, if |u| < m/log,t, then Au # 0.
(b)  For every partial input v with at most |t/4] specified coordinates, there
exists a total input u' extending u such that Au' = 0.

Since the multiplication of a vector u by a fixed matrix A is a linear operation,
the property (a) implies also the following. If u, v are distinct vectors, Au = 0 and
the Hamming distance of u and v is less than m/log, ¢, then Av # 0. In terms of the
linear codes, this means that the code {u : Au = 0} has the minimum distance at least
m/log,t.

Lemma 2.6 Let m and t be some nonzero natural numbers such that a bad m by
t matric exists. Let s be such that 4m(s 4+ 1) < tlog,t. Then, every (1,4s)-b. p.
computing gm; has the size at least 207/10821=1)/2

Proof: Assume, A is a bad m by ¢ matrix. Assume that a b. p. P computes ¢,,; and
each of its computations reads at most s input bits repeatedly. Let P’ be the restriction
of P computing g4(u) = ¢gm+(A,u). By definition, the function g4 is a function of ¢
variables. Clearly, P’ is not larger than P and it is also (1,4+s)-b. p. Let the size
of P’ be ¢ and let the minimum number of variables read on a computation path be
d. Then d > t/4, because every partial input u of at most ¢/4 fixed variables may be
extended to an input @ with g4(«) = 1 and also to =’ with g4(2’) = 0. The existence
of « follows from (b). The input 2’ may be chosen as an extension of u differing from
x in one coordinate. By (a), we then have g4(z") = 0.
The lower bound on the size of P’ is proved by contradiction. Assume that

2logsc+ 1 < m/log,t. (2.1)

Multiplying this with the inequality 4m(s + 1) < tlog, ¢ from the assumptions of the
lemma, we obtain

(2logyc+ 1)(s+ 1) < t/4. (2.2)

This together with d > /4 implies that the assumptions of Lemma 2.3 are satisfied
for P, g4 and s replaced by s + 1. Consider the partial inputs guaranteed by the
lemma. By (b) from definition of a bad matrix and (2.2), it is possible to extend
[a1, ..., a541] to an input @ = [aq,...,as11,a] with ga(x) = 1. For ¢ = 1,...;s + 1 let
Y = [a1, ..., iy .y asiq,al. The inputs x and y; form a forgetting pair. Moreover, the
Hamming distance of x and y; is at most 2log, ¢ + 1 < m/log,t. Hence, by (a) we
have g4(y;) = 0. Consider the node w from Definition 2.2 used to « and y;. This node
is reached by the computation for  and also for y;. However, since g4(x) # ga(v:),
the computations for x and y; reach different sinks. Hence, there is a node w’ reached
by both computations after w, where an input bit differing = and y; is read. Since this
bit was read also before reaching w, it is read twice in both computations. Since the
sets of input bits, where x and y; differ are disjoint for different 7's, the computation
for x reads at least s + 1 input bits twice. This is a contradiction. Hence, (2.1) is not
satisfied and we have log, ¢ > (m/log,t —1)/2. O



Lemma 2.7 For every natural number t large enough and any natural number m
satisfying 6logyt < m < t/8, there exists a bad m by t matriz A.

Proof: For the proof of the existence of A we will replace (b) by the following stronger
property.
(b’) The linear span of any ¢ — |t/4] columns of A is the whole space {0,1}™.

By the following argument, (b’) = (b). If «’ is a total input extending a partial
input u, then Au’ is a sum of two groups of columns in A. The first group are the
columns corresponding to nonzero coordinates in the partial input v and the second
group correspond to nonzero coordinates extending u to u’. Because of (b’), for any u
of at most [t/4] specified coordinates it is possible to choose the extension v’ in such
a way that the two groups of columns have the same sum. Then, the total sum is zero.
This implies (b).

The existence of A with (a) and (b’) wil be established by proving that a matrix
chosen at random satisfies these properties with positive probability. Assume, the
entries of A are equal to 1 with probability 1/2 and that they are independent.

