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Abstract

The simulation of geodynamical and tectonic processes often leads to mathematical
models which correspond to the Contact problem in 2-D and 3-D elasticity. In these
models a system of several elastic bodies is considered. These bodies are subjected to
the fundamental equilibrium laws as well as to the Hooke’s law of elasticity. Unlike the
classical elastic models, the condition of impenetration must be fulfilled.

The Finite Element Method is very suitable for the numerical solution of this prob-
lem. In engineering practice several solutions were suggested on how to solve such a
problem. Here we draw on the mathematical formulation of the Contact Problem. In
this way, we avoid using the additional contact elements where the estimate of suitable
elastic parameters is needed. Mathematical formulation is based on the variational
inequality. We are able to study the questions concerning the existence and uniqueness
and can also obtain the asymptotic estimate of the error of an approximate solution.
Discretization then leads directly to the algorithms of numerical mathematics. This
enables us to examine a great variety of methods and select the optimal in view of the
speed and memory requirements.
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The solution of an approximate Contact problem can be divided into several phases.
The “Outer” part is the method of succesive approximations. In every iteration it is
necessary to find certain saddle point. This is done by another iterative method. Fi-
nally, in the “Inner” part we solve the problem of finding the minimum of the Potential
energy functional over the set of all admissible displacements. In our case this is equiv-
alent to the Quadratic programming problem. Let us notice, that the phases may be
connected and our division of the problem does not need to be observed strictly. If we
omit the influence of friction, the problem is only reduced to the “Inner” part. With
this contribution we will examine various methods for solving such a problem.



Chapter 1

Formulation of the problem

1.1 Classical formulation of the Contact Problem

Let us suppose, that we have S elastic bodies in the system. Note, that the existence of
points to which more than two bodies stick is not necessary. Let these bodies occupy
the bounded regions Q*, Q2 ..., Q° C R? with Lipschitz boundaries.
We look for the vector field of the displacements u = (uy,uz), the tensor field of
small strains e;; = ¢;;(u) and the stress tensor 7,; = 7;;(u), 7,7 = 1,2, on Q' U...UN".
Let the boundary 9€) be divided into disjunct parts

I, T T, B, 99 =T, UT, Ul .UT,UR,
FU = Uf:l qu FT = Uf:l Fi? FO = Uf:l FZO? FC = Uk,l F]cd7
T =T"'n T, kile{l,....Sh k<l

and the surface measure of R be zero.

Let on I'. = Uy, N

Up = Uny, Uy = Ugly, T, = Tyng, Tt = Tl (1.1)

where n; are the components of outward normal to 90*,
t = (—n2,n1), 7, = Tjn;.

DEFINITION 1.1. The function u is a classical solution of the Contact Problem if

it fulfills the equilibrium equations

Ty .
- Fr=0 2,5=12 , 1.2
T+ =0 i (12)

where F; are the components of the body forces vector,
the generalized Hooke’s law

m(u) = cypmerm(u) 4,5 =1,2 (1.3)

(we use the Einstein’s summation convention),
the relation for strain

1 Ou;  Ou;
cii(u) = 5(8:1; 8:1;]'
7 7




and the boundary conditions
u; = ug; only, (1.5)

where ug; are the components of a given vector of displacement.
=P onl,, (1.6)
where P; are the components of surface loads,
ub —ul <0, tF=—7l<0, (W-d)rf=0, 7F=7=0 onI¥ (1.7)
(The Signorini conditions on an unilateral contact)

u, =0, 7=0 on Iy (1.8)

(The conditions on a bilateral contact)

The coefficients in (1.3), ¢ijkm € L>(€), have the following types of symmetry
Cijkm = Cjikm = Chmij- (1.9)
Moreover, there exists a constant ¢y > 0 such, that
Cijkm (T )€ij€km > Co€ij€i; (1.10)

is valid for all sym. matrices ¢;; and almost everywhere in ().

In the case of isotropic bodies and plane strain
ez = A, Ciai2 =
the same holds for symmetric components (cf.(1.3)), and

Ci111 = €222 = A+ 20, Cijem = 0 otherwise.

1.2 Variational formulation

It is necessary to assume sufficient smoothness for the classical solution. However, in
the case when this assumption is not valid, it is possible to define the solution by using
the minimum potential energy principle.

First of all, we introduce the space of the functions with finite energy

HYQ) = {vlv = (vL,vE,. .. v5) € QY] x ... x [H'(Q%)]2 ). (1.11)



The norm is defined as

S 2

VI = IVl (@) Z IV Iz ey = 2222 il (1.12)
=1 1¢=1
Similarly we define the space H?*()
HA(Q) = {viv=(vivi ... v € [H* QM) x ... x [H*Q)* 1. (1.13)
We will also use the space
~ dv; -
W) = (]2 e (), (1.14)

where v = v(x), x = x(t) is the parametrisation of the abscissa I', ¢=1,2
Furthermore, we define the seminorm

IVIE = | eqv)es(v)dx (1.15)
We introduce the sets
Ve ={veH' Q)|v=1u onTl,, v,=0 only}l, (1.16)
where ug € H'(Q) , and
Ky ={veV,|vh—v <0 onI*} (1.17)

( The set of all admissible displacements ).
REMARK 2.1. If up = 0 on I, for simplicity’s sake we omit the index ug in
symbols V and K.

Let the potential energy functional have the following form

L(v) = %A(V,V)—L(V) , (1.18)

where
Alu,v) = / it (W)em (V) dx (1.19)
/Fmﬂ+ Podx (1.20)

F e [L*(Q))?, P e [L*(T,))?

Regarding (1.9), (1.10) and Schwartz inequality, we have

colv]? < A(v,v) | (1.21)
A(U,V) < Cl|u||v| ) (122)
VI < Callvi® (1.23)

We will now define the variational solution.



DEFINITION 2.1. A function u € K,, is the variational solution of the Con-
tact Problem if it is the minimum of the potential energy functional on the set of all
admissible displacements i.e.

L(u) < L(v) VveER, . (1.24)

We denote this minimization problem by (P).

The following Theorem shows the connection between the classical and variational
solutions.

THEOREM 2.1. Every classical solution is also variational. If the variational
solution is sufficiently smooth, it is also classical.

Proof. Let u be the classical solution. Multiplying each of the equations (1.2)
by the functions w; = v; — u;, v; € K,,, adding, integrating by parts and using the
symmetries in (1.4)-(1.9) and boundary conditions (1.5), (1.6) and (1.8), we arrive at

A(u,w) — L(w) = /Fkl (75 (v — uli) + T (vf — ufe)+
U C

-I-Téz(vflz — uflz) + Ttlz(viz — uiz)]ds.

Here n*, n' are the outward normals to 9Q* and 9Q'; t* = —¢! tangent directions (1.1);
tho= =1l =7k similarly o), = ol ol = —ul, Tl =1k =0
Thus, we get
A= v) (v —w) = [k o) - (- ul)ds. (129
Ukl

As v € K, from the first three conditions in (1.7), it finally follows that
Alu,v—u)—L(v—u) >0 VveK,. (1.26)

The solution of this variational inequality is also the solution of the minimization
problem (1.24) [5].

On the other hand, let the solution u € K, be sufficiently smooth.
u € K,, and therefore the conditions in (1.5) and first in (1.7), (1.8) are met. Inte-
grating by parts in (1.26) and choosing suitable trial functions v we gradually obtain
(1.2), (1.6) and the remaining conditions in (1.8) and (1.7). For a 2D problem see [§]
in detail. O

1.3 The existence and uniqueness

After forming the variational formulation, we are able to solve the problem by using
the variational method. At this point it is natural to ask whether there are exist-
ing conditions, which ensure that the solution does exist or whether it is determined
uniquely. We will assume the implication (I'y, # {0} = (up =0 onl) ).

We have transformed a general case to a homogeneous one, as follows.

Let us consider the decomposition u = w 4+ wq, where w € K and w, € H'(Q),

Wy = up on I', wgn - wén =0 on Ffl, wo, = 0 on I'y. Define the functional
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Luo(W) = LA(w, w) — Luo(w),
where  Lyo(w) = L(w) — A(w, wy),
and consider the problem (P0)

min Loo(w).

The following Lemma holds.

LEMMA 3.1. The variational solution of the problem (P) exists and is uniquely
determined iff a unique solution of (P0) exists.

Proof. Choose h € H'(£) such, that
h=#{#} andu+hek,, & w+h+wiekh,, & w+hek
The equivalence of the assertions
L(u) < L{u+h) and L,o(w) < Lyo(w + h)
is now already obvious, as
Loyo(w) — L(wg) = L(u) < L{u+h) = Lyo(w+h) — L(wy) O
Hence, let ug = 0 on I, in what follows.
DEFINITION 3.1. Let
R' = {z' ¢ [H' ()| 2L =} — blay, 2L =d) + b2y },
where 1 <1< S, a!,d), b are the arbitrary constants
R={zcH'(Q)| VI 1<I<S;eR}.
R is the set of rigid displacements and small rotations of all bodies of the system.

DEFINITION 3.2. Let R* ={z€ V N R| zf— 2. =0 on T*} |

LEMMA 3.2. Let I', = UL, 'Y, T'" be open, non-empty VI1 <1< S .
Then V N R = {0} .

The proof follows from a similar assertion for one elastic body [21].

REMARK 3.1. In the coercive case, when V N'R = {0}, the Korn inequality is
valid on the whole space V :

alvl < [vl?, e >0 (1.27)

where ¢; is independent of v € V' .



The remaining cases, when V N'R # {0}, are called semicoercive.

Now, we may proceed to the existence theorems. The first Theorem solves the
simplest coercive case.

THEOREM 3.1. Let the assumptions of the Lemma 3.2. be fulfilled.

Then L is coercive on K and the unique solution of the problem (1.24) exists.

Semicoercive case, which is more general, is considered in Theorem 3.2.

THEOREM 3.2. Let R* = {0}, L(y) #0 VyeV n R—{0}.
Let either K n R={0}
or K nNnR#A{D}, Lly)<0 VyeK n R-—{0}.
Then L is coercive on K and the unique solution of (1.24) exists.

