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Abstract

When using neural networks with spline activation functions, the quality of approxi-
mation depends on the placement of knots of spline functions. This paper shows how
to choose the number of equidistant knots in each subdivision of the space when an
arbitrary initial division is given, in order to keep the approximation error under a
predefined limit.

Keywords
Cubic spline, activation function, approximation error.

!Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech
Republic

ZMicroelectronics Laboratory, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
email: verleysen@dice.ucl.ac.be



1 Introduction

Approximation of functions is a classical problem in engineering tasks being solved by
many mathematical approaches. Recently, a resurgence of interest in this area came
from researchers in the field of neural networks, who developed new approaches or
rediscovered conventional ones; advantages of approximation of functions by neural
networks mainly consist in their simplified descriptions, usually in terms of algorithms
or diagrams instead of complex mathematical equations. This simple description helps
to work more easily in high dimensional spaces.

Among various “neural networks” algorithms used in approximation of functions
there are methods based on “local” activation functions. Radial-Basis Functions (RBF)
networks are widely used; methods based on splines seem to be less studied by the
researches dealing with neural networks, while their approximation properties are jus-
tified by numerous convergence theorems from 60s and 70s.

This paper deals with approximation of functions by cubic spline networks. Bounds
on the approximation of functions by cubic splines are used to evaluate the number of
knots necessary for partition of the space to keep the approximation under a predefined
limit. The results are derived in the one and two-dimensional cases, where spline
approximation is mostly used.

2 Neural Network with cubic spline activation func-
tions

2.1 One-dimensional case

We start our presentation of cubic splines interpolation by the one-dimensional case,
according to [1].

Consider I = [0,1] and a real function f : I — R. Let A be a division of the
I=[0,1] givenby A={0=" <v <..<v=1}

Given A, let the space of cubic splines with respect to A, S(A), be the vector space
of all twice continuously differentiable, piecewise cubic polynomials on [ with respect
to A, l.e.

S(A) = {p(x) € C*(1)} (2.1)

so that p(x) is a cubic polynomial on each subinterval [z, #;41],0 < ¢ < N, defined by
A.
In this paper we will use words cubic spline and spline interchangably.
Every cubic spline may be represented in terms of the basis functions {h;(x),
P
N1

s(w) = 2 (s(x)hix) + s'(2:)hi (@), (2.2)

=0
where h;(x) is the unique piecewise cubic polynomial on each subinterval defined by

A in OY(I) such that h;(z;) = 6,0 <i,5 < N +1, and hi(x;) = 0,0 < 4,5 < N+ 1,



and h}(x) is the unique piecewise cubic polynomial on each subinterval defined by A
in C''(I) such that hl(z;) = 0,0 <4,j < N+1,and (hl)(2;) = 6;,0 <i,5 <N +1.

This mapping s(x) is "local” in the sense that if @ € [x;,2,41], 0 < ¢ < N, then
s(x) depends only on s(x;), s'(x;), s(xi41), 8" (Tig1)-

Given f = (fo, ..., [n41s foo [hsr) € BV, let f(:z;), the S(A)—interpolate of f be
the unique spline s(z) in S(A) such that s(z;) = f;, 0 <¢ < N 41 and f’(:z;l) = fl,
¢ =0and N + 1.

It can be also proven (see [1]) that, given the set 2 = {f07"'7fN+17f67f]/\7+1}
of N + 3 real values corresponding respectively to the values of the function f at
2:,0 <i < N+1, and to the value of its derivative f at zo and at @41, f, the S(A)
interpolate of f such that f(:z;z) =f,0<e < N+1and f/(:zjl) = fi,i=0and N + 1,

is uniquely determined, and the above definition is correct. For a standard procedure

Y

to calculate coefficients s(x;) and s'(z;), see [1].

Moreover, if parameters f, and f]lv+1 are not known, they can be approximated
by the local cubic Lagrange interpolating polynomials at both ends of the interval [,
before determining the approximation f(:z;)

Finally, we must mention that it is possible to determine a basis for S(A), namely
the ”cardinal splines” {C;(x)}5?, defined by
]/(1) =0, for 0 < 4,5 < N 41, and by Cyya(x;)

Cia:) = 6, C5(0) = C; i) =
Onys(2i) = 0,0 <4, < N +1, Cj'v+2(0) = Cyps(1) = 1 and Cyy(1) = On14'(0) = 0.

In this case, the approximation f(x) can be written as:
X N1 / /
flx) = > fiCi(x) + foCnra(2) + s Onsl). (2.3)
=0

Note that in this case the interpolation mapping f is no more local, i.e. f(:z;) depends
on all parameters f;,0 <i < N +1, f; and f]/\f-|—1'

We can construct a corresponding spline neural network having cardinal splines as
activation functions. *** Michel, could you draw it here? The figure of the network

with one-dimensional input, N + 3 units in the hidden layer and network weights f;

and fo and fyq1.

