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Abstract

An efficient method for large sparse equality constrained nonlinear programming prob-
lems is proposed. This method is based on partial elimination of variables in indefinite
KKT system. The direction vector is determined directly, using sparse Gill-Murray
decomposition. The Lagrange multiplier vector is obtained iteratively, using smoothed
conjugate gradient method. The KKT system is preliminarily transformed, which
leads to a special merit function. The efficiency of our algorithm is demonstrated by
extensive numerical experiments.
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1 Introduction
Consider the problem of finding a point z* € R", such that

T :arggg}lF(x), (1.1)

where F C R" is a feasible set defined by the system of equations
F={x€R":¢(x)=0,1 <k <m}. (1.2)

where m < n (in fact we consider only local minimum). Here F : R" — R and
c. : R* — R, 1 < k < m, are twice continuously differentiable functions, whose
gradients and Hessian matrices will be denoted by VF(x), Ver(x), 1 < k < m,
and V*F(z), Vici(z), 1 < k < m, respectively. Furthermore, we use the notation
c(z) = [e1(z), ..., en()]T and A(z) = [a1(2),...,an(2)] = [Vei(z),...,Ven(z)] and
we suppose that the matrix A(x) has a full column rank. Then the solution * € R" of
the problem (1.1)-(1.2) satisfies the Karush-Kuhn-Tucker (KKT) conditions, i.e. there

exists a vector u* € R™, such that

V.L(z*,u*) = VF(2")+ A(a™)u™ =0, (1.3)
VuL(z"u™) = e(a™) =0,

where

L{z,u) = F(x)+ uTc(:L')

is the Lagrangian function, whose gradient and Hessian matrix will be denoted by

glx,u) = V,.L(z,u)=VF(x)+ kij: uEVeg(x),

G(z,u) = ViL(z,u)=V*F(z)+ i upViex(z),

k=1

and (z*,u*) € R™™ is the KKT pair (first order necessary conditions). Let Z(z) be
the matrix whose columns form an orthonormal basis in the null space of AT(z) so
that AT(z)Z(x) = 0 and ZT(2)Z(x) = I. Tf, in addition to (1.3)-(1.4), the matrix
ZT(2*)G(x*, u*) Z(x*) is positive definite, then the point * € R" is a solution of the
problem (1.1)-(1.2) (second order sufficient conditions).

Basic methods for a solution of the problem (1.1)-(1.2) are iterative and their iter-
ation step has the form

v = x+ad, (1.5)

ut = U+ av,

where (d,v) € R™™ is a direction pair (d € R" is a direction vector) and o > 0 is a
stepsize. In this contribution, we confine our attention to methods derived from the



Newton method used for a solution of the KKT system (1.3)-(1.4). The iteration step
of the Newton method has the form (1.5)-(1.6), where o = 1 and

l le(f(vrr/‘u)) Agx) ] l i] = l oo ] : (1.7)

This is a system of n + m linear equations with n 4+ m unknowns (d,v) € R"*™. The

K:[fT ﬂ (1.8)

matrix

is always indefinite (cf. Theorem 1). Moreover, the matrix (¢ is not positive definite in
general even if the matrix Z7 (G Z is. This fact can lead to some difficulties. Therefore,
it is advantageous to transform the system (1.7) in such a way as to contain, if possible,
a positive definite matrix in the left-upper corner. This can often be done by addition
of the second equation, multiplied by pA, to the first equation (cf. Theorem 2), which

vields
2l 1)

B:G—I—pAAT,
b=g+4 pAc=VF 4+ Au+ pAc.

where

Using a partial elimination of variables, (1.9) can be transformed to the form

Bd = —(b+ Av), (1.10)
ATB™'Av = c¢— ATB™', (1.11)

If the matrices A and B are dense, then we can construct matrix AT B~' A, determine
vector v using (1.11) and compute vector d by substituting v into (1.10). If the matrices
A and B are large and sparse, then matrices B~! and, especially, AT B™' A are usually
dense, and we cannot use this way. In this case, we can solve the system (1.9) either
iteratively using the smoothed conjugate gradient method [10] or directly using the
sparse Bunch-Parlett [1] decomposition. However, the matrix K has relatively large
dimension n + m and its nonzero elements, derived from the matrix A, are usually far
from the main diagonal, which can lead to considerable fill-in. Therefore, it is usetul
to find another possibility which removes these insufficiences.

