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Abstract

This study presents how the Mobius transform can be used for Max-Min compositions
of rules of the CADIAG-2. The algorithm for construction of Mobius transform to find
new weights of rules for CADIAG-2 is proposed. This method is tested for different

examples and some remarks are indicated.
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Preface (by P. Hijek)

This report contains Mr. Nguyen’s elaboration of my suggestion to extend Mobius
transform (in the sense of MY CIN-like systems, (Hé&jek, Valdes, 1994)) to CADIAG-like
fuzzy expert systems, extended by negative weights. The new and slightly surprising
result is that non-invertibility of the maximum operation does not make the transform
impossible provided we carefully combine positive and negative weights.

This contributes to our observation that CADIAG-like systems are very close to MY CIN-
like systems, even if we keep maximum as the combining operation for positive weights.
I want to stress that this means that CADIAG-like systems have both similar advan-
tages as MY CIN-like systems (ease of inference) and similar disadvantages, namely the
fact that truth-functionality (use of combining functions) prevents consequent under-
standing of weights as degrees of belief. Methods like Mobius transform or guarded
use give only partial correctness, as discussed at large in (Hajek, Havranek, Jirousek,
1992, Chap. VI-VIII). The main question remains:

If things as relative frequencies are used as weights of implications (rules) and fuzzy
inference is applied, what meaning have the results obtained 7 (see Hajek, Harman-
cova, 1995).

It is hoped that the present report brings a partial contribution to a future answer to
this question.

1. Introduction

CADIAG-2is a medical diagnostic expert system based on Max-Min inference. The rule
base of CADIAG-2 consists of rules with the form IF(antecedent) THEN(succedent).
Degrees of truth of rules in CADIAG-2 may be used as relative frequencies or their
fuzzifications (Adlassnig, 1986; Adlassnig et al., 1986). In (Hé&jek, Nguyen, 1995), we
have studied how CADIAG-2 is embedded into MY CIN-like systems if we replace Max
of MaxMin composition of CADIAG-2 by a suitable t-cornom and we propose including
negative knowledge for CADIAG-2 and it indicates that CADIAG-2 with confirmation
and exclusion gives the same results at the corresponding MY CIN-like system. In
(Hajek, Havranek, Jirousek, 1992) an algorithm of Mobius transform for MY CIN-like
systems which allows to determine the weight of a rule from the corresponding expert’s
belief was proposed. The new rule base produces global weights compatible with the
expert’s beliefs. In this study, the question is that how much the Mobius transform
can be used for Max-Min compositions of rules of CADIAG-2. The answer is that it is
possible, but only if negative weights are introduced. The paper is organized as follows:
Section 2 presents an algorithm for construction of Mobius transform for MaxMin in-
ference of CADIAG-2 allowing to find new weights such that the values of composition
of rules satistying to expert’s beliefs. Section 3 verifies several examples by the above
described algorithm and finally, some conclusions are reported.

2. Construction of Mobius transform for CADIAG-2

For construction of Mobius transform algorithm for CADIAG-2, we need add some
definitions extending CADIAG-2 by negative knowledge



Definition 1:

A fuzzy patient data for patient P, consists of values /LEPS(Pq, S:) - degree of confir-
mation and px (P, S:) - degree of exclusion for # = 1,...,m. Assume that, at least,
18, (P, Si) or g, (P, Si) =0 and let

- /LEPS(Pq, Si) =0 and pg, (P, S;) = 0 mean symptoms S; - unknown for patient P,
- /LEPS(Pq, S:;) = 1 means symptoms 5; - surely present for patient F,.

- HRps(FPy; Si) = 1 means symptoms S; - surely absent for patient F,.

Definition 2:

The patient data /LEPS(Pq, Si)and pg, (P, S;) (fori = 1,...,m) are three-valued for pa-
tient P,, if for all 5;, /LEPS(Pq, Si) and pg, (P, 5;) take value 0 or 1. Then /LEPS(Pq, Si)
and pp_ (P, S5;) determine an elementary conjunction F, of symptoms S; such that
S; occurs in F, positively if /L}SPS(Pq, S;) = 1 and negatively if up_ (P, S;) = 1.

