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� Introduction

Consider the problem of 
nding a point x� � Rn� such that

x� � arg min
x�F

F 
x�� 
����

where F � Rn is a feasible set de
ned by the system of equations

F � fx � Rn � ck
x� � �� � � k � mg� 
����

where m � n 
in fact we consider only local minimum�� Here F � Rn � R and
ck � Rn � R� � � k � m� are twice continuously di�erentiable functions� whose
gradients and Hessian matrices will be denoted by rF 
x�� rck
x�� � � k � m�
and r�F 
x�� r�ck
x�� � � k � m� respectively� Furthermore� we use the notation
c
x� � �c�
x�� � � � � cm
x��T and A
x� � �a�
x�� � � � � am
x�� � �rc�
x�� � � � �rcm
x�� and
we suppose that the matrix A
x� has a full column rank� Then the solution x� � Rn of
the problem 
����	
���� satis
es the Karush	Kuhn	Tucker 
KKT� conditions� i�e� there
exists a vector u� � Rm� such that

rxL
x�� u�� � rF 
x�� �A
x��u� � �� 
����

ruL
x
�� u�� � c
x�� � �� 
����

where
L
x� u� � F 
x� � uT c
x�

is the Lagrangian function� whose gradient and Hessian matrix will be denoted by

g
x� u� � rxL
x� u� � rF 
x� �
mX
k��

ukrck
x��

G
x� u� � r�
xL
x� u� � r�F 
x� �

mX
k��

ukr�ck
x��

and 
x�� u�� � Rn�m is the KKT pair 

rst order necessary conditions�� Let Z
x� be
the matrix whose columns form an orthonormal basis in the null space of AT 
x� so
that AT 
x�Z
x� � � and ZT 
x�Z
x� � I� If� in addition to 
����	
����� the matrix
ZT 
x��G
x�� u��Z
x�� is positive de
nite� then the point x� � Rn is a solution of the
problem 
����	
���� 
second order su�cient conditions��

Basic methods for a solution of the problem 
����	
���� are iterative and their iter	
ation step has the form

x� � x� �d� 
����

u� � u� �v� 
����

where 
d� v� � Rn�m is a direction pair 
d � Rn is a direction vector� and � � � is a
stepsize� In this contribution� we con
ne our attention to methods derived from the
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Newton method used for a solution of the KKT system 
����	
����� The iteration step
of the Newton method has the form 
����	
����� where � � � and

�
G
x� u� A
x�
AT 
x� �

� �
d
v

�
� �

�
g
x� u�
c
x�

�
� 
����

This is a system of n�m linear equations with n �m unknowns 
d� v� � Rn�m� The
matrix

K �

�
G A
AT �

�

����

is always inde
nite 
cf� Theorem ��� Moreover� the matrix G is not positive de
nite in
general even if the matrix ZTGZ is� This fact can lead to some di�culties� Therefore�
it is advantageous to transform the system 
���� in such a way as to contain� if possible�
a positive de
nite matrix in the left	upper corner� This can often be done by addition
of the second equation� multiplied by �A� to the 
rst equation 
cf� Theorem ��� which
yields �

B A
AT �

� �
d
v

�
� �

�
b
c

�
� 
����

where
B � G � �AAT �

b � g � �Ac � rF �Au� �Ac�

Using a partial elimination of variables� 
���� can be transformed to the form

Bd � �
b�Av�� 
�����

ATB��Av � c�ATB��b� 
�����

If the matrices A and B are dense� then we can construct matrix ATB��A� determine
vector v using 
����� and compute vector d by substituting v into 
������ If the matrices
A and B are large and sparse� then matrices B�� and� especially� ATB��A are usually
dense� and we cannot use this way� In this case� we can solve the system 
���� either
iteratively using the smoothed conjugate gradient method ���� or directly using the
sparse Bunch	Parlett ��� decomposition� However� the matrix K has relatively large
dimension n�m and its nonzero elements� derived from the matrix A� are usually far
from the main diagonal� which can lead to considerable 
ll	in� Therefore� it is useful
to 
nd another possibility which removes these insu�ciences�

In this contribution� we will concentrate on a combined direct and iterative method�
which is based on the equations 
�����	
������ Equation 
����� will be solved directly
using the sparse Gill	Murray ��� decomposition

LDLT � B � E� 
�����

where L is a nonsingular lower triangular matrix� D is a positive de
nite diagonal
matrix and E is a positive semide
nite diagonal matrix� The matrix E is determined in
such a way as to guarantee positive de
niteness of the matrix B�E 
if B is su�ciently
positive de
nite� then E � ��� Equation 
����� will be solved iteratively using the
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smoothed conjugate gradient method� An advantage of this approach consists in the
fact that the matrix B has a lower dimension n and its elements are not usually too
far from the main diagonal� which leads to a lower 
ll	in� Moreover� equation 
�����
can be solved approximately� like the truncated Newton method for unconstrained
optimization ���� However� this procedure lays a higher emphasis on the determination
of the parameter � in 
����	
����� i�e� on the choice of a merit function for the stepsize
selection�

The contribution is organized as follows� In Section �� we propose some results
concerning system 
����� de
ne the special merit function 
���� suitable for inexact
solution to the system 
���� and show a correctness of the Armijo type line search
procedure� Section � contains a detailed description of our algorithm for large sparse
equality constrained nonlinear programming problems together with results obtained
by extensive numerical experiments�

In this contribution� we denote by k�k the Euclidean 
or spectral� norm and by k�k�
the l� norm 
sum of absolute values��

� Direction determination and stepsize selection

For the solution of equations 
�����	
������ we can use the Gill	Murray decomposition

������ If the matrix B is inde
nite� which is a frequent situation when � � �� then
the matrix B � E can be di�erent enough from the matrix B� and good convergence
properties of the Newton method can be lost� Therefore� it can be advantageous to
use the value � � �� The following theorems hold for the matrix K de
ned by 
����
and the matrix B � G� �AAT �

Theorem �� Let k�� k� and k� be the number of positive� negative and zero eigen�
values of the matrix K and let l�� l� and l� be the number of positive� negative and
zero eigenvalues of the matrix ZTGZ� Then k� � l� �m� k� � l� �m and k� � l��

Proof� See ����

Theorem �� Let the matrix ZTGZ be positive de�nite� Then there exists a number
� � �� such that the matrix B is positive de�nite whenever � � ��

Proof� See ����

Theorem �� Let the matrix K be nonsingular� Then there exists a number � � ��
such that the matrix ATB��A is positive de�nite whenever � � ��

Proof� 
a� First we prove that there exists a number �� � � such that the matrix
G � �AAT is nonsingular whenever � � ��� From Theorem �� we can deduce that
nonsingularity of the matrixK implies nonsingularity of the matrix ZTGZ� Therefore�
there exists a number G � � such that kZTGZzk � Gkzk �z � Rn�m� Denote
Y � A
ATA��� so that ATY � I� ZTY � � and kY k � A�A�� where A � kAk and A
is the lowest singular value of the matrix A� Then every vector x � Rn can be uniquely
expressed in the form x � Y y � Zz� where y � Rm and z � Rn�m� Suppose that


G � �AAT�x � GY y �GZz � �Ay � �

�



for some nonzero vector x � Rn� Then necessarily

ZTGY y � ZTGZz � � 
����

and
yTY TGY y � yTY TGZz � �yTy � �� 
����

From 
���� we obtain

GA

A� kyk � kZTGY yk � kZTGZzk � Gkzk�

where G � kGk� so that kzk � 
GA��
GA��kyk� On the other hand� we can write

yTY TGY y � yTY TGZz � �yTy � �kyk� � GA
�

A� kyk� �
GA

A� kykkzk

�
�
��� GA

�

A�

�
� �

G

G

��
	 kyk��

so that 
���� cannot be satis
ed if kxk � � and � � ��� where �� � 
GA
�
�A��
� �


G�G��� which is a contradiction�

b� Denote B� � G � ��AA

T � Since the matrix B� is nonsingular by 
a�� its Schur
complement ATB��

� A in the matrix K is also nonsingular� Let � be an eigenvalue of
the matrixATB��

� A and w be a corresponding eigenvector� Then we obtain successively

ATB��
� Aw � �w

B��
� AATB��

� Aw � �B��
� Aw


I � 
� � ���B��
� AAT �B��

� Aw � 
� � 
�� �����B��
� Aw


� � 
�� �������B��
� Aw � 
I � 
�� ���B��

� AAT���B��
� Aw


� � 
�� �����
��ATB��

� Aw � AT 
B� � 
�� ���AA
T ���Aw

�
� � 
�� �����
��w � ATB��Aw

provided � � �� �� ����� Consider the function 	
�� � ��
� � 
� � ����� for a given
� � ��� If � � �� then 	
�� � � for an arbitrary � � ��� If � 
 ���
� � ��� 
 � then
again 	
�� � �� Therefore� if either � � � or � 
 ���
� � ��� 
 � for all eigenvalues
of the matrix ATB��

� A� then all eigenvalues 	
�� of the matrix ATB��A are positive�
This situation appears if � � � � �� � ����� where �� 
 � is the greatest negative
eigenvalue of the matrix ATB��

� A� �

Theorem � has a practical corolary� It shows that there exists a transformation of
system 
����� such that the system 
����� has positive de
nite matrix� This fact is very
advantageous for application of the conjugate gradient method to 
������

In the subsequent considerations� we will suppose that LDLT � B �E is the Gill	
Murray decomposition such that Bkdk� � dTLDLT d � Bkdk� �d � Rn� where B and
B are some constants independent on the current iteration� The left inequality is a
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consequence of the Gill	Murray decomposition� If the right inequality is not satis
ed�
then the matrix B has to be modi
ed before decomposition�

Using partial elimination of variables� we can transform 
���� 
with LDLT instead
of B� to the form

LDLTd � �
b�Av�� 
����

AT 
L���TD��L��Av � c�AT 
L���TD��L��b� 
����

We will use the following merit function

P 
�� � F 
x� �d� � 
u� v�Tc
x� �d� �
�

�
kc
x� �d�k� � �kc
x� �d�k� 
����

for the stepsize selection 
� � � is an additional penalty parameter�� Together with
this merit function we also use its piecewise linear approximation

P 
�� � P 
�� � �dT 
b�Av� � �
kc� �ATd�k� � kck�� 
����

and we denote by dP�
���d� � lim���
P 
�� � P 
����� the corresponding directional
derivative� The main advantage of the merit function 
���� is the fact that it implies
a good descent property of an inexact solution to the system 
����� The following
theorem holds�

Theorem �� Suppose that Bkdk� � dTLDLT d � Bkdk� �d � Rn� Let v � Rm be
an inexact solution of the equation ����	 such that krk� � kck�� where r � Rm is the
residual vector determined by the formula

r � c�AT 
L���TD��L��b�AT 
L���TD��L��Av � c�ATd 
����

and d � Rn is a solution of the equation ���
	� Then dP�
���d� � P 
�� � P 
�� �
�Bkdk��
Proof� Di�erentiating 
���� or 
���� we get

dP�
���d� � dT 
b�Av� � �

X
ck��

jaTk dj�
X
ck��

aTk d�
X
ck��

aTk d�

� dT 
b�Av� � �

X
ck��


jck � aTk dj � jckj� �
X
ck��


ck � aTk d� jckj�

� X
ck��


ck � aTk d� jckj��

� dT 
b�Av� � �
kc�ATdk� � kck�� � P 
�� � P 
���

On the other hand 
���� and 
���� imply that

P 
�� � P 
�� � dT 
b�Av� � �
kc�ATdk� � kck�� � �dTLDLTd � �
krk� � kck��

which together with the assumptions dTLDLT d � Bkdk� and krk� � kck� gives asser	
tion of the theorem� �

�



Note that the main reason for use of the Gill	Murray decomposition 
����� is a re	
quired positive de
niteness of the matrix LDLT which is essential for proof of Theorem
��

Let v � Rm be an inexact solution of the equation 
���� satisfying assumptions of
Theorem � and d � Rn be the corresponding solution of the equation 
����� Then we
can use the standard Armijo rule for steplength determination i�e� � � � in 
����	
����
is chosen so that it is the 
rst member of the sequence �j� j � �� �� �� � � �� � 
 � 
 ��
such that