In this contribution, we will concentrate on a combined direct and iterative method,
which is based on the equations (1.10)-(1.11). Equation (1.10) will be solved directly
using the sparse Gill-Murray [5] decomposition

LDLT = B+ F, (1.12)

where [ is a nonsingular lower triangular matrix, D is a positive definite diagonal
matrix and £ is a positive semidefinite diagonal matrix. The matrix F is determined in
such a way as to guarantee positive definiteness of the matrix B+ E (if B is sufficiently
positive definite, then £ = 0). Equation (1.11) will be solved iteratively using the

2



smoothed conjugate gradient method. An advantage of this approach consists in the
fact that the matrix B has a lower dimension n and its elements are not usually too
far from the main diagonal, which leads to a lower fill-in. Moreover, equation (1.11)
can be solved approximately, like the truncated Newton method for unconstrained
optimization [3]. However, this procedure lays a higher emphasis on the determination
of the parameter « in (1.5)-(1.6), i.e. on the choice of a merit function for the stepsize
selection.

The contribution is organized as follows. In Section 2, we propose some results
concerning system (1.9), define the special merit function (2.5) suitable for inexact
solution to the system (1.9) and show a correctness of the Armijo type line search
procedure. Section 3 contains a detailed description of our algorithm for large sparse
equality constrained nonlinear programming problems together with results obtained
by extensive numerical experiments.

In this contribution, we denote by ||.|| the Euclidean (or spectral) norm and by ||.||1
the /; norm (sum of absolute values).

2 Direction determination and stepsize selection

For the solution of equations (1.10)-(1.11), we can use the Gill-Murray decomposition
(1.12). If the matrix B is indefinite, which is a frequent situation when p = 0, then
the matrix B + F can be different enough from the matrix B, and good convergence
properties of the Newton method can be lost. Therefore, it can be advantageous to
use the value p > 0. The following theorems hold for the matrix K defined by (1.8)
and the matrix B = G + pAAT:

Theorem 1. Let ky, k_ and ky be the number of positive, negative and zero eigen-
values of the matrix K and let [, [_ and ly be the number of positive, negative and
zero eigenvalues of the matrix ZTGZ. Then k_ = 1_+m, ky =1, +m and ko = lo.

Proof. See [6].

Theorem 2. Let the matrix ZTGZ be positive definite. Then there exists a number
p > 0, such that the matrix B is positive definite whenever p > p.

Proof. See [4].

Theorem 3. Let the matrix K be nonsingular. Then there exists a number p > 0,
such that the matrix AT B='A is positive definite whenever p > p.

Proof. (a) First we prove that there exists a number py > 0 such that the matrix
G + pAAT is nonsingular whenever p > po. From Theorem 1, we can deduce that
nonsingularity of the matrix K implies nonsingularity of the matrix Z7G'Z. Therefore,
there exists a number G > 0 such that [|[ZTGZz|| > GJz| V2 € R*™. Denote
Y = A(ATA) ' so that ATY =1, ZTY =0 and ||Y|| < A/A*, where A = ||A]| and A
is the lowest singular value of the matrix A. Then every vector * € R" can be uniquely
expressed in the form ¢ = Yy + Zz, where y € R™ and z € R"™™. Suppose that

(G + pAAT):L' =GYy+ GZz+ pAy =0



for some nonzero vector @ € R". Then necessarily
7'aYyy+77GZ2 =0 (2.1)
and
yIYTCGYy + YT GZz 4 pyTy = 0. (2.2)
From (2.1) we obtain

GA
Sl 2 127Gyl = 12767z 2 G-

where GG = ||7]], so that ||z]] < (GA)/(GA?)||y||. On the other hand, we can write

2

GA GA
— vl = = Iwlll=|

aA 4 G
P A a

yIYTGYy +y"YTGZz 4 py"y = plyll -

Iy 117,

so that (2.2) cannot be satisfied if ||z]| > 0 and p > po, where pg > (@2/A4)(1 +
(G/G)), which is a contradiction.