For example, given a fuzzy patient data in Table 1.
Pq Sl Sz 53 54

P R R
Iu]_%ps(Pq7Si) 0 0 1 0

Table 1: A patient data

where, S7, S, 53, S4 - Symptoms
P, - Patient ¢
(Fps(Pyy Si)s pg, . (P, Si) are values of the patient data

From Table 1, the following elementary conjunction of symptoms S; for patient P, is
constructed:

Eq — Sl&_‘S:),

Definition 3:
The values /LEPS(Pq, =5i), URpo( Py, —S;) of patient data for patient P, are defined as
follows

Iu]-léps(P‘N _‘SZ) = Iu]_%ps(Pq7 SZ)
Iu]_%ps(Pq7 _|SZ) = Iu]—Sps(Pq7 SZ)
Definition 4:
An elementary conjunction £, of symptoms 5; is defined by

E, = (61)S1&, ..., &(e0) S

(recall the notion (0)S; = =.5;, (1)5; = 5;)
If for each ¢, ¢ = 1,..,m, pp_ (P, (¢:)S;) = 0 then

Iu]-Sps(Pq7 Eq) = minsieEq(lu]-Sps(Pq7 (62)52))

NJ_%ps(quEq) =0



If there is 7, px_ (P, (€:)S;) > 0 then
Iu]_%ps(Pq7Eq) = maxsieEq(lu]_%ps(Pq7 (62)52))

Iu]—Sps(Pq7Eq) = 0

The value of an elementary conjunction £, of symptoms 5; is defined

ﬂRﬁfg(quEq) = /LJ—SPS(quEq) — Hppe (B Ey) (2.0)

Recall that a value PRt (E;, D;) in [0,1] used for confirmation of diagnosis, where
the value FRt (E;, D;) indicates degree in which a symptom (or elementary conjunc-

tion of symptoms) F; confirms a diagnosis D;. The MaxMin composition of rules for

confirmation of diagnosis is
R}, = Rpso R, (2.1)

defined by

prs (Py, Dj) = Mazgesys Min(uf, (Py, Ei); pgs (B, Dy) (2.2)

We extend CADIAG-2 by a relation Ry, defined by ’MRED(E“ D;) (F; is a symptom or
elementary conjunction of symptoms) in [0,1], where the value PRz, (E;, D;) indicates
degree in which a symptom (or elementary conjunction of symptoms) F; excludes a
diagnosis D;. Thus, the following MaxMin composition of rules proposed and used to
deduce the degree of exclusion of the disease D; for the patient P, from the observed
symptoms F; is follows:

defined by
P, (P Dj) = MazpesysMin(pfy, (Py, Ei); pip= (Ei, Dj)) (2.4)

where Sys - a set of symptoms |

Definition 5:
A rule base © given by KRt (E;, D;) and KRz, (E;, D;) consists of rules:

E; — Dj(ppy (£, Dj)) (2.5)

by — ﬁDj(NRgD(EiaDj)) (2.6)
Assume that PRt (E:,D;) =0or PRz, (E:, Dj) =0 where PRt (E:, Dj), PRz, (E:i, D;)

are weights of fuzzy rules in [0,1].

Now we are going to define the total degree of confirmation and exclusion of a diagnosis
as a combination of degree of confirmation and degree of exclusion. We shall see that
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it is more convenient to use their difference in the sense of a group operation on (-1,1)
than just their difference as reals.

Definition 6:
Given a patient data, the total degree for confirmation and exclusion of diagnosis D;
by patient P, from observed symptom 95; is:

prgy (Py, Dj) = ppy (P, D) © pg- (Fy, Dj) (2.7)
in [-1,1]
where
pr (Py, Dj) = Mazy Min[ph, (Py, B,); ppe (Ey, D;)]
pr= (Py, Dj) = Mazy Min[ph, (Py, B,); pip=_(Ey, D;)]
where E; varies over all elementary conjunctions of symptoms for which RY, (E;, D)

or fip= (E;,Dj) is positive.