Proof. See [§]

Let us emphasize that fulfilling the assumptions of the previous Theorem does not
always need to be easy, especially when more than two bodies in contact are considered.

1.4 Finite element approximation of the problem

The problem (P) in the form of (1.24) cannot be solved generally. It is necessary
to replace it by the sequence of problems for which we can find a solution. We will
construct the finite dimensional approximation of the set of admissible displacements.
This set will be used for the definition of the approximate solution of (P).

Consider the regular, consistent triangulation T} of the regions 2° 1 < s < §
with nodes a;. 2° have a polygonal boundary and & designates the longest side of the
triangles (cf. e.g. [8]). As the boundary is polygonal, it holds I = UL, I'*/, Ty =
U}Ilzl I'y;, where Ff}, I'y; are the abscissae, whose endpoints are the vertices of the region
Q. J = J(k,I) is the number of straight lines on the unilateral contact boundary
between the bodies k and [, and J' is the number of straight lines on the bilateral
contact boundary. For every node a; of the triangulation on I'*!, and on Ty, define the
set of indices N} = {j € {1,...,J}a; € T¥} and N; = {j € {1,...,J'}| a; € Ty;},
respectively. ( In plane problems N; has 1 or 2 members. In the latter case the node
a; is the vertex of the region laying inside T'* or I'y). Let, on the abscissae Ff]l n;
denote the outward normal to the boundary 9QF. Let us define the finite dimensional
approximations of V,,, and K, .

Vi) = {vi € [CEON x ... x [CO|vir € [P(T)PVT € Ty
vi(ai)n; = 0,5 € N}, a; € Ty;

Vh(ai) = uo(ai), a; €T, }, (128)
(Ku)n = {vi € (Va)ul(vi = vi)(a)n; <0,
JENH a;eTH 1<k<I<S Y. (1.29)



REMARK 4.1. Similarly as Remark 2.1., for ug = 0 we omit the index ug in sym-
bols V}, and K3,

REMARK 4.2. Tt holds K; C K .

REMARK 4.3. If we consider the term v, = v-n (or vy, = v, -n) on a certain
edge I', (e.g. the interpolation r4v,, on the element or the integration on I',, Jr, vnds
- see below), then the construction of (K, ) is convenient in this way. The definition
of the interpolation will still be understood in this manner. However, we do not have
a “bothsided” value of an outward normal in the vertices of the region. Hence, we
define a unique value of the normal in the vertices of ) and use the modifications of
(Vio )n and (K )n. The sets V and K which belong to the continuous problem remain
unchanged.

(Vi = (i € [CO2x ... x [C@ ) Plvir € [P(T)PYT € Ty

vi(a;) = ugla;), a; € I'y }, (1.30)
(Ku)h = {vi € (Vi )al(vf = vi)(a:) - nfa;) < 0, a; € T,
1<k<I<S}, (1.31)

where n(a;) = |[(Zjen 0))/Pill ™" - (Zjen; nj)/D; , and p; is the cardinality of N (or
)

In the case when u =0 on ', it holds K; C K again, as the projections of newly
defined normals on the original normals are positive. This inclusion is also valid when
the components of ug are piecewise linear and continuous on I, or constant on every I'! .

REMARK 4.4. This modified formulation does not create the almost linearly depen-
dent rows in a constraint matrix which can cause certain difficulties in some methods.
(See e.g. Lemma 2.6.1.). Rows that are numerically almost dependent rows may oc-
cur. For example when one approximates a curved boundary by a polygon [14] and
especially in 3-D where more than 3 planes may stick in one point. In the developed
preprocessor code it is possible to consider both definitions of (V,, )s, (K4, )n and change
them interactively for the particular problem (The difference is in few lines of source

code).

DEFINITION 4.1. A function u, € (Ky,)s is the solution of the approximate
problem (Py), if it is the minimum of the potential energy functional on the set of all
admissible displacements, i.e.

,C(uh) < ,C(Vh) Vv, € ([(uo)h- (1.32)

The problem (1.32) is equivalent to [5].
Find uy, € (Ky, )n, such that

A (uh,vh — uh) Z L(Vh — uh) \V/Vh - ([(uo)h- (133)



Suppose that in the case when (K, ), ¢ K, (i.e. u is general function) at least it
holds that wy € [H*(2)]. By the decomposition u, = wj, +1r,wo we transform this case
into the problem with zero Dirichlet boundary condition. By using the symbol r,wy
we designate the linear interpolation of the vector function wy on the triangulation,
ie. r,wo = (rpwor, Tho2).

The following equivalence holds.
uy, is the solution of (1.33) iff wy, is the solution of

A(Wh,th — Wh) > L(th — Wh) — A(rhwo,th — Wh)

= Lo(th — Wh) Vi, € Kop. (1.34)
If we know the behaviour of |w — w||, we have
Ju—u || < flw —wal + |[wo —rawo| < [|w —wal[ + O(h). (1.35)

Hence, we consider ug = 0 in what follows.

LEMMA 4.1. (Falk’s lemma, [8, 19, 20] )

colu—wl]* < A(u—uy,u—uy) < A, —u, vy —u)+ A(u, v, —u)
—L(vy,—u)+ A(u,v —uy)
—L(v —up) (1.36)
VveK , ,Vvy,e€ Ky, he(0,1), ¢ >0 isindep. of u.

It is obvious that for the existence and uniqueness of (Py) it is sufficient to fulfill
the conditions ensuring the existence and uniqueness in a continuous case. Indeed, the
coercivity £ on K ensures the coercivity on K; C K. The following Theorem shows
the relation between (P) and (P) when h — 0. The basic assumption is the sufficient
smoothness of the solution. The uniqueness is not required.

THEOREM 4.1. Let u and u; be the solutions of the problems (P) and (P),
respectively. Let u € H*(Q)N K , u*,u' € [Wl’“(Ff})]z, T 7t e [L=(T.)]*. Let the
number of points, where the change u* —u! <0 to u* —u! = 0 appears, be finite.
Then

lu —uy| = O(h).

Proof. As K), C K, we can take v = up and the last two terms in (1.36) vanish.
Furthermore, due to (1.25)

Alu,vi =) = Live—w) = [ wh((of, = o) = (uf = ul))ds,

Ik

and

[A(up, —u,u, —u) + A(vy, —u, v, —u)].

DN | —

Alup, —u, vy, —u) <



By virtue of (1.21)-(1.23) and both of the inequalities in (1.36), we get

—colu — uh|2 <

CCallve =l + [ | h((ok, = vh) = (wh —ul)ds,  (137)
2 Ukl

[N

Let v, = rpu. Then ||v, — uy]]? = O(R?).
It holds on I'.:

Uy = Ve = (Vi = Vi) o my = (0pvF — V) cn= (v — o))

where n is the outward normal to Ff]l C Ffl.

ek I — kl
Now, if u; —u, =0 on I';;, then

/UFM TR (uf —ul) = (uf = ul))ds = 0.

If u¥ —u! <0on Ff}, then 7% = 0 and this integral is zero again. Thus,

S btk =) =l — s = Y [k - )
(uf —ul))ds, (1.38)

where Ff}, are such abscissae, on which both u* —u! = 0 and u* —u! < 0. By the
assumption, their number is finite.

IA

[ il = ) = (uf =l ))ds
U o5
HTfHoo,rg, lra g — ) = (g = ufl)Hoo,rg, h < Csh?. (1.39)

Combining (1.37-1.39) we get the assertion. O
COROLLARY. In the coercive case, (1.27) and Theorem 4.1 gives

Ju—wll = O(h).
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Chapter 2

Numerical methods for the contact
problem

2.1 Introduction of degrees of freedom and the
constraint matrix

Study now how to solve the problem (Py). If we do not consider the constraints on I'y
and I',, we may write for v, € V},,

Vh:(vivvfzw"'vvg)v Véz(v;Ll?v;LQ)? 1 §l§57
! G Ip Iy 1 G ] :
v (X) = vi(%)%(x) = Z fl?ij‘roj(x) vi=1,2;1=1,...,5, (2.1)
=1 7=1

I
J
functions on Vj, such, that

where @’ are the nodes of the triangulation, l’i»j the degrees of freedom, c,oé (x) the basis

pr(aty=2¢6; 4,5=1,...,M(),l=1,...,5, (2.2)

and M(!) is the number of nodes in the [-th body.

In regard to (2.1),(2.2), the constraints on I'y and I',, always bind degrees of freedom
l’i»j which belong to one node of the triangulation. The constraints on ', = UT* (see
Sec. 1.4.) express the relation between the displacements uf and ul}, of the two nodes,
which form the contact pair, and each of them belongs to different body (1 < k <1< 9)
of the model. Therefore, one constraint binds two pairs of degrees of freedom. For
simplicity’s sake we denote the nodes in a contact pair by the same symbol.

All constraints can be written as

T = ug(a;) a; €y,

;2 = uple) a €ly, (2.3)
zing(a;) + zignag(a;) = 0 a; € I,
wfin(ai) + xfhyna(ai) — whng(ai) — lyna(a;) <0 a; € I,

where the normal n(a;) = (n1(a;), n2(a;)) was defined in Sec. 1.4.
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The conditions on I', will be satisfied during the assembling of the stiffness matrix
and the right hand side vector, i.e. during the assembling of the functional £ in (1.30).
The corresponding degrees of freedom are constant, i.e. they are not dependent. In
the conditions on I'g one parameter of x;1, ¥, can be also expressed by the second one.
(We choose that one with greater value of |ns(a;)| as the dependent one).

For these reasons we may consider only the conditions on I'. in what follows. These
can be written in a matrix form as

Az <0, A is of the type M x N,
M is the number of constraints,
N is the number of degrees of freedom in the whole model.