(b) Denote By = G + poAAT. Since the matrix By is nonsingular by (a), its Schur
complement AT B;'A in the matrix K is also nonsingular. Let p be an eigenvalue of
the matrix AT By ' A and w be a corresponding eigenvector. Then we obtain successively

ATB; Aw = pw
By'AATBy Aw = pBy ! Aw
(14 (p = po) By ' AAT) By Aw = (14 (p — po)n) By ' Aw
(14 (p = po)p) ™' Byt Aw = (I + (p — po) By ' AAT) T Byt Aw
(14 (p = po)p) ' AT By ' Aw = AT(Bo + (p — po) AAT) ™ Aw
p(1+ (p = po)p)~'w = ATB™ Aw

provided p — pg # —1/p. Consider the function A(u) = p/(1 4 (p — po)p) for a given
p > po. If 1 >0, then A(g) > 0 for an arbitrary p > po. If p < —1/(p — po) < 0 then
again A(p) > 0. Therefore, if either g > 0 or p < —1/(p — po) < 0 for all eigenvalues
of the matrix AT By A, then all eigenvalues A(u) of the matrix AT B~!'A are positive.
This situation appears if p > 7 > po — 1/po, where po < 0 is the greatest negative
eigenvalue of the matrix AT By ' A. O

Theorem 3 has a practical corolary. It shows that there exists a transformation of
system (1.7), such that the system (1.11) has positive definite matrix. This fact is very
advantageous for application of the conjugate gradient method to (1.11).

In the subsequent considerations, we will suppose that LDLT = B 4 F is the Gill-
Murray decomposition such that BJ|d||* < d'LDLYd < B||d||?> ¥d € R", where B and

B are some constants independent on the current iteration. The left inequality is a



consequence of the Gill-Murray decomposition. If the right inequality is not satisfied,
then the matrix B has to be modified before decomposition.

Using partial elimination of variables, we can transform (1.9) (with LDLT instead
of B) to the form

LDLYd = —(b+ Av), (2.3)
ALY D L Av = e— AT(LTHI DL, (2.4)
We will use the following merit function

Pla)=F(z+ ad) + (u + v)Tc(:L' + ad) + g”c(l' + ad)|]* + ol|c(z + ad)|; (2.5)

for the stepsize selection (o > 0 is an additional penalty parameter). Together with
this merit function we also use its piecewise linear approximation

Pla) = P(0) + ad' (b+ Av) + o([le + aAld) ]l — |lc]l1) (2.6)

and we denote by dP;(0)/da = lim,o( P(a) — P(0))/a the corresponding directional
derivative. The main advantage of the merit function (2.5) is the fact that it implies
a good descent property of an inexact solution to the system (1.9). The following
theorem holds:

Theorem 4. Suppose that B||d||> < d"LDL"d < B||d||* Vd € R". Let v € R™ be
an inexact solution of the equation (2.4) such that ||r|y < ||¢||1, where r € R™ is the
residual vector determined by the formula

r=c— ALY D' L7 — AN(LTH' DT L Av = e+ ATd (2.7)

and d € R" is a solution of the equation (2.3). Then dP,(0)/da < P(1) — P(0) <
—B||d||*.

Proof. Differentiating (2.5) or (2.6) we get

dP (0)/da = d"(b+ Av)+o( > lald+ > afd— " ald)

cE=0 cp >0 cp <0
= dT(b+ Av) + (D (Jex + apd| — |eal) + D (er + affd — |ex])
cx=0 cE >0
— > (e +agd + |ee]))

cp <0

< d'(b+Av) +o(|le+ ATd]ly — lell) = P(1) — P(0).

On the other hand (2.3) and (2.7) imply that

P(1) = P(0) = d"(b+ Av) + o(lle + Ad]ly — [[e[) = —d" LDLYd + o(||r[ly = fle]l1)

which together with the assumptions d* LDLTd > B||d||? and ||r||; < ||c||; gives asser-
tion of the theorem. O



Note that the main reason for use of the Gill-Murray decomposition (1.12) is a re-
quired positive definiteness of the matrix LD LT which is essential for proof of Theorem
4.