Remark: Note that of the patient data are three-valued, i. e. given by an elementary

conjunction F,, then this reduces to Pt (P,,Dj) = MawE’CEq(:“R;D (E;, D;)) and it
g=

is similar for PRz, (P, D;)

Let us recall some notions on & and & on (-1,1) (Héjek et al.; 1992, 1994)
- Operation & is an odered Abelian group, extended to extremals:

1le=1,-182r=-1
- The PROSPECTOR group operation & on (-1,1) is defined as follows:

T4y
= 2.8
By =T (2.8)
- Operation & is a group operation defined by
roy=a¢—y (2.9)

Remark: Let recall that we compare the degree of confirmation Rt (P;, D;) and the
degree of exclusion fip— (P,, D;) in [0,1] of diagnosis D; for patient P,. One can see
the representation of these degrees in [-1,1] in Graph 1.

-1 1
0
_NR;D(quDj) NR;D(quDj)

Graph 1: Representation of Rt (P,,D;) and Frs, (P, Dj)



To this end we represent the exclusion as negative confirmation, so we take —HR7, (P, D;)
in [-1,1] instead of [ (P,, D;) in [0,1].

Definition 7:
A conditional weight system 3 consists of 3¢, (D;|E,) and B55(D;|E,) in [0,1] for a
set of pairs (D;, E,). Assume that 83,(D;|E,) = 0 or 35,(D;|E,) = 0, where E,:

elementary conjunction of symptoms 5;

Definition 8:

A total conditional weight system S55(D;|E,) for a set of pairs D; € Dise (Dise: a set
of Diseases D;), £, € EC(Sym) (Elementary Conjunction of Symptoms) is defined as
follows:

sp(Di1Ey) = BIp(D;|Ey) — Bsp(Dj|Ey) (2.10)

Definition 9:
A conditional weight system [ is weakly sound if the following holds for each E; C

E, € EC(Sym) and D; € Dise: it 335(Dj1E,), Bsp(Dj|Ey), Bip(Di|E,), B5p(D;1E,)
are defined and ﬂg’D(DﬂE;), ﬂgD(Dj|E;) is extremal (i.e. = 1) (one of them takes
value 0), then

Bin(D;|E,) = BEp(D;|E,) (2.11)
B5p(D31E,) = B5p(D;| E,) (2.12)

Theorem:
Let 3 be a weakly sound conditional weight system. Then there is a rule base © with
new weights MRt (Si, D;) and KRz, (Si, D;) of fuzzy rules such that for each patient P,

and each three-valued patient data /LEPS(Pq, Si); fpps(Pyy Si) (therefore E, exists)

1R (Py,Dy)=si5 (Dl Eq) (2.13)
whenever the right hand side is defined

Proof:

Fix D;, we define PRt (E,, D;)and PRz, (E,, D;) for pairs (E,, D;) such that 83,(D;|E,),
Bsp(D;|E,) are defined.

We proceed by induction on length of F,.

Case 1:

For each E, such that 83, (D;|E,), B5p(D;|E,) are defined but ﬂg’D(DﬂE;), ﬂgD(Dj|E;)

are undefined for each proper subconjunction E; of E,, we put
iy, (Bg, Dj) = Bip(D;j|E,) (2.14)
e, (Fy D) = Bin( Dyl Ey) (215)
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Case 2:
If B2,(D;|E,), B5p(D;|E,) are defined and extremal (i.e. = 1), then put

prt, (B Dj) = B3p(D;|Ey) (2.16)

prz, (B, Dj) = B5p(D;]E,) (2.17)
Case 3:

Assume that B4, (D;|E,), Bsp(D;|E,) are defined and nonextremal (i.e. # 1) and
Rt (E,, Dj), PRz, (Ey, D;) are not yet defined, F, has some proper subconjunctions

E; such that ﬂg’D(DﬂE;), ﬂgD(Dj|E;) are defined and for all such E;, :“R;D(E;ij)v
PRz, (E;,Dj) have been defined. Collect positive and negative knowledge M™* and

M~ for D; under proper subconjunctions E; of ;. Define the total knowledge
MW= M* & M~, where M+, M~ are defined as follows:

MT = MaxE;cEq[NR;D(E;v D;)] (2.18)
M~ = MaxE;cEq[NRgD(E;ij)] (2.19)
We consider the following cases:
a) If M = pih(D;|E,) then put
i (Eq, Dj) = Bsp(Di|Ey)
it 3 (D,1E,) > 0 or
pr=, (Eq, Dj) = Bsp(Di|Ey)
if Bsp(D;1E,) <0
b) If M < BiL(D;|E,) then put
s (By, D) = M~ 855(D,|E,) (220)
Operation & is defined as in (2.8)
c) If M* > BYL(D;|FE,) then put
e (Bpy D) = M* & 85Dy ) (221)

Operation & is defined as in (2.9)
and we get (2.13) for each (D;, E,) in the domain j.

Proving case 1:
One proves by induction on the length of E, that eventually ’uRJer(Si D), PRz, (Si, D;)

are uniquely defined for each E, such that 8I,(D;|E,), Bsp(D;|E,) are defined. We



have (by definition of MaxMin composition of CADIAG-2)

NR;D(qu Dj) = MaxE;gEqu[NEPS(qu E;), NR;D(E;a Dj)]
= MaxE;gEq [NRgD(E;v D;)]
(because ,MR%(Pq,E;) =1 from (2.0), if E; exists, then ,u]_%PS(Pq,E;) =0)
= Mae(Maz gy, lige. (Eyy D)losigs. (Ey D3)) = Maz(0, s (Fy,Dy)
= ,UR;D(EquJ‘) = Bip(D;| Ey)

because MawE;cEq[ﬂR;D(E;ij)] = 0 (due to KRt (E;,Dj) is unknown, when E; C
£y)

In an analogous way, we get
#R;D(quDj) = ﬂRgD(Equj) = Bsp(D;|E,)
and thus
prest (P Di) = pgs (Py, Dj) © pp- (Py, Dj) = Bsp(Dy, Iy)
and the equation (2.13) holds.

Proving case 2:
Given 34,(D;, E,) =1 (or B5p(D;, E,) = 1) we have

trs, (P Dj) = Maw g Minlpg, (Py, Ey); pigs (Ey, D))
= MaxE;gEq [NRgD(E;a D;)]
(because /L}SPS(Pq,E;) =1 from (2.0), if E; exists, then ,u]_%PS(Pq,E;) =0)

= Max[MaxEéCEq[:uR;D(E;vDj)]vﬂR;D(Equj)] = IMR;D(E!MDJ) = 6§D(D]|Eq)

(because PRt (Ey, D) =1 by condition)
In an analogous way, we get

e (PoD3) = e (B D) = Bipl(Dy|12)
and thus

HRis (P, D;) = KRt (P, Dj) © PRy, (P, Dj) = ?B(Djv E,)
and the equation (2.13) holds.

Proving case 3:
2) When M* = 3 (D;|E,)

First, we consider the case M* = B%L(D;|E,) > 0
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By definition of MaxMin composition of CADIAG-2, we have:

NR;D(an Dj) = MaxE;gEqu[NEPS(an E;), NR;D(E;7 Dj)]
= MawE;gEq [NRgD(E;a D;)]
(because /L}SPS(Pq,E;) =1 from (2.0)),
= Max(MaxEéCEq I:ILLR;D(E;7 Dj)]v /’LR;D(E(]? D]))
From definition (2.16), having
MaxE;cEq(NRgD(Eqa Dj)) = M*
(because PRt (E;, D;) = M for some E; > 0) and by condition, put
ILLR;D(Eq7Dj) = fs%(D”Eq)v we get
(P, Dy) = Maz(M*, BE5(D;| ) = M+
IMR;D R azr » MSD J1+q
because M~ >0, M™ = M+ © M~ = ¥L(D;|E,) > 0, then Mt > it (D;|E,)

In an analogous way, we get
IMR;D(quDj) = MCLJ}(M_,O) =M~

because KRz, (E,,D;) =0
and thus

s, (P D3) = s, (P D) © i (P Dy) = M* & M- = BEb(D,|E,)
and the equation (2.13) holds.