2.2 The assembling of the functional £

At first, we will form £ on particular triangles and edges of the triangulation. Let us
introduce the vector 3 x 1, €;;, 1 <¢ <7 <2, by the relations
€ii = €

(2.4)

€12 = 2eqg ,

and f(z) = L(zsp,) = L(vy), =& RN.
It holds that , ,
Z Cijkl€RICj = Z Ciikl€kIEG;,

i kd=1 i<j k<1
1,7,k,0l=1

which can be written in the matrix form as e De, where the matrix D is 3 x 3,
symmetric.

In regard to the choice of V},, we seek the vector uj, = (up1, up2) in the form of linear
polynomial on every triangle Ty and edge B; of the triangulation. Similarly as in [14],
we will obtain fi(xx) on a given element in the form fi(x) = %xzckxk — akdy, Cy is
6 x6,x,=(6x1),d,=(6x1). We will also obtain the contributions from the edges
on Iy, 2l hy, 2= (4 x 1), hy = (4 x 1) which will be added to the linear term of L.

Then, we eliminate the contingent degrees of freedom on I', or I'y. During the
assembling of £ in the whole model, we follow the global numbering of nodes and the
numbering of degrees of freedom (i.e. the numbering of the variables in the functional).

The problem (1.32) then leads to the problem (Py):
f(x) =12TCa — 27d — min

with constraints

Az <0.

REMARK 2.1. The global stiffness matrix C' is of the type N x N, block diagonal,
every block is sparse, symmetric, positive semidefinite matrix and corresponds to just
one body in the model. In the coercive case (Rem. 1.3.1) C' is positive definite. This
property of the stiffness matrix is the fundamental assumption for some tested methods.

12



The constraint matrix A is of the type M x N, M < N; we assume its rows to be
linearly independent.

REMARK 2.2. We denote K; = {z € RN|Az < 0}.

REMARK 2.3. During the assembling we order the degrees of freedom in the

following manner
G B S 1 1
L1105 Lo15 L12s Tgs - -0 Ty () T2,M (1),

2 2
LTI M)+ Yo, M(1)4+10 7+

which can be simplified as:

T1, 22,03, Tdy ooy TOM 1, L2M > T2M 415, L2M 425 - - -

where we put M = M(1).
By the contact equations we then mean the equations with such indices n; 7, = l’i»j =
vi(al), for which a! € T..

2.3 Storage of the matrices

It is obvious that ' and A have a great number of zero entries. As a result, it is
necessary to devote some attention to the modes of their storage in computer memory.

Stiffness matrix ' was stored in two formats. We use its symmetry in both of
them. At first we tried to test SKY-LINE (profile) format (e.g. [4]), where we store
only the active length from each column j, i.e. the entries ¢;;,¢j_1,..., ¢ 20 =
io(y) = min{i|e;; # 0}. The stored entries of all columns form the Sky-line. It is
convenient, after the mesh generation, to renumber the nodes in the whole model in
order to reduce the active length of the columns (bandwidth). (It turned out to be
more convenient to pass through particular regions Q' of the model).

In the second format - SPARSE (e.g. [1]), we store only non-zero entries, which lie
above the diagonal, from each column.

Some of the methods for solving (P;) were tested in both formats. The results show
that if we do not use the renumbering, the SPARSE format is under the same conditions
faster and has smaller memory requirements than SKY-LINE. These differences in two
dimensional problems almost vanish when using renumbering.

It is reasonable to use only SKY-LINE in the methods in which fill-in occurs (elimi-
nation, complete factorization). It turns out that the solution of (P;) will accelerate by
using the “preconditioning” that is based on the complete decomposition surprisingly.
On the whole we obtain the fastest tested method which, at least in the 2-D using
renumbering, has not very great memory requirements.

13



SKY-LINE (C):

N - number of degrees of freedom (size of (')
NWK - number of stored entries

C(NWK) - real*8 array of entries C

MAXC(N+1) - MAXC(J) is the address to the array C
where ¢;; is stored ;
MAXC(J +1) is the address to the array C

where ¢;,; 1s stored.

SPARSE (C):

N - sizeof C

LIJC=N+1 - length of the array JC

LIC - number of stored entries

C(LIC) - real«8 array of entries C'

IC(LIC) - row indices of corresponding entries in C' array

JC(LJC) - addresses of the first non-zero entries
of particular columns in ' and IC arrays, i.e.

I=JC(J)=IC(I)= Iy and C(I) = ¢;;-
SPARSE (A):
M,N - dimensions of A
LIA=M+1 - length of the array JC
LJA - number of stored entries
A(LJA) - real*8 array of entries A
JA(LJA) - column indices of corresponding entries in A array

TA(LIA) - addresses of the first non-zero entries
of particular rows in A and JA arrays, i.e.
J=TA(Il) = JA(J) = Jo and A(J) = ayy,,
where Jo = min {K|arx # 0}.
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2.4 The elementary operations with the matrices

The most essential operations are: the matrix product, the elimination and the decom-
position.

The matrix product occurs very often in iterative methods. Here we deal with the
following types:

Cz C' symmetric, in SKY-LINE or in SPARSE

Az, ATz A stored in SPARSE, we often multiply only by a certain subset of the
rows of A.  Therefore, the elementary operation is (Ax); (multiplication by i-th
row)

E-Yy, E=Ty The factor £=T is stored (SKY-LINE or SPARSE, unlike C', how-

ever, is not symmetric); the multipication of inverse matrices by the vector is
transformed into the solution of corresponding triangular systems.

The multiplication C'z is carried out by the columns. We will find the adresses and
row indices for a given column from the corresponding arrays. For y = C'z, we have

N i N
yi =) it =) Cizjt D T
j=1 j=1 j=it1
le. for 1 <¢ < N:
y; =0 after passing through the columns 1,...,2—1,
yfi) = Zijl Cjit after passing through col. z,
i=

yz(j) = yl(j_l) + ¢ijx;  after pass. thr. col. 7,72 <y < N.

By the partial Gaussian elimination on the system C'x = d to the row L, we will

I Bld
0 C|d

where I = LxL,C =(N—L)x(N—=L), B=Lx(N—L), dy = Lx1,dy=(N—L)x1.

call its transformation to the form

For the elimination, we assume (' to be positive definite and therefore we do not
consider the permutations of rows and columns. A more general version does not
assume the position of contact equations on the last N — L places (see Sec.9.).

At first we perform the forward elimination of the first . unknowns thus obtaining
the triangular form. Then, for the same unknowns we perform the backward elimina-
tion (similar to Gauss-Jordan elimination). It is obvious that if C' is symmetric, then
i-th derived system is also symmetric.

By using the common notation (we put s = 1 at the begining of the process;
cg;) = ¢;;), we have
CE;):CS) Z7]2877N3:177L‘|‘1 (25)
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We adjust the well-known formula

(k)
C: ..
C(k—l—l)zcgf)_(&))cg;) Z?]:k+177N7 k:177L

¥
Crk

so that we could pass through the columns and perform the elimination for each entry
at one time.

10—1 (m)
(o) _ (1) Cim (m) _
o = ) =) (W) Cmj =

m=1 \ Cmm
10—1 C(m»)
_ mi (m) _
= G — Z ( (m) | “mi
m=1 \ Cmm
) (i0—1)
- - T
m=1
i=1,....N; 1<y; ip =min (z, L+ 1). (2.6)

Suppose that we already have j — 1 columns (j < L ) after the elimination, i.e.

(1) (1) (1) (1) (1)

Ciy Cig -+ oo Gy O 0
2 G R (Y e
22 .. .. 2]_1 2] .. .. 2N
(7-1) (1) (1)
cj—lj—l cj—lj Cee e cj—lN
(1)
CNN

(A unit diagonal is created during the elimination and we store here the corre-
sponding coefficients for the final adjustment of the j-th column).
It can be seen now that we do not need to perform the elimination for ¢;;. To

eliminate ¢;; we only need the entries from the second column and c%). Generally, to
eliminate ¢;; (¢ < j) we only need the entries from the i-th column and the already

(m)

m; and

created entries in the j-th column. To eliminate ¢;;, we only need the entries ¢
dm 1 <m< min(j — 1, L).

mj o

When using SKY-LINE, we do not perform the elimination on entries outside the
Sky-line ( the role of entry in the first row has now a non-zero entry with the lowest

(m) ) 5 (2.6) when at least

row index). Furthermore, we do not need to calculate ¢, ¢,
one of these entries is outside the Sky-line.

The forward elimination for the right hand side is done in the same way.

During the backward elimination we zero the rows 1 <! < [ which are above the

diagonal to the L-th column. We succesively obtain the values

(L) (-1 (D) L—i<ji<N

CL-1,j1>CL-2,j2> CL—2,j2> " - -

At the same time we havefor e =1,...,L—1,5=L—t+1,...,L

cgri)m = CEL__Z»? L—1<m<y,
AN =0 L—i<j<m<IL, (2.7)
CSLWi)i,L—izl L—1<m<L
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Thus, we use the elimination formula

(L) (L—i) g C(LL__/L_P; (L)
Cr—ij = CL-ij — Z ( (L)7 ) Cr—i1; =
1=0 \CL—1 .11
i—1
= ZC(LL—_Z',%—IC(LL—)I,J'
1=0
i=1,....L—-1 j=L+1,...,N
The entries cSZL__Z»f]), CS:L—_ZQ— ; are known from the forward elimination and CEL_)L i from
the already performed backward elimination. Consequently, the backward elimination
can also be performed through the columns. We may consider only the right hand side
and the columns for which 7 > L. Obviously, fill-in occurs for such columns in the
upper part of C'. It is necessary to store the full length of these columns. If L < NV,
we would lose the advantages of the SKY-LINE format, but this is not our case, since
L is the number of the non-contact degrees of freedom. For the columns 1,..., L the
SKY-LINE is very efficient.
The variants of Choleski decomposition ( incomplete, incomplete with adding to
the diagonal, complete) are performed similarly as the elimination. By doing this, we
proceed from the formula

i—1
lij = cij — Z_:llmilmj 1<i<j, j=1,...,N,
1—1 9
lij =\[lejj — Z_:llmj J=1, N

We again pass through the columns and consider only the entries in the Sky-line (for
SKY-LINE format) or only the non-zero entries (for SPARSE format). Therefore, in the
SPARSE we are selecting the entries between the addresses JC(J) and JO(J+1) — 1.
However, in the SPARSE format it is necessary for the variant with adding to the
diagonal to pass through each entry in the Sky-line . This can be accomplished by a
small modification of the algorithm. The calculation of I,,;/,,; is similar for SKY-LINE
and for elimination. For SPARSE we must succesively search in columns ¢ and j for
the pairs with the same row indices (The array [C'). The complete decomposition is

created only for SKY-LINE format.