Let B, be the event Au = 0. If u is a fixed nonzero vector, then Au is uniformly
distributed over {0,1}™. Hence, the probability of B, is 27™. The probability of the
disjunction of B, over some set of vectors u is at most the sum of the probabilities of
corresponding B,. Hence, the probability that (a) is not satisfied is at most 27 times
the number of nonzero u, |u| < m/log,t. It is easy to verify that for every k at most
(t 4+ 1)/3 we have, using also Stirling’s formula,

% () =2() =)

Using this and the fact that the last expression is nondecreasing in k, if k is considered
a real variable between 0 and ¢, we obtain that the probability that (a) is not satisfied

m/logy t
2 ! gom < o (1082t 2=, (2.3)
|m/ log, ] m

By the assumptions of the lemma, m > 2elog,t. This implies that the fraction
inside the bracket in (2.3) is at most ¢/2. Hence, (2.3) is bounded by

is at most

m/log, t
5 (i) T g gt gm 9w <L (2.4)
2 32

Now, let us consider the property (b’). A group of columns generates the whole
space {0, 1}™ iff it is not contained in any subspace of dimension m — 1, i.e. in a set
of the form {z : (v,z) = 0}, where v is a nonzero vector from {0,1}™ and (.,.) denotes
the scalar product mod 2. Consider the following property.
(b”) Every nonzero vector v € {0,1}™ has nonzero scalar product with at

least [t/4] + 1 columns of A.

We shall prove that (b”) and (b’) are equivalent. To prove (b’) = (b”), consider a
nonzero v € {0,1}™. If (b”) is not satisfied, then there is a group of ¢t — [¢/4] columns
of A with zero scalar product with some nonzero v. This contradicts (b’), since these



columns do not generate the whole {0, 1}™. To prove (b”) = (b’), consider some group
of t — [t/4] columns of A. By (b”) and the characterization of subspaces from above,
for any subspace of {0,1} of dimension m — 1, there is a column in this group not
contained in the subspace. This implies (b’).

The probability of (b”) may be estimated as follows. Fix some nonzero v € {0,1}"
and let X; be the scalar product of v and the 2-th column of A. The X/s are independent
and Pr(X; = 1) = 1/2. Let h =1/2 — [t/4] > t/4. The probability that (b”) is not
satisfied for the given particular v is, by Chernoff inequality (see e.g. [1])

Pr (Zt: X, < [t/4] =t/2— h)) < et < o t/8

=1

Since there are 27" — 1 nonzero vectors v, the probability that (b”) is not satisfied for
at least one of them is the probability of the disjunction of 27 — 1 events of probability
at most e~*/®. Hence, the probability that (b”) is not satisfied is at most (27 —1)e~"/%.
This is at most (2/¢)/®, since m < /8. Hence, the probability that (b”) is not satisfied
tends to zero with increasing ¢. Together with (2.4), this implies that the probability
that a random matrix does not satisfy some of the conditions (a) and (b”) is less than
1 for ¢ large enough. This proves the existence the required bad matrix A. O

Definition 2.8 For every natural number n > 6, let the Boolean function f, be defined
as follows. The first 2[log, n]| bits are considered the binary representation of natural
numbers m and t. If m =0,t =0 or (m+ 1)t > n —2[log,n], the function f, is 0.
Otherwise, f, is equal to g, + applied to the next (m + 1)t bits after the representations
of m and t.

Theorem 2.9 For every o € (0,1) and n large enough, any (1,4n%)-b. p. computing
fn has size at least exp(Q(y/n'=/logyn)).

Proof: In order to prove the theorem, we choose appropriate numbers m and ¢ depend-
ing on n and a. Then, we use the fact that every (1,4n)-b. p. computing f, may be
transformed by appropriate setting of the first 2[log, n] variables to a (1,4+n)-b. p.
computing ¢,, .. Then, we apply Lemma 2.6 to this new b. p. Since a setting of some
variables does not increase the size of the b. p., the lower bound obtained for g, in
this way is valid also for f,.

Let

mo = 1/4-n=972 Jlog,n

p(140)/2

Viog,n

tozg

Moreover, let m = |mg| and t = [to]. It is easy to verify that m = (1 + o(1))my,
t=(14o0(1))ty and log, t = log, to + o(1) = (1 + o(1)) log, to.

Since (m + 1)t < 3/4-n 4+ o(n) < n — 2[log, n], the value of f, for this choice
of m and t is determined by ¢,,: applied to appropriate input bits. Since m = o(t)

6



and log,t = O(logyn) = o(m), the assumption of Lemma 2.7 is satisfied. Hence, there
exists an m by ¢ bad matrix. In order to use Lemma 2.6 for s = n®, it remains to

verify its assumption on s, namely 4m(s 4+ 1) < tlog,t. We have

o 10g2 lo

t 10g2 t to 10g2 to
“0020 (14 0(1)) 222270 — (1 4 o(1) - .
(14 0(1)) (14 0(1)) - 3n Tog, 1

4im 4dmg

Since

log, n 2
we have that (2.5) is at least (1 +o(1))-3/2-n* > n* + 1.

logyty 1+« o) > %7

(2.5)

Lemma 2.6 implies that the size of any (1, +n%)-b. p. computing ¢, and hence f,

is exp(2(m/log, t)). This implies the theorem, since
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