Second, for the case M = 3% (D;|E,) <0
The proof is quite similar.
We have
IMR;D(quDj) = Max(M-I—vO) = M*

and

ne (P D) = Maz(M=, 355(D;|E,)) = M-

because Mt > 0, M = Mt & M~ = p¥5(D;|E,) < 0, then M~ > BYL(D;|E,), we
get

prigt (Pys Dj) = pigs (Py, D) © ppe (P Dj) = MT & M~ = B5p(D;| )
and the equation (2.13) holds.

b) When M™ = M* o M~ < B (D;|E,):



We have
prey (Pyy Dj) = gy, (P, D) © pps (Fy, Dj)

= MaxE;gEqu[NEPS(qu E;), NR;D(E;a Dj)le
MaxE;gEqu[NEPS(qu E;), IMRED(E;7 D;)]
= Mazgcp [ (Ey D)) © Mazp cp, [NRED(E;v Dj)]
= Max(Maz g cp g (B, Di)li e (Eyy D;))E
Max(Mal'E;cEq [IURED (E;, D;)l; PRz, (£ D;))

Put
prs, (By, D) =M™ & Bgp(D;| Ey)

We have now ,uRJSrD(Eq,Dj) > 0, because 0 < M+ < M~ @ BY¥L(D;|E,) and M~ > 0.
We get

IMR}OE(P!]?DJ) = ma:z;[M"’,M‘ & 65%(D]7Eq)] o ma:z;[M_,O]
and finally, we have
pregs (Py, Dj) = (M™ @ 855 (D5, Ey)) © M™ = B (Dj | Ey)

Thus the equation (2.13) holds.
¢) When M > gloh(D;|E,):

In similar way, we have
prgy (Py, Dj) = ppy (P, D) © pg- (Fy, Dj)
= MaxE;gEqu[NEPS(qu E;), NR;D(E;v D)o
Maz gog g, Minliihy o (Poy E)i e (Bl Dy)
= Mazg cp [1ps (Ey D)) © Mazp g, [NRgD(E;v Dj)]
= Max(Maz g g (B, Di)li e (Eyy D))
Max(MaxE;cEq [IURED (E;, D;)l; Rz, (£ D;))

Put
P, (Ey, D) = MT & Bgh(D;| Ey)

We have now ,uRgD(Eq,Dj) > 0, because 0 < M~ < M+ © BY¥L(D;|E,) and Mt > 0.
We get
priee (Py, Dj) = maz[M™,0] & max[M~, M* & B55(D;|E,)]
= MV & (MY & B55(Dj1Ey)) = Bsp(D; | Ey)



that the equation (2.13) holds. This completes the proof of the theorem.
The following example shows that (2.21) may be undefined for usual subtraction —:

Let given a conditional weight system 3:

Bip(D]S1) =0.3 Bsp(D|51) = 0,
Bip(D]Sy) = 0.4 Bsp(D]S2) =0
BEp(D[SL A Sy) =0 Bsp(D]S1 A S3) = 0.7

Applying Mobius transform according to case 3:
- From (2.10), we get:

SH(D[S1 A S2) = Bip(D]S1 A S2) = Bsp(D[S1 A S2)
=0-0.7=-0.7
- Now we calculate M from (2.18), (2.19), we get
Mot = Max(0.3,0.4) & Max(0,0) =0450=04
We have M™ > BY5(D|S1 A S3) then put
pgz, (St A S2, D) = MT & BGp(D;|S1 A Ss)
=040 -07=04@ —(-0.7) =043 0.7
Apply operation & in (2.8), we get
IMRED(SI A Sz, D) = 0.8593
Remark: Now if we use an usual subtraction — for ©, we have
IMRED(SI A Sy, D)= MT — BEL(D;|S1 A S2) =04 —(=0.7)=1.1>1

But from definition 5, :“RED(Sl A Sy, D) must be in [0,1], that means (2.21) is undefined
for usual subtraction — in our example.