2.5 The termination

In the following paragraphs we desribe and test several numerical algorithms for the
problem (Py). To stop the process, we use the usual termination criterion:

stop, if FRR < €, where

ERR = ||z — 2|/ max (1.0, ||2*|]), z* is the solution in k-th iteration, k < MAXIT,
and e is the prescribed tolerance (mostly e = 107% ). M AXIT is the maximum number
of iterations. For the overflow test we use the value MAXV AL = 10" — 10%,
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2.6 The conjugate gradient method with constrai-
nts

This method belongs to the gradient projection methods, and generally solves the

problem
flz) %J}TCJ}—J}TCZ — min
zia; —b6; <0 1€l
ala,—b;=0 1€ 1"

where z,a; € RN, d € RM, [-UI°={1,..., M}, C symmetric, positive semidefinite
matrix N x N, b; € R.

In our case, if we include the conditions on Ty into £(v}), we will have I° = {0},
i.e. the problem (Py).

The principal idea of the algorithm [23] lies in the succesive minimization of f(x) on

ﬂﬂll

the facets created by constraints, for which the equality is satisfied. We solve minimiza-
tion problem on each of such facets by using the conjugate gradient method (CGM). As
CGM has finite number of steps and the number of facets is also finite (sometimes very
great, however), it is obvious that the algorithm converges after a finite number of steps.

Denote by A; the matrix whose rows have the indices 1 € I C (I~ U I°).

LEMMA 6.1. Let the vectors a;, : € I C (I~ U I°). Then the matrix A;AT is
regular.

Proof. See [23].

Define the projection

P = A?-(A[A?)_I‘AI it 1#4{0}
Pr=0 it 1={0}

Let J={iclPUIl, (z°)Ta; —b; =0}
and v = —(A;ATY7L A f/(2F) kE=0,1,...
F) =

It holds  f'(x d and
k

Ck
(I —P)f'(a") = f(a*) +

We may now express the scheme of the algorithm as follows

f/

2% .. .the initial guess, which satisfies the constraints
IT=0
fl(2%) =Ca®—d
DO WHILE (IT < MAXIT )
Set J
CALL PROJECT(J, f'(z°),u°, (I — Py)f'(2"))

F U = P ()| = 0) THEN

18



IF (W >0VieJnI" ) THEN

v =2° { solution }
GOTO 2
LLSE
ji=A{ieJnl” uW<0}
V= J - )
ENDIF
LLSE
J'=J
ENDIF

CALL CG(J',2°, f'(2°))
Im=1Tr+1
ENDDO

{ maximum number of iterations reached }

2 END

SUBROUTINE CG(J', z, f')
{ Conjugate gradients - unlike the standard CGM, we use the projection (I — Py) f'(z¥)
instead of the gradient f'(x*). We also have to check the non-active constraints and
correct, in every iteration, the new step length o**! := min (o***, @**1), where

= min 28 and M= (il g A (an g > 0}, )

e}

Input: J'x
Output: =, f’

k=0
20 =2
(%) = f  { from previous iteration }

DO WHILE (k < MAXIT? )

CALL PROJECT(J', f'(z*),u, (I — Py)f'(z*))
g=—(I—Pp)f'(«")
e 1k
IF (¥ <) THEN
xr = l’k
f/ — f’(xk)
RETURN
ENDIF

[F (k=0) THEN p' = g
ELSE pktl = phtl/pk
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PHL = g 1 ghtLpk
ENDIF

al =kt

a2 = (pFt, Cphtt) { scal. product in RV }

IF (al <min(1.0,]a2]) * MAXVAL) THEN
ot = al/a2

ELSE
ot = MAXV AL

ENDIF

M:={ili & J A (a;, p"Y) > 0}
IF M+ {0} THEN
bi—(a,‘,ack)

ot = nrjgln () {b; = 0 in our case } (FF)
FELSE @' = MAXV AL
ENDIF

IF (@' < o) THEN
- T ak+1pk+1
f/ — f’(l‘k) _I_ak+10pk+1
RETURN
ELSEIF (o' = MAXVAL) THEN
STOP
ELSE

ZFH = gk L qhHl gt

f’($k+1) — f’(xk) + ozk+10pk+1
ENDIF

dd = ||+ — 2*|| /(max (1, [|=*])))
IF (dd < ¢) THEN

z = gkt

f/ — f/($k+1)
RETURN
ENDIF

E=k+1
ENDDO

z = 2% { point obtained after max. num. of iterations }

f/ — f’(xk)

RETURN
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SUBROUTINE PROJECT(J, f'(x),u,(I — Py)f'(x))
{ The calculation of u = —(A;AL)™ - Ay f'(z) and (I — Py)f'(z) = f'(z) + ALu by the
CG Method }

Input: J, f'(x)
Output: u, (I — Py)f'(x)

RETURN

REM. 6.1. We set 2° = (0,...,0) for the initial guess. As A;- has a special
structure, we may also choose z° so that the inequalities are satisfied strictly (“inner
point”). For the models, having only two bodies stuck in one point, degree of freedom
x, appears at most in one constraint as; we choose x, = - sign(a,,) - k, k > 0 suitable
const. not exceeding the dimension of the model. We may also choose non-constrained
degrees as proportional to k. When more than two bodies stick, the restricted number
of degrees of freedom may appear in more constraints. We arrive at a contradiction
to the previous choice if the corresponding coefficients for x, have the opposite signs.
Here we choose z, = 0 again.

REM. 6.2. Denote the value of |[(I — Py)f'(2°)| in IT-th iteration (0 < IT <
MAXIT) by pg'T. Then pg'’ ~ 0 numerically represents the comparison
[pg’ T+ / max (1.0, pg’T)] < ¢. Similarly, we use the test ul/u > (—¢), where u =
max (1.0,u?) and u) = max (0.0,u2)) for the multipliers u. It is also necessary to test

the magnitudes of 2% and p* in a semicoercive case.

REM. 6.3. The value MAXIT1 depends on N. MAXIT?2 is the number of iter-
ations in CG. We should choose N —m’ where m' is the number of active constraints
(see [23]). However, the result will be more accurate if we choose the value slightly
greater than N (e.g. ~ 2N).

REM. 6.4. For some models, it is convenient to use the following strategy which is
similar to [10]. We choose less strict tolerance for subproblems (subr. CG) in the first
several iterations within the CGC subroutine. The tolerance is set to more strict value
after a limited number of these iterations. We can get remarkable acceleration of the
process.

REM. 6.5. If C is positive definite (cf. Rem. 2.1.), it can occur
(f'(«"),p"") # 0 and (p™', Cp*1) = 0.

In this case f(z* + ap®*!) decreases when « is increased. If @' = MAXV AL, then
f on K, is not bounded from below.
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REM. 6.6. We may use the diagonal form of (A;AT) in the case of “two bodies

contact” (cf. Rem. 6.1.) for the calculation of the vector v in subroutine PROJECT. A
more general case (when more than two bodies stick in one point or the preconditioning)
can be solved as follows:
u solves the system (AjAT)u = —A;f(z), where AjAY is symmetric and positive
definite. This property is due to definition and lin. independence of rows Aj;. The
minimization is carried out by the conjugate gradient method again. In this case, the
dimension of the problem is far more lower (contact pairs), the matrix A; is sparse
and there are no constraints.

Matrix (A;A%) is not stored, the multiplication w = (A;AL)u is gradually trans-
formed to v = ALu, w = Ajv.

On the basis of the fact that @' > 0 (see Subroutine CG), we can prove that the
CG algorithm makes a non-zero step (i.e. does not cycle) in the same way as in [23].
If the implication
jeJ = (5€JV (a;,p') <0).

is valid then it follows from the formula (FF) in the subroutine CG that &' > 0.
Therefore, it is sufficient to focus the case ||(I — Py)f'(2°)]] ~ 0 and the removed index

jeJ—T.

LEMMA 6.2.([23]) Let |[(I — P;)f'(2°)|| = 0. Let Ay be created from A; by re-
moving the row with index j|u? < 0.

Then (a;,p') <0,j€J—J".

If the condition for removing more indices fulfill then, similarly as in [6], we choose
the one with the greatest absolute value.

However, the condition (a;,p') < 0 j € J — J may be fulfilled even in the case
where more indices {j|u$ < 0} are removed (e.g. all with jlu? < (—¢) cf. Rem. 6.2.).
The following Lemma shows this. In some cases we can accelerate the algorithm very
much through these means.

LEMMA 6.3. Let ||(I — Py)f'(2°)|| = 0. Let Ay be created from A; by removing

the rows with indices j|u? < 0. Furthermore, let the rows of Ay satisfy (a;,a;) = 0,
P40 €.

Then (a;,p1) < 0,5 € J—J".

Proof.

0=(I- PJ)f'(:L'O) = f'(2°) + A?uo = f’(:z;o) + A?u? + A?_J,u?/
—pl = (1 — PJ/)f’(:JcO) = f(2°) + A:}v/ ,
where v/ = —(AJ/A?)_IAJ/f’(:I;O)

Subtracting and multiplying by the vector a;, j € J — J', we obtain (a;,p') = ¢ - u;"

where ¢ = (a;,a;) > 0 and from the assumption uf < 0.
Thus, (a;,p') < 0. O
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COROLLARY. Let the assumptions of the previous Lemma be fulfilled.
Then @' > 0, and as a result the algorithm CGC does not cycle. O

The condition for the rows of Ay is fulfilled in “two bodies contact” (cf. Rem. 6.1.,
again). It may be slightly violated in a general case and also when the preconditioning
is used. Nevertheless for such cases we often have an acceleration as well.