Let v € R™ be an inexact solution of the equation (2.4) satisfying assumptions of
Theorem 4 and d € R" be the corresponding solution of the equation (2.3). Then we
can use the standard Armijo rule for steplength determination i.e. o > 0in (1.5)-(1.6)
is chosen so that it is the first member of the sequence 37, j = 0,1,2,...,0 < 3 < 1,
such that B B

Pla) - P(0) < ca(P(1) - P(0)), (25)
where 0 < ¢ < 1. In the subsequent considerations, we will assume that there exist
constants g, G, ¢, A, A, independent of the current iteration, such that |V F(z+ad)|| <
7. IV F(z + ad)| < G, |le(z + ad)|| < @ [J[A(z + ad)|| < A, ||VZe(x + ad)|| < G,
1 <k <m, ||A(x 4+ ad)w|| > A||lw|| Yw € R" hold, respectively, for all 0 < o < 1.

Lemma 1. Let assumptions of Theorem 4 be satisfied (together with assumptions of
boundedness given above). Then there exists a constant K, independent of the current
iteration, such that

P(a) < P(a) + &*K||d||? (2.9)
Vo< a <.
Proof. Since (2.7) implies
r=c— ALY DT LNV E 4 pAc) — AT(LHT D' L7  A(u + v)

and since v < [lrlls < el < varle] and
T AT —-I\NT n-17-1 1 2 Az 2
W AL DT e 2 = Awl 2 S

Yw € R™ hold by assumptions, we can write

2

A _
= et oll < AT DT LT A + o)l < 2(1 + Vim) + (7 + pAe),

so] s

so that

B
le + ol <~ [el + Vim) +

G+ pAc)| 2 T.

oo ml

Applying the Taylor expansion to every term of (2.5) and using (2.6), we get

— 1 — 1 s —
Pla) < Pla)+ 5o’ Glld|I* + 50° > fux + oGl ]

k=1
1 —2 1 7 — 1 LR
+5pat ANd|* + 5pa® 3 el Gld|* + 5oa® > Gld]*
k=1 k=1
— 1 — _ _ — _
< Pla) + 50’ (1L +TVm + pev/m + om)G + pA°] ||d|* 2 P(a) + o’ K||d]|?

Y0 < a <1 (p and o are assumed to be constants). O
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Theorem 5. Let the assumptions of Lemma 1 hold and let d # 0. Then there exist an
integer k > 0 and a number a > 0, independent of the current iteration, such that the
Armijo rule gives the value o = [/, satisfying (2.8), with j < k and a > «a. Moreover

Pla) = P(0) < —ozeBHde. (2.10)
Proof. Since

Pla) = P(0) = a(P(1) = P(0))

o(lle+ aAdlly = [lells) — ao(lle + ATd|l — lel1)
oalle+ AMd|l + (1 = a)fefls = lle]l
—alle+ AMd|| + alle]l) = 0

IA

V0 < a <1, we can write

Pla) = P(0) £ Pla) = P(0) + K|’ < a(P(1) — P(0) + oK ||
< a(P(1) - PO)(1 - )

by Lemma 1 and Theorem 4, so that (2.8) holds whenever a < (B/K)(1 —¢g). Let
k > 0 be chosen so that it is the lowest integer such that é < (B /F)( —¢) and let

o= éj be given by the Armijo rule to satisfy (2.8). Then

_ P2z pa(-0) 2a (2.11)

»N

Using (2.11) and Theorem 4, we get
P(a) = P(0) < ag(P(1) = P(0)) < —aeB|d||*.

O
Now we focus our attention on the inexact solution of equations (2.3)-(2.4). The
matrix AT(L7Y)TD71L71A is positive definite (since A has a full column rank and
LDLY is positive definite), so that the equation (2.4) can be solved by the smoothed
conjugate gradient method [10]. The iterative process is terminated if a sufficient
accuracy, guaranteeing superlinear rate of convergence (see [3]), is reached and, at the
same time, the condition ||r]|l1 < ||¢|]x is satisfied. These facts imply the following
algorithm for the direction determination:

Algorithm 1. Direction determination.

Data: 0 <w < 1.

Step 1: Initiation. Set vy := 0, 7o := ¢ — AL(L™HYTD=LL71b, vy 1= 9y, 10 := 7o
w = min(w, ||ro||), and j := 0.