More than that the example shows that if pper (P,, Dj) were defined in (2.7) using
— instead of & then we could not construct a rule base © such that [iRsot (P, D;) =

sp(Dj|Ey) for Eg = S1, 5, S1 A Sy
Now we would have to construct the following new rule base:
Sl — D(Og), Sl e _‘D(O)
Sy — D(0.4), 5 — —D(0)
Sl A SQ — D(O), Sl A SQ — —|D(w)

such that
NR;D(PWD) - IUR;D(quD) =—0.7= NR}OB(PWD) (2.22)
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But Frt (P, D) =04, Frs, (P,;, D) = w, which gives
0.4 —w=-0.7

w = 1.1, which > 1.

3 Some examples:

We discuss the following conditional weight systems 3. We apply the above algorithm
to compute new weights using MinMax composition of rules of CADIAG-2:
For every example, we apply Mobius transfrom to the given 3 of using MaxMin Com-
position of CADIAG-2 that we find new weights ’uRJer(Si D;) and ’MRED(S“Dj) such
that

MRt (P, D;) = g%(DﬂEq)

In all examples, we assume /LEPS(Pq, S1) = /LEPS(Pq, Sy) =1
We use PROSPECTOR group operation & and & defined in (2.8), (2.9)

1) Example 1:

Bip(D|S1) =0.7 Bsp(D]S1) = 0,
Bip(D]Sz) = 0.7 Bsp(D]S2) =0

- Mébius transform for example 1:

a) Calculating M™, 8%, (D|S1 A Ss):

M+ = maxE(lzcsl/\SQ(lu]—Sps(Pq7 E;) /\ IMR;D (E(;7 D))
= max(0.7,0.7) = 0.7
In similar way, we get

M~ = MAT g s s, (,uRJSrD(Eq,D)) = max(0,0) =0

Then M*™ =0.750=0.7
On the other hand,

§H(D]S1 A Sy) = BEp(D]S1 A S3) — B5p(D|S1 A Sa) = 0.7

b) Compare M** with SY5(D]S1 A Sy):
From results above, having M* = ¥5(D|S; A Sz) = 0.7 > 0, then put

prt, (St A S2, D) = Bsp (DS A Ss)

= 0.7

We receive the following new rule base:

Sl — D(O?),Sl e _‘D(O)
SQ — D(O?), SQ e _‘D(O)
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Sl A SQ — D(O?), Sl A SQ e _‘D(O)

such that
pres (P, D) = BSH(D]S1 A Sy) = 0.7 (e.1)

c¢) Verifying (e.1):
From (2.5) we have

NR}OB(PWD) = NR;D(PWD) S NR;D(quD)
= MaxE(;gsl/\SQMln[luEps(Pq7 E;)’ IMR;D (E(;7 D)]
@MCLJ}E(/ngl /\SQMZnI:Iu]-Sps(Pq7 E;)’ IMRED(E;7 D)]

= max(0.7;0.7;0.7) & maxz(0;0;0) = 0.7 0 = 0.7
thus equation (e.1) holds.

2) Example 2:

BEp(D|S1) = 0.7 Bsp(D|S1) =0
B3p(D]Sy) = 0.7 Bsp(D]S2) =0
BEL(D]ST A S3) =0 Bsp(D[S1 A S2) =0.7

- Mébius transform for example 2:
a) Calculating M™, 8%, (D|S1 A Ss):

M* = maxE;cslASQ(NEPS(an E) A NR;D(Eqa D))
= max(0.7,0.7) = 0.7

In similar way, we get

M~ = MaT g s s, (:“R;D(E;vD)) = max(0,0) =0

Then M =Mt M- =0.7T50=0.7
On the other hand

g%(D|Sl A Sz) — 6§D(D|Sl A Sz) - 6§D(D, Sl A Sz) — 0 - 07 — —07

b) Compare M** with S55(D]S1 A Sy):
From results above, having M > B6( D, S; A Sy) then put

fiz, (S1 A Sy, D) = M* S BGH(D]S A Sy)

=070-07=0.7®0.7T =0.9395

We receive the following new rule base:

Sl — D(O?),Sl e _‘D(O)
SQ — D(O?), SQ e _‘D(O)
Sl A SQ — D(O), Sl A SQ — _‘D(07 D 07)

12



where 0.7 ¢ 0.7 = 0.9395 (using (2.8))
such that
’MR?’)B (Pq,D) == tOt (D|Sl A 52) = —0.7 (62)

c¢) Verifying (e.2):
From (2.5) we have
NR}OB(quD) = IUR;D(quD) =/ IUR;D(quD)

= maxz(0.7;0.7;0) © maz(0;0;0.74 0.7) = 0.7 (0.7 $ 0.7) = 0.7

Thus
IUR}?B(quD) == tOt (D|Sl A Sz) = —0.7

Thus the equation (e.2) holds.