2.7 The preconditioning
Consider again the problem (Py), i.e.

f(z) =12"Cz — 27d — min
Az <0.

Now we assume (' to be positive definite. Let W be a positive definite matrix N x N
in the form W = EFET. Introduce the transformation y = ETx and express (P;) in
terms of a new variable y.

f(y) = 3y'Cy —y"d — min
Ay <0

where

C=E"'CE T, d=FE'dA=AE"T
As BE-TCET = W=IC, the matrices C and W1 have the same eigenvalues. The

convergence of CGM depends on the condition number (Apaz/Amin) of the matrix in
the functional, in our case these are the matrices ', C. The speed of the convergence
increases when the condition number [1] is decreased. The lowest cond. number has a
unity matrix. Therefore, we try to find W which is an easy invertible approximation
of C or for which we can show that W~1C has lower condition number.

The preconditioning will be used when solving the problem on particular facets,
i.e. in the subroutine CG. Let us write its steps for the transformed problem (without
supplementary commands and tests ).

SUBROUTINE PCG(J',x{= E-Ty}, ET,F)

Fy)=Cy*—d
For £k =0,1,...

g=(1-Pu)] (")

= ||g]?

IF (k=0)THEN
pl=7

FLSE
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BEHL = FhHL 7k

ENDIF
kel _ ia B )
R s
IF (@ < ozk"'l) THEN
y = y* £ okttt
T = f( M)+ ozk"'lC}_?k"'l { and return to CGC }
ELSE
aFHIpEH

2 =y Ta
( =Ty )+o/“+10p’“+1
ENDIF

At the same time Py = Z?;, (ZJ/Z?/)_IZJ/
and M is connected with M by the transformation y = E7z.

Introducing a vector v**! by v**! = F=T5**1 and using

W= T(yk) = B (),
(}_?k+1 C—k+1) — (vk-|—17 Cvk+1) and
(a27pk+1) - (ai7 vk—l—l) 2

we can write PCG in z variable.

SUBROUTINE PCG(J',x, ET, )

(%) = f  { from previous iteration }

For £k =0,1,...

ENDIF
ak-l—l _ Fk-l—l/( k+1 Cvk-l—l)
ak-l-l (a l’k)

IF (@' < o**") THEN
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v = ok 4 ghtlypktl
= f(a") + @ Co** { and return to CGC }
ELSE

xk+1 — xk + ak+1vk+1
f’($k+1) — f’(xk) + ozk+10vk+1
ENDIF

In subroutine PROJECT, if it is called from PCG (the calculation of g), the mul-
tiplications Az, AL,z are replaced by Ay, Z:;,y, ie. ApE~ Ty, E7YALy. As BT is
regular, Ay also has linearly independent rows.

The matrix C' does not occur in the transformed problem.

2.8 The choice of the preconditioning matrix

The simplest choice is W = D where D is the diagonal of C'. In this case BT = Dz
and it is sufficient to store only the vector.
Another possibility is the SSOR decomposition [1] . Let C = D + L + LT. The

preconditioning matrix is of the form

W:L(1D+L) (11))_1 (éDJrL)T L 0<w<2 (28

2 —w \w w

factor ﬁ may be omitted, thus

1 \N"7/1
ET = (—D) (—D + LT) .
w w

The condition number C = W=LC, k(C), may be under the certain assumptions smaller
than x(C'), as the following assertion shows [1].

THEOREM 8.1. Let C be positive definite and W be determined by (2.8). Let

1 1 1 1 1 1
|05 LD < 2 D7D <

Then

The optimal value of w can be determined [1], if we can estimate the numbers

p = max (T Dz /2T Hz) |

«T(LD~LT - LiD)x
— 4
SEmE T e
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However, in our case (the presence of the constraints) the numerical experiments
have shown that by choosing w # 1, the speed of the process does not change very
much.

The incomplete factorization is more effective. Consider factorization C' = LLT
where L is a lower triangular. The incomplete factorization in the simplest form lies
on determining only the entries of L where the original matrix ' has non-zeros. We
will obtain certain “approximation” of C'.

Define S¢ = {(¢,J), ¢ij # 0}. Proceeding from the Gaussian elimination, the steps
of incomplete factorization can be written as follows:

forr=1,...,N—1
Ly = e fcl)
1) (r 41 <G SN) A [(,5) € Sol A (5 # §)
it =10 (r+1<j<N)A[(i,)) & Se]
R

In another variant we add removed entries to the diagonal, i.e.

N
r+1 r r r
Cgi = Cgi) - Zirc£i) - E : Zircik)
(i,k)gsc
k=r+1

Thus, in the matrix form

C=EE"+R=W+R

R = Nil RO+ (1) — c§§])v— lwcg) (4,7) & Sc
=1 S e i=J.
k=r+1

(The form of R follows from the description of the incomplete Gaussian elimination
through lower triangular matrices L, and from properties of these matrices.)

It is obvious that, in particular, the version with adding to the diagonal in the num-
ber of operations does not differ from a complete factorization very much. Its main
advantage is in avoiding the fill-in which occurs in the complete factorization. This
fact is not important in SKY-LINE format. Therefore, here we also test the complete
factorization.

DEFINITION 8.1. C' is M-matrix, if
(1) ci >0 v=1,...,N—1

(2) ;<0 1 £ ]
(3) max{Jj|( <jJ<N)A(¢; #0)} >1 for 1 <i< N
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The following Theorem for this class of matrices and for the second variant of inc.
decomposition is proved in [1] .

THEOREM 8.2. The incomplete factorization is a stable process for the diagonal
dominant M-matrix in the following sense:
the number
g = max|c})]/ max |e;;]
T, 7,7 .7

is bounded from above (even ¢ = 1).

In regard to the modes of storage for (', we will proceed in our case from the point
of view of the Gaussian elimination and Chol. decomposition described in Sec. 2.4.,
i.e. we pass through the columns. We carry out the elimination for each entry one at a
time. In the variant with adding to the diagonal we add the non-zeros to the diagonal
element in the same column. In this case the incomplete factorization also turns out to
be more efficient than SSOR decomposition. Generally, it can be said that the number
of iterations on particular facets is lower in the preconditioning (on our test example
approx. 3 times), however, the calculations of the projection matrix are very expensive.

In the SKY-LINE format it is best to carry out the complete factorization. While in
the problems without constraints it would be redundant to perform the iterations after
it, for this situation we do not have the solution yet, but we can achieve substantial
acceleration of the CGM iterations. Only in this situation is the convergence faster (on
test example 2-3 times) than in the case without the preconditioning. Naturally, the
disadvantage is the fill-in which arises due to the elimination.

2.9 The Pre-elimination

In previous paragraphs we have shown that in the problem (P;) only the contact degrees
of freedom, which belong to some contact pair a; € I'. (cf. 2.1.), are constrained in the
matrix A. The number of degrees of freedom with this property is often far smaller
than the total number of all degrees of freedom. By the elimination of non-constrained
degrees of freedom (substructuring, see [9, 8, 22, 19]), we can reduce the number of
variables in the minimized functional and therefore carry out the iterations for smaller
problem.
We proceed from the problem ( Py), i.e.

flz) = %J}TCJ} —27d — min
Ax <0,

C=(NxN),A=(MxN).

Suppose that nodes are renumbered so that the constrained components, the num-

ber of which is P, M < P < N, are placed on the last N — P positions. The
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minimization problem is equivalent to [5] :

find z* € RN, Az* <0,
(y —a*)'Ca > (y—29)'d Yye RN, Ay <0, (2.9)

Write
o = (25,23)", at e RV ;€ RY, L4+ P=N.

Similarly
Yy = (yh y2)T7 d= (dh dQ)T-
We divide the matrices A, C' into the blocks

A=A Ay) =(0 Ay) A=(MxN), Ay=(MxP)

O = 011 012 011 = (L X L), 012 = (L X P)
021 022 022 = (P X P), 021 = Csz

Choose in (2.9) the vector y as follows
_ * T L .
y= (2] £2z1,23)", z1 € R” arbitrary,

It holds Ay < 0.
Thus
Z?(Cnxf + 0121’;) = Zfdl \V/Z - RL,

i.e.

l”{ = Cl_lldl — 01_110121'; = El — 6121';, (210)

where

612 = 01_11012 and El = Cl_lldl.

Now choose, in (2.9), the vector y as follows
y= (2}, 2)7, 2 € R’ Ay <0,

Again, Ay <0.

We obtain a new inequality
(22 — x%)T(ClTQ:I;T + Cogal) > (22 — :L';)sz, Vg € RP, Agzy <0,
and after substituting from (2.10)
(22 = 03) " (Ofady + (Coo = C,C10)a3) > (22— a3) " dy

thus,
(ZQ — x;)T€22$§ Z (ZQ — J?;)TEQ, \V/ZQ - RP,AQZQ S 0, (211)
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where

Cyy = Oy — CszUm = (Cyy — 01:201—11012

and

dy = dy — Clydy = dy — CHLOT .
The inequality (2.11) is in turn equivalent to the minimization

flz) = %:1;5622:1;2 — 22'dy — min

Aswy <0, 25 € RP. (P3)

The matrix C'y; and the vector dy, and also the matrix Cqy and the vector d;, which
we use for the calculation of #7 according to (2.10) already knowing the minimum a7,
can be obtained by the Gaussian elimination to the row L (see Sec. 2.4.) on the system
(Cd).

Let the matrix Li; (L x L) perform the elimination of the first L unknowns. At
first, by forward elimination we obtain

dq
dy )7

R Riz | dir _ Ly 0 Cii Cig
0 Can| do Xor [ Cf, Ca
Xo = —CLCE', R = LiChy, Riz = L11Cha, dig = Lyds.
Then, by backward elimination we diagonalize Ryy, i.e.
Uy 0 R Ry d_lR
(- 0 Cu| do

I = U Ry = Ui L1 Cyy te ULy = 01_11-

where

where

THEOREM 9.1. Let C' be symmetric, positive definite matrix with dimension V.
Then the matrix Cyy = Cyy — CITQCI_IICU is also symmetric and positive definite.