Step 2: CG iteration. If j > n + 3, then go to Step 6, otherwise set j := 7 + 1.
Compute 3;_y := ||F;—1||*. If j = 1, then set p;,_; := F;_y, otherwise set
pi-1:=Tj-1 + (Bj-1/Bj-2)pj-2. Compute q;_1 := AT(L )TD LT Api
and y;_1 = Bi1/pl_1qj—1 and set ;= 0jy + yjapja, Ty = Tig —
Vi-195-1-



Step 3: Residual smoothing. Compute \; := —(r;_; —7;)17;/||r;_1 — 7;||* and set
vj =05+ Aj(vjor = 05), my =0 4 A (o — 7).

Step 4: Test for sufficient precision. If ||r;||1 > wl|rol]1, then go to Step 2.

Step 5: Test for sufficient descent. If ||r;]|1 > ||¢||1, then go to Step 2.

Step 6: Termination. Set v := wv;, compute the direction vector d :=
—(L_l)TD_lL_l(b + Aw) and terminate the computation.

Note that the main reasons for residual smoothing in Step 3 are requirements ||r||; <
w||roll1 and ||r]|1 < ||¢]l1, so that the norm ||r||; should always be as small as possible.

3 Numerical experiments

Now we summarize results from the previous section and give a detailed description
of our algorithm. This algorithm uses the sparse Gill-Murray decomposition together
with smoothed conjugate gradient method for direction determination and the classical
Armijo rule for stepsize selection.

Algorithm 2. Equality constrained optimization (GM+CG).
Data: p>0,0>0,0<3<1,0<e<1,0<w<1,6>0.
Input: Sparsity pattern of the matrices VZF and A. Initial choice of the vextor x.

Step 1: Initiation. Determine sparsity pattern of the matrix B and carry out its
symbolic Gill-Murray decomposition. Compute the value F' := F(x) and
the vector ¢ := ¢(x). Set v :=0 and ¢ := 0.

Step 2: Termination. Compute the matrix A := A(x) and the vector g := g(x, u).
If ||c|| < 6 and ||g|| < &, then terminate the computation (the solution is
found). Otherwise set ¢ = + 1.

Step 3: Approximation of the Hessian matrix. Compute an approximation GG of
the Hessian matrix G(x,u), using differences of gradient g(x,u) as in [2].
Compute the matrix B := G + pAAT and carry out its numerical Gill-
Murray decomposition.

Step 4: Direction determination. Set w = min(1/:,). Determine the direction
pair (d,v) using Algorithm 1. Set o := 1 and compute values of the merit
function P(«) and its piecewise linear approximation P(«).

Step 5: Termination of the stepsize selection. If P(a) — P(0) < ea(P(1) — P(0)),
then set = := = + ad, v := u + av and go to Step 2.

Step 6: Continuation of the stepsize selection. Set a := Ba, compute value of the
merit function P(«) and go to Step 5.

Computational efficiency of Algorithm 2 was tested using 18 sparse problems, listed in
the Appendix, which had either 50 or 100 variables. We used parameters ¢ = 0.15,
B =05 ¢=10"" T =009, & = 107%, in all numerical experiments. Values of the



parameter p depended on the problem solved as will be shown below. They were
selected to give good results.

The summary of results for all 18 problems is given in Table 1. This table contains
the total number of iterations NIT, the total number of function evaluations NFV,
the total number of gradient evaluations NGR, the total number of conjugate gradient
iterations NCG and the total CPU time on Pentium PC (90 MHz) for double preci-
sion arithmetic implementation. The rows correspond to the direct method with the
Bunch-Parlett (BP) decomposition of the matrix B, our method (GM+CQG) realized
by Algorithm 2 and the smoothed conjugate gradient method (CG) applied directly to
indefinite system (1.9) and preconditioned using the positive definite matrix