P 
��� P 
�� � 
�
P 
�� � P 
���� 
����

where � 
 
 
 �� In the subsequent considerations� we will assume that there exist
constants g� G� c� A� A� independent of the current iteration� such that krF 
x��d�k �
g� kr�F 
x � �d�k � G� kc
x � �d�k � c� kA
x � �d�k � A� kr�ck
x � �d�k � G�
� � k � m� kA
x� �d�wk � Akwk �w � Rn hold� respectively� for all � � � � ��

Lemma �� Let assumptions of Theorem � be satis�ed �together with assumptions of
boundedness given above	� Then there exists a constant K� independent of the current
iteration� such that

P 
�� � P 
�� � ��Kkdk� 
����

�� � � � ��

Proof� Since 
���� implies

r � c�AT 
L���TD��L��
rF � �Ac��AT 
L���TD��L��A
u� v�

and since krk � krk� � kck� �
p
mkck and

wTAT 
L���TD��L��Aw � �

B
kAwk� � A�

B
kwk�

�w � Rm hold by assumptions� we can write

A�

B
ku� vk � kAT 
L���TD��L��A
u� v�k � c
� �

p
m� �

A

B

g � �Ac��

so that

ku� vk � B

A�

�
c
� �

p
m� �

A

B

g � �Ac�

�
�� U�

Applying the Taylor expansion to every term of 
���� and using 
����� we get

P 
�� � P 
�� �
�
�
��Gkdk� � �

�
��

mX
k��

juk � vkjGkdk�

�
�
�
���A

�kdk� � �
�
���

mX
k��

jckjGkdk� � �
�
���

mX
k��

Gkdk�

� P 
�� �
�
�
��
h

� � U

p
m� �c

p
m� �m�G� �A

�
i
kdk� �� P 
�� � ��Kkdk�

�� � � � � 
� and � are assumed to be constants�� �

�



Theorem �� Let the assumptions of Lemma � hold and let d �� �� Then there exist an
integer k � � and a number � � �� independent of the current iteration� such that the
Armijo rule gives the value � � �j� satisfying ����	� with j � k and � � �� Moreover

P 
�� � P 
�� � ��
Bkdk�� 
�����

Proof� Since

P 
��� P 
��� �
P 
��� P 
��� � �
kc� �ATdk� � kck��� ��
kc�ATdk� � kck��
� �
�kc�ATdk� � 
�� ��kck� � kck�

��kc�ATdk� � �kck�� � �

�� � � � �� we can write

P 
��� P 
�� � P 
�� � P 
�� � ��Kkdk� � �
P 
�� � P 
�� � �Kkdk��
� �
P 
��� P 
���
� � �

K

B
�

by Lemma � and Theorem �� so that 
���� holds whenever � � 
B�K�
� � 
�� Let
k � � be chosen so that it is the lowest integer such that �k � 
B�K�
� � 
� and let
� � �j be given by the Armijo rule to satisfy 
����� Then

� � �j � �k � �
B

K

�� 
� �� �� 
�����

Using 
����� and Theorem �� we get

P 
�� � P 
�� � �

P 
��� P 
��� � ��
Bkdk��
�

Now we focus our attention on the inexact solution of equations 
����	
����� The
matrix AT 
L���TD��L��A is positive de
nite 
since A has a full column rank and
LDLT is positive de
nite�� so that the equation 
���� can be solved by the smoothed
conjugate gradient method ����� The iterative process is terminated if a su�cient
accuracy� guaranteeing superlinear rate of convergence 
see ����� is reached and� at the
same time� the condition krk� � kck� is satis
ed� These facts imply the following
algorithm for the direction determination�

Algorithm �� Direction determination�

Data� � 
 � 
 ��

Step �� Initiation� Set �v� �� �� �r� �� c � AT 
L���TD��L��b� v� �� �v�� r� �� �r�
� �� min
�� kr�k�� and j �� ��

Step �� CG iteration� If j � n � �� then go to Step �� otherwise set j �� j � ��
Compute �j�� �� k�rj��k�� If j � �� then set pj�� �� �rj��� otherwise set
pj�� �� �rj�� � 
�j����j���pj��� Compute qj�� �� AT 
L���TD��L��Apj��
and �j�� �� �j���p

T
j��qj�� and set �vj �� �vj�� � �j��pj��� �rj �� �rj�� �

�j��qj���

�



Step �� Residual smoothing� Compute 	j �� �
rj��� �rj�T �rj�krj��� �rjk� and set
vj �� �vj � 	j
vj�� � �vj�� rj �� �rj � 	j
rj�� � �rj��

Step �� Test for su�cient precision� If krjk� � �kr�k�� then go to Step ��

Step �� Test for su�cient descent� If krjk� � kck�� then go to Step ��

Step �� Termination� Set v �� vj� compute the direction vector d ��
�
L���TD��L��
b�Av� and terminate the computation�

Note that the main reasons for residual smoothing in Step � are requirements krk� �
�kr�k� and krk� � kck�� so that the norm krk� should always be as small as possible�

� Numerical experiments

Now we summarize results from the previous section and give a detailed description
of our algorithm� This algorithm uses the sparse Gill	Murray decomposition together
with smoothed conjugate gradient method for direction determination and the classical
Armijo rule for stepsize selection�

Algorithm �� Equality constrained optimization 
GM�CG��

Data� � � �� � � �� � 
 � 
 �� � 
 
 
 �� � 
 � 
 �� � � ��

Input� Sparsity pattern of the matrices r�F and A� Initial choice of the vextor x�

Step �� Initiation� Determine sparsity pattern of the matrix B and carry out its
symbolic Gill	Murray decomposition� Compute the value F �� F 
x� and
the vector c �� c
x�� Set u �� � and i �� ��

Step �� Termination� Compute the matrix A �� A
x� and the vector g �� g
x� u��
If kck � � and kgk � �� then terminate the computation 
the solution is
found�� Otherwise set i � i� ��

Step �� Approximation of the Hessian matrix� Compute an approximation G of
the Hessian matrix G
x� u�� using di�erences of gradient g
x� u� as in ����
Compute the matrix B �� G � �AAT and carry out its numerical Gill	
Murray decomposition�

Step �� Direction determination� Set � � min
��i� ��� Determine the direction
pair 
d� v� using Algorithm �� Set � �� � and compute values of the merit
function P 
�� and its piecewise linear approximation P 
���

Step �� Termination of the stepsize selection� If P 
���P 
�� � 
�
P 
��� P 
����
then set x �� x� �d� u �� u� �v and go to Step ��

Step �� Continuation of the stepsize selection� Set � �� ��� compute value of the
merit function P 
�� and go to Step ��

Computational e�ciency of Algorithm � was tested using �� sparse problems� listed in
the Appendix� which had either �� or ��� variables� We used parameters � � �����
� � ���� 
 � ����� � � ���� � � ����� in all numerical experiments� Values of the
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parameter � depended on the problem solved as will be shown below� They were
selected to give good results�

The summary of results for all �� problems is given in Table �� This table contains
the total number of iterations NIT� the total number of function evaluations NFV�
the total number of gradient evaluations NGR� the total number of conjugate gradient
iterations NCG and the total CPU time on Pentium PC 
�� MHz� for double preci	
sion arithmetic implementation� The rows correspond to the direct method with the
Bunch	Parlett 
BP� decomposition of the matrix B� our method 
GM�CG� realized
by Algorithm � and the smoothed conjugate gradient method 
CG� applied directly to
inde
nite system 
���� and preconditioned using the positive de
nite matrix