2.2 Two-dimensional case

Consider U = [0,1] x [0,1] and a real function f : U — R. In the agreement with [1],
let p = AQ A, be a rectangular grid given by A={0 =7 <y < ... <9y = 1} and
Ay ={0=po < p1 <..<py =1} are some given divisions of I.
Again, according to [1] let S(p) be the (N +4)(M + 4)-dimensional vector space of
all functions of the form
N+3 M43

s(e,y) =2 2 BiuCilw)Cily), (2.4)

=0 ;=0

2



where C;(x), C;(x) are cardinal splines of S(A). S(p) is the space of piecewise bicu-
bic polynomials in U with respect to p.

Now we can uniquely define the interpolation f(:z;, y) of fin S(p) by:

. N+1M+1

flayy) = > > [iiCi(2)Cily)

=0 ;=0
Nt 1,0 1,0
+ Z (fo; Cnya(x) + fN+1,jCN+3($))CJ(y)

i=0
! 0,1 0,1

+ > (fio Crrea(y) + i1 Cnags(y)) Ci()
=0

+fo0 Ona2(2)Corra(y) + fo a1 Ona2(2)Caras(y)
—|—f]1V’}r17OCN+3(x)CM+2(y) + f]l\r’j_17M+1CN+3($)CM+3(?J)7 (2.5)

where f;; = f(xi,y;), foii = 0f(0,y;)/0x,
Ity = 0F(1,y;) /0w, fiy = 0f(2:,0)/dy,
Finre = 0f(2i,1)/3y. fop = 9°£(0,0)/0xdy,
(},}%44-1 = azf((), 1)/0x0y, f]l\fil,o = 62f(1, 0)/0x0y,
le\;}l—l,M-I—l =0%f(1,1)/0z0y, forall 0 <i < N4+land 0 <j < M +1.

% Michel, could you draw a figure of 2-dim spline network with cardinal splines
as activation functions?

3 Approximation with uniform-bounded error

In this section, we deal with the problem of finding an adequate number of knots, i.e.
the number of points z; and y;, to ensure the approximation error under a predefined
bound. We synthesize our results on the base of error bound estimations known from
[1]. Both in one and two-dimensional spaces, the approximation error is bounded by a
function depending on the maximum value of the fourth derivative of function f in the
considered interval. We realized that the bounds on corresponding fourth derivative
may vary from one location of the space to another, and that it is convenient to split
the space into subdivisions, among which the distances between knots can thus be
different. We deal only with equally-spaced knots into each subdivision of the space.

3.1 One-dimensional case

Consider the interval I = [0, 1] of function f divided into R intervals [v;,7;41],0 <7 <
N,v = 0,9nv4+1 = 1 given by A.

Our concern is to find a distance h; between equally-spaced knots in each interval
[7isVix1], such that the approximation error between f and f is under a predefined



limit ¢ for all points in [y, yi41] :

I = Fle <6 a.1)
where ||f — fHOO = sup,; || flz) — f(:z;)H is the uniform norm of f — f.

Consider PC*>*(1I), the space of all functions on [ such that:
1. f is three times continuously differentiable,

2. there exist v;, : =0 <7 < N with
0 =9 <m < ... <~y =1 such that on each open subinterval (v;,7vi41),
0<i<N-—1, f® is continuously differentiable,

3. f(4)(:1;) ||oc= maxo<i<n SUD 4 (71 01 ) |f(4)(:1:)| < oo for x € 1.

We will need the following result (see [1]):

Lemma 1 If f € PC**(I), then

A )
1f = fllee < @h“ (WA (3.2)

where h = maxo<i<n(Yig1 — 7).
For a proof see [1] p.57.

Now let us present our main theorem of this chapter.

Theorem 2 Let A = {0 = vy < ... < v = 1} be a given division of I and let
Li = SuPug(vimip1) |f@ ()| for all i =0,...,N, C = == Then for every e > 0 there
exists a neural network with spline activation functions given on the subdivisions of

[Vi,Yit1], ¢ = 0,..., N consisting of M; + 1 equidistant knots ~i,,...,%,, on each
[vis Yig1]realizing a function f so that for every v € I

F() — flo) < (33)
This M; can be found in the way

M; = [, (3.4)

where h; = 3/ 5. If Ly # L; then M; # M;. ( [a] means the smallest integer greater
than a).



Proof: If the right side of the equation in the lemma 1 is less than e, the approxima-
tion error will be under the predefined limit.
Applying this condition to each interval [v;,v;41], we have:

D 4y )
: < .
or
h; < ¢ ‘ (3.6)
=\ oL '
where 5
= — — (4)
C T and L; = || f*Y(2)] e (3.7)

on the interval [;, v;41], for each 0 <7 < V.

Under the condition (11), the best choice for h; is obviously the largest possible
value, in order to decrease the number of necessary knots. However, to keep limits ~;
and 7,41 of the interval as knots too and to have an integer value for (y;41 — i)/ hs, we
will choose the number of interior knots M; (not including v; and ~;41) to be equal to:

M; = [P, (3.8)
CL;
and consequently
Vi1 — Vi
hi = ———. 3.9
Ml (3.9)

3.2 Two-dimensional case

A similar result can be obtained in the two-dimensional case. We now divide the
space U = [0,1] x [0,1] (the domain) of function f by a rectangular grid p, where
p=AR®A, be a rectangular grid given by A = {0 = v <y < ... <9y = 1} and
Ay =10 =po < 11 < ... < py = 1}, which are given divisions of I. In each rectangle
[Vir Yit1] X [ft5, tj41], we want to find distances h;; between equally spaced knots for
both coordinates so that the approximation error is under the limit ¢ for all points in
U in the rectangle.