LDLT A

C=1 ar AT(L YD L A4 T

(3.1)

where LDLT is an incomplete Gill-Murray decomposition of the matrix B (more details
about preconditioner (3.1) can be found in [9]). For (BP) method we used the values
p = 0.1, p = 0.001 for problems 5,9, respectively, and the value p = 0.0 in the other
cases. For (GM+CG) method we used the values p = 5000.0, p = 0.0, p = 0.1, p = 0.1,
p = 1.0 for problems 8,9,13,15,16, respectively, and the value p = 50.0 in the other
cases. For (CG) method we used the values p = 0.1, p = 50000.0, p = 0.005, p = 0.01,
p = 100.0, p = 0.1, p = 100.0 for problems 5,8,9,10,13,14,15, respectively, and the
value p = 10.0 in the other cases. All methods presented in Table 1 were implemented
using the modular interactive system for universal functional optimization UFO [8].

n = 50 NIT NFV NGR NCG CPU
BP 245 304 1732 0 6.86
GM+4+CG | 258 298 1847 1089  5.60
CG 275 407 2027 3835  13.30
n=100 | NIT NFV NGR NCG CPU
BP 274 326 1909 0 15.60
GM+CG | 265 293 1889 1370 12.52
CG 331 622 2376 4720 34.44
Table 1

From the results presented in Table 1, we can draw several conclusions. First,
our algorithm (GM+CG) is faster and has much lower storage requirements than the
direct method (BP). It is also much faster than the pure iterative method (CG) with
the preconditioner (3.1). Second, efficiency of our algorithm depends on the parameter
p which has sometimes to be adjusted according to the problem to be solved. The pure
iterative method (CG) with the preconditioner (3.1) also has this property. Third, we
have also tested two preconditioners ¢ = ATDA, with D a positive definite dlagonal
approximation to the matrix LDLT, and ¢~ = (ATA) YATLDLT A(AT A)~Y) applied
to the system (2.4). Efficiency obtained in both these cases was worse than that without
preconditioning.



Appendix

This Appendix contains 18 original sparse problems for equality constrained optimiza-
tion. We use, for prime k and [, the notation div(k, ) for integer division, i.e., maximum
integer not greater than k/[, and mod(k,!) for remainder after integer division, i.e.,
mod(k, 1) = I(k/l — div(k,1)). The starting point is . Dense problems HS46 - HS53

can be found in [7].

Problem 1. Chained Rosenbrock function with trigonometric-exponential constrains.

n—1
F(z) = Y [100(2? — 2i41)* + (2 — 1)7]
=1
cp(x) = 3:1;i+1 + 20pq2 — D F sin(Tpp1 — Thgo) sin(pg1 + Tpg2) + vkt

— xpexp(ap — pp1) — 3

1<k<m=n-2
7; = —1.2, mod(s,2) =1
7, = 1.0, mod(:,2) =0

Problem 2. Chained Wood function with Broyden banded constraints.

n/2
F(z) = Y (10025 — 20)* + (22im1 — 1) +90(23,4y — 2i42)* + (22041 — 1)
=1
+ 10(xg + w242 — 2)2 + (22 — $2i+2)2/10]
k1
cp(z) = (24 5:1;Z+5):1;k+5 +1+ Z zi(1+ a;)
1=k—5

1<k<m=n-T7
7, = —2, mod(:,2)=1
7, = 1, mod(:,2) =0

Problem 3. Chained Powell singular function with simplified trigonometric-exponential

constraints.
n/2

F(z) = Z[(x%—l + 1051?22')2 + (w241 — 51?2i+2)2 + (22 — 2$2i+1)4 + 10(wg-1 — 51?2i+2)4]
=1

ci(x) = 3a7 42wy — 5 +sin(xy — xa)sin(ay + x3)

() = da, —ap_rexp(an_1 — ) — 3

T, = 3, mod(s,4)=1

10



7, =—1, mod(i,4) =2
7, = 0, mod(:,4) =3
7, = 1, mod(:,4)=0

Problem 4. Chained Cragg-Levy function with tridiagonal constraints.

n/2
F(z) = Z[(GXP(J?zi—l) — 51?22')4 + 100(xy; — 51?2i+1)6 + tan4(:1;2i_|_1 — Ti42) + :1:22»_1
=1
+ (2202 — 1)7]
i) = Soasa(edyy — k) — 21 — 2ipr) + Uopss — ayo)

1<k<m=n-2

T,=1, 1 =1
T, =2, 1>1

Problem 5. Generalized Broyden tridiagonal function with five diagonal constraints.