C �

�
LDLT A
AT AT 
L���TD��L��A� I

�
� 
����

where LDLT is an incomplete Gill	Murray decomposition of the matrixB 
more details
about preconditioner 
���� can be found in ����� For 
BP� method we used the values
� � ���� � � ����� for problems ���� respectively� and the value � � ��� in the other
cases� For 
GM�CG� method we used the values � � ������� � � ���� � � ���� � � ����
� � ��� for problems ������������� respectively� and the value � � ���� in the other
cases� For 
CG� method we used the values � � ���� � � �������� � � ������ � � �����
� � ������ � � ���� � � ����� for problems ������������������ respectively� and the
value � � ���� in the other cases� All methods presented in Table � were implemented
using the modular interactive system for universal functional optimization UFO ����

n � �� NIT NFV NGR NCG CPU
BP ��� ��� ���� � ����
GM�CG ��� ��� ���� ���� ����
CG ��� ��� ���� ���� �����
n � ��� NIT NFV NGR NCG CPU
BP ��� ��� ���� � �����
GM�CG ��� ��� ���� ���� �����
CG ��� ��� ���� ���� �����

Table �

From the results presented in Table �� we can draw several conclusions� First�
our algorithm 
GM�CG� is faster and has much lower storage requirements than the
direct method 
BP�� It is also much faster than the pure iterative method 
CG� with
the preconditioner 
����� Second� e�ciency of our algorithm depends on the parameter
� which has sometimes to be adjusted according to the problem to be solved� The pure
iterative method 
CG� with the preconditioner 
���� also has this property� Third� we
have also tested two preconditioners C � AT �DA� with �D a positive de
nite diagonal
approximation to the matrix LDLT � and C�� � 
ATA���ATLDLTA
ATA���� applied
to the system 
����� E�ciency obtained in both these cases was worse than that without
preconditioning�

�



Appendix

This Appendix contains �� original sparse problems for equality constrained optimiza	
tion� We use� for prime k and l� the notation div
k� l� for integer division� i�e�� maximum
integer not greater than k�l� and mod
k� l� for remainder after integer division� i�e��
mod
k� l� � l
k�l � div
k� l��� The starting point is �x� Dense problems HS�� 	 HS��
can be found in ����

Problem �� Chained Rosenbrock function with trigonometric	exponential constrains�

F 
x� �
n��X
i��

����
x�i � xi���
� � 
xi � ����

ck
x� � �x	k�� � �xk�� � � � sin
xk�� � xk��� sin
xk�� � xk��� � �xk��
� xk exp
xk � xk���� �

� � k � m � n� �

xi � ����� mod
i� �� � �

xi � ���� mod
i� �� � �

Problem �� Chained Wood function with Broyden banded constraints�

F 
x� �
n��X
i��

����
x��i�� � x�i�
� � 
x�i�� � ��� � ��
x��i�� � x�i���

� � 
x�i�� � ���

� ��
x�i � x�i�� � ��� � 
x�i � x�i��������

ck
x� � 
� � �x�k�
�xk�
 � � �
k��X

i�k�


xi
� � xi�

� � k � m � n� �

xi � ��� mod
i� �� � �

xi � �� mod
i� �� � �

Problem �� Chained Powell singular function with simpli
ed trigonometric	exponential
constraints�

F 
x� �
n��X
i��

�
x�i�� � ��x�i�� � �
x�i�� � x�i���� � 
x�i � �x�i���� � ��
x�i�� � x�i�����

c�
x� � �x	� � �x� � � � sin
x� � x�� sin
x� � x��

c�
x� � �xn � xn�� exp
xn�� � xn�� �

xi � �� mod
i� �� � �

��



xi � ��� mod
i� �� � �

xi � �� mod
i� �� � �

xi � �� mod
i� �� � �

Problem �� Chained Cragg	Levy function with tridiagonal constraints�

F 
x� �
n��X
i��

�
exp
x�i���� x�i�� � ���
x�i � x�i���� � tan�
x�i�� � x�i��� � x��i��

� 
x�i�� � ����

ck
x� � �xk��
x�k�� � xk�� �
� � xk��� � �
xk�� � x�k���

� � k � m � n� �

xi � �� i � �
xi � �� i � �

Problem �� Generalized Broyden tridiagonal function with 
ve diagonal constraints�

F 
x� �
nX
i��

j
�� �xi�xi � xi�� � xi�� � �jp

ck
x� � �xk��
x
�
k�� � xk���� �
� � xk��� � �
xk�� � x�k�	� � x�k�� � xk

� xk�	 � x�k��

p � ���� x� � xn�� � �� � � k � m � n � �

xi � ��� �i

Problem �� Generalized Broyden banded function with exponential constraints�

F 
x� �
nX
i��

j
� � �x�i �xi � � �
min�n�i��
X

j�max���i�



xj
� � xj�jp

ck
x� � �x�k � 
x�k�� � x�k��� exp
x�k�� � x�k � x�k���� �

p � ���� � � k � m � n��

xi � ��� �i

Problem �� Trigonometric tridiagonal function with simpli
ed 
ve	diagonal con	
straints�

F 
x� �
nX
i��

jn� i
�� cosxi�� sinxi�� � sinxi��j

��



c�
x� � �
x� � x��� � x� � x�	
c�
x� � �x�
x

�
� � x��� �
� � x�� � �
x� � x�	� � x	 � x��

c	
x� � �xn��
x
�
n�� � xn���� �
� � xn��� � �
xn�� � x�n� � x�n�� � xn�	

c�
x� � �xn
x�n � xn���� �
� � xn� � x�n�� � xn��

xi � �� �i

Problem 	� Augmented Lagrangian function with discrete boundary value con	
straints�

F 
x� �
n�
X
i��

�exp


Y

j��

x
i���j� � ��



X

j��

x�
i���j � �� � 	��
�

� 
x
i�	x
i�� � �x
i��x
i � 	��
� � 
x	
i�� � x	
i�	 � � � 		�

���

ck
x� � �xk�� � h�
xk�� � h
k � �� � ��	�� � xk � xk��

	� � ���������� 	� � ���������� 		 � ���������� h � ��
n � ��� � � k �
m � n� �

xi � ��� mod
i� �� � �

xi � �� mod
i� �� � �

Problem �� Modi
ed Brown function with simpli
ed seven	diagonal constraints�

F 
x� �
n��X
i��

�
x�i�� � �������� � 
x�i�� � x�i� � exp
��
x�i�� � x�i���

c�
x� � �
x� � x��� � x� � x�	 � x	 � x��
c�
x� � �x�
x

�
� � x��� �
� � x�� � �
x� � x�	� � x�� � x	 � x�� � x� � x�


c	
x� � �x	
x
�
	 � x��� �
� � x	� � �
x	 � x��� � x�� � x� � x� � x�
 � x�� � x
 � x��

c�
x� � �xn��
x�n�� � xn�	�� �
�� xn��� � �
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� xn�� � x�n � x�n�� � xn � xn�


c

x� � �xn��
x
�
n�� � xn���� �
�� xn��� � �
xn�� � x�n� � x�n�� � xn�	

� xn � x�k�� � xk�	

c�
x� � �xn
x
�
n � xn���� �
�� xn� � x�n�� � xn�� � x�n�� � xn�	

xi � ��� �i

Problem �
� Generalized Brown function with Broyden tridiagonal constraints�

F 
x� �
n��X
i��

�
x��i���
�x�

�i
��
 � 
x��i�

�x�
�i��

��
�

ck
x� � 
�� �xk���xk�� � �� xk � �xk��
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� � k � m � n� �

xi � ��� mod
i� �� � �

xi � �� mod
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Problem ��� Chained HS�� problem�
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x� �
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ck
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Problem ��� Chained HS�� problem�
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Problem ��� Chained modi
ed HS�� problem�
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i� �� � �

Problem ��� Chained modi
ed HS�� problem�

F 
x� �
�n��
�	X
i��

�
xj�� � xj���� � 
xj�	 � ��� � 
xj�� � ��� � 
xj�
 � ����

ck
x� � x�l�� � xl�� � xl�	 � �xl�� � � � mod
k� �� � �

ck
x� � x�l�	 � �xl�
 � � � mod
k� �� � �

j � �
i� ��� l � � div
k � �� ��� � � k � m � �
n� ����

xi � ���� mod
i� �� � �

xi � ���� mod
i� �� � �

xi � ����� mod
i� �� � �

Problem ��� Chained modi
ed HS�� problem�
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Problem ��� Chained modi
ed HS�� problem�
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Problem ��� Chained modi
ed HS�� problem�
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Problem �	� Chained modi
ed HS�� problem�
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