Proof. As (11, Cyy and also Cl_ll are symmetric, Oy is also symmetric. C' is positive
definite, i.e.

0 < l’TCl' = :1;1T011:1;1 + l’fclzl'z + $gC£$1 + $gcgz$2
Through the choice 1 = —01‘11012:1;2 we obtaln
0 S $g(022 — 01_11012)1'2 = 1’56221'2,

i.e. (s is positive definite. O
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It is obvious from this Theorem that the method from Sec.2.6. can be used for the
problem (Pg). Since Cyy and Ay are stored in the computer memory in the same places
as the original (greater) matrices, the relative adresses of entries Cy and A, in CGC
differ from absolute ones which are related to the original matrices. Therefore, it is
necessary to slightly modify multiplication subroutines.

If we omit the elimination part in the process and, for the same reason, the LLT
decomposition in preconditioning by using LLT (Sec. 2.8.), we get almost equally
fast methods. Due to the necessity of renumbering of contact nodes, which has to be
performed after contingent renumbering in order to reduce the bandwidth, the Pre-
elimination has greater memory requirements than LL? preconditioning.

There was an attempt to perform this second renumbering implicitly, i.e. instead
of Gaussian elimination to the row L, to use a more general version in which “non-
contact” degrees of freedom are eliminated in the order that was created directly after
the assembling or after the first renumbering (Sec. 2.3-4.). To do this within the
SKY-LINE format, it was necessary to store the whole contact columns in the stiffness
matrix. After the forward elimination for entries above the diagonal we perform the
same process for entries below the diagonal. We adjust the whole contact columns in
the backward elimination. However, in our examples the memory requirements were
not lower than those for the method with explicit renumbering, not even in the cases
with relatively small number of contact pairs. Moreover, the algorithm was slower
because of more complicated manipulations during the calculation.

2.10 The Penalization

This method belongs to the ones which transform the problem with constraints to
another problem, in which the constraints are no longer present. The principal idea
consists of adding the penalization terms to the minimized functional. These terms
are zero on the set determined by the constraints and outside they are boundlessly
increasing, thus causing the limit solution to be inside the above defined set (The
Exterior Method). The Penalization was used several times for solving various other
formulations of the Contact Problem. The problem without constraints seems to be
simpler, however, it will turn out that too big penalization term prevails numerically
over the original functional and therefore, we are not able to obtain the exact solution,
even with the use of more strict tolerances.

As the main advantage of the Penalization which, compared with previous methods,
should represent the presence of the problem without constraints, we will penalise only
the disretized problem i.e. (Py).

Define for ¢, > 0 the functional

i l2) = 1) + 5 Dl

M
é : ‘2—:1 [(aj,z)T]? is the penalization functional.

J

where the term
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It holds that
1 M

re€ Ky & ((aj,2)<0Yj=1,.... M) & [(a;,2)T]? =0

2¢p 4
If f is strictly convex, then g, (z) is strictly convex (since Ky and the penalization
functional are convex). Thus, there exists a unique Ty

gﬁp(x:p) S gﬁp(x) vx E RN ° (pﬁdl)

THEOREM 10.1. Let f be strictly convex. Let 2* be the solution of (P;) and Ty
the solution of (P.,,).
Then 2* — z*in RN,

The proofpis similar to that of Theorem 3.2., [7].

The penalization functional in g, (z) is, however, less suitable for computation,
since its derivation of z; is not in z; linear. Thus, we introduce M new variables ¢;,
t; > 0 and write the constraints as follows :

M
€K, & D ((aj,2)+1)°=0 for ¢;>0V
=1

We create a new functional in the form

1 M
hﬁp(xvt) = f(l') + ? ) Z ((Cl]‘,l') + t])z
P 5=1
and consider the following problem
min_he (x,1) (Pess)
P

The constraints are again in (P, ), however, their form allows us to use a very
simple method for the minimization, namely the Relaxation method. In addition, the
experiments have shown that in this situation this method behaves far better than the
conjugate gradient method with constraints (Sec. 6).

THEOREM 10.2. The problem (P.,,) has a unique solution (x7 17 ), where 27 is

Ep7 Ep
the solution of (P, ) and ¢ = ( My, = (aj, 7).
Proof. For a given z define ¢, = (txj)]‘]\ip tyj = (a;, ).

Using ¢t; > 0 and the relations
T, =0, ()= -y (2T) 20ty
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( zt and z~ are the positive and negative parts of z, respectively), we get

he,(z,t) > he, = gc, () > gﬁp(x;) for « # l’; and t; > 0.
At the same time

hey(25,,15,) = g (aZ,). O

Ep Y Ep

Denote

Ji(x) = he, (w1, ., 01,2, %41, ..., TN, 1) 1<i<N,
J]‘(t): hﬁp(l’,tl,...,t]‘_l,t,t]‘_H,...,tN) 1<]§M

N 1 M N

Ji(z:) = Z cipry — d;i + o Z aji Zajll'l +4;| +
k=1 P =1 =1
k#t 1#6

1 M
€p 7=1
1
J{(t]‘) == —(l‘ta]‘ + t]‘), t]‘ Z 0. (213)
€p
The Relaxation method is based on the following iterations [7]
k=0

To,lo initial guess (e.g. xg =0, 1o = 0)

DO WHILE ( (K < MAXIT).AND.(ERR.GT.c) )

fore=1,...,N

1:

find 2¥+!

k+1 k+1 _k+1 K k 4k
hﬁp(xl 7"'71?2];—1171'2' 7fi-|1—17"']€7xN7t )% .
+ +
he, (20 i R, ) YeeR

2:

the calculation of tF*1

the calculation of ERR (Sec. 5)
Ek=k+1
ENDDO
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REMARK 10.1. We perform the step 1 using the equality J!(x;) = 0 (see (2.12)).

For f being strictly convex the matrix €' is positive definite, i.e.

1M
—Za?i—l—c“’Zcﬁ>0.

€p 7=1
Step 2: tf"'l = [("*1)Ta;]~ (see (2.13)).

REMARK 10.2. Similarly to SSOR, the relaxation parameter w may be introduced
(0 <w<2).

2.11 The Uzawa saddle point method

Further possibility of transforming the constrained problem to the sequence of uncon-
strained problems consists in the transformation of the original problem to the saddle
point problem. This transformation will be fully employed when considering the fric-
tion in the model.

At first, we note the continuous problem, for the Lagrange multipliers which appear
here have a concrete meaning. We will clarify it through the additional assumptions on
the problem (P): zero Dirichlet boundary condition on I, the boundary of the region
sufficiently smooth. Now 7, € L*(T.) [21]. Let

A={pe L*(T)|pg >0 ae. onl.}

Define
W(vop) = [ ok —vl)ds, veEVipen.
FC
It holds
veK & VU(v,u) <0 VpeA,
0 veR
sup U(v, 1) { too VER

Therefore, we can write the original (primary) problem as

inf L(v)= inf sup (L(v)+ U (v,u))= inf supH(v,u)

vev vev u€eA vev u€eA

Through these means, the problem is transformed to seeking the saddle point of the
Lagrangian

H(v, i) = L(v) + U(v, ).

THEOREM 11.1. ([8]) Let the saddle point of H(v, ) exist. Then its first compo-
nent solves the problem (P).
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The problem  sup inf H(v,u) is called dual.
pnEA vev

THEOREM 11.2. The pair (u, A) is the saddle point iff
sup inf H(v,u) = inf supH(v,p)=H(u, )

pEA Vev VeV pu€EA

and the corresponding extremes are attained in (u, p).
The proof follows from [21].

Consider the inner part of the dual problem only, i.e.
. ) 1
&IGI%‘/ H(V, ,u) = Inf {5 /Q cijkmeij(v)ekm(v)dx — /Q Fﬂ)idx —

vev
/ Tivds + / p(vf —olyds),  p fixed
r, Ik

This problem represents the elasticity problem where on the contact boundary the
surface tension 7 = (7,,7t) = (—p,0) is prescribed.

The saddle point of H is then (u,—7,(u)) where u is the solution of (P), —7,(u)
describes the corresponding surface loads on T'..

We will desribe the Uzawa algorithm in a more general form.
Let V, L be the Hilbert spaces, K C V., A C L non-empty, convex, closed subsets. At
the same time we suppose that
either A is convex hull with the vertex in iy and K =V,
or A is bounded subset of L.
Let £:V — R, ®: V — L, linear, continuous,
P denote the projection L — A (||Pu—pllL = I/\Ilellrxl IIA— pllz),

and the Lagrangian, whose saddle point (u,p) € K x A we seek, have the form
H:VxL—=R, Huup =Lw)+ (P0))L.

The Uzawa algorithm is given by the following description :
A\ € A, arbitrary (2.14)

Knowing AN € A,

we seek v € K

L)+ 0w™), = min{L(v) + AV, 0(v))L} (2.15)
A = PN 4 po(u?V)] (2.16)

The following Theorem holds for the convergence of this algorithm (see e.g.

[211,[71,[5])-
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THEOREM 11.3. Let L(u) have the strictly monotonne differential, i.e.

DL(u+ h,h) — DL(u,h) > m|h||*, VheV, (2.17)
Let
[0(u) — @0}l < ellu — o]l Vu,0 € V, (2.15)
and let p fulfill
2mp — c*p? > 3> 0. (2.19)

Assume that the saddle point (u, A) € K x A of the Lagrangian H exists.
Then the process (2.14)-(2.16) converges in the sense
that u”¥ — u strongly in V.

Moreover, if the saddle point is unique, then AV — X weakly in L.

Similarly to the penalization, the problem without constraints should be one of
the greatest advantages of the saddle point formulation. Moreover, we require the
contact condition to be fulfilled only in the discrete points. Therefore, we introduce
the Lagrangian only for the problem (Py).