3) Example 3:

Bep(D|S1) = 0.3 Bsp(D|S1) =0
Bip(D]S) = 0.3 Bsp(D]S2) =0
BEp(D]S1 A S3) = 0.7 Bsp(D]S1 A Sg) =0

- Mé6bius transform for example 3:
a) Calculating M™, 8%, (D|S1 A Ss):
MT = maxE(lzcsl/\Sg(lu]-Sps(Pq7 E) N NR;D(Eqv D))
= max(0.3,0.3) = 0.3
In similar way, we get
M= = maz prc g s litns (Fps D)) = maz(0,0) = 0

Then M =Mt M- =0350=0.3
On the other hand

tOt (D Sl A Sz) 6§D(D, Sl A Sz) - 6§D(D, Sl A Sz) — 07 - 0 — 07

b) Compare M** with S55(D]S1 A Sy):
From results above, having M < BIh(D, S; A S3) then put

”RED(Sl A SQ, ) M @ 6t0t (D|Sl A Sz)
=04 0.7=0.7
We receive the following new rule base:
Sl — D( ) Sl e _‘D(O)
SQ — D( ) SQ e _‘D(O)
Sl A SQ — D( 7) Sl A SQ e _‘D(O)
such that
IMR}‘,’B (Pq,D) = tOt (D|Sl A Sz) = 0.7 (63)
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c¢) Verifying (e.3):
From (2.5) we have

/LR;OB(quD) = ILLR;D(Pq7D) @ﬂR;D(quD)

= max(0.3;0.3;0.7) & maz(0;0;0) =0.750 = 0.7

Thus
prig, (Py, D) = SH(D|Sy A Sy) =0.7

and the equation (e.3) holds.

4) Example 4:

BEp(D|S1) =0 Bsp(D]S1) = 0.3
Bsp(D|Se) = 0.3 Bsp(D|S2) =0
BEp(D]S1 A S3) = 0.7 Bsp(D]S1 A Sg) =0

- Mobius transform for example 4:
a) Calculating M™, 3% (D|S1 A Ss):

M+ = maxE(lzcsl/\SQ(lu]—Sps(Pq7 E;) /\ IMR;D (E(;7 D))
= max(0,0.3) = 0.3
In similar way, we get
M~ = maxE;C51A52(/LRcSD(E;, D)) = max(0.3,0) = 0.3

Then M =Mt M- =03503=0
On the other hand

g%(D|Sl A Sz) — 6§D(D|Sl A Sz) - 65_‘D(D|Sl A Sz) — 07 - 0 — 07

b) Compare M** with S55(D]S1 A Sy):
From results above, having M < BIh(D, S; A S3) then put
pry, (St A Sy, D) = M~ @ Bgp(D]S1 A Sy)

= 0.3 § 0.7 = 0.8264 (using (2.8))
We receive the following new rule base:

Sl — D(O), Sl e _‘D(Og)
SQ — D(Og), SQ e _‘D(O)
Sl A SQ — D(03 D 07), Sl A SQ — _‘D(O)

such that
Hriss (Py, D) = BSH(D]S1 A Sz) = 0.7 (e.4)

c¢) Verifying (e.4):
From (2.5) we have

NR}OB(PWD) = NR;D(PWD) @NR;D(PWD)
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= max(0;0.3;0.3 $0.7) © max(0.3;0;0) = (0.330.7) ©0.3) = 0.7

Thus
prie, (P, D) = WL(DIST A Sy) = 0.7

and the equation (e.4) holds.