Fz) = Y13 —22)vi — xic1 — xipa + 1]
=1

cr(®) = Strpa(Tiyy — wip) = 2(1 — Tppe) + 4hpe — Thys) + iy — T

2
t Tpts — Thya

p="T/3, vo=a,01=0, 1 <k<m=n-—14
Fo——1, Vi

Problem 6. Generalized Broyden banded function with exponential constraints.

n min(n,i+1)
Flz) = Y l@+5af)z+1+ Y ai(l+a)lf
1=1 j=max(1,i—5)
cp(x) = 4dagp — (Top—1 — Tokt1) exp(Tap—1 — Tok — Togg1) — 3

p="1/3, 1<k<m=n/2
Fo——1, Vi

Problem 7. Trigonometric tridiagonal function with simplified five-diagonal con-
straints.

F(z) = Z |n 4+ (1 — cosa;) — sina;4q + sin @,y

=1
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ca(z) = 4oy —23) + 2y — 22
ca(w) = Bag(wd — 1) — 2(1 — xy) + 42y — 23) + 23 — 25
es(x) = 8xn_1(xi_1 —&p-2) —2(1 —xp_1) + 4(@po1 — l’i) + :1;%_2 — X3
ca(z) = 8rp(22 —2,q) —2(1 —z,) + 22| — 70y
T =1, V&
Problem 8. Augmented Lagrangian function with discrete boundary value con-
straints.
n/5 5 5
F(z) = Z[GXP(H Tsipi—j) + 10((2 x§i+1—j — 10— )‘1)2
=1 7=1 7=1

+  (@5i_3%5i—2 — DT5i_1T5 — )\2)2 + (51/':5))2'—4 + :1:2’2»_3 +1 - )\3)2)]
cr(z) = 2xpp F R HhE+ 1)+ 1)°/2 — 2 — 2449

A1 = —0.002008, Xy = —0.001900, A3 = —0.000261, A =1/(n+1), 1 <k <
m=n—2

7, =—1, mod(:,2)=1

7, = 2, mod(:,2)=0

Problem 9. Modified Brown function with simplified seven-diagonal constraints.

n/2
F(z) = Z[(l’zi—l — 3)2/1000 — (@i-1 — T9;) + exp(20(w-1 — 22;))]
=1
= 4y —23) + 2y — a2+ 23— 78
= Swg(ad — 1) —2(1 — 29) + 4(xy — 23) + 27 + 23 — 2f + 74 — T}
= 8:1;3(:1;%—:1;2)—2(1 —:1;3)—|—4(:1;3—:1;i)—|—:1;§—:1;1—|—:1;4—:1;§—|—:1;%—|—:1;5—:1;é

8tn-2(ah_y — Tn-3) = 2(1 = @aca) + A@nm2 — Thgy) T 25 — Tama

+ T — l’i + 1'721_4 + T, — Tpos
es(®) = Sz q(2l | —wng) = 2(1 —xpy) + 4wy —22)+ 22 5 — 2,3
+ T+ Ti_, — Thos
ce(r) = Sx,(a2 —2p 1) =201 —2,) + 22 | —@p o+l 45— 2,3
Ti=-—1, V1

Problem 10. Generalized Brown function with Broyden tridiagonal constraints.

n/2

F(z) = Y [(a3_)05 ) 4 () 5at)]
=1

() = (3= 2wpq1)Tpp1 + 1 — 2 — 20442
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1<k<m=n-2
7, =—1, mod(:,2)=1
7, = 1, mod(:,2)=0

Problem 11. Chained HS46 problem.

(n—2)/3
Fx) = (21 = 2j42)" 4 (2548 = 1)* + (2j00 — D'+ (25405 — 1)°]
=1
cp(x) = :1;12_|_1:1;1_|_4 + sin(@j4q — 2145) — 1, mod (k,2) =1
cl(r) = T2+ $?+3$12+4 —2 , mod(k,2) =0
j=33G—1), (=3div(k—1,2), 1<k <m=2n—2)/3

7, = 2.0, mod(z,3)
7, = 1.5, mod(z,3)
7; = 0.5, mod(z,3)

1
2
0

Problem 12. Chained HS47 problem.