Here,

V=K=RV, V=N, L=R" A=R! ={z e RM|z; >0 1<i< M},

the functional L(u) is represented by f(x), ®(u) by the vector Ax
(i.e. U(u,\) = AT Az ).

The projection P has the form PA = ), where A = (AT,...,\1,).
Thus, we seek the saddle point of H(x, A),

H(z,A) = f(x) + N Az = 22" Ca —2Td+ A" Az, 2€ RV, X e RV (2.20)

It C' is positive definite, then all the assumptions of the previous Theorem are ful-
filled as we have a finite dimensional problem. The existence and uniqueness of the
saddle point is also ensured [21],[5].

The minimization of the functional in (2.15)

f(z) =2aTCx — 2T(d — AT))

2
can be accomplished by a standard conjugate gradient method.
REMARK 11.1. The optimal value of p can be theoretically determined, e.g. for
the equality problem, we have
B 2
Pont = ()\mzn + )\max) 7

where Apin, Amaz are the extremal eigenvalues of the matrix (C~' A% Apo) (see [16] and
cf. (2.19); the matrix Ao is defined in Sec. 6. ). However, the calculation of the
eigenvalues would be at least as expensive as the whole problem. Therefore, p is to be
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estimated during the computation in a similar way as ¢, is in penalization.

REMARK 11.2. We also obtain the values of the multipliers in the CGC algorithm.

The criterion for terminating CGC is
F@)+ AN =0 and A >0 icJni, ie.
Ca*—d+AT)N =0, Mi=X\icJ AX=0icl—J
At the same time Az* < 0. Furthermore,
N#0=>1€eJ = (A27); =0.

By virtue of Kuhn-Tucker Theorem (see e.g. [21]) the pair (z*, \*) is the saddle point
of the Lagrangian H(x, A).

2.12 The minimization of the dual functional

The Uzawa method from previous section is relatively slow for greater problems. There-
fore, it is reasonable to examine yet another, faster saddle point algorithms.

The conditions for saddle point (x*, A*) of (2.20) are (e.g. [8]):
Ca* —d+ AT = 0 (2.21)
() 'AT(r =X > 0  VreRY. (2.22)

For models which lead to the positive definite matrix C' (c.f. Rem. 2.1.), we may
calculate 2* from (2.21) and substitute it into H(x, ). We get

inf H(z,A)=INTHA+ATh+k,

zERN

where

H=ACTA", h=AC"'d, andk=1d"C7'd.
(Up to a constant term, we obtain the same by substituting «* into (2.22).)

DEFINITION 12.1. By dual functional we call the functional

J'(N\) = — inf H(x,A).

rzeRN
Let diagonal M x M matrix B, B = diag(—1,...,—1), represent the condition
A€ R]_y. Thus, we arrive at problem (Pyq) :
min J'(A)

with constraints BA <0
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THEOREM 12.1. Let 27Cz > 0 for x # 0 and let the rows A be linearly indepen-
dent. Then H = AC~'AT is positive definite.
The proof is obvious, as ATy =0 < y =0 and 27C~12 > 0 for z # 0.

As the matrix B has linearly independent rows, the method of Sec. 6. can be
used for solving (Pgyq). It is obvious that the calculation of the projection can now be
simplified. Using the CGM we avoid the fill-in which can arise from the decomposition
of €', and this is, in our case, a more essential criterion than a slow down.

The calculation follows the algorithm therein presented. However, we do not store
H. Thus, every multiplying of Hz consists of solving the system with the matrix C.
We may use the standard conjugate gradient method for the solution of this “inner”
problem. Note that during the “outer” iterations (the problem of dimension M ) it is
necessary to choose more strict tolerance than in Sec. 6. (as much as several orders).
The removal of more indices from the active set is also convenient here.

2.13 The Active set method

The idea of this method is similar to the method of Sec. 6. ([6]). We are succesively
searching for those saddle points of Lagrangians (2.20) which contain only the equality
constraints. At the same time we assume C' to be positive definite. Using the notation
similar to the one of Sec. 6., we may express the scheme of the method as follows:

k=0
2% init. guess
J CI°UI~ the corresponding set of active constraints

DO WHILE (k < MAXIT)
solve EP (2.26 below)

IF ||6] ~ 0 THEN
ji=min{i€ I~ NJ| X\ = min )\;}

jel—nJ
IF (\=>0) THEN

r* = a* { the solution }
GOTO 1

ELSE
Ji=J = {j)

ENDIF

ELSE .
a =min (1, zng o5 )
alT(5<0

oF = gk 4 as
correction of J
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ENDIF

k=k+1

ENDDO

{ maximum number of iterations reached }
1:

END

Let us now study the equality problem - EP. The Lagrangian has the form
Hy(x,A) = %J}TCJ} —2Td+ M Az, (2.23)

The conditions for the saddle point are

0= V., H(z*\)= Caz*—d+(\)Ay (2.24)
0= V. H(a*, ) Agx* (2.25)

Let us introduce in (k 4+ 1)-th iteration the substitution 6 = «* — k. Moreover, let
C A? ) d— CzxF
s=(5 ) = (3) =)

Therefore, we can write (2.24,2.25) in matrix form

Byy=, (2.26)

where By is of type (L x L), y,f (L x 1), L = N 4+ M(J), M(J) num. of active
constraints. As (' is positive definite and the rows of A; are linearly independent, the
matrix By is regular [6].

The Gaussian elimination algorithm used in Sec. 9. and the possibility of node
renumbering after the mesh generation give us one way to solve (2.26). By these
means, we obtain a fast method comparable with the complete LLT decomposition
preconditioning (Sec. 9.). However, we have to keep in mind the fill-in in B; which
arises from the elimination as well as the necessity to store the stiffness matrix C'. We
can reduce the bandwidth of B; by inserting the component A; immediately after z;,

where ¢ = max {i|¢ =1,..., N; ay # 0}.

2.14 The conjugate gradient method with hyper-
bolic pairs

We describe one iterative method for solving (2.26). As it is well-known, by using the
standard conjugate gradient method, we obtain the following algorithm

y° ... initial guess
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pt=r'= [~ By’

For k=1,...,N

o = (¥, ")/ (", Bsp") (2.27)
yt =yt 4ot (2.28)

P =k of Bt (2.29)

85 = (" Byph) (0", Bap®) (2.30)
(2.31)

k+1 k41 k k
P =t = Bp

The matrix By is regular and symmetric but not positive definite. Thus, it may
occur (p*, Byp*) = 0 for some p* # 0. This difficulty can be rectified by transforming
(2.26) to B}y = By f or by using the conjugate gradient method with orthogonaliza-
tion in (B3y,y) inner product. We present here a modification of the standard method,
suggested in [15], which turned out to be the best.

DEFINITION 14.1. A nonzero vector y € R is said to be singular if (y, Byy) = 0.
A pair of vectors z,y € R” is said to be a hyperbolic pair if x and y are both singular
and (x, Byy) # 0.

Then, we may express the algorithm as follows:

Case I : p* is not singular - use (2.27)-(2.31)

Case II : p* is singular - use the following:

(Bsp*, B3p*)

PPt = Bpk — Wp (2.32)
kooktl
of = % (2.33)
o = 2k o ozkpk (2.34)
ko k
ot = % (2.35)
PP o R L 936
N I s (2.37)
g2 = peir _ 0 Bap ) 2.38)

(p*, Byp*tt)

REMARK 14.1. In the Case II, p*, p**! is a hyperbolic pair.
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THEOREM 14.1. The algorithm defined above converges to the solution of (2.26)
in L steps or less.

Proof. See [15].

REMARK 14.2. A direction vector p* is treated as singular if

‘ (p*, Bsp")

<g¢ we take e = 107%.
(p*,p")

REMARK 14.3. An obvious advantage of the iterative method is again the possi-
bility of using the SPARSE format for the storage of B.
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Chapter 3

Numerical tests

3.1 First test example

The comparison test of all above methods was carried out on a personal computer with
MS-FORTRAN 5.0 compiler, for the model, which simulates a contact between three
bodies (Figs. 3.1-3.4).

These bodies together occupy the rectangle region 1000 x 800[m]. The distribution
of surface tension P is prescribed on the top and bottom side. The displacements ugy,
and ugp are prescribed on the left and right side. The gravity g and density p form the
body forces Fy, = —pg. The first body is enclosed by lines 1 — ... — 14 — 1, the second
by 15 — ... — 25 — 15 and the third by 26 — ... — 39 — 26. The values for boundary

conditions were taken as follows:

uor1 = 0.2, uprz = 0.0, uorr = —0.2, ugrz = 0.0 [m],

P, = 0.0, P, = —0.8d+08[Nm™2.

Furthermore, ¢ = 0.1d+02[ms™?], p = 0.7d+04[kgm 7] . The elastic parameters were:
E =0.1d+12[Nm™?], u = 0.3. We assume the linear Hooke’s law to be valid.

After the triangulation there are 128 nodes, 182 elements, 218 degrees of freedom
and 18 constraints. The number of stored entries of the stiffness matrix in our model is:
1347 for SPARSE format, 3003 for SKY-LINE (without the renumbering /2 10000), and
~ 14000 for SKY-LINE with the Pre-elimination (already after the first renumbering).

The speed of the projection gradient methods (Sec.6-9.,12.) as well as the Active
set method (Sec.13-14.) can be affected by suitable initial guess and particularly also
by the number of removed indices (as much as several times). Some loss of accuracy
can be expected [13] in non-convex corners. We listed the displacements (in [m]) in
nodes 34 and 77 (cf. Fig.3.1). The TIME is in seconds.

The first table compares the elementary CG Method in both of the formats and
the Pre-elimination. The Reverse Cuthill-McKee renumbering which also increased the
speed of the method is done for SKY-LINE. For the Pre-elimination, second value is
the computational time excluding the elimination part.