5) Example 5:

BEp(D]S1) =0 Bsp(D]S1) =10.3
B3p(D]S2) = 0.3 Bsp(D|S2) =0
BEp(D[SL A Sy) =0 Bsp(D]S1 A Sz) =0.7

- Mébius transform for example 5:
a) Calculating M™, 8%, (D|S1 A Ss):
M+ = maxE(lzcsl/\SQ(lu]—Sps(Pq7 Eq) /\ IMR;D (Eq7 D))
= max(0,0.3) = 0.3
In similar way, we get
M~ = MAT gt g, ns, (:“R;D(E;vD)) = max(0.3,0) = 0.3

Then M =Mt M- =03503=0
On the other hand

g%(D|Sl A Sz) — 6§D(D|Sl A Sz) - 6§D(D, Sl A Sz) — 0 - 07 — —07

b) Compare M with 355(D,S1 A Sy):
From results above, having M > BIoh(D, Sy A Sy) then put

pr=, (S1AS2, D)) = M* S BGH(D|S1 A Sy)

=035-0.7=0360.7T = 0.8264 (using (2.8))
We receive the following new rule base:
S1 — D(0),5 — —~D(0.3)
Sy — D(0.3), 52 — =D(0)
S1 A Sy — D(0),51 A Sy — =D(0.340.7)
where 0.3 6 0.7 = 0.8264

such that
pris (Py, D) = BSp(D]S1 A S2) = —0.7 (e.5)

c¢) Verifying (e.5):
From (2.5) we have

NR;OB(PWD) = IUR;D(P!ND) @NR;D(PWD)

= max(0;0.3;0) © max(0.3;0;0.364 0.7) =035 (0.340.7) = —0.7
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Thus
IMR}?B(Pq?D) == tOt (D|Sl A Sz) = —0.7

and the equation (e.5) holds.

6) Example 6:

B3p(D]S1) = 0.7 Bsp(D]S1) =0
B3p(D]S) = 0.3 Bsp(D]S2) =0
BEp(D[SL A Sy) =0.7 Bsp(D]S1 A Sg) =0

- Mébius transform for example 6:
a) Calculating M™, 3% (D|S1 A Ss):
MT = maxE;cslASQ(NEPS(an L) A NR;D(Eqa D))
= max(0.7,0.3) = 0.7
In similar way, we get
M= = maz gy s, (s, (B D)) = maz(0,0) = 0

Then M =Mt M- =0.7T50=0.7
On the other hand

tOt (D|Sl A Sz) 6§D(D|Sl A Sz) - 65_‘D(D|Sl A Sz) — 07 - 0 — 07

b) Compare M with S5(D, S A Sz2):
From results above, having M = 3%L(D, Sy A Sy) = 0.7 > 0, then put

,MR;D(Sl/\SQ, ) = tOt(D Sl/\Sz) = 0.7
We receive the following new rule base:

Sl — D( 7) Sl e _‘D(O)
SQ — D( ) SQ e _‘D(O)
Sl A SQ — D( 7) Sl A SQ e _‘D(O)

such that
s (P, D) = BES(DIS) A 83) = 0.7 (e6)

c¢) Verifying (e.6):
From (2.5) we have

HRigt (£, D) = NR;D(quD) S :“R;D(quD)

= max(0.7;0.3;0.7) & maz(0;0;0) = 0.7 0 = 0.7

Thus
Rtot (P D) tOt(D|Sl/\SQ)—O7
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and the equation (e.6) holds.
4 Conclusion

In this study, we have described an algorithm using Mobius transform to compute new
rule base for CADIAG-2. We have extended CADIAG-2 by including fuzzy negative
knowledge. To apply Mobius transform for CADIAG-2 means to find new weights
’uRJer(Si D;) and ’MRED(S“ D;) of fuzzy rules such that for each patient P, whose data

1Fr s (Pyy Si)i fim o (Py, Si) are three-valued (therefore E, exists) such that
preer (Py, Dj) = B (D5 By)

Thus this algorithm garantees that using generalized MaxMin inference of CADIAG-2
the inference machine will reproduce the expert’s stated conditional beliefs as total
degrees of confirmation and exclusion. To illustrate this algorithm, several examples
are examined.
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