(n=1)/4
Flz) = Y [(wjm = 2jp)” + (jp2 — jas)” + (24 — Tjpa)’ + (240 — 2j45)"]

=1
cr(z) = a1 +al,+afs—3 , mod(k,3) =1
cp(x) = x40+ :1;12_|_3 + 44— 1 , mod(k,3) =2
cp(x) = xprxys — 1 , mod(k,3) =0

j=43—1), I=4div(k—1,3), 1<k<m=3(n—1)/4

7, = 2.0, mod(s,4) =1
7, = 1.5, mod(s,4) =2
7; = —1.0, mod(:,4) =3
7; = 0.5, mod(s,4) =0

Problem 13. Chained modified HS48 problem.

(n-2)/3

Plz) = 3 lwjm =17+ (42 = 2j43)" + (204 — 2545)"]
=1

cp(x) = a1+ :1;12_|_2 + 243 + @ppa + 205 — 5, mod(k,2) =1

cr(t) = @iy — 2@ipa + 2igs) — 3 , mod(k,3) =0

j=3>G—1), I=3div(k—1,2), 1<k<m=2(n—2)/3
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7, = 3.0, mod(z,3)
7, = 5.0, mod(z,3)
7; = —3.0, mod(s,3)

1
2
0

Problem 14. Chained modified HS49 problem.

(n-2)/3

Plz) = Y (@i —2j42)? + (@08 — 1)+ (240 — D+ (2545 — 1)°]
=1

cp(x) = :zjlz_l_l + @42 + @3 4200 — 7, mod(k,2) =1

cr(x) = af3—days —6 , mod(k,3) =0

j=33—1), I=3div(k—1,2), 1 <k<m=2(n—2)/3
7, = 10., mod(z,3)
T, = 1.0, mod(z,3)
7; = —3.0, mod(s,3)

1
2
0

Problem 15. Chained modified HS50 problem.

Fla) = Y [(wjp1 — 7j42)" + (2jq2 — 2j33)° + (2548 — j4a)" + (204 — Tj35)"]

=1
cp(x) = 51/'124-1 + 2242 + 3245 — 6, mod(k,3) =1
cp(x) = :1;12_|_2 + 2243 + 32144 — 6, mod(k,3) =2
cp(x) = :1;12_|_3 + 2244 + 32145 — 6, mod(k,3) =0

7; = 35, mod(s,4) =1
7; = —31., mod(:,4) =2
7, = 11., mod(:,4) =3
7; = —5.0, mod(z,4) =0

Problem 16. Chained modified HS51 problem.

(n—1)/4

F(z) = [(2j41 — wjp2) + (Tjg2 + 23 — 2)° + (200 — 1)* + (255 — 1)7]

=1

cr(z) = afy +3w,—4 , mod(k,3) =1

14



cp(z) = :1;12_|_3 + @44 — 22145, mod(k,3) =2
cp(z) = :1;12_|_2 — Xy , mod(k,3) =0

j=43—1), I=4div(k—1,3), 1<k<m=3(n—1)/4

(n—1)/4
Fla) = ) [(ajm —2jp2)* + (w2 + 2jes = 2)" + (2400 — 1) + (245 — 1)7]
=1
cp(z) = :zjlz_l_l + 3249 , mod(k,3) =1
cp(z) = :1;12_|_3 + @44 — 22145, mod(k,3) =2
cp(z) = :1;12_|_2 — Ty , mod(k,3) =0

j=43—1), I=4div(k—1,3), 1<k<m=3(n—1)/4
T, =2, Vi

Problem 18. Chained modified HS53 problem.

(n—1)/4
F(z) = (241 = 2j42)" + (22 + 248 — 2)7 + (200 — 1) + (2545 — 1))
=1
cp(z) = 51/'124-1 + 3249 , mod(k,3) =1
cp(z) = :1;12_|_3 + @44 — 22145, mod(k,3) =2
cp(z) = :1;12_|_2 — Xy , mod(k,3) =0

j:4(i—1), l:4div(k—1,3), 1§k§m:3(n—1)/4
T =2, V1
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