The tables (3.2),(3.3) show the influence of preconditioning on the CGC method in
both of the formats. In SKY-LINE format, we have got the fastest tested method by
“preconditioning” using the complete decomposition (LLT). Tt is necessary to store this
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Figure 3.1:

Table 3.1: CGC in both formats

u1(34) | ug(34) | wr(77) | ux(77) | TIME
SKY-LINE | -1.65 -5.56 | -1.73D-2 | -1.91 12
SPARSE -1.65 -5.56 | -1.73D-2 | -1.91 15
PRE-ELIM | -1.65 -5.56 | -1.73D-2 | -1.91 11/3
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Table 3.2: The preconditioning - SKY-LINE

SKY-LINE | DIAG | SOR | ILLT | ILL*D | LL*
TIME 20 36 23 22 5/3

Table 3.3: The preconditioning - SPARSE

SPARSE | SOR | ILLT | ILLTD
TIME 35 29 29

factor. However, in most cases the bandwidth of the stiffness matrix is proportional
to the number of contact degrees of freedom (Rem. 2.2.3). Therefore, considering the
possibility of renumbering as well, there are smaller memory requirements than for
the Pre-elimination. In the case of this preconditioning, we actually calculate with
the projection of unity matrix. Often only one iteration is performed on each facet.
Similarly to the Pre-elimination, second value is the computational time which excludes
the LLT decomposition.

Least efficient turned out to be the SOR preconditioning which is almost indepen-
dent on w (we take w = 1). The incomplete factorization (ILLT) and i.f. with adding
to the diagonal (I LLT D) were faster but still did not reach the speed of the elementary
method (without precond.).

The preconditioning for SPARSE format had similar behaviour. In this case, it was
not convenient to create a complete factorization.

Greater efficiency of classical preconditioners may be supposed when there is a
greater number of elements in the model, due to the increase of the condition number
of stiffness matrix [1]. Numerical values are the same as in Tab.3.1 and are not listed
for the sake of greater amount of variants.

In the penalization (Tab.3.4), it is necessary to choose the parameter ¢, correctly.
The values ¢, = 1.d — 11 and 1d. — 12 when the penalization term was 1-2 orders
greater than the entries in the stiffness matrix turned out to be the most convenient.
The correct estimate of ¢, is probably the greatest drawback of this method. We have
chosen the relaxation parameter w = 1.5.

Almost the same holds for the Uzawa method. A parameter p was succesively
increased by order till the value when the oscillations occured. The most optimal values
are approximately one order under the oscillations. The properties of this method
did not improve the introduction of the penalization term into the inner iterations
(Augmented Lagrangian, see [16] for equality problem). In our case we have taken the
penalization term from Sec. 2.10. Regarding the speed of the Uzawa algorithm, we
have also tried to test the method for dual functional, which gives more acceptable
results.

By these means, we have placed the information about the behaviour of the methods
onto a relatively simple example. It can be used when considering the friction in a
model or for contingent solving of more complex physical problems.
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Table 3.4:

ur(34) | ug(34) | wr(77) | ua(77) | TIME
PEN 1.D-11 | -1.79 -5.84 | -1.48D-2 | -1.92 174
PEN 1.D-12 | -1.67 -5.57 | -1.80D-2 | -1.91 712
UZAWA -1.68 -5.57 | -2.06D-2 | -1.92 395
DUAL -1.65 -5.56 | -1.73D-2 | -1.91 115

Table 3.5:

ASM-E | -1.65 | -5.56 |-1.73D-2 | -1.91 8
CGH -1.65 | -5.53 | -1.82D-2 | -1.91 25

The last table compares the variants to the Active set method. The elimination
version (ASM-E) is almost as fast as the LL? preconditioning. We have to store the
matrix By (2.26) which is to be eliminated (in this model up to 4151 entries). In our
case the elimination represents only O(L?) operations. Even more optimal should be
the creation of corresponding factors [6],[11]. However, we still do not avoid a fill-in for
the constraint matrix A;. We can use the SPARSE format in the iterative Conjugate
gradient method with hyperbolic pairs (CGH), .

3.2 Three cantilever bodies

In the case of our computational possibilities (personal computer, MS FORTRAN 5.0
compiler), the iterative conjugate gradient method with constraints is more optimal
even though it is slower than the elimination method. Moreover, we may also consider
the semicoercive case (Sec. 3., in what follows). The SPARSE format allows us to
solve problems with more than 4000 degrees of freedom (we suppose, that number of
constraints is far lower). There is a possibility to increase the memory capabilities on
the PC by using a different compiler which also uses a memory above 640K (e.g. SF
FORTRAN).

To ilustrate good behaviour of a mathematical formulation of the problem, we have
created several other models. For each model, we display these values: NV-number of
nodes, NEL-n. of elements, NEQ-n. of degrees of freedom, NCP-n. of constraints, LIC-
n. of stored entries in the stiffness matrix, LJA-n. of stored entries in the constraint
matrix, TIME- solution time for the CGC method in seconds. This time depends not
only on the size of the problem but also on the geometry and boundary conditions.

The first model containing 3 cantilevers is depicted in Fig. 3.5 [12]. A surface
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Figure 3.4:

Table 3.6:

NV | NEL | NEQ | NCP | LIC | LJA|TIMFE
424 | 702 812 17 | 5514 | 68 130

pressure P, = —0.9d+09[Nm™?] is prescribed on top of the highest body. This body
and the lowest body are fixed on the left while the middle body is fixed on the right.
The material properties are £ = 0.1d+12[Nm™?2], u = 0.3.

This is the example containing more than two bodies where at most two bodies
stick in one point.

Here we have also tried to test the SF FORTRAN compiler with the solution time
26 seconds. However, the assembling of the stiffness matrix was slower in comparison

to the MS FORTRAN.

3.3 A simple model of the human hip joint

In this section, a model of the human hip joint is analysed (Fig. 3.6). This analysis was
done in co-operation with the Orthopaedic Clinic of the 3rd Faculty of Medicine [3] and
may be useful for modelling a human hip joint replacement after surgical reconstruction
of a dysplastic acetabulum.

The geometry was taken from an X-ray photograph. The weight of the human
body is distributed along the boundary lines 91 — ... — 106 — ... — 109 with the value
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Figure 3.5:
Table 3.7:
MODFEL | NV | NEL | NEQ | NCP | LIC | LIA|TIME
1 180 | 234 350 8 2131 | 32 41
2 204 | 268 398 15 2435 | 60 43
3 690 | 1094 | 1359 15 19064 | 60 182

Py =0.0, P, = —0.5d4+05[Nm™?]. Point force I} = —0.607d+04, Fy = —0.345d+04[N],
caused by the abductors acts at vertex 116. The oposite force acts at vertex 2.

The bottom of the structure is fixed, i.e. u = 0 along boundary lines 28 — 29 and
44 — 45. We prescribed the condition u,, = 0 along line 90 — 91. This means that we
have a semicoercive case now. The contact boundary is located between pairs 61,76
and 68, 69.

The elastic parameters were taken as £ = 0.1d+11[Nm™2], ¢ = 0.295 [2]. We
assume the linear Hooke’s law to be valid and that the type of deformation is a plane
stress.

We created three triangulations: (1) coarse (Fig. 3.6), (2) finer only on the con-
tact boundary (Fig. 3.7) and (3) finer in the whole structure (Figs 3.8 - 3.11). Our
computations are summarized in Tab.3.7.

In Fig. 3.7 we demonstrate the resultant displacements with the scale factor 30.
The distributions of stresses for the finest triangulation are depicted in Figs. 3.8 - 3.11.
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Figure 3.6:

Figure 3.7:
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For the stress equivalent we have used

_ 2 2 2

We have compared our results with [2]. Naturally, small differences exist. They can be
caused by different input data. Only the upper part of the structure is considered in
[2]. There are no contact conditions, only the linear elastic model is calculated. The
top line is fixed and the weight of the human body is transformed into the reaction
forces, acting in the joint.

3.4 A more complicated geodynamical model

This model relates to the one in Sec.1. It simulates the motion of litospheric plates
in the Earth and can be regarded as a quasistatic study of a dynamic tectonic plate
model which mathematically describes the collision zones in the sense of new global
tectonics [18]-[19].

The whole structure occupies approximately the region 0.7d 4+ 05 x 0.6d 4 05
[m?] (Fig. 3.12), and again contains three bodies in contact (1—2—23—21—18—-24—1),
(24 — 18 =21 — 39 — 40 — 24) and (39 — 21 — 23 — 68 — 39). There are 19 subregions
in these 3 bodies. Each of them has different values of E[Nm™2], u, p[kgm ™3], varying
from £ = 0.27d+11, p = 0.23 and p = 0.24d+04, to £ = 0.18d+11, g = 0.33 and
p = 0.34d+04.

The part 24 — 1 — 2 — 23 of the boundary is fixed. Along the lines 24 — 40 and
23 — 68 we have prescribed the Dirichlet boundary condition ugz, upr which express
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Table 3.8:

MODFEL | NV | NEL | NEQ | NCP | LIC | LIA|TIME
1 307 | 461 266 34 | 3637 | 136 37
307 | 461 266 34 | 3637 | 136 38
307 | 461 266 34 | 3637 | 136 39
309 | 463 570 33 | 3659 | 132 54

H=] o DD

Figure 3.13:

the state of litospheric plates in various time steps. We have prescribed these values
for ugz, ugp :

MODEL 1:  ugz; = 0.5d+03, uom = —0.5d+02[m] Fig. 3.13
MODEL 2: gz = 2.5d+03, uom = —2.5d+02[m] Fig. 3.14
MODEL 3:  ugz; = 0.5d+04, uom = —0.5d+03[m] Fig. 3.15
MODEL 4:  ugz; = 2.5d+04, uop = —0.0d4+00[m] Fig. 3.16

The statistics for this example is in Tab. 3.8.

For the last model, we have slightly modified the contact boundary which resulted
different values of the parameters. Surface and contour plots for 7. (Sec.3.) are depicted
in Figs. 3.17-3.18 and principal stresses (e.g. [21]) in Fig.3.19.
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Figure 3.14:

Figure 3.15:

33




Figure 3.16:
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