Similarly as in the section for one-dimensional problem, denote

PC**(U), the space of all functions on I such that:

dLak f(z,y)

EEEN exist and are con-

1. f(x,y) is three times continuously differentiable, i.e.
tinuous for all 0 <[4+ k& < 3,

2. thereexist v, 0 <t < Rand p; 0 <3 <5
with0 =% <m <...<yr=1and 0 = pup < ... < gy = 1 such that on each
open subrectangle (v;,¥it1) X (fj,4j41), 0 <i < R—1,0<7 <5 -1 %2%2
are continuously differentiable for 0 < [+ & < 3, and



3. forall 0 <[4+ k<3

alakf(xvy) alakf(l',y)
o T e 000
vy 82;2@ (z,9)E(vivigr) ¥ (pg 0t541) z'0y
for (z,y) € U.

Under the similar conditions on the function f as in the one-dimensional case, we

have (see [1]):
Lemma 3 If f € PC**(U), then

(E L AR A S Ha4f
384 o 9 &%‘28 211%0 384

If = Fllee < 5 oo ) (3.10)

where p = max{h,k} and h, k are the distances between knots in the @ and y-coordinates
respectively.

For a proof see [1] p.60.
Applying this condition to each subrectangle of the space [v;, vit1] X [ft), ftj41], we have
our main theorem of this chapter.

Theorem 4 Let the space U = [0,1] x [0,1] (the domain) of function f be divided by
a rectangular grid p, where p = AQ A, be a rectangular grid given by A = {0 =~ <
N <..<Aav =1} and Ay ={0 = po < py < ... < py = 1} are given divisions of 1.
Let

5 84f 4 0 5 84f

on the rectangle [y, vit1] X [,uj,,ujﬂ].

Then for every e > 0 there exists a neural network with spline activation functions
given on the subdivisions of equidistant knots on [vi, Yit1] X [ptjs ptj41] 1 =0,... R, j =
0,...,5 consisting of M;; = (R; + 1) x (S; + 1) equidistant knots realizing a function
f so that for every (z,y) € U

i lle) (3.11)

[f(z,y) = flay) < e (3.12)
These M;; can be found as:

R; = w, whereh; = Y41 — Vi (3.13)

i1 — 1]
QR o L ¥ A |
j k;
A € % — k H ]
and where p; j = G/% and h;; = —RZH’ kij = Tj-l—l and hq, kj < pij. The best solution
(in terms of knots M, ;): h; = k; = pi;.

, wherek; = prj41 — 1t (3.14)



Proof: Applying the condition of lemma 3 to each subrectangle of the space [;, vi+1] X
(1155 p1j41], we have:

5 0 4 O 5 oNf
0 a o] o o) S 5 1
7 G 15 4 3 I 4 5o I Sl < (3.15
or
5o < 4] (3.16)
Pij = Lij7 .
where p;; = max{h,j, k;} and
5 a4f 4 a4f 5 a4f

on the rectangle [1:,7i41] * [t tj41]
Under the condition (20), the best choice for h;; and k;; is obviously the largest

possible values, in order to decrease the number of necessary knots. However, to keep
knots on the boundaries of the rectangle and to have integer values for (yi41 — i)/ hij
and (pjr1 — p;)/kij , we will choose the number of interior knots in the z-direction R;;
(not including v; and 7;41) and in the y-direction 5;; (not including p; and pj41) to be
equal to:

Yit1 — Vi
Rij= [ —"1. (3.18)
Lij
Sy = [, My = (B +1) x (S + 1) (3.19)
Lij
and consequently

Vi1 — Vi
hiyj = ———, 3.20

Hi+1 — [y
ki = ————. 3.21

We see that the lattice of knots is regular inside each subrectangle of the space, but
that it may no more be regular over the whole space U.

4 Discussion

Placement of knots in neural network approximation by superposition of local functions
(RBF, splines) is a non-trivial problem, as well in one- as in mutil-dimensional spaces.
The number of knots to be placed in a defined region of the space has also to be
determined. In many situations, this number is fixed a priori, assuming some knowledge
on the function to approximate, and some experience from the programmer to guess a
number of knots which offers a compromise between the complexity of the algorithm
and the accuracy of approximation.



By using results on the error of approximation in one- and two-dimensional spaces,
this paper presents a method to determine a lower bound for the number of knots in
each region of the partitioned space, assuming that a bound on the fourth derivative
of the function to approximate is known.

Further studies could include the extension of the results to spaces whose dimension
is greater than two, and the search for approximations of the bound of the fourth
derivative of the function to approximate, given a set of data, but without any more
information about the function.
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